1
|
Zhao S, Wu D, Lu Y, Zhu L, Wang S, Li Z, Peng X, Li H, Xu X, Su W. Single-cell RNA sequencing indicates AP-1 as a potential therapeutic target for autoimmune uveitis. Biochem Pharmacol 2025; 237:116945. [PMID: 40228638 DOI: 10.1016/j.bcp.2025.116945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/06/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Autoimmune uveitis (AU) is a sight-threatening eye disease, marked by a complex pathogenesis and limited treatment options. Herein, we conducted single-cell RNA sequencing (scRNA-seq) on the spleen and cervical draining lymph nodes (CDLNs) of both normal and experimental autoimmune uveitis (EAU) mice and found common alterations in celluar composition and transcriptional regulation occurred throughout the EAU process. Moreover, we identified activator protein-1 (AP-1) as a pivotal disease-related molecule in the pathogenesis of EAU. Inhibiting AP-1 alleviated symptoms of EAU and reduced the retina infiltration of T helper 17 cells (Th17) and Th1 cells. Additionally, following treatment with the AP-1 inhibitor, both the spleen and CDLNs showed decreased Th17 and Th1 cell proportions. Meanwhile, in vitro studies revealed that treatment with AP-1 inhibitor reduced the level of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-23 (IL-23), two pivotal molecules implicated in the Th17 cell pathogenicity, during EAU. The adoptive transfer experiment also showed that inhibiting AP-1 in CD4+ T cells suppressed their ability to elicit EAU. Altogether, our study demonstrates that AP-1 might involved in EAU pathogenesis by supporting Th17 cell pathogenicity via the GM-CSF/IL-23 feedback loop. Thus, AP-1 inhibition might be a novel treatment strategy for uveitis.
Collapse
Affiliation(s)
- Sichen Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Dongting Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Yao Lu
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lei Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | | | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Xuening Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - He Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Xiaofang Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
2
|
Kong S, Jia X, Liang X, Chen Y, Liang J, Zhang Y, Wu N, Su S, Chen T, He X, Yin J, Han S, Liu W, Fan Y, Xu J, Peng B. Febrile temperature-regulated TRPV1 in CD4 + T cells mediates neuroinflammation in complex febrile seizures. J Neuroinflammation 2025; 22:103. [PMID: 40197540 PMCID: PMC11977886 DOI: 10.1186/s12974-025-03421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Febrile seizures (FS) are the most prevalent convulsive disorder in children characterized by a high recurrence rate. However, the interaction between adaptive and innate immunity in the recurrence of FS remains poorly understood, and the molecular pathways involved are unclear. The objective of this study is to elucidate the role of Th17 cells in seizure susceptibility following complex febrile seizures (CFS), and to explore the regulatory mechanisms underlying Th17 cell differentiation and function under hyperthermic conditions through transient receptor potential vanilloid 1 (TRPV1). METHODS RNA sequencing was employed to validate the seizure susceptibility following CFS and to explore the potential mechanisms by which high temperature contributes to Th17 cell differentiation. Neuronal excitability and damage were examined using Multi-electrode array (MEA) analysis and Nissl staining. Flow cytometry, chromatin immunoprecipitation (ChIP) analysis, and immunofluorescence (IF) were applied to examine how TRPV1 facilitates Th17 cell differentiation. RESULTS Our study demonstrates that proinflammatory Th17 cells exhibit enhanced differentiation in a CFS mouse model and exacerbate blood-brain barrier (BBB) disruption. After infiltrating the central nervous system (CNS), Th17 cells promote neuroinflammation by activating microglia via IL-17A. Mechanistically, TRPV1 is critical for Th17 cell differentiation and function. Activated by febrile temperature both in vivo and in vitro, TRPV1 facilitates calcium ion influx, leading to the nuclear localization of nuclear factor of activated T cell 2 and 4 (NFAT2/4) and the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Knockdown of TRPV1 attenuates Th17 cell differentiation and CNS infiltration, thereby protecting the BBB and reducing seizure susceptibility following CFS. CONCLUSION These results highlight the critical interplay between adaptive and innate immunity in CFS. The TRPV1/NFATs/STAT3 signaling pathway regulates Th17 cell differentiation and function under febrile conditions, revealing a promising therapeutic target for intervention.
Collapse
Affiliation(s)
- Shuo Kong
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xianglei Jia
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xin Liang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yu Chen
- Department of Genetics, Shandong Second Medical University, Weifang, 261053, China
| | - Jingyi Liang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yan Zhang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Ningyang Wu
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Song Su
- Epilepsy Center, Jinan Children's Hospital, 23976 Jingshi Road, Jinan, 250022, Shandong, China
| | - Taoxiang Chen
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xiaohua He
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jun Yin
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Song Han
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Wanhong Liu
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yuanteng Fan
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jian Xu
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China.
