1
|
Chen Q, Wang W, Fang W, Qin L, Wang J, Huang X, Pan S, Zheng R. Generation of Myeloid-Specific Bmal1 Knockout Mice and Identification of Bmal1-Regulated Ferroptosis in Macrophages. Genesis 2025; 63:e70014. [PMID: 40197722 DOI: 10.1002/dvg.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Circadian clocks have a fundamental role in many physiological processes. Bmal1 (basic helix-loop-helix ARNT like 1) is a central master circadian clock gene. The global Bmal1 knockout mice were shown to have a loss of circadian rhythms, acceleration of aging, and shortened life span. However, global Bmal1 knockout mice did not exactly reflect the Bmal1 function in specific cell or tissue types. To address the importance of circadian rhythms in macrophages, we generated myeloid-specific Bmal1 knockout mice. The efficacy of Bmal1 gene deletion in macrophages was identified at DNA, transcription, protein levels, and function. In contrast to global Bmal1 knockout mice, Bmal1flox/flox and Bmal1mye-/- mice did not exhibit aging phenotypes. However, the deletion of Bmal1 resulted in a loss of rhythmic expression of the circadian genes in macrophages. RNA-Seq revealed that Bmal1 regulated the expression of cell death-related genes in macrophages. Furthermore, these genes have been identified as clock-controlled genes in rhythmic cell models, and Bmal1 controlled the rhythmic expression of these genes in macrophages. Finally, Bmal1 inhibited RSL3-induced ferroptosis in macrophages through Phgdh. In summary, the model of myeloid-specific Bmal1 knockout mice was successfully constructed, providing a tool for the study of the roles of Bmal1 in macrophages and the peripheral circadian clock. Meanwhile, Bmal1 regulates ferroptosis in macrophages.
Collapse
Affiliation(s)
- Qing Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenyi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weijun Fang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sha Pan
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ruijuan Zheng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Rashed N, Liu W, Zhou X, Bode AM, Luo X. The role of circadian gene CLOCK in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119782. [PMID: 38871225 DOI: 10.1016/j.bbamcr.2024.119782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Circadian Locomotor Output Cycles Kaput (CLOCK) is one of the circadian clock genes and is considered to be a fundamental regulatory gene in the circadian rhythm, responsible for mediating several biological processes. Therefore, abnormal expression of CLOCK affects its role in the circadian clock and its more general function as a direct regulator of gene expression. This dysfunction can lead to severe pathological effects, including cancer. To better understand the role of CLOCK in cancer, we compiled this review to describe the biological function of CLOCK, and especially highlighted its function in cancer development, progression, tumor microenvironment, cancer cell metabolism, and drug resistance.
Collapse
Affiliation(s)
- Nasot Rashed
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; NHC Key Laboratory of Carcinogenesis, the Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Wenbin Liu
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Xinran Zhou
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; NHC Key Laboratory of Carcinogenesis, the Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xiangjian Luo
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; NHC Key Laboratory of Carcinogenesis, the Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
3
|
Zhang Z, Jiang Z, Cheng J, Price CA, Yang L, Li Q. Nicotine induces senescence in spermatogonia stem cells by disrupting homeostasis between circadian oscillation and rhythmic mitochondrial dynamics via the SIRT6/Bmal1 pathway. Life Sci 2024; 352:122860. [PMID: 38936603 DOI: 10.1016/j.lfs.2024.122860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/15/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Infertility is intricately linked with alterations in circadian rhythms along with physiological decline and stem cell senescence. Yet, the direct involvement of circadian mechanisms in nicotine-induced injury to the testes, especially the senescence of spermatogonia stem cells (SSCs), is not well comprehended. This study revealed that nicotine exposure induced testis injury by triggering SSCs senescence along with the upregulation of senescence marker genes and senescence-associated secretory phenotype components. Moreover, nicotine treatment caused mitochondrial hyper-fusion, increased oxidative stress, and DNA damage. Exposure to nicotine was found to suppress the expression of sirtuin 6 (SIRT6), which accelerated the senescence of spermatogonia stem cells (SSCs). This acceleration led to increased acetylation of brain and muscle ARNT-like protein (Bmal1), consequently reducing the expression of Bmal1 protein. Conversely, the overexpression of Bmal1 alleviated mitochondrial hyper-fusion and senescence phenotypes induced by nicotine. Overall, this study unveiled a novel molecular mechanism behind nicotine-induced disorders in spermatogenesis and highlighted the SIRT6/Bmal1 regulatory pathway as a potential therapeutic target for combating nicotine-associated infertility.
Collapse
Affiliation(s)
- Zelin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhongliang Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianyong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Christopher A Price
- Centre de recherche en reproduction & fertility, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada
| | - Li Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Albalak G, Noordam R, van der Elst M, Kervezee L, Exadaktylos V, van Bodegom D, van Heemst D. Older adults exercising ON TIME: protocol for a randomized controlled cross-over study to assess the effect of physical activity timing on insomnia severity. Trials 2024; 25:523. [PMID: 39103937 DOI: 10.1186/s13063-024-08310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND There are increased indications that physical activity timing, irrespective of intensity, impacts insomnia and circadian clock function. Here, we describe the rationale and design of a randomized cross-over study, called ON TIME, to examine the effects of (changing) physical activity timing on insomnia severity and on multiple exploratory outcomes that are linked to circadian clock function. METHODS We will conduct a randomized cross-over trial in 40 healthy older adults (aged 65 to 75 years) with subclinical or clinical insomnia (Insomnia Severity Index (ISI) scores of ≥ 10) from the Dutch municipality of Leiden and surroundings. Participants will undergo 3 intervention periods (14 days each) consecutively: one sedentary period and two periods of increased physical activity (one period with morning activity and one period with evening activity). The intervention periods are separated by a wash-out period of 1 week. In both active intervention arms, participants will follow coached or uncoached outdoor physical exercise sessions comprising endurance, strength, and flexibility exercises for 14 days. The primary outcome is change in insomnia severity as measured by the ISI. Additional exploratory outcomes include multiple components of objective sleep quality measured with tri-axial accelerometry and subjective sleep quality assessed by questionnaires as well as dim light melatonin onset and 24-h rhythms in heart rate, heart rate variability, breathing rate, oxygen saturation, mood, and objective emotional arousal and stress. Additionally, we will collect diary data on eating patterns (timing and composition). Finally, fasting blood samples will be collected at baseline and after each intervention period for measurements of biomarkers of metabolic and physiological functioning and expression of genes involved in regulation of the biological clock. DISCUSSION We anticipate that this study will make a significant contribution to the limited knowledge on the effect of physical activity timing. Optimizing physical activity timing has the potential to augment the health benefits of increased physical exercise in the aging population. TRIAL REGISTRATION Trial was approved by the Medical Ethics Committee Leiden, The Hague, Delft, The Netherlands (June, 2023). The trial was registered in the CCMO-register https://www.toetsingonline.nl/to/ccmo_search.nsf/Searchform?OpenForm under study ID NL82335.058.22 and named ("Ouderen op tijd in beweging" or in English "Older adults exercising on time"). At time of manuscript submission, the trial was additionally registered at ClinicalTrials.gov under study ID: NL82335.058.22 and is awaiting approval.
Collapse
Affiliation(s)
- Gali Albalak
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, Leiden, 2300 RC, The Netherlands.
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, Leiden, 2300 RC, The Netherlands
| | - Marjan van der Elst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, Leiden, 2300 RC, The Netherlands
| | - Laura Kervezee
- Department of Cell and Chemical Biology, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, Leiden, 2300 RC, The Netherlands
| | | | - David van Bodegom
- Department of Public Health and Primary Care, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, Leiden, 2300 RC, The Netherlands
- Leyden Academy on Vitality and Ageing, Rijnsburgerweg 10, Leiden, 2333 AA, The Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, Leiden, 2300 RC, The Netherlands
| |
Collapse
|
5
|
Sun Y, Zhong M, Xu N, Zhang X, Sun H, Wang Y, Lu Y, Nie Y, Li Q, Sun Q, Jiang J, Tang YC, Chang HC. High-frequency neural activity dysregulation is associated with sleep and psychiatric disorders in BMAL1-deficient animal models. iScience 2024; 27:109381. [PMID: 38500822 PMCID: PMC10946332 DOI: 10.1016/j.isci.2024.109381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Sleep disturbance led by BMAL1-deficiency has been recognized both in rodent and non-human primate models. Yet it remained unclear how their diurnal brain oscillations were affected upon BMAL1 ablation and what caused the discrepancy in the quantity of sleep between the two species. Here, we investigated diurnal electroencephalographs of BMAL1-deficient mice and cynomolgus monkeys at young adult age and uncovered a shared defect of dysregulated high-frequency oscillations by Kullback-Leibler divergence analysis. We found beta and gamma oscillations were significantly disturbed in a day versus night manner in BMAL1-deficient monkeys, while in mice the beta band difference was less evident. Notably, the dysregulation of beta oscillations was particularly associated with psychiatric behaviors in BMAL1-deficient monkeys, including the occurrence of self-injuring and delusion-like actions. As such psychiatric phenotypes were challenging to uncover in rodent models, our results offered a unique method to study the correlation between circadian clock dysregulation and psychiatric disorders.
