1
|
Muthukrishanan G, Munisamy J, Gopalasubramaniam SK, Subramanian KS, Dharmaraj R, Nath DJ, Dutta P, Devarajan AK. Impact of foliar application of phyllosphere yeast strains combined with soil fertilizer application on rice growth and yield. ENVIRONMENTAL MICROBIOME 2024; 19:102. [PMID: 39695904 DOI: 10.1186/s40793-024-00635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The application of beneficial microbes in agriculture is gaining increasing attention as a means to reduce reliance on chemical fertilizers. This approach can potentially mitigate negative impacts on soil, animal, and human health, as well as decrease climate-changing factors. Among these microbes, yeast has been the least explored, particularly within the phyllosphere compartment. This study addresses this knowledge gap by investigating the potential of phyllosphere yeast to improve rice yield while reducing fertilizer dosage. RESULTS From fifty-two rice yeast phyllosphere isolates, we identified three yeast strains-Rhodotorula paludigena Y1, Pseudozyma sp. Y71, and Cryptococcus sp. Y72-that could thrive at 36 °C and possessed significant multifarious plant growth-promoting traits, enhancing rice root and shoot length upon seed inoculation. These three strains demonstrated favorable compatibility, leading to the creation of a yeast consortium. We assessed the combined effect of foliar application of this yeast consortium and individual strains with two distinct recommended doses of chemical fertilizers (RDCFs) (75 and 100%), as well as RDCFs alone (75 and 100%), in rice maintained in pot-culture and field experiments. The pot-culture experiment investigated the leaf microbial community, plant biochemicals, root and shoot length during the stem elongation, flowering, and dough phases, and yield-related parameters at harvest. The field experiment determined the actual yield. Integrated results from both experiments revealed that the yeast consortium with 75% RDCFs was more effective than the yeast consortium with 100% RDCFs, single strain applications with RDCFs (75 and 100%), and RDCFs alone (75 and 100%). Additionally, this treatment improved leaf metabolite levels compared to control rice plants. CONCLUSIONS Overall, a 25% reduction in soil chemical fertilizers combined with yeast consortium foliar application improved rice growth, biochemicals, and yield. This study also advances the field of phyllosphere yeast research in agriculture.
Collapse
Affiliation(s)
- Gomathy Muthukrishanan
- Department of Soil Science and Agricultural Chemistry, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, Tuticorin, 628252, India.
| | - Jeyashri Munisamy
- Department of Soil Science and Agricultural Chemistry, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, Tuticorin, 628252, India
| | | | | | | | | | - Pranab Dutta
- Central Agricultural University, Umiam, Meghalaya, 793122, India
| | | |
Collapse
|
2
|
Haniffadli A, Ban Y, Rahmat E, Kang CH, Kang Y. Unforeseen current and future benefits of uncommon yeast: the Metschnikowia genus. Appl Microbiol Biotechnol 2024; 108:534. [PMID: 39661197 PMCID: PMC11634920 DOI: 10.1007/s00253-024-13369-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Metschnikowia, the single-cell yeast form, is a genus of 85 species in the Saccharomycetales order that developed in both aquatic and terrestrial ecosystems after being found in 1899. This yeast is commonly used to control microbial populations in many biological and artificial conditions, such as fermentation. However, current study of Metschnikowia is limited to biological control features rather than researching on lucrative sectors such as beverage production, bioconversion manufacturing, cosmetics, and the pharmaceutical industry. This review summarizes numerous possible applications of Metschnikowia in human life, including potential secondary metabolites in industrial fields such as cosmetics and pharmaceuticals. Furthermore, Metschnikowia-yeast interaction is mentioned as a potential area for further exploration in terms of co-cultured microbes as biocontrol. Since Metschnikowia yeast arose in a variety of ecosystems, more discussion will be held regarding the interactions between Metschnikowia and their surroundings, particularly in fruits. Finally, the current regulatory challenges of Metschnikowia-based products are examined, and future research opportunities on Metschnikowia utilization are presented. KEY POINTS: • Utilization of Metschnikowia genus in various human aspects. • Promising secondary metabolites produced by Metschnikowia. • Challenge and opportunity on developing Metschnikowia-based products.
Collapse
Affiliation(s)
- Ariranur Haniffadli
- Korean Medicine Convergence Science Major of KIOM School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, Jeollanam-Do, 58245, Republic of Korea
| | - Yeongjun Ban
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, Jeollanam-Do, 58245, Republic of Korea
| | - Endang Rahmat
- Biotechnology Department, Faculty of Engineering, Bina Nusantara University, Jakarta, 11480, Indonesia
| | - Chang Ho Kang
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Youngmin Kang
- Korean Medicine Convergence Science Major of KIOM School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, Jeollanam-Do, 58245, Republic of Korea.
