1
|
Zhang L, Zhu Q, Tan Y, Deng M, Zhang L, Cao Y, Guo X. Mitogen-activated protein kinases MPK3 and MPK6 phosphorylate receptor-like cytoplasmic kinase CDL1 to regulate soybean basal immunity. THE PLANT CELL 2024; 36:963-986. [PMID: 38301274 PMCID: PMC10980351 DOI: 10.1093/plcell/koae008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Soybean cyst nematode (SCN; Heterodera glycines Ichinohe), one of the most devastating soybean (Glycine max) pathogens, causes significant yield loss in soybean production. Nematode infection triggers plant defense responses; however, the components involved in the upstream signaling cascade remain largely unknown. In this study, we established that a mitogen-activated protein kinase (MAPK) signaling module, activated by nematode infection or wounding, is crucial for soybeans to establish SCN resistance. GmMPK3 and GmMPK6 directly interact with CDG1-LIKE1 (GmCDL1), a member of the receptor-like cytoplasmic kinase (RLCK) subfamily VII. These kinases phosphorylate GmCDL1 at Thr-372 to prevent its proteasome-mediated degradation. Functional analysis demonstrated that GmCDL1 positively regulates immune responses and promotes SCN resistance in soybeans. GmMPK3-mediated and GmMPK6-mediated phosphorylation of GmCDL1 enhances GmMPK3 and GmMPK6 activation and soybean disease resistance, representing a positive feedback mechanism. Additionally, 2 L-type lectin receptor kinases, GmLecRK02g and GmLecRK08g, associate with GmCDL1 to initiate downstream immune signaling. Notably, our study also unveils the potential involvement of GmLecRKs and GmCDL1 in countering other soybean pathogens beyond nematodes. Taken together, our findings reveal the pivotal role of the GmLecRKs-GmCDL1-MAPK regulatory module in triggering soybean basal immune responses.
Collapse
Affiliation(s)
- Lei Zhang
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qun Zhu
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanhua Tan
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Miaomiao Deng
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lei Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaoli Guo
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
2
|
Li R, Maioli A, Lanteri S, Moglia A, Bai Y, Acquadro A. Genomic Analysis Highlights Putative Defective Susceptibility Genes in Tomato Germplasm. PLANTS (BASEL, SWITZERLAND) 2023; 12:2289. [PMID: 37375913 DOI: 10.3390/plants12122289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Tomato (Solanum lycopersicum L.) is one of the most widely grown vegetables in the world and is impacted by many diseases which cause yield reduction or even crop failure. Breeding for disease resistance is thus a key objective in tomato improvement. Since disease arises from a compatible interaction between a plant and a pathogen, a mutation which alters a plant susceptibility (S) gene facilitating compatibility may induce broad-spectrum and durable plant resistance. Here, we report on a genome-wide analysis of a set of 360 tomato genotypes, with the goal of identifying defective S-gene alleles as a potential source for the breeding of resistance. A set of 125 gene homologs of 10 S-genes (PMR 4, PMR5, PMR6, MLO, BIK1, DMR1, DMR6, DND1, CPR5, and SR1) were analyzed. Their genomic sequences were examined and SNPs/indels were annotated using the SNPeff pipeline. A total of 54,000 SNPs/indels were identified, among which 1300 were estimated to have a moderate impact (non-synonymous variants), while 120 were estimated to have a high impact (e.g., missense/nonsense/frameshift variants). The latter were then analyzed for their effect on gene functionality. A total of 103 genotypes showed one high-impact mutation in at least one of the scouted genes, while in 10 genotypes, more than 4 high-impact mutations in as many genes were detected. A set of 10 SNPs were validated through Sanger sequencing. Three genotypes carrying high-impact homozygous SNPs in S-genes were infected with Oidium neolycopersici, and two highlighted a significantly reduced susceptibility to the fungus. The existing mutations fall within the scope of a history of safe use and can be useful to guide risk assessment in evaluating the effect of new genomic techniques.
Collapse
Affiliation(s)
- Ruiling Li
- Plant Genetics and Breeding, Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, 10095 Grugliasco, Italy
| | - Alex Maioli
- Plant Genetics and Breeding, Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, 10095 Grugliasco, Italy
| | - Sergio Lanteri
- Plant Genetics and Breeding, Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, 10095 Grugliasco, Italy
| | - Andrea Moglia
- Plant Genetics and Breeding, Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, 10095 Grugliasco, Italy
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Alberto Acquadro
- Plant Genetics and Breeding, Department of Agricultural, Forest and Food Science (DISAFA), University of Torino, 10095 Grugliasco, Italy
| |
Collapse
|
3
|
Activation and turnover of the plant immune signaling kinase BIK1: a fine balance. Essays Biochem 2022; 66:207-218. [PMID: 35575190 DOI: 10.1042/ebc20210071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022]
Abstract
Mechanisms to sense and respond to pathogens have evolved in all species. The plant immune pathway is initiated by the activation of transmembrane receptor kinases that trigger phosphorylation relays resulting in cellular reprogramming. BOTRYTIS-INDUCED KINASE 1 (BIK1) is a direct substrate of multiple immune receptors in Arabidopsis thaliana and is a central regulator of plant immunity. Here, we review how BIK1 activity and protein stability are regulated by a dynamic interplay between phosphorylation and ubiquitination.