- Clinical Laboratory, Weifang Maternal and Child Health Hospital, 407 Qingnian Road, Weifang, 261011, Shandong, China.
| | - Biwen Peng
- Department of Physiology, Wuhan University School of Basic Medical Sciences, 185 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
3
|
Wu Y, Ning K, Huang Z, Chen B, Chen J, Wen Y, Bu J, Hong H, Chen Q, Zhang Z, Jia R, Su W. NETs-CD44-IL-17A Feedback Loop Drives Th17-Mediated Inflammation in Behçet's Uveitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411524. [PMID: 40013981 PMCID: PMC12021058 DOI: 10.1002/advs.202411524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Behçet's uveitis (BU) is a severe ocular manifestation of Behçet's disease, typically accompanied by abnormal neutrophil infiltration and hyperactivation. However, the underlying causes of excessive neutrophil extracellular traps (NETs) production and mechanisms by which NETs contribute to the pathogenesis of BU remain incompletely understood. Neutrophils from BU patients exhibit a higher propensity for NETs release compared to healthy controls. In the experimental autoimmune uveitis (EAU), neutrophils are observed to exert pro-inflammatory effects through NETs. Clearing NETs can inhibit T helper 17 (Th17) cell differentiation and significantly alleviate EAU symptoms. In vivo and in vitro experiments demonstrate neutralizing IL-17A markedly reducing neutrophil infiltration and NETs formation in EAU. Single-cell RNA sequencing confirms that CD44 plays a key role in mediating interactions between NETs and Th17 cells. Antagonizing CD44 inhibits the proportion of Th17 cells and NETs formation. Multiplex immunofluorescence and cell communication analyses further demonstrate interactions and colocalization between NETs and CD44highCD4+T cells in EAU. NETs induce Th17 differentiation via upregulating CD44, and in turn, Th17 cells secrete IL-17A to recruit neutrophils and promote NETs formation. Interrupting NETs-CD44-IL-17A feedback loop may be a potential therapeutic target for BU.
Collapse
Affiliation(s)
- Yi Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangdong Provincial Clinical Research Center for Ocular DiseasesGuangzhou510060China
| | - Kang Ning
- Department of Head and Neck SurgerySun Yat‐sen University Cancer CenterGuangzhou510050China
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510050China
| | - Zhaohao Huang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangdong Provincial Clinical Research Center for Ocular DiseasesGuangzhou510060China
| | - Binyao Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangdong Provincial Clinical Research Center for Ocular DiseasesGuangzhou510060China
| | - Junjie Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangdong Provincial Clinical Research Center for Ocular DiseasesGuangzhou510060China
| | | | - Jian Bu
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Han Hong
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Qiaorong Chen
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Zhuoqi Zhang
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Renbing Jia
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Wenru Su
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangdong Provincial Clinical Research Center for Ocular DiseasesGuangzhou510060China
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| |
Collapse
|
4
|
Shome A, Rupenthal ID, Niederer RL, Mugisho OO. The NLRP3 inflammasome pathway contributes to chronic inflammation in experimental autoimmune uveitis. Animal Model Exp Med 2025. [PMID: 40156826 DOI: 10.1002/ame2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/19/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Noninfectious uveitis, a chronic ocular inflammatory disease, is characterized by the activation of immune cells in the eye, with most studies focusing on the role of the adaptive immune system in the disease. However, limited data exist on the potential contribution of the innate immune system, specifically the nucleotide-binding oligomerization domain and leucine-rich repeat receptor-3 (NLRP3) inflammasome pathway. This pathway has previously been identified as a driver of inflammation in several low-grade, progressive inflammatory eye diseases such as diabetic retinopathy. The aim of this study was to determine whether the NLRP3 inflammasome pathway plays a role in the pathogenesis and chronicity of experimental autoimmune uveitis (EAU). METHODS EAU was induced in C57BL/6J mice via intraperitoneal pertussis toxin and subcutaneous interphotoreceptor retinoid-binding protein injections. After 12 weeks, eyes were enucleated, and whole eye sections were assessed for inflammasome, macrophage, and microglial markers in the retina, ciliary body, and cornea using immunohistochemistry. RESULTS Our study confirmed higher NLRP3 inflammasome activation (increased expression of NLRP3 and cleaved caspase 1 labeling) in EAU mouse retinas compared to controls. This correlated with increased astrogliosis and microglial activation throughout the eye. Migratory innate and adaptive peripheral immune cells (macrophages and leukocytes) were also found within the retina and ciliary body of EAU mice. Connexin43 proteins, which form hexameric hemichannels that can release adenosine triphosphate (ATP), an upstream inflammasome priming signal, were also found upregulated in the retina and cornea of EAU mice. CONCLUSION Overall, our findings support the idea that in the EAU model there is active inflammation, even 12 weeks post induction, and that it can be correlated to inflammasome activation. This contributes to the pathogenesis and chronicity of noninfectious uveitis, and our results emphasize that targeting the inflammasome pathway could be efficacious for noninfectious uveitis treatment.