| |
Collapse
|
3
|
Nwaefuna AE, Garcia-Aloy M, Loeto D, Ncube T, Gombert AK, Boekhout T, Alwasel S, Zhou N. Dung beetle-associated yeasts display multiple stress tolerance: a desirable trait of potential industrial strains. BMC Microbiol 2023; 23:309. [PMID: 37884896 PMCID: PMC10601127 DOI: 10.1186/s12866-023-03044-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Stress-tolerant yeasts are highly desirable for cost-effective bioprocessing. Several strategies have been documented to develop robust yeasts, such as genetic and metabolic engineering, artificial selection, and natural selection strategies, among others. However, the significant drawbacks of such techniques have motivated the exploration of naturally occurring stress-tolerant yeasts. We previously explored the biodiversity of non-conventional dung beetle-associated yeasts from extremophilic and pristine environments in Botswana (Nwaefuna AE et.al., Yeast, 2023). Here, we assessed their tolerance to industrially relevant stressors individually, such as elevated concentrations of osmolytes, organic acids, ethanol, and oxidizing agents, as well as elevated temperatures. RESULTS Our findings suggest that these dung beetle-associated yeasts tolerate various stresses comparable to those of the robust bioethanol yeast strain, Saccharomyces cerevisiae (Ethanol Red™). Fifty-six percent of the yeast isolates were tolerant of temperatures up to 42 °C, 12.4% of them could tolerate ethanol concentrations up to 9% (v/v), 43.2% of them were tolerant to formic acid concentrations up to 20 mM, 22.7% were tolerant to acetic acid concentrations up to 45 mM, 34.0% of them could tolerate hydrogen peroxide up to 7 mM, and 44.3% of the yeasts could tolerate osmotic stress up to 1.5 M. CONCLUSION The ability to tolerate multiple stresses is a desirable trait in the selection of novel production strains for diverse biotechnological applications, such as bioethanol production. Our study shows that the exploration of natural diversity in the search for stress-tolerant yeasts is an appealing approach for the development of robust yeasts.
Collapse
Affiliation(s)
- Anita Ejiro Nwaefuna
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
| | - Mar Garcia-Aloy
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098, San Michele All'Adige, Italy
| | - Daniel Loeto
- Department of Biological Sciences, University of Botswana, Private Bag, 0022, Gaborone, Botswana
| | - Thembekile Ncube
- Department of Applied Biology and Biochemistry, National University of Science and Technology, P.O. Box AC 939, Ascot, Bulawayo, Zimbabwe
| | - Andreas K Gombert
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil
| | - Teun Boekhout
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
| |
Collapse
|
4
|
Kajadpai N, Angchuan J, Khunnamwong P, Srisuk N. Diversity of duckweed ( Lemnaceae) associated yeasts and their plant growth promoting characteristics. AIMS Microbiol 2023; 9:486-517. [PMID: 37649804 PMCID: PMC10462456 DOI: 10.3934/microbiol.2023026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 09/01/2023] Open
Abstract
The diversity of duckweed (Lemnaceae) associated yeasts was studied using a culture-dependent method. A total of 252 yeast strains were isolated from 53 duckweed samples out of the 72 samples collected from 16 provinces in Thailand. Yeast identification was conducted based on the D1/D2 region of the large subunit (LSU) rRNA gene sequence analysis. It revealed that 55.2% and 44.8% yeast species were Ascomycota and Basidiomycota duckweed associated yeasts, respectively. Among all, Papiliotrema laurentii, a basidiomycetous yeast, was found as the most prevalent species showing a relative of frequency and frequency of occurrence of 21.8% and 25%, respectively. In this study, high diversity index values were shown, indicated by the Shannon-Wiener index (H'), Shannon equitability index (EH) and Simpson diversity index (1-D) values of 3.48, 0.86 and 0.96, respectively. The present results revealed that the yeast community on duckweed had increased species diversity, with evenness among species. Principal coordinate analysis (PCoA) revealed no marked differences in yeast communities among duckweed genera. The species accumulation curve showed that the observed species richness was lower than expected. Investigation of the plant growth promoting traits of the isolated yeast on duckweed revealed that 178 yeast strains produced indole-3-acetic acid (IAA) at levels ranging from 0.08-688.93 mg/L. Moreover, siderophore production and phosphate solubilization were also studied. One hundred and seventy-three yeast strains produced siderophores and exhibited siderophores that showed 0.94-2.55 activity units (AU). One hundred six yeast strains showed phosphate solubilization activity, expressed as solubilization efficiency (SE) units, in the range of 0.32-2.13 SE. This work indicates that duckweed associated yeast is a potential microbial resource that can be used for plant growth promotion.
Collapse
Affiliation(s)
- Napapohn Kajadpai
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Jirameth Angchuan
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Pannida Khunnamwong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
| | - Nantana Srisuk
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
| |
Collapse
|
5
|
Nwaefuna AE, Boekhout T, Garcia-Aloy M, Vrhovsek U, Zhou N. Diversity of dung beetle-associated yeasts from pristine environments of Botswana. Yeast 2023; 40:182-196. [PMID: 37096317 DOI: 10.1002/yea.3852] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023] Open
Abstract
Yeast-insect interactions are increasingly becoming an attractive source of discovery for previously unknown, unique, diverse, and industrially relevant yeast species. Despite a wealth of studies that have recently focused on yeasts in symbiotic association with Hymenopteran insects, yeasts associated with Coleopteran insects, such as lignocellulosic-rich dung-dependent beetles, remain poorly studied. Trends in yeast discovery suggest that species richness and diversity can be attributed to the ecological niche of the insect. Here, we considered the potential of dung beetles inhabiting the extreme environments of Botswana, characterized by desert-like conditions (semi-arid to arid and hot) as well as protected pristine environments, as possible attribute niches that can shape the extremophilic and diverse life history strategies of yeasts. We obtained a total of 97 phylogenetically diverse yeast isolates from six species of dung beetles from Botswana's unexplored environments, representing 19 species belonging to 11 genera. The findings suggest that the guts of dung beetles are a rich niche for non-Saccharomyces yeast species. Meyerozyma and Pichia were the most dominant genera associated with dung beetles, representing 55% (53 out of 97) of the yeast isolates in our study. Trichosporon and Cutaneotrichosporon genera represented 32% (31 out of 97) of the isolates. The remaining isolates belonged to Apiotrichum, Candida, Diutina, Naganishia, Rhodotorula, and Wickerhamiella genera (12 out of 97). We found out that about 62% (60 out of 97) of the isolates were potentially new species because of their low internal transcribed spacer (ITS) sequence similarity when compared to the most recent optimal species delineation threshold. A single isolate was unidentifiable using the ITS sequences. Using an in silico polymerase chain reaction-restriction fragment length polymorphism approach, we revealed that there was genetic diversity within isolates of the same species. Our results contribute to the knowledge and understanding of the diversity of dung beetle-associated yeasts.