Collapse
Affiliation(s)
- Yu Sun
- Lingang Laboratory, Shanghai 201203, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingzhu Zhong
- Lingang Laboratory, Shanghai 201203, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Niannian Xu
- Lingang Laboratory, Shanghai 201203, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | - Yan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Lu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanhong Nie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qing Li
- Lingang Laboratory, Shanghai 201203, China
| | - Qiang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Hung-Chun Chang
- Lingang Laboratory, Shanghai 201203, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| |
Collapse
|
6
|
Silva EHA, Santana NNM, Seixas NRM, Bezerra LLF, Silva MMO, Santos SF, Cavalcante JS, Leocadio-Miguel MA, Engelberth RC. Blue light exposure-dependent improvement in robustness of circadian rest-activity rhythm in aged rats. PLoS One 2023; 18:e0292342. [PMID: 37792859 PMCID: PMC10550138 DOI: 10.1371/journal.pone.0292342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
The aging effects on circadian rhythms have diverse implications including changes in the pattern of rhythmic expressions, such as a wide fragmentation of the rhythm of rest-activity and decrease in amplitude of activity regulated by the suprachiasmatic nucleus (SCN). The study of blue light on biological aspects has received great current interest due, among some aspects, to its positive effects on psychiatric disorders in humans. This study aims to evaluate the effect of blue light therapy on the SCN functional aspects, through the evaluation of the rest-activity rhythm, in aging rats. For this, 33 sixteen-months-old male Wistar rats underwent continuous records of locomotor activity and were exposed to periods of 6 hours of blue light during the first half of the light phase (Zeitgeber times 0-6) for 14 days. After this, the rats were maintained at 12h:12h light:dark cycle to check the long-term effect of blue light for 14 days. Blue light repeated exposure showed positive effects on the rhythmic variables of locomotor activity in aged rats, particularly the increase in amplitude, elevation of rhythmic robustness, phase advance in acrophase, and greater consolidation of the resting phase. This effect depends on the presence of daily blue light exposure. In conclusion, our results indicate that blue light is a reliable therapy to reduce circadian dysfunctions in aged rats, but other studies assessing how blue light modulates the neural components to modulate this response are still needed.
Collapse
Affiliation(s)
- Eryck Holmes A. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Narita Renata M. Seixas
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Lyzandro Lucas F. Bezerra
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria Milena O. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Rovena Clara Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
7
|
Gandia KM, Herrelko ES, Kessler SE, Buchanan-Smith HM. Understanding Circadian and Circannual Behavioral Cycles of Captive Giant Pandas ( Ailuropoda melanoleuca) Can Help to Promote Good Welfare. Animals (Basel) 2023; 13:2401. [PMID: 37570210 PMCID: PMC10417524 DOI: 10.3390/ani13152401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Circadian and circannual cycles of behavior regulate many aspects of welfare including metabolism, breeding, and behavioral interactions. In this study, we aim to demonstrate how systematically determining circadian and circannual cycles can provide insight into animals' needs and be part of an evidence-based approach to welfare assessment. We measured and analyzed the observational behavioral data of 13 zoo-housed giant pandas (Ailuropoda melanoleuca), across life stages and between sexes, each month for one year using live camera footage from six zoos across the world. Our results indicate that life stage was associated with changes in overall activity, feeding, locomotion, and pacing, and that sex influenced scent anointing and anogenital rubbing. Overall, the circadian rhythms showed three peaks of activity, including a nocturnal peak, as seen in wild giant pandas. We also found associations between sexual-related, stereotypical/abnormal, and feeding behavior, which are possibly linked to the timing of migration of wild pandas, and elucidated the relationship between a mother and cub, finding that they concentrate maternal behaviors to mainly after closing hours. Understanding these cycle patterns can aid animal care staff in predicting changing needs throughout the day, year, and life cycle and preemptively provide for those needs to best avoid welfare concerns.
Collapse
Affiliation(s)
- Kristine M. Gandia
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Elizabeth S. Herrelko
- Smithsonian’s National Zoo, Conservation Biology Institute, Washington, DC 20008, USA
| | - Sharon E. Kessler
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | | |
Collapse
|
8
|
Malik MZ, Dashti M, Fatima Y, Channanath A, John SE, Singh RKB, Al-Mulla F, Thanaraj TA. Disruption in the regulation of casein kinase 2 in circadian rhythm leads to pathological states: cancer, diabetes and neurodegenerative disorders. Front Mol Neurosci 2023; 16:1217992. [PMID: 37475884 PMCID: PMC10354274 DOI: 10.3389/fnmol.2023.1217992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Circadian rhythm maintains the sleep-wake cycle in biological systems. Various biological activities are regulated and modulated by the circadian rhythm, disruption of which can result in onset of diseases. Robust rhythms of phosphorylation profiles and abundances of PERIOD (PER) proteins are thought to be the master keys that drive circadian clock functions. The role of casein kinase 2 (CK2) in circadian rhythm via its direct interactions with the PER protein has been extensively studied; however, the exact mechanism by which it affects circadian rhythms at the molecular level is not known. Methods Here, we propose an extended circadian rhythm model in Drosophila that incorporates the crosstalk between the PER protein and CK2. We studied the regulatory role of CK2 in the dynamics of PER proteins involved in circadian rhythm using the stochastic simulation algorithm. Results We observed that variations in the concentration of CK2 in the circadian rhythm model modulates the PER protein dynamics at different cellular states, namely, active, weakly active, and rhythmic death. These oscillatory states may correspond to distinct pathological cellular states of the living system. We find molecular noise at the expression level of CK2 to switch normal circadian rhythm to any of the three above-mentioned circadian oscillatory states. Our results suggest that the concentration levels of CK2 in the system has a strong impact on its dynamics, which is reflected in the time evolution of PER protein. Discussion We believe that our findings can contribute towards understanding the molecular mechanisms of circadian dysregulation in pathways driven by the PER mutant genes and their pathological states, including cancer, obesity, diabetes, neurodegenerative disorders, and socio-psychological disease.
Collapse
Affiliation(s)
- Md. Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohammed Dashti
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Yasmin Fatima
- Department of Computational Biology and Bioinformatics, Sam Higginbottom Institute of Agriculture, Technology and Sciences (Formerly Allahabad Agricultural Institute-Deemed University), Allahabad, India
| | - Arshad Channanath
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sumi Elsa John
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - R. K. Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | |
Collapse
|
9
|
Dudek M, Swift J, Meng QJ. The circadian clock and extracellular matrix homeostasis in aging and age-related diseases. Am J Physiol Cell Physiol 2023; 325:C52-C59. [PMID: 37246635 PMCID: PMC10281784 DOI: 10.1152/ajpcell.00122.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
The extracellular matrix (ECM) is the noncellular scaffolding component present within all tissues and organs. It provides crucial biochemical and biomechanical cues to instruct cellular behavior and has been shown to be under circadian clock regulation, a highly conserved cell-intrinsic timekeeping mechanism that has evolved with the 24-hour rhythmic environment. Aging is a major risk factor for many diseases, including cancer, fibrosis, and neurodegenerative disorders. Both aging and our modern 24/7 society disrupt circadian rhythms, which could contribute to altered ECM homeostasis. Understanding the daily dynamics of ECM and how this mechanism changes with age will have a profound impact on tissue health, disease prevention, and improving treatments. Maintaining rhythmic oscillations has been proposed as a hallmark of health. On the other hand, many hallmarks of aging turn out to be key regulators of circadian timekeeping mechanisms. In this review, we summarize new work linking the ECM with circadian clocks and tissue aging. We discuss how the changes in the biomechanical and biochemical properties of ECM during aging may contribute to circadian clock dysregulation. We also consider how the dampening of clocks with age could compromise the daily dynamic regulation of ECM homeostasis in matrix-rich tissues. This review aims to encourage new concepts and testable hypotheses about the two-way interactions between circadian clocks and ECM in the context of aging.
Collapse
Affiliation(s)
- Michal Dudek
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Joe Swift
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
Amidfar M, Garcez ML, Kim YK. The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer's disease: The role of circadian rhythm disturbances. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110721. [PMID: 36702452 DOI: 10.1016/j.pnpbp.2023.110721] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
An association with circadian clock function and pathophysiology of aging, major depressive disorder (MDD), and Alzheimer's disease (AD) is well established and has been proposed as a factor in the development of these diseases. Depression and changes in circadian rhythm have been increasingly suggested as the two primary overlapping and interpenetrating changes that occur with aging. The relationship between AD and depression in late life is not completely understood and probably is complex. Patients with major depression or AD suffer from disturbed sleep/wake cycles and altered rhythms in daily activities. Although classical monoaminergic hypotheses are traditionally proposed to explain the pathophysiology of MDD, several clinical and preclinical studies have reported a strong association between circadian rhythm and mood regulation. In addition, a large body of evidence supports an association between disruption of circadian rhythm and AD. Some clock genes are dysregulated in rodent models of depression. If aging, AD, and MDD share a common biological basis in pathophysiology, common therapeutic tools could be investigated for their prevention and treatment. Nitro-oxidative stress (NOS), for example, plays a fundamental role in aging, as well as in the pathogenesis of AD and MDD and is associated with circadian clock disturbances. Thus, development of therapeutic possibilities with these NOS-related conditions is advisable. This review describes recent findings that link disrupted circadian clocks to aging, MDD, and AD and summarizes the experimental evidence that supports connections between the circadian clock and molecular pathologic factors as shared common pathophysiological mechanisms underlying aging, AD, and MDD.