Collapse
|
4
|
Kilburn R, Gerdis SA, She YM, Snedden WA, Plaxton WC. Autophosphorylation Inhibits RcCDPK1, a Dual-Specificity Kinase that Phosphorylates Bacterial-Type Phosphoenolpyruvate Carboxylase in Castor Oil Seeds. PLANT & CELL PHYSIOLOGY 2022; 63:683-698. [PMID: 35246690 DOI: 10.1093/pcp/pcac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a tightly regulated enzyme that plays a crucial anaplerotic role in central plant metabolism. Bacterial-type PEPC (BTPC) of developing castor oil seeds (COS) is highly expressed as a catalytic and regulatory subunit of a novel Class-2 PEPC heteromeric complex. Ricinus communis Ca2+-dependent protein kinase-1 (RcCDPK1) catalyzes in vivo inhibitory phosphorylation of COS BTPC at Ser451. Autokinase activity of recombinant RcCDPK1 was detected and 42 autophosphorylated Ser, Thr or Tyr residues were mapped via liquid chromatography-tandem mass spectrometry. Prior autophosphorylation markedly attenuated the ability of RcCDPK1 to transphosphorylate its BTPC substrate at Ser451. However, fully dephosphorylated RcCDPK1 rapidly autophosphorylated during the initial stages of a BTPC transphosphorylation assay. This suggests that Ca2+-dependent binding of dephospho-RcCDPK1 to BTPC may trigger a structural change that leads to rapid autophosphorylation and subsequent substrate transphosphorylation. Tyr30 was identified as an autophosphorylation site via LC-MS/MS and immunoblotting with a phosphosite-specific antibody. Tyr30 occurs at the junction of RcCDPK1's N-terminal variable (NTVD) and catalytic domains and is widely conserved in plant and protist CDPKs. Interestingly, a reduced rate and extent of BTPC transphosphorylation occurred with a RcCDPK1Y30F mutant. Prior research demonstrated that RcCDPK1's NTVD is essential for its Ca2+-dependent autophosphorylation or BTPC transphosphorylation activities but plays no role in target recognition. We propose that Tyr30 autophosphorylation facilitates a Ca2+-dependent interaction between the NTVD and Ca2+-activation domain that primes RcCDPK1 for transphosphorylating BTPC at Ser451. Our results provide insights into links between the post-translational control of COS anaplerosis, Ca2+-dependent signaling and the biological significance of RcCDPK1 autophosphorylation.
Collapse
Affiliation(s)
- Ryan Kilburn
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Suzanne A Gerdis
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A OC6, Canada
| | - Yi-Min She
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, ON K1A OK9, Canada
| | - Wayne A Snedden
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
5
|
Kong L, Rodrigues B, Kim JH, He P, Shan L. More than an on-and-off switch: Post-translational modifications of plant pattern recognition receptor complexes. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102051. [PMID: 34022608 DOI: 10.1016/j.pbi.2021.102051] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Sensing microbe-associated molecular patterns (MAMPs) by cell surface-resident pattern recognition receptors (PRRs) constitutes a core process in launching a successful immune response. Over the last decade, remarkable progress has been made in delineating the mechanisms of PRR-mediated plant immunity. As the frontline of defense, the homeostasis, activities, and subcellular dynamics of PRR and associated regulators are subjected to tight regulations. The layered protein post-translational modifications, particularly the intertwined phosphorylation and ubiquitylation of PRR complexes, play a central role in regulating PRR signaling outputs and plant immune responses. This review provides an update about the PRR complex regulation by various post-translational modifications and discusses how protein phosphorylation and ubiquitylation act in concert to ensure a rapid, proper, and robust immune response.
Collapse
Affiliation(s)
- Liang Kong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Barbara Rodrigues
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Jun Hyeok Kim
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
6
|
Activation loop phosphorylaton of a non-RD receptor kinase initiates plant innate immune signaling. Proc Natl Acad Sci U S A 2021; 118:2108242118. [PMID: 34531323 PMCID: PMC8463890 DOI: 10.1073/pnas.2108242118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 01/01/2023] Open
Abstract
Receptor kinases (RKs) are fundamental for extracellular sensing and regulate development and stress responses across kingdoms. In plants, leucine-rich repeat receptor kinases (LRR-RKs) are primarily peptide receptors that regulate responses to myriad internal and external stimuli. Phosphorylation of LRR-RK cytoplasmic domains is among the earliest responses following ligand perception, and reciprocal transphosphorylation between a receptor and its coreceptor is thought to activate the receptor complex. Originally proposed based on characterization of the brassinosteroid receptor, the prevalence of complex activation via reciprocal transphosphorylation across the plant RK family has not been tested. Using the LRR-RK ELONGATION FACTOR TU RECEPTOR (EFR) as a model, we set out to understand the steps critical for activating RK complexes. While the EFR cytoplasmic domain is an active protein kinase in vitro and is phosphorylated in a ligand-dependent manner in vivo, catalytically deficient EFR variants are functional in antibacterial immunity. These results reveal a noncatalytic role for EFR in triggering immune signaling and indicate that reciprocal transphoshorylation is not a ubiquitous requirement for LRR-RK complex activation. Rather, our analysis of EFR along with a detailed survey of the literature suggests a distinction between LRR-RKs with RD- versus non-RD protein kinase domains. Based on newly identified phosphorylation sites that regulate the activation state of the EFR complex in vivo, we propose that LRR-RK complexes containing a non-RD protein kinase may be regulated by phosphorylation-dependent conformational changes of the ligand-binding receptor, which could initiate signaling either allosterically or through driving the dissociation of negative regulators of the complex.