Collapse
Affiliation(s)
- Anita E Nwaefuna
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Teun Boekhout
- Westerdijk Institute of Fungal Biodiversity, Utrecht, The Netherlands
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mar Garcia-Aloy
- Metabolomics Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Urska Vrhovsek
- Metabolomics Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
6
|
Félix CR, Nascimento BEDS, Valente P, Landell MF. Different plant compartments, different yeasts: the example of the bromeliad phyllosphere. Yeast 2022; 39:363-400. [PMID: 35715939 DOI: 10.1002/yea.3804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/14/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
The plant phyllosphere is one of the largest sources of microorganisms, including yeasts. In bromeliads, the knowledge of yeasts is dispersed and still incipient. To understand the extent of our knowledge on the subject, this review proposes to compile and synthesize existing knowledge, elucidating possible patterns, biotechnological and taxonomic potentials, bringing to light new knowledge, and identifying information gaps. For such, we systematically review scientific production on yeasts in bromeliads using various databases. The results indicated that the plant compartments flowers, fruits, leaves, and water tank (phytotelma) have been studied when focusing on the yeast community in the bromeliad phyllosphere. More than 180 species of yeasts and yeast-like fungi were recorded from the phyllosphere, 70% were exclusively found in one of these four compartments and only 2% were shared among all. In addition, most of the community had a low frequency of occurrence, and approximately half of the species had a single record. Variables such as bromeliad subfamilies and functional types, as well as plant compartments, were statistically significant, though inconclusive and with low explanatory power. At least 50 yeast species with some biotechnological potentials have been isolated from bromeliads. More than 90% of these species were able to produce extracellular enzymes. In addition, other biotechnological applications have also been recorded. Moreover, new species have been described, though yeasts were only exploited in approximately 1% of the existing bromeliads species, which highlights that there is still much to be explored. Nevertheless, it appears that we are still far from recovering the completeness of the diversity of yeasts in this host. Furthermore, bromeliads proved to be a good ecological model for prospecting new yeasts and for studies on the interaction between plants and yeasts. In addition, the yeast community diverged among plant compartments, establishing bromeliads as a microbiologically complex and heterogeneous mosaic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ciro Ramon Félix
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Maceió, AL, Brazil.,Programa de Pós-graduação em Diversidade Biológica e Conservação nos Trópicos, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | | | - Patrícia Valente
- Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Porto Alegre, RS, Brazil
| | - Melissa Fontes Landell
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Maceió, AL, Brazil
| |
Collapse
|
7
|
Mpakosi A, Siopi M, Demetriou M, Falaina V, Theodoraki M, Meletiadis J. Fungemia due to Moesziomyces aphidis (Pseudozyma aphidis) in a premature neonate. Challenges of species identification and antifungal susceptibility testing of rare yeasts. J Mycol Med 2022; 32:101258. [DOI: 10.1016/j.mycmed.2022.101258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 11/28/2022]
|
8
|
Nundaeng S, Suwannarach N, Limtong S, Khuna S, Kumla J, Lumyong S. An Updated Global Species Diversity and Phylogeny in the Genus Wickerhamomyces with Addition of Two New Species from Thailand. J Fungi (Basel) 2021; 7:957. [PMID: 34829244 PMCID: PMC8618796 DOI: 10.3390/jof7110957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Ascomycetous yeast species in the genus Wickerhamomyces (Saccharomycetales, Wickerhamomycetaceae) are isolated from various habitats and distributed throughout the world. Prior to this study, 35 species had been validly published and accepted into this genus. Beneficially, Wickerhamomyces species have been used in a number of biotechnologically applications of environment, food, beverage industries, biofuel, medicine and agriculture. However, in some studies, Wickerhamomyces species have been identified as an opportunistic human pathogen. Through an overview of diversity, taxonomy and recently published literature, we have updated a brief review of Wickerhamomyces. Moreover, two new Wickerhamomyces species were isolated from the soil samples of Assam tea (Camellia sinensis var. assamica) that were collected from plantations in northern Thailand. Herein, we have identified these species as W. lannaensis and W. nanensis. The identification of these species was based on phenotypic (morphological, biochemical and physiological characteristics) and molecular analyses. Phylogenetic analyses of a combination of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit (LSU) of ribosomal DNA genes support that W. lannaensis and W. nanensis are distinct from other species within the genus Wickerhamomyces. A full description, illustrations and a phylogenetic tree showing the position of both new species have been provided. Accordingly, a new combination species, W. myanmarensis has been proposed based on the phylogenetic results. A new key for species identification is provided.