Collapse
Affiliation(s)
- Avik Shome
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Rachael L Niederer
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
- Department of Ophthalmology, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
McMahon S, Spector T, Ramana KV. Significance of Macrophage-Mediated Inflammatory Response in Ocular Inflammatory Complications. FRONT BIOSCI-LANDMRK 2025; 30:26698. [PMID: 40152374 DOI: 10.31083/fbl26698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 03/29/2025]
Abstract
Immune cells such as macrophages play a significant role in ocular inflammation by activating or inhibiting several cellular pathways. Systemic infections and autoimmune diseases could activate macrophages by releasing various pro-inflammatory cytokines, chemokines, and growth factors, which reach the eyes through the blood-retina barrier and cause immune and inflammatory responses. In addition, environmental pollutants, allergens, and eye injuries could also activate macrophages and cause an inflammatory response. Further, the inflammatory response generated by the macrophages could recruit additional immune cells and enhance the inflammatory response. The inflammatory response leads to ocular tissue damage and dysfunction and affects vision. Macrophages are generally implicated in the clearance of pathogens and debris, generate reactive oxygen species, and initiate immune response. However, uncontrolled immune and inflammatory responses could damage the ocular tissues, leading to various ocular inflammatory complications such as uveitis, scleritis, diabetic retinopathy, and retinitis. Recent studies describe the role of individual cytokines in the mediation of specific ocular inflammatory diseases. In this article, we discussed the potential impact of macrophages and their mediated inflammatory response on the development of various ocular inflammatory diseases and possible treatment strategies.
Collapse
Affiliation(s)
- Sara McMahon
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84045, USA
| | - Tori Spector
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84045, USA
| | - Kota V Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84045, USA
| |
Collapse
|
6
|
Zhang M, Sun J, Zhao H, Liu Y, Tang Z, Wen Y, Ma Q, Zhang L, Zhang Y. Alginate oligosaccharides relieve estrogen-deprived osteosarcopenia by affecting intestinal Th17 differentiation and systemic inflammation through the manipulation of bile acid metabolism. Int J Biol Macromol 2025; 295:139581. [PMID: 39788237 DOI: 10.1016/j.ijbiomac.2025.139581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Alginate oligosaccharides (AOS) have gained attention for their capacity to regulate human health as prebiotics. Osteosarcopenia is a progressive disease of the musculoskeletal system and result in heavy burden of patients. Studies suggest that gut microbiota is involved in the pathogenesis of osteosarcopenia, whether AOS can improve the symptoms of osteosarcopenia by modulating gut microbiota remains to be elucidated. In this study, we proved that 200 mg/kg body weight AOS (MW = 4.9 kDa, G/M = 1.88) treatment significantly increased bone mass, boosted muscle function, and promoted gut barrier integrity in ovariectomized (OVX) mice. After AOS treatment, a marked reduction in the proportion of intestinal Th17 subsets and in peripheral levels of relevant inflammatory cytokines was observed compared to the OVX group. 16S rRNA sequencing indicated that AOS treatment could restore the imbalance of gut microbiota caused by estrogen deficiency. Additionally, the impact of AOS on bile acid changes was revealed according to metabolomics. In particular, the Th17 differentiation inhibitor, such as isoLCA, were significantly upregulated after AOS treatment. In conclusion, AOS can alleviate the symptoms of osteoporosis by modulating the relative abundance of gut microbiota and bile acid metabolism, thereby reducing the proportion of intestinal Th17 cells and peripheral Inflammation.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Jin Sun
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Heping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Yingxiang Liu
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zhen Tang
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yanhua Wen
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Qiong Ma
- Orthopedic Oncology Institute, Department of Orthopedic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Lijuan Zhang
- American Institute of Translational Medicine and Therapeutics, St. Charles 63301, MO, USA
| | - Yiran Zhang
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China.
| |
Collapse
|
7
|
Fan X, Xu M, Wang Z, Sun X, Fan Y, Chen J, Hao J, Wang R, Jia W. Arctiin suppress Th17 cells response and ameliorates experimental autoimmune uveitis through JAK/STAT signaling. Cell Immunol 2025; 409-410:104927. [PMID: 39862562 DOI: 10.1016/j.cellimm.2025.104927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/28/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Conventional treatments for autoimmune uveitis, such as corticosteroids and systemic immunosuppressants, often result in adverse side effects, prompting the need for therapies targeting specific molecular pathways. This study investigates the effects of Arctiin, known for its diverse biological properties, on experimental autoimmune uveitis (EAU) through its action on Th17 cells and the JAK/STAT signaling pathway. Our findings reveal that Arctiin significantly alleviates EAU by reducing clinical scores, inflammatory cell infiltration, and levels of inflammatory cytokines like IL-17 and TNF-α in the eye. Arctiin achieves this by activating adiponectin receptor 1 (AdipoR1), which modulates the JAK/STAT pathway, thereby inhibiting Th17 cell differentiation and cytokine secretion. Additionally, Arctiin effectively suppresses IRBP-specific Th17 cell activation in cervical lymph nodes, further mitigating retinal inflammation and tissue damage. These results underscore Arctiin's potential as a therapeutic agent for uveitis and other autoimmune inflammatory disorders through the modulation of the AdipoR1/JAK/STAT pathway in Th17 cells.