Collapse
Affiliation(s)
- Meysam Amidfar
- Department of Neuroscience, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Michelle Lima Garcez
- Laboratory of Translational Neuroscience, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
11
|
Cardiometabolic Traits in Adult Twins: Heritability and BMI Impact with Age. Nutrients 2022; 15:nu15010164. [PMID: 36615821 PMCID: PMC9824881 DOI: 10.3390/nu15010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Background: The prevalence of obesity and cardiometabolic diseases continues to rise globally and obesity is a significant risk factor for cardiometabolic diseases. However, to our knowledge, evidence of the relative roles of genes and the environment underlying obesity and cardiometabolic disease traits and the correlations between them are still lacking, as is how they change with age. Method: Data were obtained from the Chinese National Twin Registry (CNTR). A total of 1421 twin pairs were included. Univariate structural equation models (SEMs) were performed to evaluate the heritability of BMI and cardiometabolic traits, which included blood hemoglobin A1c (HbA1c), fasting blood glucose (FBG), systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol (TC), triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C). Bivariate SEMs were used to assess the genetic/environmental correlations between them. The study population was divided into three groups for analysis: ≤50, 51−60, and >60 years old to assess the changes in heritability and genetic/environmental correlations with ageing. Results: Univariate SEMs showed a high heritability of BMI (72%) and cardiometabolic traits, which ranged from 30% (HbA1c) to 69% (HDL-C). With age increasing, the heritability of all phenotypes has different degrees of declining trends. Among these, BMI, SBP, and DBP presented significant monotonous declining trends. The bivariate SEMs indicated that BMI correlated with all cardiometabolic traits. The genetic correlations were estimated to range from 0.14 (BMI and LDL-C) to 0.39 (BMI and DBP), while the environmental correlations ranged from 0.13 (BMI and TC/LDL-C) to 0.31 (BMI and TG). The genetic contributions underlying the correlations between BMI and SBP and DBP, TC, TG, and HDL-C showed a progressive decrease as age groups increased. In contrast, environmental correlations displayed a significant increasing trend for HbA1c, SBP, and DBP. Conclusions: The findings suggest that genetic and environmental factors have essential effects on BMI and all cardiometabolic traits. However, as age groups increased, genetic influences presented varying degrees of decrement for BMI and most cardiometabolic traits, suggesting the increasing importance of environments. Genetic factors played a consistently larger role than environmental factors in the phenotypic correlations between BMI and cardiometabolic traits. Nevertheless, the relative magnitudes of genetic and environmental factors may change over time.
Collapse
|
12
|
The circadian transcription factor ARNTL2 is regulated by weight-loss interventions in human white adipose tissue and inhibits adipogenesis. Cell Death Dis 2022; 8:443. [PMID: 36329012 PMCID: PMC9633602 DOI: 10.1038/s41420-022-01239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Misalignment of physiological circadian rhythms promotes obesity which is characterized by white adipose tissue (WAT) expansion. Differentiation of Adipose stem/progenitor cells (ASCs) contributes to WAT increase but the importance of the cellular clock in this process is incompletely understood. In the present study, we reveal the role of the circadian transcription factor Aryl hydrocarbon receptor nuclear translocator-like 2 (ARNTL2) in human ASCs, isolated from subcutaneous (s)WAT samples of patients undergoing routine elective plastic abdominal surgery. We show that circadian synchronization by serum-shock or stimulation with adipogenic stimuli leads to a different expression pattern of ARNTL2 relative to its well-studied paralogue ARNTL1. We demonstrate that ARNTL2 mRNA is downregulated in ASCs upon weight-loss (WL) whereas ARNTL2 protein is rapidly induced in the course of adipogenic differentiation and highly abundant in adipocytes. ARNTL2 protein is maintained in ASCs cooperatively by mechanistic Target of Rapamycin (mTOR) and Mitogen-activated Protein Kinase (MAPK) signalling pathways while ARNTL2 functions as an inhibitor on both circuits, leading to a feedback mechanism. Consistently, ectopic overexpression of ARNTL2 repressed adipogenesis by facilitating the degradation of ARNTL1, inhibition of Kruppel-Like Factor 15 (KLF15) gene expression and down-regulation of the MAPK-CCAAT/enhancer-binding protein β (C/EBPβ) axis. Western blot analysis of sWAT samples from normal-weight, obese and WL donors revealed that ARNTL2 protein was solely elevated by WL compared to ARNTL1 which underscores unique functions of both transcription factors. In conclusion, our study reveals ARNTL2 to be a WL-regulated inhibitor of adipogenesis which might provide opportunities to develop strategies to ameliorate obesity.
Collapse
|
13
|
ISX-9 potentiates CaMKIIδ-mediated BMAL1 activation to enhance circadian amplitude. Commun Biol 2022; 5:750. [PMID: 35902736 PMCID: PMC9334596 DOI: 10.1038/s42003-022-03725-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Circadian dysregulation associates with numerous diseases including metabolic dysfunction, sleep disorder, depression and aging. Given that declined circadian amplitude is a trait commonly found with compromised health, interventions that design in precluding circadian amplitude from dampening will aid to mitigate complex, circadian-related diseases. Here we identify a neurogenic small molecule ISX-9 that is able to support persistent and higher amplitude of circadian oscillations. ISX-9 improves diurnal metabolic rhythms in middle-aged mice. Moreover, the ISX-9-treated mice show better sleep homeostasis with increased delta power during the day time and higher locomotive activity in the dark period. ISX-9 augments CaMKIIδ expression and increases BMAL1 activity via eliciting CaMKIIδ-mediated phosphorylation on BMAL1 residues S513/S515/S516, accordingly composes a positive feedback effect on enhancing circadian amplitude. CaMKIIδ-targeting, and the use of ISX-9 may serve as decent choices for treating circadian-related disorders.
Collapse
|
14
|
Four novel genes associated with longevity found in Cane corso purebred dogs. BMC Vet Res 2022; 18:188. [PMID: 35590325 PMCID: PMC9118790 DOI: 10.1186/s12917-022-03290-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Background Longevity-related genes have been found in several animal species as well as in humans. The goal of this study was to perform genetic analysis of long-lived Cane corso dogs with the aim to find genes that are associated with longevity. Results SNPs with particular nucleotides were significantly overrepresented in long-lived dogs in four genes, TDRP, MC2R, FBXO25 and FBXL21. In FBXL21, the longevity-associated SNP localises to the exon. In the FBXL21 protein, tryptophan in long-lived dogs replaced arginine present in reference dogs. Conclusions Four SNPs associated with longevity in dogs were identified using GWAS and validated by DNA sequencing. We conclude that genes TDRP, MC2R, FBXO25 and FBXL21 are associated with longevity in Cane corso dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03290-9.