Collapse
|
7
|
Importance of tyrosine phosphorylation for transmembrane signaling in plants. Biochem J 2021; 478:2759-2774. [PMID: 34297043 PMCID: PMC8331091 DOI: 10.1042/bcj20210202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022]
Abstract
Reversible protein phosphorylation is a widespread post-translational modification fundamental for signaling across all domains of life. Tyrosine (Tyr) phosphorylation has recently emerged as being important for plant receptor kinase (RK)-mediated signaling, particularly during plant immunity. How Tyr phosphorylation regulates RK function is however largely unknown. Notably, the expansion of protein Tyr phosphatase and SH2 domain-containing protein families, which are the core of regulatory phospho-Tyr (pTyr) networks in choanozoans, did not occur in plants. Here, we summarize the current understanding of plant RK Tyr phosphorylation focusing on the critical role of a pTyr site (‘VIa-Tyr’) conserved in several plant RKs. Furthermore, we discuss the possibility of metazoan-like pTyr signaling modules in plants based on atypical components with convergent biochemical functions.
Collapse
|
8
|
Bredow M, Bender KW, Johnson Dingee A, Holmes DR, Thomson A, Ciren D, Tanney CAS, Dunning KE, Trujillo M, Huber SC, Monaghan J. Phosphorylation-dependent subfunctionalization of the calcium-dependent protein kinase CPK28. Proc Natl Acad Sci U S A 2021; 118:e2024272118. [PMID: 33941701 PMCID: PMC8126791 DOI: 10.1073/pnas.2024272118] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Calcium (Ca2+)-dependent protein kinases (CDPKs or CPKs) are a unique family of Ca2+ sensor/kinase-effector proteins with diverse functions in plants. In Arabidopsis thaliana, CPK28 contributes to immune homeostasis by promoting degradation of the key immune signaling receptor-like cytoplasmic kinase BOTRYTIS-INDUCED KINASE 1 (BIK1) and additionally functions in vegetative-to-reproductive stage transition. How CPK28 controls these seemingly disparate pathways is unknown. Here, we identify a single phosphorylation site in the kinase domain of CPK28 (Ser318) that is differentially required for its function in immune homeostasis and stem elongation. We show that CPK28 undergoes intermolecular autophosphorylation on Ser318 and can additionally be transphosphorylated on this residue by BIK1. Analysis of several other phosphorylation sites demonstrates that Ser318 phosphorylation is uniquely required to prime CPK28 for Ca2+ activation at physiological concentrations of Ca2+, possibly through stabilization of the Ca2+-bound active state as indicated by intrinsic fluorescence experiments. Together, our data indicate that phosphorylation of Ser318 is required for the activation of CPK28 at low intracellular [Ca2+] to prevent initiation of an immune response in the absence of infection. By comparison, phosphorylation of Ser318 is not required for stem elongation, indicating pathway-specific requirements for phosphorylation-based Ca2+-sensitivity priming. We additionally provide evidence for a conserved function for Ser318 phosphorylation in related group IV CDPKs, which holds promise for biotechnological applications by generating CDPK alleles that enhance resistance to microbial pathogens without consequences to yield.
Collapse
Affiliation(s)
- Melissa Bredow
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kyle W Bender
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | | | - Danalyn R Holmes
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alysha Thomson
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Danielle Ciren
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Cailun A S Tanney
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Katherine E Dunning
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Cell Biology, University of Freiburg, Freiburg 79104, Germany
| | - Marco Trujillo
- Department of Cell Biology, University of Freiburg, Freiburg 79104, Germany
| | - Steven C Huber
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | | |
Collapse
|
9
|
Bhattacharya A, Paul A, Chakrabarti D, DasGupta M. Gatekeeper-Activation Loop Cross-Talk Determines Distinct Autoactivation States of Symbiosis Receptor Kinase. Biochemistry 2019; 58:2419-2431. [PMID: 31021099 DOI: 10.1021/acs.biochem.9b00071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plant receptor-like kinases (RLKs) have a Tyr in the "gatekeeper" position adjacent to the hinge region. The gatekeeper is phosphorylated in several RLKs, including symbiosis receptor kinase (SYMRK), but the significance of this remains unknown. Gatekeeper substitution did not inactivate Arachis hypogaea SYMRK but affected autophosphorylation at selected sites. Herein, we show that nonphosphorylatable gatekeepers (Y670F and Y670A) restrict SYMRK to be a Ser/Thr kinase with a basal level of phosphorylation (∼5 P/polypeptide, termed state I) whereas phosphorylatable gatekeepers (Y670 and Y670T) allowed SYMRK to be dual specific (Ser/Thr/Tyr) with a maximal level of phosphorylation (∼10 P/polypeptide, termed state II). State II SYMRKs were phosphorylated on gatekeeper residues, and the phosphocode in their activation segment was distinct from state I. The kcat/ Km for substrate phosphorylation was ∼10-fold higher for state II, though for autophosphorylation, it was comparable with those of state I SYMRKs. To identify other determinants of state I features, we mutagenized all nine sites where phosphorylation was affected by nonphosphorylatable gatekeepers (Y670F and Y670A). Only two such mutants, S754A and S757A, located on the activation loop failed to phosphorylate gatekeeper Tyr and restricted SYMRK in state I. Double mutants like Y670F/S754A retained the features of state I, but Y670F/S757A was significantly inactivated, indicating a nonphosphorylatable gatekeeper can bypass phosphorylation of S754 but not S757 in the activation segment. We propose a working model for the hierarchical phosphorylation of SYMRK on gatekeeper and activation segments for its pS757-mediated activation as a Ser/Thr kinase in selfie mode (autophosphorylation) to a pS754/pY670-mediated activation as a Ser/Thr/Tyr kinase that functions in dual mode (both autophosphorylation and substrate phosphorylation).