Collapse
Affiliation(s)
- Xiao'e Fan
- Department of Ophthalmology, Jincheng People 's Hospital, Shanxi Province, China.
| | - Manhong Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital
| | - Zhengmin Wang
- Department of Ophthalmology, Jincheng People 's Hospital, Shanxi Province, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaoyan Sun
- Department of Ophthalmology, Jincheng People 's Hospital, Shanxi Province, China
| | - Yan Fan
- Department of Ophthalmology, Jincheng People 's Hospital, Shanxi Province, China
| | - Jiaqi Chen
- Department of Ophthalmology, Jincheng People 's Hospital, Shanxi Province, China
| | - Junpeng Hao
- Department of Ophthalmology, Jincheng People 's Hospital, Shanxi Province, China
| | - Ranran Wang
- Department of Labotatory, Jincheng People 's Hospital, Shanxi Province, China
| | - Wei Jia
- Department of Rheumatology, Jincheng People 's Hospital, Shanxi Province, China
| |
Collapse
|
8
|
Li M, Feng M, Liu T, Duan S, Man X, Yuan X, Wang L, Sun Y, Wei X, Fu Q, Sun B, Lin W. Increased ocular plasma cells induce damaging α-synuclein + microglia in autoimmune uveitis. Mucosal Immunol 2025:S1933-0219(25)00025-X. [PMID: 40015479 DOI: 10.1016/j.mucimm.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 02/23/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Autoimmune uveitis (AIU) is an immune-inflammatory disease that can lead to blindness. However, incomplete understanding of the involved immune cell subsets and their contributions to retinal injury has hindered the development of effective AIU therapies. Using single-cell RNA sequencing and immunofluorescence, we identified α-synuclein+ microglia as the primary subset of damaged ocular cells in the eyes of the experimental autoimmune uveitis (EAU) mouse model. Ocular-infiltrating plasma cells (PCs) were shown to express multiple inflammatory factors, particularly TNF-α, which promoted the production of α-synuclein+ microglia. Studies of heterogeneous PC subtypes revealed that MUC1- PCs represent the primary pathogenic subset, secreting multiple cytokines. Although MUC1+ PCs expressed TGF-β, they exhibited long-lived characteristics and secreted IgG and IgM, thereby prolonging disease progression. Finally, the small G protein Rab1A, also expressed in the PCs of Vogt-Koyanagi-Harada (VKH) patients, was found to mediate autophagy and NF-κB expression, influencing PCs survival and inflammatory responses. Silencing or knocking down Rab1A in PCs inhibited their survival. This study elucidates potential mechanisms underlying the neuroimmune inflammatory response and highlights the previously unrecognized role of infiltrating PCs in AIU, offering novel therapeutic targets for this disease.
Collapse
Affiliation(s)
- Minghao Li
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China; School of Clinical and Basic Medicine, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Medicine and Health Key Laboratory of Rheumatism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China; Department of Critical-care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meng Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Deputy 2, West Road Weiyang, Qindu District, Xianyang, Shaanxi 712000, China; The First Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Weiyang West Road, Xianyang City 710077 Shaanxi Province, China
| | - Tingting Liu
- Shandong Eye Hospital, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China; Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, China
| | - Songqi Duan
- College of Food Science, Sichuan Agricultural University, Ya an, China
| | - Xuejing Man
- Department of Ophthalmology, Yuhuangding Hospital, Yantai, China
| | - Xiaomeng Yuan
- Shandong Eye Hospital, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lijie Wang
- School of Clinical and Basic Medicine, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Yu Sun
- Shanghai Jiao Tong University, Subei Research Institute, Anti-aging Innovation Center, Shanghai, China; School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University,Yantai, China
| | - Xunbin Wei
- Biomedical Engineering Department, Peking University, Beijing, China; School of Biomedical Engineering, Anhui Medical University, Hefei, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China; International Cancer Institute, Peking University, Beijing, China
| | - Qiang Fu
- Shanghai Jiao Tong University, Subei Research Institute, Anti-aging Innovation Center, Shanghai, China; School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University,Yantai, China.
| | - Baofa Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.
| | - Wei Lin
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China; School of Clinical and Basic Medicine, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Medicine and Health Key Laboratory of Rheumatism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China; Department of Critical-care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
9
|
Qu R, Peng Y, Xu S, Zhou M, Yin X, Liu B, Bi H, Guo D. RBPJ Knockdown Promotes M2 Macrophage Polarization Through Mitochondrial ROS-mediated Notch1-Jagged1-Hes1 Signaling Pathway in Uveitis. Inflammation 2025; 48:133-150. [PMID: 38761249 DOI: 10.1007/s10753-024-02053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Uveitis is an autoimmune eye disease that can be involved in the entire body and is one of the leading causes of blindness. Therefore, comprehending the mechanisms underlying the development and regulation of ocular immune responses in uveitis is crucial for designing effective therapeutic interventions. In this study, we investigated how RBPJ regulates macrophage polarization in uveitis. We demonstrated that targeted RBPJ knockdown (RBPJKD) promotes M2 macrophage polarization and ameliorates uveitis through the mtROS-mediated Notch1-Jagged1-Hes1 signaling pathway. Real-time quantitative (Q-PCR) analysis revealed that the Notch1-Jagged1-Hes1 signaling pathway was active in the eye tissues of experimental autoimmune uveitis (EAU) rats. Immunofluorescence double staining confirmed enhanced signaling primarily occurring in macrophages, establishing a correlation between the Notch1 signaling pathway and macrophages. Transmission electron microscopy evaluated the morphological and functional changes of mitochondria in each group's eye tissues. It demonstrated significant swelling and disorganization in the EAU group, which were effectively restored upon RBPJ knockdown intervention. Finally, by employing an antioxidant N-acetyl-L-cysteine (NAC) to eliminate mtROS in vivo, we observed a decrease in the M2 macrophage polarization level, which prevented the cytoprotective effect conferred by RBPJKD. These findings underscore the relevance of the Notch signaling pathway to the immune system while highlighting the potential role of mtROS as a therapeutic target for inflammation and other related diseases.