Collapse
Affiliation(s)
- Supakorn Nundaeng
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.K.)
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
9
|
Ruen-Pham K, Graham LE, Satjarak A. Spatial Variation of Cladophora Epiphytes in the Nan River, Thailand. PLANTS (BASEL, SWITZERLAND) 2021; 10:2266. [PMID: 34834629 PMCID: PMC8622721 DOI: 10.3390/plants10112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Cladophora is an algal genus known to be ecologically important. It provides habitats for microorganisms known to provide ecological services such as biosynthesis of cobalamin (vitamin B12) and nutrient cycling. Most knowledge of microbiomes was obtained from studies of lacustrine Cladophora species. However, whether lotic freshwater Cladophora microbiomes are as complex as the lentic ones or provide similar ecological services is not known. To illuminate these issues, we used amplicons of 16S rDNA, 18S rDNA, and ITS to investigate the taxonomy and diversity of the microorganisms associated with replicate Cladophora samples from three sites along the Nan River, Thailand. Results showed that the diversity of prokaryotic and eukaryotic members of Cladophora microbiomes collected from different sampling sites was statistically different. Fifty percent of the identifiable taxa were shared across sampling sites: these included organisms belonging to different trophic levels, decomposers, and heterotrophic bacteria. These heterogeneous assemblages of bacteria, by functional inference, have the potential to perform various ecological functions, i.e., cellulose degradation, cobalamin biosynthesis, fermentative hydrogen production, ammonium oxidation, amino acid fermentation, dissimilatory reduction of nitrate to ammonium, nitrite reduction, nitrate reduction, sulfur reduction, polyphosphate accumulation, denitrifying phosphorus-accumulation, and degradation of aromatic compounds. Results suggested that river populations of Cladophora provide ecologically important habitat for microorganisms that are key to nutrient cycling in lotic ecosystems.
Collapse
Affiliation(s)
- Karnjana Ruen-Pham
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Linda E. Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA;
| | - Anchittha Satjarak
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
10
|
Behind the nectar: the yeast community in bromeliads inflorescences after the exudate removal. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01728-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Analysis of phytopathogenic fungi isolated from some important crop plants using morpho-molecular tools—Foldscope and ITS region sequencing. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01640-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Barrilli ÉT, Tadioto V, Milani LM, Deoti JR, Fogolari O, Müller C, Barros KO, Rosa CA, Dos Santos AA, Stambuk BU, Treichel H, Alves SL. Biochemical analysis of cellobiose catabolism in Candida pseudointermedia strains isolated from rotten wood. Arch Microbiol 2020; 202:1729-1739. [PMID: 32328754 DOI: 10.1007/s00203-020-01884-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
We isolated two Candida pseudointermedia strains from the Atlantic rain forest in Brazil, and analyzed cellobiose metabolization in their cells. After growth in cellobiose medium, both strains had high intracellular β-glucosidase activity [~ 200 U (g cells)-1 for 200 mM cellobiose and ~ 100 U (g cells)-1 for 2 mM pNPβG] and negligible periplasmic cellobiase activity. During batch fermentation, the strain with the best performance consumed all the available cellobiose in the first 18 h of the assay, producing 2.7 g L-1 of ethanol. Kinetics of its cellobiase activity demonstrated a high-affinity hydrolytic system inside cells, with Km of 12.4 mM. Our data suggest that, unlike other fungal species that hydrolyze cellobiose extracellularly, both analyzed strains transport it to the cytoplasm, where it is then hydrolyzed by high-affinity intracellular β-glucosidases. We believe this study increases the fund of knowledge regarding yeasts from Brazilian microbiomes.
Collapse
Affiliation(s)
- Évelyn T Barrilli
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Viviani Tadioto
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Letícia M Milani
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Junior R Deoti
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Odinei Fogolari
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Caroline Müller
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Katharina O Barros
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos A Rosa
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Angela A Dos Santos
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil.,Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Boris U Stambuk
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Campus Erechim, Erechim, RS, Brazil
| | - Sérgio L Alves
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 2, Bairro Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
13
|
Kaewkrajay C, Chanmethakul T, Limtong S. Assessment of Diversity of Culturable Marine Yeasts Associated with Corals and Zoanthids in the Gulf of Thailand, South China Sea. Microorganisms 2020; 8:microorganisms8040474. [PMID: 32225058 PMCID: PMC7232451 DOI: 10.3390/microorganisms8040474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 11/18/2022] Open
Abstract
Marine yeasts can occur in a wide range of habitats, including in marine invertebrates, in which they may play important roles; however, investigation of marine yeasts in marine invertebrates is scarce. Therefore, this study aims to explore the diversity of yeasts associated with corals and zoanthids in the Gulf of Thailand. Thirty-three coral and seven zoanthid samples were collected at two sampling sites near Mu and Khram islands. Fifty yeast strains were able to be isolated from 25 of the 40 samples collected. Identification based on sequence analyses of the D1/D2 domain of the large subunit rRNA gene revealed a higher number of strains in the phylum Basidiomycota (68%) than in the phylum Ascomycota. The ascomycetous yeasts comprised nine known species from four genera (Candida, Meyerozyma, Kodamaea, and Wickerhamomyces), whereas the basidiomycetous yeasts comprised 10 known species from eight genera (Vishniacozyma, Filobasidium, Naganishia, Papiliotrema, Sterigmatomyces, Cystobasidium, Rhodotorula, and Rhodosporidiobolus) and one potentially new species. The species with the highest occurrence was Rhodotorula mucilaginosa. Using principal coordinate analysis (PCoA) ordination, no marked differences were found in the yeast communities from the two sampling sites. The estimation of the expected richness of species was higher than the actual richness of species observed.