Collapse
Affiliation(s)
- Avisek Bhattacharya
- Department of Biochemistry , University of Calcutta , Kolkata 700019 , India
| | - Anindita Paul
- Department of Biochemistry , University of Calcutta , Kolkata 700019 , India
| | | | - Maitrayee DasGupta
- Department of Biochemistry , University of Calcutta , Kolkata 700019 , India
| |
Collapse
|
10
|
Sugano S, Maeda S, Hayashi N, Kajiwara H, Inoue H, Jiang CJ, Takatsuji H, Mori M. Tyrosine phosphorylation of a receptor-like cytoplasmic kinase, BSR1, plays a crucial role in resistance to multiple pathogens in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1137-1147. [PMID: 30222251 DOI: 10.1111/tpj.14093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Plants have evolved many receptor-like cytoplasmic kinases (RLCKs) to modulate their growth, development, and innate immunity. Broad-Spectrum Resistance 1 (BSR1) encodes a rice RLCK, whose overexpression confers resistance to multiple diseases, including fungal rice blast and bacterial leaf blight. However, the mechanisms underlying resistance remain largely unknown. In the present study, we report that BSR1 is a functional protein kinase that autophosphorylates and transphosphorylates an artificial substrate in vitro. Although BSR1 is classified as a serine/threonine kinase, it was shown to autophosphorylate on tyrosine as well as on serine/threonine residues when expressed in bacteria, demonstrating that it is a dual-specificity kinase. Protein kinase activity was found to be indispensable for resistance to rice blast and leaf blight in BSR1-overexpressing plants. Importantly, tyrosine phosphorylation of BSR1 was critical for proper localization of BSR1 in rice cells and played a crucial role in BSR1-mediated resistance to multiple diseases, as evidenced by compromised disease resistance in transgenic plants overexpressing a mutant BSR1 in which Tyr-63 was substituted with Ala. Overall, our data indicate that BSR1 is a non-receptor dual-specificity kinase and that both tyrosine and serine/threonine kinase activities are critical for the normal functioning of BSR1 in the resistance to multiple pathogens. Our results support the notion that tyrosine phosphorylation plays a major regulatory role in the transduction of defense signals from cell-surface receptor complexes to downstream signaling components in plants.
Collapse
Affiliation(s)
- Shoji Sugano
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Satoru Maeda
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Nagao Hayashi
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hideyuki Kajiwara
- Advanced Analysis Center (NAAC), NARO, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Haruhiko Inoue
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Chang-Jie Jiang
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hiroshi Takatsuji
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masaki Mori
- Plant Function Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
11
|
Mathematical model for plant-insect interaction with dynamic response to PAD4-BIK1 interaction and effect of BIK1 inhibition. Biosystems 2018; 175:11-23. [PMID: 30481546 DOI: 10.1016/j.biosystems.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/13/2018] [Accepted: 11/20/2018] [Indexed: 11/23/2022]
Abstract
Plant-insect interaction system is a widely studied model of the ecosystem. Numerical understanding of this counter system has developed from initial analogy based approach with a predator-prey model to its recent mathematical interpretation including plant immunity concept. In current work, we propose an extension to this model, including molecular interactions behind the plant defense system and its effect on ecological behaviour. Inspired from biomolecular interaction given by Louis and Shah in 2014, we propose here a mathematical model to depict molecular dependence and control of plant insect interaction system. Insect infestation mediated Botrytis Induced Kinase-1 (BIK1) induction resulted in inhibition of Phyto Alexin Deficient-4 (PAD4) protein. Lowered PAD4 triggers the plant defense mechanism, leading to degraded plant immune potential and thereby reducing the plant quality. We mathematically adapt these interactions to show their influence on plant-insect interaction system and hypothesize the significance of BIK1 inhibition leading to the improved plant quality. We implemented the plethora of computational modeling and all atom MD simulations to explain the Plant-Insect-PAD4-BIK1 interaction network and identify potential molecular mechanisms of plant improvement by BIK1 inhibition.
Collapse
|
12
|
Zhang M, Chiang YH, Toruño TY, Lee D, Ma M, Liang X, Lal NK, Lemos M, Lu YJ, Ma S, Liu J, Day B, Dinesh-Kumar SP, Dehesh K, Dou D, Zhou JM, Coaker G. The MAP4 Kinase SIK1 Ensures Robust Extracellular ROS Burst and Antibacterial Immunity in Plants. Cell Host Microbe 2018; 24:379-391.e5. [PMID: 30212650 PMCID: PMC6279242 DOI: 10.1016/j.chom.2018.08.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 11/18/2022]
Abstract
Microbial patterns are recognized by cell-surface receptors to initiate pattern-triggered immunity (PTI) in plants. Receptor-like cytoplasmic kinases (RLCKs), such as BIK1, and calcium-dependent protein kinases (CPKs) are engaged during PTI to activate the NADPH oxidase RBOHD for reactive oxygen species (ROS) production. It is unknown whether protein kinases besides CPKs and RLCKs participate in RBOHD regulation. We screened mutants in all ten Arabidopsis MAP4 kinases (MAP4Ks) and identified the conserved MAP4K SIK1 as a positive regulator of PTI. sik1 mutants were compromised in their ability to elicit the ROS burst in response to microbial features and exhibited compromised PTI to bacterial infection. SIK1 directly interacts with, phosphorylates, and stabilizes BIK1 in a kinase activity-dependent manner. Furthermore, SIK1 directly interacts with and phosphorylates RBOHD upon flagellin perception. Thus, SIK1 positively regulates immunity by stabilizing BIK1 and activating RBOHD to promote the extracellular ROS burst.