Collapse
Affiliation(s)
- Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Shuqin Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Mengxian Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Xuewei Yin
- Affiliated Eye Hospital of Shandong, University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Bin Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong, University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, 250002, China.
| |
Collapse
|
10
|
Kalogeropoulos D, Kanavaros P, Vartholomatos G, Moussa G, Chʼng SW, Kalogeropoulos C. Cytokines in Immune-mediated "Non-infectious" Uveitis. Klin Monbl Augenheilkd 2025; 242:31-46. [PMID: 38134911 DOI: 10.1055/a-2202-8704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Uveitis is a significant cause of ocular morbidity and accounts for approximately 5 - 10% of visual impairments worldwide, particularly among the working-age population. Infections are the cause of ~ 50% cases of uveitis, but it has been suggested that infection might also be implicated in the pathogenesis of immune-mediated "non-infectious" uveitis. There is growing evidence that cytokines (i.e., interleukins, interferons, etc.) are key mediators of immune-mediated "non-infectious" uveitis. For example, activation of the interleukin-23/interleukin-17 signalling pathway is involved in immune-mediated "non-infectious" uveitis. Studies in animal models have been important in investigating the role of cytokines in uveitis. Recent studies of clinical samples from patients with uveitis have allowed the measurement of a considerable array of cytokines even from very small sample volumes (e.g., aqueous and vitreous humour). The identification of complex patterns of cytokines may contribute to a better understanding of their potential pathogenetic role in uveitis as well as to an improved diagnostic and therapeutic approach to treat these potentially blinding pathologies. This review provides further insights into the putative pathobiological role of cytokines in immune-mediated "non-infectious" uveitis.
Collapse
Affiliation(s)
| | - Panagiotis Kanavaros
- Anatomy-Histology-Embryology, University of Ioannina, Faculty of Medicine, Greece
| | - Georgios Vartholomatos
- Hematology Laboratory, Unit of Molecular Biology, University General Hospital of Ioannina, Greece
| | - George Moussa
- Ophthalmology, Birmingham and Midland Eye Centre, Birmingham, United Kingdom of Great Britain and Northern Ireland
| | - Soon Wai Chʼng
- Ophthalmology, Birmingham and Midland Eye Centre, Birmingham, United Kingdom of Great Britain and Northern Ireland
| | | |
Collapse
|
11
|
Duan R, Jiang L, Wang T, Li Z, Yu X, Gao Y, Jia R, Fan X, Su W. Aging-induced immune microenvironment remodeling fosters melanoma in male mice via γδ17-Neutrophil-CD8 axis. Nat Commun 2024; 15:10860. [PMID: 39738047 PMCID: PMC11685811 DOI: 10.1038/s41467-024-55164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Aging is associated with increased tumor metastasis and poor prognosis. However, how an aging immune system contributes to the process is unclear. Here, single-cell RNA sequencing reveals that in male mice, aging shifts the lung immune microenvironment towards a premetastatic niche, characterized by an increased proportion of IL-17-expressing γδT (γδ17) and neutrophils. Mechanistically, age-dependent downregulation of the immune trafficking receptor S1pr1 drives the expansion of γδ17. Compared to young mice, expanded γδ17 recruit tumor-promoting neutrophils with lower expression levels of CD62L and higher levels of C-kit and CXCR4. These neutrophils suppress the stemness and tumor-killing functions of CD8+ T cells in aged male mice. Accordingly, antibody-mediated depletion of γδT or neutrophils reduces tumor metastatic foci in aged animals, and the administration of the senolytic agent procyanidin C1 reverses the observed immune-mediated, tumor-promoting effects of aging. Thus, we uncover a γδ17-Neutrophil-CD8 axis that promotes aging-driven tumor metastasis in male mice and provides potential insights for managing metastatic tumors.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Tumor Microenvironment/immunology
- Aging/immunology
- Neutrophils/immunology
- Neutrophils/metabolism
- CD8-Positive T-Lymphocytes/immunology
- Mice, Inbred C57BL
- Interleukin-17/metabolism
- Interleukin-17/immunology
- Melanoma/immunology
- Melanoma/pathology
- Melanoma/genetics
- Cell Line, Tumor
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
Collapse
Affiliation(s)
- Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xiaoyang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Wang Y, Gao S, Cao F, Yang H, Lei F, Hou S. Ocular immune-related diseases: molecular mechanisms and therapy. MedComm (Beijing) 2024; 5:e70021. [PMID: 39611043 PMCID: PMC11604294 DOI: 10.1002/mco2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Ocular immune-related diseases, represent a spectrum of conditions driven by immune system dysregulation, include but not limit to uveitis, diabetic retinopathy, age-related macular degeneration, Graves' ophthalmopathy, etc. The molecular and cellular mechanisms underlying these diseases are typically dysfunctioned immune responses targeting ocular tissues, resulting in inflammation and tissue damage. Recent advances have further elucidated the pivotal role of different immune responses in the development, progression, as well as management of various ocular immune diseases. However, there is currently a relative lack of connection between the cellular mechanisms and treatments of several immune-related ocular diseases. In this review, we discuss recent findings related to the immunopathogenesis of above-mentioned diseases. In particular, we summarize the different types of immune cells, inflammatory mediators, and associated signaling pathways that are involved in the pathophysiology of above-mentioned ophthalmopathies. Furthermore, we also discuss the future directions of utilizing anti-inflammatory regime in the management of these diseases. This will facilitate a better understanding of the pathogenesis of immune-related ocular diseases and provide new insights for future treatment approaches.