Collapse
|
15
|
Bin-Jumah MN, Nadeem MS, Gilani SJ, Al-Abbasi FA, Ullah I, Alzarea SI, Ghoneim MM, Alshehri S, Uddin A, Murtaza BN, Kazmi I. Genes and Longevity of Lifespan. Int J Mol Sci 2022; 23:1499. [PMID: 35163422 PMCID: PMC8836117 DOI: 10.3390/ijms23031499] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex process indicated by low energy levels, declined physiological activity, stress induced loss of homeostasis leading to the risk of diseases and mortality. Recent developments in medical sciences and an increased availability of nutritional requirements has significantly increased the average human lifespan worldwide. Several environmental and physiological factors contribute to the aging process. However, about 40% human life expectancy is inherited among generations, many lifespan associated genes, genetic mechanisms and pathways have been demonstrated during last decades. In the present review, we have evaluated many human genes and their non-human orthologs established for their role in the regulation of lifespan. The study has included more than fifty genes reported in the literature for their contributions to the longevity of life. Intact genomic DNA is essential for the life activities at the level of cell, tissue, and organ. Nucleic acids are vulnerable to oxidative stress, chemotherapies, and exposure to radiations. Efficient DNA repair mechanisms are essential for the maintenance of genomic integrity, damaged DNA is not replicated and transferred to next generations rather the presence of deleterious DNA initiates signaling cascades leading to the cell cycle arrest or apoptosis. DNA modifications, DNA methylation, histone methylation, histone acetylation and DNA damage can eventually lead towards apoptosis. The importance of calorie restriction therapy in the extension of lifespan has also been discussed. The role of pathways involved in the regulation of lifespan such as DAF-16/FOXO (forkhead box protein O1), TOR and JNK pathways has also been particularized. The study provides an updated account of genetic factors associated with the extended lifespan and their interactive contributory role with cellular pathways.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Aziz Uddin
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan;
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
16
|
Liu H, Qiu Z. Overexpression of MECP2 in the Suprachiasmatic Nucleus Alters Circadian Rhythm and Induces Abnormal Social Behaviors. Neurosci Bull 2021; 37:1713-1717. [PMID: 34283398 PMCID: PMC8643386 DOI: 10.1007/s12264-021-00746-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Hailin Liu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zilong Qiu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
17
|
Wang X, Li Y, Fu J, Zhou K, Wang T. ARNTL2 is a Prognostic Biomarker and Correlates with Immune Cell Infiltration in Triple-Negative Breast Cancer. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1425-1440. [PMID: 34785930 PMCID: PMC8591114 DOI: 10.2147/pgpm.s331431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022]
Abstract
Background Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and is associated with poor prognosis. The aberrant expression of circadian genes contributes to the origin and progression of breast cancer. The present study was designed to explore the potential function and prognosis value of circadian genes in TNBC. Methods The transcriptome data of circadian genes were downloaded from The Cancer Genomic Atlas (TCGA), GSE25066 and GSE31448 datasets. The differential expressed circadian genes between non-TNBC and TNBC patients were analysed by Wilcoxon test. Univariate and multivariate Cox regression analyses were employed to identify the prognostic circadian genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) were performed to study the biological functions of ARNTL2. The composition of 22 immune cells in the tumour samples was estimated with CIBERSORT algorithm. The correlations between ARNTL2 expression and tumour-infiltrating immune cells were evaluated by Spearman correlation coefficient. Results A total of 8 circadian genes were found to be differentially expressed between non-TNBC and TNBC, but only ARNTL2 has prognostic value. Multivariate Cox analysis identified that ARNTL2 was an independent prognosis factor for overall survival and relapse-free survival in TNBC patients. Functionally, ARNTL2 was mainly involved in immune response processes such as positive regulation of cytokine production, regulation of innate immune response, and cellular responses to molecules of bacterial origin. High expression of ARNTL2 was positively correlated with activated CD4 memory T cells, activated mast cells, and neutrophil infiltration and the expression of markers of neutrophils (ITGAM), dendritic cells (HLA-DRA, HLA-DPA1, ITGAM), Th1 (IL1B, STAT1), Th2 (IL13), Th17 (STAT3) and mast cells (TPSB2, TPSAB1). Conclusion ARNTL2 may be linked with the functional modulation of the tumour immune microenvironment and serve as a potential biomarker for predicting the prognosis of TNBC patients.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yan Li
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Jianchang Fu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Kewen Zhou
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Tinghuai Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
18
|
Sgro M, Kodila ZN, Brady RD, Reichelt AC, Mychaisuk R, Yamakawa GR. Synchronizing Our Clocks as We Age: The Influence of the Brain-Gut-Immune Axis on the Sleep-Wake Cycle Across the Lifespan. Sleep 2021; 45:6425072. [PMID: 34757429 DOI: 10.1093/sleep/zsab268] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Indexed: 11/12/2022] Open
Abstract
The microbes that colonize the small and large intestines, known as the gut microbiome, play an integral role in optimal brain development and function. The gut microbiome is a vital component of the bi-directional communication pathway between the brain, immune system, and gut, also known as the brain-gut-immune axis. To date there has been minimal investigation into the implications of improper development of the gut microbiome and the brain-gut-immune axis on the sleep-wake cycle, particularly during sensitive periods of physical and neurological development, such as childhood, adolescence, and senescence. Therefore, this review will explore the current literature surrounding the overlapping developmental periods of the gut microbiome, brain, and immune system from birth through to senescence, while highlighting how the brain-gut-immune axis affects maturation and organisation of the sleep-wake cycle. We also examine how dysfunction to either the microbiome or the sleep-wake cycle negatively affects the bidirectional relationship between the brain and gut, and subsequently the overall health and functionality of this complex system. Additionally, this review integrates therapeutic studies to demonstrate when dietary manipulations, such as supplementation with probiotics and prebiotics, can modulate the gut microbiome to enhance health of the brain-gut-immune axis and optimize our sleep-wake cycle.
Collapse
Affiliation(s)
- Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Zoe N Kodila
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Amy C Reichelt
- Department of Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Richelle Mychaisuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Chronobiotics KL001 and KS15 Extend Lifespan and Modify Circadian Rhythms of Drosophila melanogaster. Clocks Sleep 2021; 3:429-441. [PMID: 34449576 PMCID: PMC8395451 DOI: 10.3390/clockssleep3030030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 01/15/2023] Open
Abstract
Chronobiotics are a group of drugs, which are utilized to modify circadian rhythms targeting clock-associated molecular mechanisms. The circadian clock is known as a controller of numerous processes in connection with aging. Hypothesis: KL001 and KS15 targeting CRY, affect lifespan, locomotor activity and circadian rhythm of Drosophila melanogaster. We observed a slight (2%, p < 0.001) geroprotective effect on median lifespan (5 µM solution of KL001 in 0.1% DMSO) and a 14% increase in maximum lifespan in the same group. KS15 10 µM solution extended males’ median lifespan by 8% (p < 0.05). The statistically significant positive effects of KL001 and KS15 on lifespan were not observed in female flies. KL001 5 µM solution improved locomotor activity in young male imagoes (p < 0.05), elevated morning activity peak in aged imagoes and modified robustness of their circadian rhythms, leaving the period intact. KS15 10 µM solution decreased the locomotor activity in constant darkness and minimized the number of rhythmic flies. KL001 5 µM solution improved by 9% the mean starvation resistance in male flies (p < 0.01), while median resistance was elevated by 50% (p < 0.0001). This phenomenon may suggest the presence of the mechanism associated with improvement of fat body glucose depos’ utilization in starvation conditions which is activated by dCRY binding KL001.
Collapse
|
20
|
Ray I, Goswami S. Circadian rhythm genes in cancer: insight into their functions and regulation involving noncoding RNAs. Chronobiol Int 2021; 38:1231-1243. [PMID: 34024245 DOI: 10.1080/07420528.2021.1928157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 24-h circadian rhythm handles a wide variety of physiological needs. Clock genes, in coordination with other tissue-specific factors regulate various processes and often turns responsible for the pathological conditions when altered. Cancer is one such disease where the clock genes have been shown to contribute at multiple levels modulating key hallmarks of cancer. Most importantly, adding to this complication, noncoding RNAs (ncRNAs) have emerged as one of the major post-transcriptional regulators of gene expression and many recent studies have indicated about involvement of microRNAs or long noncoding RNAs in the process. In this review, we have described how do circadian pathway genes participated in oncogenesis and also updated the latest status of ncRNA involvement. We also try to address the existing gaps to have a more comprehensive understanding of the phenomenon in future.Abbreviations: HIFs: hypoxia-inducible factors; VEGF: Vascular endothelial growth factor; Mdm2: Mouse double minute 2 homolog; ATM: Ataxia telangiectasia mutated; Chk2: Checkpoint kinase 2; Bcl-Xl: B-cell lymphoma-extra-large; Bcl-2: B-cell lymphoma 2; DGCR8: DiGeorge syndrome chromosomal region 8; PPAR-γ: Peroxisome proliferator-activated receptor gamma.
Collapse
Affiliation(s)
- Indrani Ray
- National Institute of Biomedical Genomics, Kalyani, India
| | | |
Collapse
|
21
|
García-Niño WR, Zazueta C. New insights of Krüppel-like transcription factors in adipogenesis and the role of their regulatory neighbors. Life Sci 2020; 265:118763. [PMID: 33189819 DOI: 10.1016/j.lfs.2020.118763] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022]
Abstract
Obesity is a serious public health problem associated with predisposition to develop metabolic diseases. Over the past decade, several studies in vitro and in vivo have shown that the activity of Krüppel-like factors (KLFs) regulates adipogenesis, adipose tissue function and metabolism. Comprehension of both the origin and development of adipocytes and of adipose tissue could provide new insights into therapeutic strategies to contend against obesity and related metabolic diseases. This review focus on the transcriptional role that KLF family members play during adipocyte differentiation, describes their main interactions and the mechanisms involved in this fine-tuned developmental process. We also summarize new findings of the involvement of several effectors that modulate KLFs expression during adipogenesis, including growth factors, circadian clock proteins, interleukins, nuclear receptors, protein kinases and importantly, microRNAs. Thus, KLFs regulation by these factors and emerging molecules might constitute a potential therapeutic target for anti-obesity intervention.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico.