Collapse
Affiliation(s)
- Chutima Kaewkrajay
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Division of Microbiology, Faculty of Science and Technology, Phranakhon Si Ayutthaya Rajabhat University, Phranakhon Si Ayutthaya 13000, Thailand
| | - Thanongsak Chanmethakul
- Program in Science, Faculty of Science and Technology, Phuket Rajabhat University, Phuket 83000, Thailand;
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Correspondence:
| |
Collapse
|
14
|
Into P, Khunnamwong P, Jindamoragot S, Am-in S, Intanoo W, Limtong S. Yeast Associated with Rice Phylloplane and Their Contribution to Control of Rice Sheath Blight Disease. Microorganisms 2020; 8:E362. [PMID: 32138375 PMCID: PMC7142645 DOI: 10.3390/microorganisms8030362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
The phylloplane is an important habitat for yeasts and these yeasts may have antagonistic activities against pathogens and could be used as biocontrol agents. To investigate rice phylloplane yeasts, 282 strains were isolated from 89 rice leaf samples and identified as 15 known yeast species in the phylum Ascomycota and 35 known and two potential new species in the phylum Basidiomycota. The majority of rice phylloplane yeasts belonged to the phylum Basidiomycota. The evaluation of antagonistic activities of 83 yeast strains against rice pathogenic fungi Pyricularia oryzae, Rhizoctonia solani, Fusarium moniliforme, Helminthosporium oryzae and Curvularia lunata revealed that 14 strains inhibited these pathogens. Among the antagonistic strains, Torulaspora indica DMKU-RP31, T. indica DMKU-RP35 and Wickerhamomyces anomalus DMKU-RP25 inhibited all rice pathogens tested, and the production of volatile organic compounds, fungal cell wall degrading enzymes and biofilm were the possible antagonistic mechanisms against all rice pathogens tested in vitro. These yeast strains were evaluated for controlling rice sheath blight caused by R. solani in rice plants in the greenhouse and were found to suppress the disease by 60.0-70.3%, whereas 3% validamycin suppressed by 83.8%. Therefore, they have potential for being developed to be used as biocontrol agents for rice sheath blight.
Collapse
Affiliation(s)
- Parichat Into
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.I.); (P.K.)
| | - Pannida Khunnamwong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.I.); (P.K.)
| | - Sasitorn Jindamoragot
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology, Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.J.); (S.A.-i.)
| | - Somjit Am-in
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology, Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.J.); (S.A.-i.)
| | - Wanwilai Intanoo
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.I.); (P.K.)
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
15
|
Into P, Pontes A, Sampaio JP, Limtong S. Yeast Diversity Associated with the Phylloplane of Corn Plants Cultivated in Thailand. Microorganisms 2020; 8:E80. [PMID: 31936155 PMCID: PMC7022409 DOI: 10.3390/microorganisms8010080] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 12/28/2022] Open
Abstract
The ecology and diversity of phylloplane yeasts is less well understood in tropical regions than in temperate ones. Therefore, we investigated the yeast diversity associated with the phylloplane of corn, an economically important crop in Thailand, by a culture-dependent method. Thirty-six leaf samples were collected and 217 yeast strains were isolated by plating leaf-washings. The strains were grouped by PCR-fingerprinting and representative strains were identified by analysis of the D1/D2 domain of the large subunit rRNA gene. In total, 212 strains were identified within 10 species in the Ascomycota and 32 species in the Basidiomycota. Five strains represented potential new species in the Basidiomycota, one strain was recently described as Papiliotrema plantarum, and four strains belonged to the genera Vishniacozyma and Rhodotorula. A higher number of strains in the Basidiomycota (81.6%) was obtained. Hannaella sinensis was the species with the highest occurrence. Principal coordinates analysis ordinations of yeast communities revealed that there were no differences in the similarity of the sampling sites. The estimation of the expected species richness showed that the observed species richness was lower than expected. This work indicated that a majority of yeast associated with the phylloplane of corn plant belongs to the phylum Basidiomycota.