Collapse
Affiliation(s)
- Yakun Wang
- The First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Shangze Gao
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Fan Cao
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Hui Yang
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Fengyang Lei
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Shengping Hou
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| |
Collapse
|
13
|
Liu Y, Zhang W, Wang H, Liu H, Yu Q, Luo X, Feng X, Yang P. Fine particulate matter potentiates Th17-cell pathogenicity in experimental autoimmune uveitis via ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116979. [PMID: 39232294 DOI: 10.1016/j.ecoenv.2024.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
The effect of fine particulate matter (PM2.5) on the development of uveitis remains unclear. Therefore, this study was designed to investigate the role of PM2.5 in experimental autoimmune uveitis (EAU) and its potential mechanism. Our results showed that PM2.5 could exacerbate the activity of EAU, as evidenced by severer clinical and pathological changes, correlated with elevated Th17 cells frequency and IL-17A expression. Proteomic analysis revealed ferroptosis was the most significant pathway. In vivo, the levels of Fe2+, ROS, lipid ROS, and malondialdehyde, as well as the expression of TFRC, HMOX1, FTH1, and FTL1 in CD4+ T cells were increased, while GSH/GSSG ratio and the expression of ACSL1 and GPX4 were decreased after PM2.5 exposure. In vitro, the expression of TFRC and HMOX1 were increased, while the expression FTH1, FTL1, ACSL1, and GPX4 were decreased after PM2.5 exposure. Ferrostatin-1 effectively alleviated PM2.5-induced intraocular inflammation and suppressed the frequency of Th17 cells. These results suggest that PM2.5 could aggravate intraocular inflammation and immune response in EAU mice through ferroptosis. Ferroptosis could be a potential marker for the prevention and treatment of uveitis.
Collapse
Affiliation(s)
- Yaning Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wanyun Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmiao Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyue Yu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Luo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojie Feng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Li W, He S, Tan J, Li N, Zhao C, Wang X, Zhang Z, Liu J, Huang J, Li X, Zhou Q, Hu K, Yang P, Hou S. Transcription factor EGR2 alleviates autoimmune uveitis via activation of GDF15 to modulate the retinal microglial phenotype. Proc Natl Acad Sci U S A 2024; 121:e2316161121. [PMID: 39298490 PMCID: PMC11441539 DOI: 10.1073/pnas.2316161121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 07/29/2024] [Indexed: 09/21/2024] Open
Abstract
Uveitis is a vision-threatening disease primarily driven by a dysregulated immune response, with retinal microglia playing a pivotal role in its progression. Although the transcription factor EGR2 is known to be closely associated with uveitis, including Vogt-Koyanagi-Harada disease and Behcet's disease, and is essential for maintaining the dynamic homeostasis of autoimmunity, its exact role in uveitis remains unclear. In this study, diminished EGR2 expression was observed in both retinal microglia from experimental autoimmune uveitis (EAU) mice and inflammation-induced human microglia cell line (HMC3). We constructed a mice model with conditional knockout of EGR2 in microglia and found that EGR2 deficiency resulted in increased intraocular inflammation. Meanwhile, EGR2 overexpression downregulated the expression of inflammatory cytokines as well as cell migration and proliferation in HMC3 cells. Next, RNA sequencing and ChIP-PCR results indicated that EGR2 directly bound to its downstream target growth differentiation factor 15 (GDF15) and further regulated GDF15 transcription. Furthermore, intravitreal injection of GDF15 recombinant protein was shown to ameliorate EAU progression in vivo. Meanwhile, knockdown of GDF15 reversed the phenotype of EGR2 overexpression-induced microglial inflammation in vitro. In summary, this study highlighted the protective role of the transcription factor EGR2 in AU by modulating the microglial phenotype. GFD15 was identified as a downstream target of EGR2, providing a unique target for uveitis treatment.