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico.
| |
Collapse
|
22
|
Sun HJ, Wu ZY, Nie XW, Bian JS. Role of Endothelial Dysfunction in Cardiovascular Diseases: The Link Between Inflammation and Hydrogen Sulfide. Front Pharmacol 2020; 10:1568. [PMID: 32038245 PMCID: PMC6985156 DOI: 10.3389/fphar.2019.01568] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells are important constituents of blood vessels that play critical roles in cardiovascular homeostasis by regulating blood fluidity and fibrinolysis, vascular tone, angiogenesis, monocyte/leukocyte adhesion, and platelet aggregation. The normal vascular endothelium is taken as a gatekeeper of cardiovascular health, whereas abnormality of vascular endothelium is a major contributor to a plethora of cardiovascular ailments, such as atherosclerosis, aging, hypertension, obesity, and diabetes. Endothelial dysfunction is characterized by imbalanced vasodilation and vasoconstriction, elevated reactive oxygen species (ROS), and proinflammatory factors, as well as deficiency of nitric oxide (NO) bioavailability. The occurrence of endothelial dysfunction disrupts the endothelial barrier permeability that is a part of inflammatory response in the development of cardiovascular diseases. As such, abrogation of endothelial cell activation/inflammation is of clinical relevance. Recently, hydrogen sulfide (H2S), an entry as a gasotransmitter, exerts diverse biological effects through acting on various targeted signaling pathways. Within the cardiovascular system, the formation of H2S is detected in smooth muscle cells, vascular endothelial cells, and cardiomyocytes. Disrupted H2S bioavailability is postulated to be a new indicator for endothelial cell inflammation and its associated endothelial dysfunction. In this review, we will summarize recent advances about the roles of H2S in endothelial cell homeostasis, especially under pathological conditions, and discuss its putative therapeutic applications in endothelial inflammation-associated cardiovascular disorders.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
23
|
Ullah M, Ng NN, Concepcion W, Thakor AS. Emerging role of stem cell-derived extracellular microRNAs in age-associated human diseases and in different therapies of longevity. Ageing Res Rev 2020; 57:100979. [PMID: 31704472 DOI: 10.1016/j.arr.2019.100979] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
Organismal aging involves the progressive decline in organ function and increased susceptibility to age-associated diseases. This has been associated with the aging of stem cell populations within the body that decreases the capacity of stem cells to self-renew, differentiate, and regenerate damaged tissues and organs. This review aims to explore how aging is associated with the dysregulation of stem cell-derived extracellular vesicles (SCEVs) and their corresponding miRNA cargo (SCEV-miRNAs), which are short non-coding RNAs involved in post-transcriptional regulation of target genes. Recent evidence has suggested that in aging stem cells, SCEV-miRNAs may play a vital role regulating various processes that contribute to aging: cellular senescence, stem cell exhaustion, telomere length, and circadian rhythm. Hence, further clarifying the age-dependent molecular mechanisms through which SCEV-miRNAs exert their downstream effects may inform a greater understanding of the biology of aging, elucidate their role in stem cell function, and identify important targets for future regenerative therapies. Additionally, current studies evaluating therapeutic role of SCEVs and SCEV-miRNAs in treating several age-associated diseases are also discussed.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California, 94304, USA.
| | - Nathan Norton Ng
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California, 94304, USA
| | - Waldo Concepcion
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California, 94304, USA
| |
Collapse
|
24
|
De Nobrega AK, Lyons LC. Aging and the clock: Perspective from flies to humans. Eur J Neurosci 2020; 51:454-481. [PMID: 30269400 PMCID: PMC6441388 DOI: 10.1111/ejn.14176] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
Endogenous circadian oscillators regulate molecular, cellular and physiological rhythms, synchronizing tissues and organ function to coordinate activity and metabolism with environmental cycles. The technological nature of modern society with round-the-clock work schedules and heavy reliance on personal electronics has precipitated a striking increase in the incidence of circadian and sleep disorders. Circadian dysfunction contributes to an increased risk for many diseases and appears to have adverse effects on aging and longevity in animal models. From invertebrate organisms to humans, the function and synchronization of the circadian system weakens with age aggravating the age-related disorders and pathologies. In this review, we highlight the impacts of circadian dysfunction on aging and longevity and the reciprocal effects of aging on circadian function with examples from Drosophila to humans underscoring the highly conserved nature of these interactions. Additionally, we review the potential for using reinforcement of the circadian system to promote healthy aging and mitigate age-related pathologies. Advancements in medicine and public health have significantly increased human life span in the past century. With the demographics of countries worldwide shifting to an older population, there is a critical need to understand the factors that shape healthy aging. Drosophila melanogaster, as a model for aging and circadian interactions, has the capacity to facilitate the rapid advancement of research in this area and provide mechanistic insights for targeted investigations in mammals.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Lisa C Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| |
Collapse
|
25
|
Fragala MS, Cadore EL, Dorgo S, Izquierdo M, Kraemer WJ, Peterson MD, Ryan ED. Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. J Strength Cond Res 2019; 33:2019-2052. [PMID: 31343601 DOI: 10.1519/jsc.0000000000003230] [Citation(s) in RCA: 624] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fragala, MS, Cadore, EL, Dorgo, S, Izquierdo, M, Kraemer, WJ, Peterson, MD, and Ryan, ED. Resistance training for older adults: position statement from the national strength and conditioning association. J Strength Cond Res 33(8): 2019-2052, 2019-Aging, even in the absence of chronic disease, is associated with a variety of biological changes that can contribute to decreases in skeletal muscle mass, strength, and function. Such losses decrease physiologic resilience and increase vulnerability to catastrophic events. As such, strategies for both prevention and treatment are necessary for the health and well-being of older adults. The purpose of this Position Statement is to provide an overview of the current and relevant literature and provide evidence-based recommendations for resistance training for older adults. As presented in this Position Statement, current research has demonstrated that countering muscle disuse through resistance training is a powerful intervention to combat the loss of muscle strength and muscle mass, physiological vulnerability, and their debilitating consequences on physical functioning, mobility, independence, chronic disease management, psychological well-being, quality of life, and healthy life expectancy. This Position Statement provides evidence to support recommendations for successful resistance training in older adults related to 4 parts: (a) program design variables, (b) physiological adaptations, (c) functional benefits, and (d) considerations for frailty, sarcopenia, and other chronic conditions. The goal of this Position Statement is to a) help foster a more unified and holistic approach to resistance training for older adults, b) promote the health and functional benefits of resistance training for older adults, and c) prevent or minimize fears and other barriers to implementation of resistance training programs for older adults.
Collapse
Affiliation(s)
| | - Eduardo L Cadore
- School of Physical Education, Physiotherapy and Dance, Exercise Research Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sandor Dorgo
- Department of Kinesiology, University of Texas at El Paso, El Paso, Texas
| | - Mikel Izquierdo
- Department of Health Sciences, Public University of Navarre, CIBER of Frailty and Healthy Aging (CIBERFES), Navarrabiomed, Pamplona, Navarre, Spain
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Mark D Peterson
- Department of Physical Medicine and Rehabilitation, University of Michigan-Medicine, Ann Arbor, Michigan
| | - Eric D Ryan
- Department of Exercise and Sport Science, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
26
|
Okada Y, Okada M. Quercetin, caffeic acid and resveratrol regulate circadian clock genes and aging-related genes in young and old human lung fibroblast cells. Mol Biol Rep 2019; 47:1021-1032. [PMID: 31773385 DOI: 10.1007/s11033-019-05194-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
The circadian timing system of mammals is synchronized in concert with a central clock, but is also influenced by additional stimuli, including nutrients. However, little research has been done on polyphenols other than resveratrol and there seem to be no studies on their influence on young and old cells. The purpose of this study was to analyse the potential effects of quercetin, caffeic acid, and resveratrol on young and old fibroblast cells in the expressions of different clock genes and aging-related genes, and further investigate the mechanism. The mRNA expression of different clock genes and aging-related genes was assessed by quantitative real-time PCR. The protein levels of clock genes (BMAL1, PER1 and SIRT1) and glucocorticoid receptor α (GRα) were assessed by ELISA. Quercetin and caffeic acid in old fibroblast cells showed higher clock gene expression than resveratrol, quercetin increased Sirt1 expression, and caffeic acid increased Sirt6 expression indicating the possibility of an anti-aging effect. Also, quercetin and caffeic acid showed higher clock-controlled gene (Sirt1 and NR1D1) expression than resveratrol in young fibroblast cells. It appears that caffeic acid acts on NRF2 expression, and in turn to the actions of GRα, GDF11, Sirt1, and Sirt6. Regarding the increased expression of Per1, the activation effect on NR1D1 was confirmed only for caffeic acid in young fibroblast cells. Our results have confirmed the interplay of the circadian clock genes and cellular aging.
Collapse
Affiliation(s)
- Yoshinori Okada
- Laboratory on Ageing & Health Management, Graduate School of Nursing & Health, Aichi Prefectural University, Tohgoku, Kamishidami, Moriyama, Nagoya, 463-8502, Japan.
| | - Mizue Okada
- Nutrition Section, Ageing and Nutrition Research, Yms Laboratory, Gifu, 503, Japan
| |
Collapse
|
27
|
Yanar K, Simsek B, Çakatay U. Integration of Melatonin Related Redox Homeostasis, Aging, and Circadian Rhythm. Rejuvenation Res 2019; 22:409-419. [DOI: 10.1089/rej.2018.2159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Karolin Yanar
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bahadir Simsek
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ufuk Çakatay
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
28
|
Yuan W, Liu L, Wei C, Li X, Sun D, Dai C, Li S, Peng S, Jiang L. Identification and meta-analysis of copy number variation-driven circadian clock genes for colorectal cancer. Oncol Lett 2019; 18:4816-4824. [PMID: 31611992 PMCID: PMC6781691 DOI: 10.3892/ol.2019.10830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Both copy number variation (CNV) and circadian clock genes play a critical role in the etiology and pathogenesis of colorectal cancer (CRC); however, a comprehensive analysis of CNV-driven circadian clock genes is urgently required. The present study aimed to investigate the systematic associations between somatic cell CNVs and circadian clock gene expression in patients with CRC. Using somatic CNV, legacy clinical information and gene expression data from The Cancer Genome Atlas, 295 genes that were significantly differentially expressed and with significantly different CNV were obtained, and the expression of the genes, among which 15 were circadian clock genes, was significantly associated with CNV. Further analysis revealed that aryl hydrocarbon receptor nuclear translocator-like 2 (ARNTL2) expression and CNV in these circadian clock genes were significantly associated with survival time in patients with CRC, and the expression of ARNTL2 was also significantly associated with the pathological stage of CRC. Gene set enrichment analysis found that ARNTL2 is enriched for gene sets associated with CRC pathogenesis such as the p53 signaling pathway. These results suggest that ARNTL2 may be a promising prognostic biomarker for patients with CRC, and that circadian clock genes play an important role in CRC through CNV.