Collapse
Affiliation(s)
- Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Yi-Hsuan Chiang
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Tania Y Toruño
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - DongHyuk Lee
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Miaomiao Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Neeraj K Lal
- Department of Plant Biology and the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Mark Lemos
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA; Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Yi-Ju Lu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Shisong Ma
- Department of Plant Biology and the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Jun Liu
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Katayoon Dehesh
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA; Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
13
|
Abstract
Kinase-mediated phosphorylation is a pivotal regulatory process in stomatal responses to stresses. Through a redox proteomics study, a sucrose non-fermenting 1-related protein kinase (SnRK2.4) was identified to be redox-regulated in Brassica napus guard cells upon abscisic acid treatment. There are six genes encoding SnRK2.4 paralogs in B. napus Here, we show that recombinant BnSnRK2.4-1C exhibited autophosphorylation activity and preferentially phosphorylated the N-terminal region of B. napus slow anion channel (BnSLAC1-NT) over generic substrates. The in vitro activity of BnSnRK2.4-1C requires the presence of manganese (Mn2+). Phosphorylation sites of autophosphorylated BnSnRK2.4-1C were mapped, including serine and threonine residues in the activation loop. In vitro BnSnRK2.4-1C autophosphorylation activity was inhibited by oxidants such as H2O2 and recovered by active thioredoxin isoforms, indicating redox regulation of BnSnRK2.4-1C. Thiol-specific isotope tagging followed by mass spectrometry analysis revealed specific cysteine residues responsive to oxidant treatments. The in vivo activity of BnSnRK2.4-1C is inhibited by 15 min of H2O2 treatment. Taken together, these data indicate that BnSnRK2.4-1C, an SnRK preferentially expressed in guard cells, is redox-regulated with potential roles in guard cell signal transduction.
Collapse
|
14
|
Abstract
Plants are sessile organisms exposed constantly to potential virulent microbes seeking for full pathogenesis in hosts. Different from animals employing both adaptive and innate immune systems, plants only rely on innate immunity to detect and fight against pathogen invasions. Plant innate immunity is proposed to be a two-tiered immune system including pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In PTI, PAMPs, the elicitors derived from microbial pathogens, are perceived by cell surface-localized proteins, known as pattern recognition receptors (PRRs), including receptor-like kinases (RLKs) and receptor-like proteins (RLPs). As single-pass transmembrane proteins, RLKs and RLPs contain an extracellular domain (ECD) responsible for ligand binding. Recognitions of signal molecules by PRR-ECDs induce homo- or heterooligomerization of RLKs and RLPs to trigger corresponding intracellular immune responses. RLKs possess a cytoplasmic Ser/Thr kinase domain that is absent in RLPs, implying that protein phosphorylations underlie key mechanism in transducing immunity signalings and that RLPs unlikely mediate signal transduction independently, and recruitment of other patterns, such as RLKs, is required for the function of RLPs in plant immunity. Receptor-like cytoplasmic kinases, resembling RLK structures but lacking the ECD, act as immediate substrates of PRRs, modulating PRR activities and linking PRRs with downstream signaling mediators. In this chapter, we summarize recent discoveries illustrating the molecular machines of major components of PRR complexes in mediating pathogen perception and immunity activation in plants.
Collapse
Affiliation(s)
- K He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China.
| | - Y Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Taylor I, Wang Y, Seitz K, Baer J, Bennewitz S, Mooney BP, Walker JC. Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission. PLoS One 2016; 11:e0147203. [PMID: 26784444 PMCID: PMC4718614 DOI: 10.1371/journal.pone.0147203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/30/2015] [Indexed: 11/29/2022] Open
Abstract
Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity.
Collapse
Affiliation(s)
- Isaiah Taylor
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Ying Wang
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Kati Seitz
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - John Baer
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Stefan Bennewitz
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Brian P. Mooney
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
- Charles W. Gehrke Proteomics Center and Division of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - John C. Walker
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
16
|
Liu N, Xiong Y, Li S, Ren Y, He Q, Gao S, Zhou J, Shui W. New HDAC6-mediated deacetylation sites of tubulin in the mouse brain identified by quantitative mass spectrometry. Sci Rep 2015; 5:16869. [PMID: 26581825 PMCID: PMC4652237 DOI: 10.1038/srep16869] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/17/2015] [Indexed: 01/07/2023] Open
Abstract
The post-translational modifications (PTMs) occurring on microtubules have been implicated in the regulation of microtubule properties and functions. Acetylated K40 of α-tubulin, a hallmark of long-lived stable microtubules, is known to be negatively controlled by histone deacetylase 6 (HDAC6). However, the vital roles of HDAC6 in microtubule-related processes such as cell motility and cell division cannot be fully explained by the only known target site on tubulin. Here, we attempt to comprehensively map lysine acetylation sites on tubulin purified from mouse brain tissues. Furthermore, mass spectrometry-based quantitative comparison of acetylated peptides from wild-type vs HDAC6 knockout mice allowed us to identify six new deacetylation sites possibly mediated by HDAC6. Thus, adding new sites to the repertoire of HDAC6-mediated tubulin deacetylation events would further our understanding of the multi-faceted roles of HDAC6 in regulating microtubule stability and cellular functions.