Collapse
Affiliation(s)
- Wanqian Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Siyuan He
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Jun Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Na Li
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Chenyang Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Zhi Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Jiangyi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Jiaxing Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Xingran Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Qian Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing 400016, China
| | - Shengping Hou
- Department of Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
15
|
Zhang H, Fang L, Cheng Y, Peng Y, Wang H, Jiang M, Zhu L, Li Y, Fang S, Zhou H, Sun J, Song X. Peripheral CD3 +CD4 + T cells as indicators of disease activity in thyroid eye disease: age-dependent significance. Graefes Arch Clin Exp Ophthalmol 2024; 262:2985-2997. [PMID: 38689122 DOI: 10.1007/s00417-024-06496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
PURPOSE To provide an in-depth analysis of the association of peripheral lymphocytes and the disease activity of thyroid eye disease (TED). METHODS This retrospective study enrolled 65 active TED patients and 46 inactive TED patients. Comparative analyses of peripheral lymphocyte subsets were conducted between active and inactive patients. Subgroup analyses were performed based on sex, age, disease duration, and severity. Correlation analyses explored the associations between lymphocyte subsets and TED activity indicators. Prediction models for TED activity were established using objective indicators. RESULTS Significantly elevated levels of CD3+CD4+ T cells were observed in active TED patients compared to inactive patients (P = 0.010). Subgroup analyses further revealed that this disparity was most prominent in females (P = 0.036), patients aged 50 years and younger (P = 0.003), those with long-term disease duration (P = 0.022), and individuals with moderate-to-severe disease (P = 0.021), with age exerting the most substantial impact. Subsequent correlation analysis confirmed the positive association between CD3+CD4+ T cells and the magnetic resonance imaging indicator of TED activity among patients aged 50 years and younger (P = 0.038). The combined prediction models for TED activity, established using objective indicators including CD3+CD4+ T cells, yielded areas under curve of 0.786 for all patients and 0.816 for patients aged 50 years and younger. CONCLUSIONS Peripheral CD3+CD4+ T cells are associated with disease activity of TED, especially in patients aged 50 years and younger. Our study has deepened the understanding of the peripheral T cell profiles in TED patients.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Lianfei Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yumeng Cheng
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yuhang Peng
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hui Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Mengda Jiang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinwei Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Jing Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xuefei Song
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
16
|
Zheng Z, Li J, Liu T, Fan Y, Zhai QC, Xiong M, Wang QR, Sun X, Zheng QW, Che S, Jiang B, Zheng Q, Wang C, Liu L, Ping J, Wang S, Gao DD, Ye J, Yang K, Zuo Y, Ma S, Yang YG, Qu J, Zhang F, Jia P, Liu GH, Zhang W. DNA methylation clocks for estimating biological age in Chinese cohorts. Protein Cell 2024; 15:575-593. [PMID: 38482631 PMCID: PMC11259550 DOI: 10.1093/procel/pwae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/10/2024] [Indexed: 07/21/2024] Open
Abstract
Epigenetic clocks are accurate predictors of human chronological age based on the analysis of DNA methylation (DNAm) at specific CpG sites. However, a systematic comparison between DNA methylation data and other omics datasets has not yet been performed. Moreover, available DNAm age predictors are based on datasets with limited ethnic representation. To address these knowledge gaps, we generated and analyzed DNA methylation datasets from two independent Chinese cohorts, revealing age-related DNAm changes. Additionally, a DNA methylation aging clock (iCAS-DNAmAge) and a group of DNAm-based multi-modal clocks for Chinese individuals were developed, with most of them demonstrating strong predictive capabilities for chronological age. The clocks were further employed to predict factors influencing aging rates. The DNAm aging clock, derived from multi-modal aging features (compositeAge-DNAmAge), exhibited a close association with multi-omics changes, lifestyles, and disease status, underscoring its robust potential for precise biological age assessment. Our findings offer novel insights into the regulatory mechanism of age-related DNAm changes and extend the application of the DNAm clock for measuring biological age and aging pace, providing the basis for evaluating aging intervention strategies.