Collapse
Affiliation(s)
- Wenliang Yuan
- School of Optical-Electric and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, P.R. China.,National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture, Shanghai 201306, P.R. China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, P.R. China.,College of Mathematics and Computer Science, Chizhou University, Chizhou, Anhui 247000, P.R. China
| | - Li Liu
- College of Mathematics and Computer Science, Chizhou University, Chizhou, Anhui 247000, P.R. China
| | - Cai Wei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, P.R. China.,National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture, Shanghai 201306, P.R. China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, P.R. China
| | - Xiaobo Li
- Institute of Biomedical Informatics, Lishui University, Lishui, Zhejiang 323000, P.R. China.,College of Engineering, Lishui University, Lishui, Zhejiang 323000, P.R. China
| | - Dan Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, P.R. China.,National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture, Shanghai 201306, P.R. China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, P.R. China
| | - Chaoxu Dai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, P.R. China.,National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture, Shanghai 201306, P.R. China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, P.R. China
| | - Sicong Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, P.R. China.,National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture, Shanghai 201306, P.R. China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, P.R. China
| | - Sihua Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, P.R. China.,National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture, Shanghai 201306, P.R. China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, P.R. China
| | - Linhua Jiang
- School of Optical-Electric and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| |
Collapse
|
29
|
Zhao J, Warman GR, Cheeseman JF. The functional changes of the circadian system organization in aging. Ageing Res Rev 2019; 52:64-71. [PMID: 31048031 DOI: 10.1016/j.arr.2019.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/14/2019] [Accepted: 04/24/2019] [Indexed: 01/12/2023]
Abstract
The circadian clock drives periodic oscillations at different levels of an organism from genes to behavior. This timing system is highly conserved across species from insects to mammals and human beings. The question of how the circadian clock is involved in the aging process continues to attract more attention. We aim to characterize the detrimental impact of aging on the circadian clock organization. We review studies on different components of the circadian clock at the central and periperal levels, and their changes in aged rodents and humans, and the fruit fly Drosophila. Intracellular signaling, cellular activity and intercellular coupling in the central pacemaker have been found to decline with advancing age. Evidence of degradation of the molecular clockwork reflected by clock gene expression in both central and peripheral oscillators due to aging is inadequate. The findings on age-associated molecular and functional changes of peripheral clocks are mixed. We conclude that aging can affect the circadian clock organization at various levels, and the impairment of the central network may be a fundamental mechanism of circadian disruption seen in aged species.
Collapse
|
30
|
Angelousi A, Kassi E, Ansari-Nasiri N, Randeva H, Kaltsas G, Chrousos G. Clock genes and cancer development in particular in endocrine tissues. Endocr Relat Cancer 2019; 26:R305-R317. [PMID: 30959483 DOI: 10.1530/erc-19-0094] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022]
Abstract
Circadian rhythms at a central and peripheral level are operated by transcriptional/translational feedback loops involving a set of genes called 'clock genes' that have been implicated in the development of several diseases, including malignancies. Dysregulation of the Clock system can influence cancer susceptibility by regulating DNA damage and repair mechanisms, as well as apoptosis. A number of oncogenic pathways can be dysregulated via clock genes' epigenetic alterations, including hypermethylation of clock genes' promoters or variants of clock genes. Clock gene disruption has been studied in breast, lung and prostate cancer, and haematological malignancies. However, it is still not entirely clear whether clock gene disruption is the cause or the consequence of tumourigenesis and data in endocrine neoplasms are scarce. Recent findings suggest that clock genes are implicated in benign and malignant adrenocortical neoplasias. They have been also associated with follicular and papillary thyroid carcinomas and parathyroid adenomas, as well as pituitary adenomas and craniopharyngiomas. Dysregulation of clock genes is also encountered in ovarian and testicular tumours and may also be related with their susceptibility to chemotherapeutic agents. The most common clock genes that are implicated in endocrine neoplasms are PER1, CRY1; in most cases their expression is downregulated in tumoural compared to normal tissues. Although there is still a lot to be done for the better understanding of the role of clock genes in endocrine tumourigenenesis, existing evidence could guide research and help identify novel therapeutic targets aiming mainly at the peripheral components of the clock gene system.
Collapse
Affiliation(s)
- Anna Angelousi
- Endocrine Unit, 1st Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Endocrine Unit, 1st Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Narjes Ansari-Nasiri
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Harpal Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Chrousos
- First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
31
|
Ou J, Li H, Qiu P, Li Q, Chang HC, Tang YC. CDK9 modulates circadian clock by attenuating REV-ERBα activity. Biochem Biophys Res Commun 2019; 513:967-973. [PMID: 31005255 DOI: 10.1016/j.bbrc.2019.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/04/2019] [Indexed: 01/17/2023]
Abstract
Circadian clock and cell cycle are vital cellular programs acting in a timely-regulated, cyclic manner. The two cellular oscillators are coupled in various ways to facilitate biological processes. Here we report CDK9, a kinase belongs to the CDK family in regulating cell cycle and RNA Pol II activity, can serve as a modulator for circadian clock. We identified CDK inhibitor LY2857785 potently blocked PER2:LUC expression in MEFs from a screen of 17 commonly-used CDK inhibitors. We further analyzed the possible targets of LY2857785 by siRNA approach, and confirmed CDK9 as the main effector. LY2857785 treatment, as well as Cdk9 knock-down, led to lowered expression of Bmal1 in accordance with elevated expression of Rev-Erbα. CDK9 associated with REV-ERBα thus attenuated REV-ERBα binding to the RORE for Bmal1 suppression. To conform the circadian-modulating activity of CDK9 in vivo, we knocked down CDK9 in mice at the anterior hypothalamus covering the central oscillator SCN, and found the respiratory exchange ratio, daily activity and circadian period were altered in the Cdk9-knockdown mice. Together, our finding designated CDK9 as a novel modulator in circadian clock. CDK9 may serve as a vital basis to understand circadian- and cell cycle-misregulated ailments such as cancer.
Collapse
Affiliation(s)
- Jiali Ou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huilin Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Peiyuan Qiu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing Li
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hung-Chun Chang
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yun-Chi Tang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
32
|
CLOCK gene polymorphisms and quality of aging in a cohort of nonagenarians - The MUGELLO Study. Sci Rep 2019; 9:1472. [PMID: 30728411 PMCID: PMC6365537 DOI: 10.1038/s41598-018-37992-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/23/2018] [Indexed: 02/01/2023] Open
Abstract
A total of 356 elderly subjects [257F; 88–106 years] were genotyped for three polymorphisms of the CLOCK gene by TaqMan real-time PCR approach, in order to find associations with quality of aging. Subjects homozygous for the minor allele of rs1801260 were less frequently overweight (p = 0.046), had higher fasting glucose levels (p = 0.037), better scores at the Clock Drawing Test (CDT) (p = 0.047) and worse scores at the Geriatric Depression Scale (p = 0.032). Subjects homozygous for the minor allele of rs11932595 showed higher fasting glucose levels (p = 0.044) and better scores at CDT (p = 0.030). Conversely, subjects homozygous for the minor allele of rs4580704 showed higher triglyceride (p = 0.012), and LDL-cholesterol levels (p = 0.44), and a greater adherence to the Mediterranean diet (MD) (p = 0.044). In addition, AAC, AAG, GGC and AGC (rs1801260–rs11932595–rs4580704) haplotypes were analyzed: AAG was associated with higher risk of overweight (p = 0.008), hypertriglyceridemia (p = 0.040) and hypercholesterolemia (p = 0.036); GGC with lower risk of hyperglycemia (p = 0.022), better sleep pattern (p = 0.001) and with better score at mini-mental state examination (p = 0.010); AGC with lower risk of depression (p = 0.026) and AAC with lower adherence to the MD (p = 0.028). Therefore, CLOCK gene polymorphisms let us hypothesize an involvement in the quality of aging in a cohort of nonagenarians.