Collapse
Affiliation(s)
- Ningning Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yun Xiong
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shanshan Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yiran Ren
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qianqian He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siqi Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenqing Shui
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
17
|
Macho AP, Lozano-Durán R, Zipfel C. Importance of tyrosine phosphorylation in receptor kinase complexes. TRENDS IN PLANT SCIENCE 2015; 20:269-272. [PMID: 25795237 DOI: 10.1016/j.tplants.2015.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/17/2015] [Accepted: 02/25/2015] [Indexed: 05/09/2023]
Abstract
Tyrosine phosphorylation is an important post-translational modification that is known to regulate receptor kinase (RK)-mediated signaling in animals. Plant RKs are annotated as serine/threonine kinases, but recent work has revealed that tyrosine phosphorylation is also crucial for the activation of RK-mediated signaling in plants. These initial observations have paved the way for subsequent detailed studies on the mechanism of activation of plant RKs and the biological relevance of tyrosine phosphorylation for plant growth and immunity. In this Opinion article we review recent reports on the contribution of RK tyrosine phosphorylation in plant growth and immunity; we propose that tyrosine phosphorylation plays a major regulatory role in the initiation and transduction of RK-mediated signaling in plants.
Collapse
Affiliation(s)
- Alberto P Macho
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Rosa Lozano-Durán
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
18
|
Li B, Jiang S, Yu X, Cheng C, Chen S, Cheng Y, Yuan JS, Jiang D, He P, Shan L. Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates Arabidopsis immunity. THE PLANT CELL 2015; 27:839-56. [PMID: 25770109 PMCID: PMC4558661 DOI: 10.1105/tpc.114.134809] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/21/2015] [Indexed: 05/06/2023]
Abstract
Proper control of immune-related gene expression is crucial for the host to launch an effective defense response. Perception of microbe-associated molecular patterns (MAMPs) induces rapid and profound transcriptional reprogramming via unclear mechanisms. Here, we show that ASR3 (ARABIDOPSIS SH4-RELATED3) functions as a transcriptional repressor and plays a negative role in regulating pattern-triggered immunity (PTI) in Arabidopsis thaliana. ASR3 belongs to a plant-specific trihelix transcription factor family for which functional studies are lacking. MAMP treatments induce rapid phosphorylation of ASR3 at threonine 189 via MPK4, a mitogen-activated protein kinase that negatively regulates PTI responses downstream of multiple MAMP receptors. ASR3 possesses transcriptional repressor activity via its ERF-associated amphiphilic repression motifs and negatively regulates a large subset of flg22-induced genes. Phosphorylation of ASR3 by MPK4 enhances its DNA binding activity to suppress gene expression. Importantly, the asr3 mutant shows enhanced disease resistance to virulent bacterial pathogen infection, whereas transgenic plants overexpressing the wild-type or phospho-mimetic form of ASR3 exhibit compromised PTI responses. Our studies reveal a function of the trihelix transcription factors in plant innate immunity and provide evidence that ASR3 functions as a transcriptional repressor regulated by MAMP-activated MPK4 to fine-tune plant immune gene expression.
Collapse
Affiliation(s)
- Bo Li
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Shan Jiang
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Xiao Yu
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Cheng Cheng
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32610
| | - Yanbing Cheng
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Joshua S Yuan
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Daohong Jiang
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Ping He
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
19
|
Feng B, Liu C, de Oliveira MVV, Intorne AC, Li B, Babilonia K, de Souza Filho GA, Shan L, He P. Protein poly(ADP-ribosyl)ation regulates arabidopsis immune gene expression and defense responses. PLoS Genet 2015; 11:e1004936. [PMID: 25569773 PMCID: PMC4287526 DOI: 10.1371/journal.pgen.1004936] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 12/04/2014] [Indexed: 12/22/2022] Open
Abstract
Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks. Fine-tuning of gene expression is a key feature of successful immune responses. However, the underlying mechanisms are not fully understood. Through a genetic screen in model plant Arabidopsis, we reveal that protein poly(ADP-ribosyl)ation (PARylation) post-translational modification plays a pivotal role in controlling plant immune gene expression and defense to pathogen attacks. PARylation is primarily mediated by poly(ADP-ribose) polymerase (PARP), which transfers ADP-ribose moieties from NAD+ to acceptor proteins. The covalently attached poly(ADP-ribose) polymers on the accept proteins could be hydrolyzed by poly(ADP-ribose) glycohydrolase (PARG). We further show that members of Arabidopsis PARPs and PARGs possess differential in vivo and in vitro enzymatic activities. Importantly, the Arabidopsis parp mutant displayed reduced, whereas parg mutant displayed enhanced, immune gene activation and immunity to pathogen infection. Moreover, Arabidopsis PARP2 activity is elevated upon pathogen signal perception. Compared to the lethality of their mammalian counterparts, the viability and normal growth of Arabidopsis parp and parg null mutants provide a unique genetic system to understand protein PARylation in diverse biological processes at the whole organism level.