Collapse
Affiliation(s)
- Parichat Into
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Ana Pontes
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-51 Caparica, Portugal;
| | - José Paulo Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-51 Caparica, Portugal;
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
16
|
Chaibub AA, Sousa TPD, Araújo LGD, Filippi MCCD. Molecular and morphological characterization of rice phylloplane fungi and determination of the antagonistic activity against rice pathogens. Microbiol Res 2019; 231:126353. [PMID: 31707299 DOI: 10.1016/j.micres.2019.126353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/16/2019] [Accepted: 10/09/2019] [Indexed: 11/18/2022]
Abstract
Cladosporium spp. is a cosmopolitan fungal genus. In the literature, it has been reported as a biological agent for controlling several plant diseases, but its mechanism of action has never been clarified. The present study aims to identify Cladosporium spp. based on the DNA phylogeny of nine isolates obtained from the phylloplane of rice and their potential antagonistic activity against the main fungal pathogens that affect rice crop. Nine isolates of Cladosporium spp. were identified based on DNA phylogeny, molecular and morphological characterization, and their antagonistic effects with the rice pathogens C. miyabeanus, M. oryzae, M. albescens and S. oryzae. Four isolates were selected to study lytic enzymes such as β-1,3-glucanase, chitinase and protease, and only one isolate was selected for a conidial germination and appressoria formation assay. The nine isolates were identified as C. cladosporioides, C. tenuissimum and C. subuliforme. Four isolates, identified as C. cladosporioides, inhibited the mycelial growth of rice pathogens such as C1H (68.59%) of S. oryzae, C5 G (74.32%) of C. miyabeanus, C11 G (75.97%) of M. oryzae and C24 G (77.39%) of M. albescens. C24 G showed a high activity of lytic enzymes, was tested against C. miyabeanus and M. oryzae, and inhibited conidial germination and appressorium formation by more than 59.36%. The characterization of C. cladosporioides suggested this species as a potential bioagent for the management of several rice diseases, especially rice blast. This is the first time that a potential biological agent from the genus Cladosporium identified at the species level was isolated from the rice phylloplane, and some of its mechanisms of action were demonstrated, such as increasing lytic enzyme activity against rice pathogens.
Collapse
Affiliation(s)
- Amanda A Chaibub
- Department of Plant Pathology, University of Brasília, Brasília, DF, 70.910-900, Brazil; Agricultural Microbiology Laboratory, Embrapa Rice and Beans, Santo Antônio de Goiás, 75375-000, GO, Brazil.
| | - Thatyane P de Sousa
- Agronomy School, Federal University of Goiás, Goiânia, GO, 74.690-900, Brazil.
| | - Leila G de Araújo
- Microorganisms Genetics Laboratory, Federal University of Goiás, Goiânia, GO, 74.690-900, Brazil.
| | - Marta Cristina C de Filippi
- Agricultural Microbiology Laboratory, Embrapa Rice and Beans, Santo Antônio de Goiás, 75375-000, GO, Brazil.
| |
Collapse
|
17
|
Ortiz-Álvarez J, Vera-Ponce de León A, Trejo-Cerro O, Vu HT, Chávez-Camarillo G, Villa-Tanaca L, Hernández-Rodríguez C. Candida pseudoglaebosa and Kodamaea ohmeri are capable of degrading alkanes in the presence of heavy metals. J Basic Microbiol 2019; 59:792-806. [PMID: 31368594 DOI: 10.1002/jobm.201900027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/01/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023]
Abstract
The aim of this study was to examine four strains of two yeast species in relation to their capability for assimilating alkanes in the presence of heavy metals (HMs). The four strains tested were Candida pseudoglaebosa ENCB-7 and Kodamaea ohmeri ENCB-8R, ENCB-23, and ENCB-VIK. Determination was made of the expression of CYP52 genes involved in alkane hydroxylation. When exposed to Cu2+ , Zn2+ , Pb2+ , Cd2+ , and As3+ at pH 3 and 5, all four strains could assimilate several n-alkanes having at least six carbon atoms. The three K. ohmeri strains could also utilize branched alkanes, cycloalkanes, and n-octanol as sole carbon sources. Kinetic assays demonstrated greater biomass production and specific growth of the yeasts exposed to long-chain n-alkanes. Fragments of paralogous CYP52 genes of C. pseudoglaebosa ENCB-7 and K. ohmeri ENCB-23 were amplified, sequenced, and phylogenetically evaluated. Reverse-transcription polymerase chain reaction revealed that n-nonane and n-decane induced to CpCYP52-G3, CpCYP52-G9, and CpCYP52-G10. KoCYP52-G3 was induced with n-decane and n-octanol. Also, CpCYP52-G3 and CpCYP52-G9 were induced by glucose. In conclusion, C. pseudoglaebosa and K. ohmeri were able to degrade several alkanes in the presence of HMs and under acidic conditions. These yeasts harbor paralogous alkane-induced CYP52 genes, which display different profiles of transcriptional expression.
Collapse
Affiliation(s)
- Jossue Ortiz-Álvarez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Arturo Vera-Ponce de León
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Oscar Trejo-Cerro
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Hoa T Vu
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Griselda Chávez-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
18
|
Srisuk N, Nutaratat P, Surussawadee J, Limtong S. Yeast Communities in Sugarcane Phylloplane. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719030135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Ortiz-Álvarez J, Vera-Ponce de León A, Trejo-Cerro O, Vu HT, Chávez-Camarillo G, Villa-Tanaca L, Hernández-Rodríguez C. Candida pseudoglaebosa and Kodamaea ohmeri are capable of degrading alkanes in the presence of heavy metals. J Basic Microbiol 2019. [PMID: 31183881 DOI: 10.1002/jobm.jobm201900027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/01/2019] [Accepted: 05/16/2019] [Indexed: 11/11/2022]
Abstract
The aim of this study was to examine four strains of two yeast species in relation to their capability for assimilating alkanes in the presence of heavy metals (HMs). The four strains tested were Candida pseudoglaebosa ENCB-7 and Kodamaea ohmeri ENCB-8R, ENCB-23, and ENCB-VIK. Determination was made of the expression of CYP52 genes involved in alkane hydroxylation. When exposed to Cu2+ , Zn2+ , Pb2+ , Cd2+ , and As3+ at pH 3 and 5, all four strains could assimilate several n-alkanes having at least six carbon atoms. The three K. ohmeri strains could also utilize branched alkanes, cycloalkanes, and n-octanol as sole carbon sources. Kinetic assays demonstrated greater biomass production and specific growth of the yeasts exposed to long-chain n-alkanes. Fragments of paralogous CYP52 genes of C. pseudoglaebosa ENCB-7 and K. ohmeri ENCB-23 were amplified, sequenced, and phylogenetically evaluated. Reverse-transcription polymerase chain reaction revealed that n-nonane and n-decane induced to CpCYP52-G3, CpCYP52-G9, and CpCYP52-G10. KoCYP52-G3 was induced with n-decane and n-octanol. Also, CpCYP52-G3 and CpCYP52-G9 were induced by glucose. In conclusion, C. pseudoglaebosa and K. ohmeri were able to degrade several alkanes in the presence of HMs and under acidic conditions. These yeasts harbor paralogous alkane-induced CYP52 genes, which display different profiles of transcriptional expression.