Collapse
|
33
|
Qiu P, Jiang J, Liu Z, Cai Y, Huang T, Wang Y, Liu Q, Nie Y, Liu F, Cheng J, Li Q, Tang YC, Poo MM, Sun Q, Chang HC. BMAL1 knockout macaque monkeys display reduced sleep and psychiatric disorders. Natl Sci Rev 2019; 6:87-100. [PMID: 34691834 PMCID: PMC8291534 DOI: 10.1093/nsr/nwz002] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/30/2018] [Accepted: 01/05/2019] [Indexed: 12/24/2022] Open
Abstract
Circadian disruption is a risk factor for metabolic, psychiatric and age-related disorders, and non-human primate models could help to develop therapeutic treatments. Here, we report the generation of BMAL1 knockout cynomolgus monkeys for circadian-related disorders by CRISPR/Cas9 editing of monkey embryos. These monkeys showed higher nocturnal locomotion and reduced sleep, which was further exacerbated by a constant light regimen. Physiological circadian disruption was reflected by the markedly dampened and arrhythmic blood hormonal levels. Furthermore, BMAL1-deficient monkeys exhibited anxiety and depression, consistent with their stably elevated blood cortisol, and defective sensory processing in auditory oddball tests found in schizophrenia patients. Ablation of BMAL1 up-regulated transcriptional programs toward inflammatory and stress responses, with transcription networks associated with human sleep deprivation, major depressive disorders, and aging. Thus, BMAL1 knockout monkeys are potentially useful for studying the physiological consequences of circadian disturbance, and for developing therapies for circadian and psychiatric disorders.
Collapse
Affiliation(s)
- Peiyuan Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Research Center for Brain Science and Brain-inspired Technology, Shanghai 200031, China
| | - Jian Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Dynamic Brain Signal Analysis Facility, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Research Center for Brain Science and Brain-inspired Technology, Shanghai 200031, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Research Center for Brain Science and Brain-inspired Technology, Shanghai 200031, China
| | - Yijun Cai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Research Center for Brain Science and Brain-inspired Technology, Shanghai 200031, China
| | - Tao Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Research Center for Brain Science and Brain-inspired Technology, Shanghai 200031, China
| | - Qiming Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Research Center for Brain Science and Brain-inspired Technology, Shanghai 200031, China
| | - Yanhong Nie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Research Center for Brain Science and Brain-inspired Technology, Shanghai 200031, China
| | - Fang Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Research Center for Brain Science and Brain-inspired Technology, Shanghai 200031, China
| | - Jiumu Cheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Research Center for Brain Science and Brain-inspired Technology, Shanghai 200031, China
| | - Qing Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Research Center for Brain Science and Brain-inspired Technology, Shanghai 200031, China
| | - Yun-Chi Tang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Mu-ming Poo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Research Center for Brain Science and Brain-inspired Technology, Shanghai 200031, China
| | - Qiang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Research Center for Brain Science and Brain-inspired Technology, Shanghai 200031, China
| | - Hung-Chun Chang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Dynamic Brain Signal Analysis Facility, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Research Center for Brain Science and Brain-inspired Technology, Shanghai 200031, China
| |
Collapse
|
34
|
Therapeutic effects of curcumin on age-induced alterations in daily rhythms of clock genes and Sirt1 expression in the SCN of male Wistar rats. Biogerontology 2019; 20:405-419. [DOI: 10.1007/s10522-018-09794-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
|
35
|
Morales-Santana S, Morell S, Leon J, Carazo-Gallego A, Jimenez-Lopez JC, Morell M. An Overview of the Polymorphisms of Circadian Genes Associated With Endocrine Cancer. Front Endocrinol (Lausanne) 2019; 10:104. [PMID: 30873119 PMCID: PMC6401647 DOI: 10.3389/fendo.2019.00104] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/04/2019] [Indexed: 12/17/2022] Open
Abstract
A major consequence of the world industrialized lifestyle is the increasing period of unnatural light in environments during the day and artificial lighting at night. This major change disrupts endogenous homeostasis with external circadian cues, which has been associated to higher risk of diseases affecting human health, mainly cancer among others. Circadian disruption promotes tumor development and accelerate its fast progression. The dysregulation mechanisms of circadian genes is greatly affected by the genetic variability of these genes. To date, several core circadian genes, also called circadian clock genes, have been identified, comprising the following: ARNTL, CLOCK, CRY1, CRY2, CSNK1E, NPAS2, NR1D1, NR1D2, PER1, PER2, PER3, RORA, and TIMELESS. The polymorphic variants of these circadian genes might contribute to an individual's risk to cancer. In this short review, we focused on clock circadian clock-related genes, major contributors of the susceptibility to endocrine-dependent cancers through affecting circadian clock, most likely affecting hormonal regulation. We examined polymorphisms affecting breast, prostate and ovarian carcinogenesis, in addition to pancreatic and thyroid cancer. Further study of the genetic composition in circadian clock-controlled tumors will be of great importance by establishing the foundation to discover novel genetic biomarkers for cancer prevention, prognosis and target therapies.
Collapse
Affiliation(s)
- Sonia Morales-Santana
- Proteomic Research Service, San Cecilio University Hospital, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
- *Correspondence: Sonia Morales-Santana
| | - Santiago Morell
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Santiago Morell
| | - Josefa Leon
- Clinical Management Unit of Digestive Disease, San Cecilio University Hospital, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Angel Carazo-Gallego
- Genomic Research Service, San Cecilio University Hospital, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Jose C. Jimenez-Lopez
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - María Morell
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| |
Collapse
|
36
|
Yamada Y, Prosser RA. Copper in the suprachiasmatic circadian clock: A possible link between multiple circadian oscillators. Eur J Neurosci 2018; 51:47-70. [PMID: 30269387 DOI: 10.1111/ejn.14181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is very robust, able to coordinate our daily physiological and behavioral rhythms with exquisite accuracy. Simultaneously, the SCN clock is highly sensitive to environmental timing cues such as the solar cycle. This duality of resiliency and sensitivity may be sustained in part by a complex intertwining of three cellular oscillators: transcription/translation, metabolic/redox, and membrane excitability. We suggest here that one of the links connecting these oscillators may be forged from copper (Cu). Cellular Cu levels are highly regulated in the brain and peripherally, and Cu affects cellular metabolism, redox state, cell signaling, and transcription. We have shown that both Cu chelation and application induce nighttime phase shifts of the SCN clock in vitro and that these treatments affect glutamate, N-methyl-D-aspartate receptor, and associated signaling processes differently. More recently we found that Cu induces mitogen-activated protein kinase-dependent phase shifts, while the mechanisms by which Cu removal induces phase shifts remain unclear. Lastly, we have found that two Cu transporters are expressed in the SCN, and that one of these transporters (ATP7A) exhibits a day/night rhythm. Our results suggest that Cu homeostasis is tightly regulated in the SCN, and that changes in Cu levels may serve as a time cue for the circadian clock. We discuss these findings in light of the existing literature and current models of multiple coupled circadian oscillators in the SCN.
Collapse
Affiliation(s)
- Yukihiro Yamada
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| | - Rebecca A Prosser
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
37
|
Leysen H, van Gastel J, Hendrickx JO, Santos-Otte P, Martin B, Maudsley S. G Protein-Coupled Receptor Systems as Crucial Regulators of DNA Damage Response Processes. Int J Mol Sci 2018; 19:E2919. [PMID: 30261591 PMCID: PMC6213947 DOI: 10.3390/ijms19102919] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) and their associated proteins represent one of the most diverse cellular signaling systems involved in both physiological and pathophysiological processes. Aging represents perhaps the most complex biological process in humans and involves a progressive degradation of systemic integrity and physiological resilience. This is in part mediated by age-related aberrations in energy metabolism, mitochondrial function, protein folding and sorting, inflammatory activity and genomic stability. Indeed, an increased rate of unrepaired DNA damage is considered to be one of the 'hallmarks' of aging. Over the last two decades our appreciation of the complexity of GPCR signaling systems has expanded their functional signaling repertoire. One such example of this is the incipient role of GPCRs and GPCR-interacting proteins in DNA damage and repair mechanisms. Emerging data now suggest that GPCRs could function as stress sensors for intracellular damage, e.g., oxidative stress. Given this role of GPCRs in the DNA damage response process, coupled to the effective history of drug targeting of these receptors, this suggests that one important future activity of GPCR therapeutics is the rational control of DNA damage repair systems.
Collapse
Affiliation(s)
- Hanne Leysen
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Jaana van Gastel
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| | - Jhana O Hendrickx
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| | - Bronwen Martin
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Stuart Maudsley
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| |
Collapse
|
38
|
Bellastella G, Scappaticcio L, Esposito K, Giugliano D, Maiorino MI. Metabolic syndrome and cancer: "The common soil hypothesis". Diabetes Res Clin Pract 2018; 143:389-397. [PMID: 29807099 DOI: 10.1016/j.diabres.2018.05.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/14/2018] [Indexed: 12/20/2022]
Abstract
Metabolic syndrome (MetS) and cancer share many modifiable risk factors including age, genetic factors, obesity, physical inactivity, unhealthy diet, alcohol, smoking, endocrine disruptors exposure, circadian clock disturbances, and air pollution. MetS is closely linked to cancer, as it increases cancer risk and cancer-related mortality; moreover, cancer survivors have an increased risk of MetS. Elucidating the mechanisms linking MetS to cancer is important to prevent or delay these two conditions. Possible mechanisms explaining the relationship between MetS and cancer include hyperinsulinemia and alterations of insulin-like growth factor system, chronic subclinical inflammation, abnormalities in sex hormones metabolism and adipokines, hyperglicemia, alterations in both gene expression and hormonal profile by endocrine disruptors and air pollution, desynchronization of circadian clock. The common soil hypothesis claims that MetS may be considered a surrogate marker for dietary risk factors of cancer, and a warning sign for susceptible individuals exposed to an unhealthy diet. The common soil hypothesis and the clepsydra of foods represent a theoretical substrate to preventive intervention strategies against the pandemics of MetS and cancer: adherence to healthy dietary patterns is associated with a reduced risk of MetS, and improvement of the quality of diet is consistently associated with a reduction in cancer-related mortality.