Collapse
Affiliation(s)
- Baomin Feng
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
| | - Chenglong Liu
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
| | - Marcos V. V. de Oliveira
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
- Center of Biosciences and Biotechnology, Darcy Ribeiro State University of Northern of Rio de Janeiro, Brazil
| | - Aline C. Intorne
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
- Center of Biosciences and Biotechnology, Darcy Ribeiro State University of Northern of Rio de Janeiro, Brazil
| | - Bo Li
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
| | - Kevin Babilonia
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
- Department of Biology, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | | | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
| | - Ping He
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Monaghan J, Matschi S, Romeis T, Zipfel C. The calcium-dependent protein kinase CPK28 negatively regulates the BIK1-mediated PAMP-induced calcium burst. PLANT SIGNALING & BEHAVIOR 2015; 10:e1018497. [PMID: 26039480 PMCID: PMC4622532 DOI: 10.1080/15592324.2015.1018497] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 05/18/2023]
Abstract
Plants are protected from microbial infection by a robust immune system. Two of the earliest responses mediated by surface-localized immune receptors include an increase in cytosolic calcium (Ca(2+)) and a burst of apoplastic reactive oxygen species (ROS). The Arabidopsis plasma membrane-associated cytoplasmic kinase BIK1 is an immediate convergent substrate of multiple surface-localized immune receptors that is genetically required for the PAMP-induced Ca(2+) burst and directly regulates ROS production catalyzed by the NADPH oxidase RBOHD. We recently demonstrated that Arabidopsis plants maintain an optimal level of BIK1 through a process of continuous degradation regulated by the Ca(2+)-dependent protein kinase CPK28. cpk28 mutants accumulate more BIK1 protein and display enhanced immune signaling, while plants over-expressing CPK28 accumulate less BIK1 protein and display impaired immune signaling. Here, we show that CPK28 additionally contributes to the PAMP-induced Ca(2+) burst, supporting its role as a negative regulator of BIK1.
Collapse
Affiliation(s)
- Jacqueline Monaghan
- The Sainsbury Laboratory; Norwich Research Park; Norwich, United Kingdom
- Correspondence to: Jacqueline Monaghan; ; Cyril Zipfel;
| | - Susanne Matschi
- Department of Plant Biochemistry; Dahlem Center of Plant Sciences; Freie Universität Berlin; Berlin, Germany
- Present address: The Sainsbury Laboratory; Norwich Research Park; Norwich, United Kingdom
| | - Tina Romeis
- Department of Plant Biochemistry; Dahlem Center of Plant Sciences; Freie Universität Berlin; Berlin, Germany
| | - Cyril Zipfel
- The Sainsbury Laboratory; Norwich Research Park; Norwich, United Kingdom
- Correspondence to: Jacqueline Monaghan; ; Cyril Zipfel;
| |
Collapse
|
21
|
Ranf S, Eschen-Lippold L, Fröhlich K, Westphal L, Scheel D, Lee J. Microbe-associated molecular pattern-induced calcium signaling requires the receptor-like cytoplasmic kinases, PBL1 and BIK1. BMC PLANT BIOLOGY 2014; 14:374. [PMID: 25522736 PMCID: PMC4279983 DOI: 10.1186/s12870-014-0374-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/08/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND Plant perception of conserved microbe-derived or damage-derived molecules (so-called microbe- or damage-associated molecular patterns, MAMPs or DAMPs, respectively) triggers cellular signaling cascades to initiate counteracting defence responses. Using MAMP-induced rise in cellular calcium levels as one of the earliest biochemical readouts, we initiated a genetic screen for components involved in early MAMP signaling in Arabidopsis thaliana. RESULTS We characterized here the "changed calcium elevation 5" (cce5) mutant, where five allelic cce5 mutants were isolated. They all show reduced calcium levels after elicitation with peptides representing bacteria-derived MAMPs (flg22 and elf18) and endogenous DAMP (AtPep1), but a normal response to chitin octamers. Mapping, sequencing of the mutated locus and complementation studies revealed CCE5 to encode the receptor-like cytoplasmic kinase (RLCK), avrPphB sensitive 1-like 1 (PBL1). Kinase activities of PBL1 derived from three of the cce5 alleles are abrogated in vivo. Validation with T-DNA mutants revealed that, besides PBL1, another RLCK, Botrytis-induced kinase 1 (BIK1), is also required for MAMP/DAMP-induced calcium elevations. CONCLUSIONS Hence, PBL1 and BIK1 (but not two related RLCKs, PBS1 and PBL2) are required for MAMP/DAMP-induced calcium signaling. It remains to be investigated if the many other RLCKs encoded in the Arabidopsis genome affect early calcium signal transduction - perhaps in dependence on the type of MAMP/DAMP ligands. A future challenge would be to identify the substrates of these various RLCKs, in order to elucidate their signaling role between the receptor complexes at the plasma membrane and downstream cellular signaling components.
Collapse
Affiliation(s)
- Stefanie Ranf
- Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany.
- Phytopathology, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Emil-Ramann-Str. 2, Freising, Weihenstephan, D-85350, Germany.
| | - Lennart Eschen-Lippold
- Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany.
| | - Katja Fröhlich
- Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany.
| | - Lore Westphal
- Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany.
| | - Dierk Scheel
- Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany.
| | - Justin Lee
- Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany.
| |
Collapse
|
22
|
Monaghan J, Matschi S, Shorinola O, Rovenich H, Matei A, Segonzac C, Malinovsky F, Rathjen J, MacLean D, Romeis T, Zipfel C. The Calcium-Dependent Protein Kinase CPK28 Buffers Plant Immunity and Regulates BIK1 Turnover. Cell Host Microbe 2014; 16:605-15. [DOI: 10.1016/j.chom.2014.10.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/11/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
|
23
|
Segonzac C, Macho AP, Sanmartín M, Ntoukakis V, Sánchez-Serrano JJ, Zipfel C. Negative control of BAK1 by protein phosphatase 2A during plant innate immunity. EMBO J 2014; 33:2069-79. [PMID: 25085430 DOI: 10.15252/embj.201488698] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern-recognition receptors (PRRs) activates plant innate immunity, mainly through activation of numerous protein kinases. Appropriate induction of immune responses must be tightly regulated, as many of the kinases involved have an intrinsic high activity and are also regulated by other external and endogenous stimuli. Previous evidences suggest that PAMP-triggered immunity (PTI) is under constant negative regulation by protein phosphatases but the underlying molecular mechanisms remain unknown. Here, we show that protein Ser/Thr phosphatase type 2A (PP2A) controls the activation of PRR complexes by modulating the phosphostatus of the co-receptor and positive regulator BAK1. A potential PP2A holoenzyme composed of the subunits A1, C4, and B'η/ζ inhibits immune responses triggered by several PAMPs and anti-bacterial immunity. PP2A constitutively associates with BAK1 in planta. Impairment in this PP2A-based regulation leads to increased steady-state BAK1 phosphorylation, which can poise enhanced immune responses. This work identifies PP2A as an important negative regulator of plant innate immunity that controls BAK1 activation in surface-localized immune receptor complexes.