Collapse
Affiliation(s)
- Jossue Ortiz-Álvarez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Arturo Vera-Ponce de León
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Oscar Trejo-Cerro
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Hoa T Vu
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Griselda Chávez-Camarillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
20
|
Khunnamwong P, Jindamorakot S, Limtong S. Endophytic yeast diversity in leaf tissue of rice, corn and sugarcane cultivated in Thailand assessed by a culture-dependent approach. Fungal Biol 2018; 122:785-799. [PMID: 30007429 DOI: 10.1016/j.funbio.2018.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 01/07/2023]
Abstract
Endophytic yeasts are yeast that can colonize healthy plant tissues without causing any damage to the host plant. This work aimed to explore the diversity of endophytic yeasts in leaf tissue of main agricultural crops (rice, corn and sugarcane) in Thailand, by a culture-dependent approach. A total of 311 leaf samples, consisting of rice (n = 100), corn (n = 109) and sugarcane (n = 102). From the tissue of rice (n = 92), corn (n = 76) and sugarcane (n = 78) leaf samples, 117, 118 and 123 yeast strains were respectively isolated and identified based on the D1/D2 region of the large subunit (LSU) rRNA gene sequence analysis to be yeast species in both the phyla Basidiomycota and Ascomycota. Higher numbers of basidiomycetous yeast than ascomycetous yeast were detected in the leaf tissue of the three crops. Pseudozyma (Dirkmeia) churashimaensis (Ustilaginales) was the most prevalent yeast species in the rice and corn leaves with relative frequencies (RF) of 35.9 % and 17.8 %, respectively. Whereas the predominant species in the sugarcane leaves was Meyerozyma caribbica (Saccharomycetales) with an RF of 14.6 %. In addition, six new yeast species and one new yeast genus were proposed. Our findings suggest that these plant species are good sources from which new yeast species may be isolated.
Collapse
Affiliation(s)
- Pannida Khunnamwong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sasitorn Jindamorakot
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology, Development Agency (NSTDA), Pathum Thani, Thailand
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Academy of Science, The Royal Society of Thailand, Bangkok, 10300, Thailand.
| |
Collapse
|
21
|
Limtong S, Polburee P, Chamnanpa T, Khunnamwong P, Limtong P. Meira siamensis sp. nov., a novel anamorphic ustilaginomycetous yeast species isolated from the vetiver grass phylloplane. Int J Syst Evol Microbiol 2017; 67:2418-2422. [PMID: 28741991 DOI: 10.1099/ijsem.0.001969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two strains, DMKU-LV83 and DMKU-LV85, of a novel yeast species were isolated from the phylloplane of vetiver grass collected in Thailand by plating of leaf washings. Analysis of the sequences of the D1/D2 region of the large subunit (LSU) rRNA gene showed that the two strains represent a single novel species and most closely related to Meira miltonrushii. However, the novel species differed from the type strain of M. miltonrushii (MCA 3882T) by 5.5 % nucleotide substitutions in the D1/D2 region and 8.9 % nucleotide substitutions in the ITS region. The phylogenetic analysis based on the D1/D2 region of the LSU rRNA gene confirmed the placement of the novel species in the Meira clade and its close affinity with M. miltonrushii. Therefore, the species Meira siamensis sp. nov. is proposed. The type strain is DMKU-LV83T (=CBS 12860T=BCC 61180T).
Collapse
Affiliation(s)
- Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Center for Advanced Studied in Tropical Natural Resources, National Research University-Kasetsart University, Thailand
| | - Pirapan Polburee
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Thunnicha Chamnanpa
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pannida Khunnamwong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pitayakon Limtong
- Land Development Department, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| |
Collapse
|
22
|
The isolation and characterization of resident yeasts from the phylloplane of Arabidopsis thaliana. Sci Rep 2016; 6:39403. [PMID: 28004784 PMCID: PMC5177952 DOI: 10.1038/srep39403] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/23/2016] [Indexed: 11/08/2022] Open
Abstract
The genetic model plant Arabidopsis thaliana (arabidopsis) has been instrumental to recent advances in our understanding of the molecular function of the plant immune system. However, this work has not yet included plant associated and phytopathogenic yeasts largely due to a lack of yeast species known to interact with arabidopsis. The plant phylloplane is a significant habitat for neutral-residents, plant-growth and health-promoting species, and latent-pathogenic species. However, yeast phylloplane residents of arabidopsis remain underexplored. To address this, resident yeasts from the phyllosphere of wild arabidopsis collected in field conditions have been isolated and characterized. A total of 95 yeast strains representing 23 species in 9 genera were discovered, including potentially psychrophilic and pathogenic strains. Physiological characterization revealed thermotolerance profiles, sensitivity to the arabidopsis phytoalexin camalexin, the production of indolic compounds, and the ability to activate auxin responses in planta. These results indicate a rich diversity of yeasts present in the arabidopsis phylloplane and have created culture resources and information useful in the development of model systems for arabidopsis-yeast interactions.