Collapse
Affiliation(s)
- Giuseppe Bellastella
- Unit of Endocrinology and Metabolic Diseases, Department of Medical, Surgical, Neurological, Metabolic Sciences and Aging, University of Campania "L. Vanvitelli", Piazza L. Miraglia n° 2, 80138 Naples, Italy.
| | - Lorenzo Scappaticcio
- Unit of Endocrinology and Metabolic Diseases, Department of Medical, Surgical, Neurological, Metabolic Sciences and Aging, University of Campania "L. Vanvitelli", Piazza L. Miraglia n° 2, 80138 Naples, Italy.
| | - Katherine Esposito
- Diabetes Unit, Department of Medical, Surgical, Neurological, Metabolic Sciences and Aging, University of Campania "L. Vanvitelli", Piazza L. Miraglia n° 2, 80138 Naples, Italy; Associazione Salute con Stile, Piazza L. Miraglia n° 2, 80138 Naples, Italy.
| | - Dario Giugliano
- Unit of Endocrinology and Metabolic Diseases, Department of Medical, Surgical, Neurological, Metabolic Sciences and Aging, University of Campania "L. Vanvitelli", Piazza L. Miraglia n° 2, 80138 Naples, Italy; Associazione Salute con Stile, Piazza L. Miraglia n° 2, 80138 Naples, Italy.
| | - Maria Ida Maiorino
- Unit of Endocrinology and Metabolic Diseases, Department of Medical, Surgical, Neurological, Metabolic Sciences and Aging, University of Campania "L. Vanvitelli", Piazza L. Miraglia n° 2, 80138 Naples, Italy.
| |
Collapse
|
39
|
de Tommaso M, Delussi M. Circadian rhythms of migraine attacks in episodic and chronic patients: a cross sectional study in a headache center population. BMC Neurol 2018; 18:94. [PMID: 29966532 PMCID: PMC6027564 DOI: 10.1186/s12883-018-1098-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/26/2018] [Indexed: 02/02/2023] Open
Abstract
Background Migraine is considered a disease with diurnal and 24 h pattern, though the existence of a prevalent circadian rhythm associated to migraine frequency and severity is still not clear. This observational cross-sectional study aimed to: 1. Assess the circadian rhythm of migraine attacks onset in a large patients’ population selected in a headache center and including episodic and chronic migraine 2. Analyze the principal characteristic of the different onset time groups 3. Verify if migraine features, particularly those associated to chronic and disabling migraine, could be discriminant factors for time of onset group. Methods We selected 786 consecutive migraine outpatients, who correctly completed the headache diaries for 3 consecutive months and who fulfilled the diagnosis of migraine without aura-MO, migraine with typical aura alone or associated to migraine without aura - MO/MA and chronic migraine – CM. For the time of headache onset, we considered four time slots, from 6 to 12 am (morning), from 1 to 6 pm (afternoon), from 7 to 11 pm (evening), from 12 pm to 5 am (night), and an additional category named “any time”. Each time slot included the 60 min preceding the next one (e.g. an onset at 12.30 am was included in 6–12 am time slot). We evaluated in all patients the pericranial tenderness, anxiety and depression tracts, headache-related disability, sleep features, quality of life, allodynia and fatigue. Results We scored a total of 16,578 attacks, distributed in the entire day. The most of patients, including CM, satisfied the criteria for the “any time” onset. Night onset was significantly less represented in the MA/MO group. Patients with prevalent night onset were significantly older, with longer migraine history and shorter sleep duration. Age and illness duration were the variables discriminating the different onset time groups. Conclusions The most of migraine patients do not report a specific circadian profile of attacks occurrence. Frequent migraine, severe disability, psychopathological tracts as well as central sensitization signs, do not match with a specific circadian rhythm of attacks onset. Night onset migraine seems to be an age related feature, emerging in the course of the disease. Electronic supplementary material The online version of this article (10.1186/s12883-018-1098-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina de Tommaso
- Applied Neurophysiology and Pain Unit, Basic Medical Science, Neuroscience and Sensory System-SMBNOS-Department, Policlinico General Hospital, Bari Aldo Moro University, Giovanni XXIII Building, Via Amendola 207 A, 70124, Bari, Italy.
| | - Marianna Delussi
- Applied Neurophysiology and Pain Unit, Basic Medical Science, Neuroscience and Sensory System-SMBNOS-Department, Policlinico General Hospital, Bari Aldo Moro University, Giovanni XXIII Building, Via Amendola 207 A, 70124, Bari, Italy
| |
Collapse
|
40
|
Angelousi A, Kassi E, Nasiri-Ansari N, Weickert MO, Randeva H, Kaltsas G. Clock genes alterations and endocrine disorders. Eur J Clin Invest 2018; 48:e12927. [PMID: 29577261 DOI: 10.1111/eci.12927] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Various endocrine signals oscillate over the 24-hour period and so does the responsiveness of target tissues. These daily oscillations do not occur solely in response to external stimuli but are also under the control of an intrinsic circadian clock. DESIGN We searched the PubMed database to identify studies describing the associations of clock genes with endocrine diseases. RESULTS Various human single nucleotide polymorphisms of brain and muscle ARNT-like 1 (BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK) genes exhibited significant associations with type 2 diabetes mellitus. ARNTL2 gene expression and upregulation of BMAL1 and PER1 were associated with the development of type 1 diabetes mellitus. Thyroid hormones modulated PER2 expression in a tissue-specific way, whereas BMAL1 regulated the expression of type 2 iodothyronine deiodinase in specific tissues. Adrenal gland and adrenal adenoma expressed PER1, PER2, CRY2, CLOCK and BMAL1 genes. Adrenal sensitivity to adrenocorticotrophin was also affected by circadian oscillations. A significant correlation between the expression of propio-melanocorticotrophin and PER 2, as well as between prolactin and CLOCK, was found in corticotroph and lactosomatotroph cells, respectively, in the pituitary. Clock genes and especially BMAL1 showed an important role in fertility, whereas oestradiol and androgens exhibited tissue-specific effects on clock gene expression. Metabolic disorders were also associated with circadian dysregulation according to studies in shift workers. CONCLUSIONS Clock genes are associated with various endocrine disorders through complex mechanisms. However, data on humans are scarce. Moreover, clock genes exhibit a tissue-specific expression representing an additional level of regulation. Their specific role in endocrine disorders and their potential implications remain to be further clarified.
Collapse
Affiliation(s)
- Anna Angelousi
- Department of Pathophysiology, Endocrine Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Department of Biochemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Narjes Nasiri-Ansari
- Department of Biochemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Martin O Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Division of Translational and Experimental Medicine, Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Applied Biological & Exercise Sciences, Coventry University, Coventry, UK
| | - Harpal Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Division of Translational and Experimental Medicine, Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Applied Biological & Exercise Sciences, Coventry University, Coventry, UK
| | - Gregory Kaltsas
- 1st Department of Propaedeutic Internal Medicine, Medical School, Laikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
41
|
Gulia KK, Kumar VM. Sleep disorders in the elderly: a growing challenge. Psychogeriatrics 2018; 18:155-165. [PMID: 29878472 DOI: 10.1111/psyg.12319] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/27/2017] [Accepted: 01/15/2018] [Indexed: 12/24/2022]
Abstract
In contrast to newborns, who spend 16-20 h in sleep each day, adults need only about sleep daily. However, many elderly may struggle to obtain those 8 h in one block. In addition to changes in sleep duration, sleep patterns change as age progresses. Like the physical changes that occur during old age, an alteration in sleep pattern is also a part of the normal ageing process. As people age, they tend to have a harder time falling asleep and more trouble staying asleep. Older people spend more time in the lighter stages of sleep than in deep sleep. As the circadian mechanism in older people becomes less efficient, their sleep schedule is shifted forward. Even when they manage to obtain 7 or 8 h sleep, they wake up early, as they have gone to sleep quite early. The prevalence of sleep disorders is higher among older adults. Loud snoring, which is more common in the elderly, can be a symptom of obstructive sleep apnoea, which puts a person at risk for cardiovascular diseases, headaches, memory loss, and depression. Restless legs syndrome and periodic limb movement disorder that disrupt sleep are more prevalent in older persons. Other common medical problems of old age such as hypertension diabetes mellitus, renal failure, respiratory diseases such as asthma, immune disorders, gastroesophageal reflux disease, physical disability, dementia, pain, depression, and anxiety are all associated with sleep disturbances.
Collapse
Affiliation(s)
- Kamalesh K Gulia
- Division of Sleep Research, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Velayudhan Mohan Kumar
- Division of Sleep Research, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|