Collapse
Affiliation(s)
- Cécile Segonzac
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Alberto P Macho
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Maite Sanmartín
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | - José Juan Sánchez-Serrano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| |
Collapse
|
24
|
Belkhadir Y, Yang L, Hetzel J, Dangl JL, Chory J. The growth-defense pivot: crisis management in plants mediated by LRR-RK surface receptors. Trends Biochem Sci 2014; 39:447-56. [PMID: 25089011 DOI: 10.1016/j.tibs.2014.06.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/23/2014] [Accepted: 06/26/2014] [Indexed: 11/26/2022]
Abstract
Plants must adapt to their environment and require mechanisms for sensing their surroundings and responding appropriately. An expanded family of more than 200 leucine-rich repeat (LRR) receptor kinases (LRR-RKs) transduces fluctuating and often contradictory signals from the environment into changes in nuclear gene expression. Two LRR-RKs, BRASSINOSTEROID INSENSITIVE 1 (BRI1), a steroid receptor, and FLAGELLIN SENSITIVE 2 (FLS2), an innate immune receptor that recognizes bacterial flagellin, act cooperatively to partition necessary growth-defense trade-offs. BRI1 and FLS2 share common signaling components and slightly different activation mechanisms. BRI1 and FLS2 are paradigms for understanding the signaling mechanisms of LRR-containing receptors in plants.
Collapse
Affiliation(s)
- Youssef Belkhadir
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Li Yang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan Hetzel
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Division of Biology, University of California, San Diego, Gilman Drive, La Jolla, CA 92037, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Microbiology and Immunology, Coker Hall # 3280, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics, Coker Hall # 3280, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Center for Genome Sciences, Coker Hall # 3280, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Joanne Chory
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
25
|
Wang Y, Li Z, Liu D, Xu J, Wei X, Yan L, Yang C, Lou Z, Shui W. Assessment of BAK1 activity in different plant receptor-like kinase complexes by quantitative profiling of phosphorylation patterns. J Proteomics 2014; 108:484-93. [PMID: 24953020 DOI: 10.1016/j.jprot.2014.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/17/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Plant receptor-like kinases (RLKs) constitute a large family of receptors coordinating developmental programs with adaptation to environmental stresses including immune defenses. BRI1-ASSOCIATED KINASE 1 (BAK1), a member of the plant RLK family, forms receptor complexes with multiple RLK proteins including BRI1, FLS2, EFR and BIK1 to regulate responses to growth hormones or PAMPs. RLK activation and signal initiation involve protein complex formation and phosphorylation/dephosphorylation between BAK1 and its interacting partners. To gain new insight into how phosphorylation contributes to BAK1-mediated signaling specificity, we first mapped the phosphorylation patterns of BAK1 associated with different RLK partners (BRI1, FLS2, EFR and BIK1). Quantitative phospho-pattern profiling by label-free mass spectrometry revealed that differential phosphorylation patterns of RLK partners resulted from altered BAK1 phosphorylation status. More interestingly, the study of two BAK1 mutants (T450A and C408Y) both showing severe defect in immune defense yet normal growth phenotype suggested that varied phosphorylation patterns of RLK partners by BAK1 could be the molecular basis for selective regulation of multiple BAK1-dependent pathways. Taken together, this phospho-pattern profiling strategy allowed for explicit assessment of BAK1 kinase activity in different RLK complexes, which would facilitate elucidation of BAK1 diverse functions in plant development, defense, and adaptation. BIOLOGICAL SIGNIFICANCE BAK1 is a functionally important co-receptor known to interact with different receptor-like kinases (RLKs) to coordinate plant development and immune defenses. Our study first mapped the phosphorylation patterns of BAK1 associated with four RLK partners (BRI1, FLS2, EFR and BIK1), and further revealed that differential phosphorylation patterns of multiple RLK partners resulted from altered BAK1 phosphorylation status. More interestingly, the study of two BAK1 mutants suggested that varied phosphorylation patterns of RLK partners by BAK1 could be the basis for selective regulation of signaling pathways. Taken together, this phospho-pattern profiling strategy allowed for explicit assessment of BAK1 kinase activity in different RLK complexes, which would facilitate elucidation of BAK1 diverse functions in plant development, defense, and adaptation.
Collapse
Affiliation(s)
- Yilin Wang
- College of Life Sciences, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Zhucui Li
- College of Life Sciences, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Dan Liu
- College of Life Sciences, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Jinhua Xu
- College of Life Sciences, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Xiaochao Wei
- College of Life Sciences, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Liming Yan
- Laboratory of Structural Biology and MOE Laboratory of Protein Science, School of Medicine and Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cheng Yang
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Zhiyong Lou
- Laboratory of Structural Biology and MOE Laboratory of Protein Science, School of Medicine and Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenqing Shui
- College of Life Sciences, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|