Collapse
|
23
|
Nasanit R, Jaibangyang S, Tantirungkij M, Limtong S. Yeast diversity and novel yeast D1/D2 sequences from corn phylloplane obtained by a culture-independent approach. Antonie van Leeuwenhoek 2016; 109:1615-1634. [PMID: 27578202 DOI: 10.1007/s10482-016-0762-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023]
Abstract
Culture-independent techniques have recently been used for evaluation of microbial diversity in the environment since it addresses the problem of unculturable microorganisms. In this study, the diversity of epiphytic yeasts from corn (Zea mays Linn.) phylloplanes in Thailand was investigated using this technique and sequence-based analysis of the D1/D2 domains of the large subunit ribosomal DNA sequences. Thirty-seven samples of corn leaf were collected randomly from 10 provinces. The DNA was extracted from leaf washing samples and the D1/D2 domains were amplified. The PCR products were cloned and then screened by colony PCR. A total of 1049 clones were obtained from 37 clone libraries. From this total, 329 clones (213 sequences) were closely related to yeast strains in the GenBank database, and they were clustered into 77 operational taxonomic units (OTUs) with a similarity threshold of 99 %. The majority of sequences (98.5 %) were classified into the phylum Basidiomycota. Sixteen known yeast species were identified. Interestingly, more than 65 % of the D1/D2 sequences obtained by this technique were suggested to be sequences from new yeast taxa. The predominant yeast sequences detected belonged to the order Ustilaginales with relative frequency of 68.0 %. The most common known yeast species detected on the leaf samples were Pseudozyma hubeiensis pro tem. and Moesziomyces antarcticus with frequency of occurrence of 24.3 and 21.6 %, respectively.
Collapse
Affiliation(s)
- Rujikan Nasanit
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Sanamchandra Palace Campus, Amphoe Muang, Nakhon Pathom, 73000, Thailand
| | - Sopin Jaibangyang
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Sanamchandra Palace Campus, Amphoe Muang, Nakhon Pathom, 73000, Thailand
| | - Manee Tantirungkij
- Central Laboratory and Greenhouse Complex, Faculty of Agriculture at Kamphaeng Sean, Kasetsart University, Kamphaeng Sean Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Jatujak, Bangkok, 10900, Thailand. .,Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
24
|
Polburee P, Yongmanitchai W, Lertwattanasakul N, Ohashi T, Fujiyama K, Limtong S. Characterization of oleaginous yeasts accumulating high levels of lipid when cultivated in glycerol and their potential for lipid production from biodiesel-derived crude glycerol. Fungal Biol 2015; 119:1194-1204. [DOI: 10.1016/j.funbio.2015.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
|
25
|
Khunnamwong P, Lertwattanasakul N, Jindamorakot S, Limtong S, Lachance MA. Description of Diutina gen. nov., Diutina siamensis, f.a. sp. nov., and reassignment of Candida catenulata, Candida mesorugosa, Candida neorugosa, Candida pseudorugosa, Candida ranongensis, Candida rugosa and Candida scorzettiae to the genus Diutina. Int J Syst Evol Microbiol 2015; 65:4701-4709. [PMID: 26410375 DOI: 10.1099/ijsem.0.000634] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three strains (DMKU-RE28, DMKU-RE43T and DMKU-RE123) of a novel anamorphic yeast species were isolated from rice leaf tissue collected in Thailand. DNA sequence analysis demonstrated that the species forms a sister pair with Candida ranongensis CBS 10861T but differs by 24-30 substitutions in the LSU rRNA gene D1/D2 domains and 30-35 substitutions in the ITS region. A phylogenetic analysis based on both the small and the large rRNA gene subunits confirmed this connection and demonstrated the presence of a clade that also includes Candida catenulata, Candida mesorugosa, Candida neorugosa, Candida pseudorugosa, Candida rugosa and Candida scorzettiae. The clade is not closely affiliated to any known teleomorphic genus, and forms a well-separated lineage from currently recognized genera of the Saccharomycetales. Hence, the genus Diutina gen. nov. is proposed to accommodate members of the clade, including Diutina siamensis f.a. sp. nov. and the preceding seven Candida species. The type strain is DMKU-RE43T ( = CBS 13388T = BCC 61183T = NBRC 109695T).
Collapse
Affiliation(s)
- Pannida Khunnamwong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Sasitorn Jindamorakot
- Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani, Thailand
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University Kasetsart University, Thailand
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
26
|
Tantirungkij M, Nasanit R, Limtong S. Assessment of endophytic yeast diversity in rice leaves by a culture-independent approach. Antonie van Leeuwenhoek 2015; 108:633-47. [DOI: 10.1007/s10482-015-0519-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
|