Collapse
Affiliation(s)
- Zikai Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Qiao-Cheng Zhai
- Division of Orthopaedics, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Muzhao Xiong
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao-Ran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-Wen Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Shanshan Che
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beier Jiang
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Quan Zheng
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Cui Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixiao Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiale Ping
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Dan-Dan Gao
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Jinlin Ye
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Kuan Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuesheng Zuo
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Ma
- Aging Biomarker Consortium, Beijing 100101, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Aging Biomarker Consortium, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Zhang
- Division of Orthopaedics, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Aging Biomarker Consortium, Beijing 100101, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Aging Biomarker Consortium, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
17
|
Tang Y, Qu S, Ning Z, Wu H. Immunopeptides: immunomodulatory strategies and prospects for ocular immunity applications. Front Immunol 2024; 15:1406762. [PMID: 39076973 PMCID: PMC11284077 DOI: 10.3389/fimmu.2024.1406762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Immunopeptides have low toxicity, low immunogenicity and targeting, and broad application prospects in drug delivery and assembly, which are diverse in application strategies and drug combinations. Immunopeptides are particularly important for regulating ocular immune homeostasis, as the eye is an immune-privileged organ. Immunopeptides have advantages in adaptive immunity and innate immunity, treating eye immune-related diseases by regulating T cells, B cells, immune checkpoints, and cytokines. This article summarizes the application strategies of immunopeptides in innate immunity and adaptive immunity, including autoimmunity, infection, vaccine strategies, and tumors. Furthermore, it focuses on the mechanisms of immunopeptides in mediating ocular immunity (autoimmune diseases, inflammatory storms, and tumors). Moreover, it reviews immunopeptides' application strategies and the therapeutic potential of immunopeptides in the eye. We expect the immune peptide to get attention in treating eye diseases and to provide a direction for eye disease immune peptide research.
Collapse
Affiliation(s)
| | | | | | - Hong Wu
- Eye Center of Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Yang Y, Zhao M, Kuang Q, You F, Jiang Y. A comprehensive review of phytochemicals targeting macrophages for the regulation of colorectal cancer progression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155451. [PMID: 38513378 DOI: 10.1016/j.phymed.2024.155451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/19/2024] [Accepted: 02/11/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Phytochemicals are natural compounds derived from plants, and are now at the forefront of anti-cancer research. Macrophage immunotherapy plays a crucial role in the treatment of colorectal cancer (CRC). In the context of colorectal cancer, which remains highly prevalent and difficult to treat, it is of research value to explore the potential mechanisms and efficacy of phytochemicals targeting macrophages for CRC treatment. PURPOSE The aim of this study was to gain insight into the role of phytochemical-macrophage interactions in regulating CRC and to provide a theoretical basis for the development of new therapeutic strategies in the future. STUDY DESIGN This review discusses the potential immune mechanisms of phytochemicals for the treatment of CRC by summarizing research of phytochemicals targeting macrophages. METHODS We reviewed the PubMed, EMBASE, Web of Science and CNKI databases from their initial establishment to July 2023 to classify and summaries phytochemicals according to their mechanism of action in targeting macrophages. RESULTS The results of the literature review suggest that phytochemicals interfere with CRC development by affecting macrophages through four main mechanisms. Firstly, they modulate the production of cytotoxic substances, such as NO and ROS, by macrophages to exert anticancer effects. Secondly, phytochemicals polarize macrophages towards the M1 phenotype, inhibit M2 polarisation and enhance the anti-tumour immune responses. Thirdly, they enhance the secretion of macrophage-derived cytokines and alter the tumour microenvironment, thereby inhibiting tumor growth. Finally, they activate the immune response by targeting macrophages, triggering the recruitment of other immune cells, thereby enhancing the immune killing effect and exerting anti-tumor effects. These findings highlight phytochemicals as potential therapeutic strategies to intervene in colorectal cancer development by modulating macrophage activity, providing a strong theoretical basis for future clinical applications. CONCLUSION Phytochemicals exhibit potential anti-tumour effects by modulating macrophage activity and intervening in the colorectal cancer microenvironment by multiple mechanisms.
Collapse
Affiliation(s)
- Yi Yang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China
| | - Maoyuan Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Qixuan Kuang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China; Cancer Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610075, PR China.
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China.
| |
Collapse
|
19
|
Tang X, Zhang Y, Zhang H, Zhang N, Dai Z, Cheng Q, Li Y. Single-Cell Sequencing: High-Resolution Analysis of Cellular Heterogeneity in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:376-400. [PMID: 39186216 DOI: 10.1007/s12016-024-09001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
Autoimmune diseases (AIDs) are complex in etiology and diverse in classification but clinically show similar symptoms such as joint pain and skin problems. As a result, the diagnosis is challenging, and usually, only broad treatments can be available. Consequently, the clinical responses in patients with different types of AIDs are unsatisfactory. Therefore, it is necessary to conduct more research to figure out the pathogenesis and therapeutic targets of AIDs. This requires research technologies with strong extraction and prediction capabilities. Single-cell sequencing technology analyses the genomic, epigenomic, or transcriptomic information at the single-cell level. It can define different cell types and states in greater detail, further revealing the molecular mechanisms that drive disease progression. These advantages enable cell biology research to achieve an unprecedented resolution and scale, bringing a whole new vision to life science research. In recent years, single-cell technology especially single-cell RNA sequencing (scRNA-seq) has been widely used in various disease research. In this paper, we present the innovations and applications of single-cell sequencing in the medical field and focus on the application contributing to the differential diagnosis and precise treatment of AIDs. Despite some limitations, single-cell sequencing has a wide range of applications in AIDs. We finally present a prospect for the development of single-cell sequencing. These ideas may provide some inspiration for subsequent research.
Collapse
Affiliation(s)
- Xuening Tang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
20
|
Li X, Qin W, Qin X, Wu D, Gao C, Luo Y, Xu M. Meta-analysis of the relationship between ocular and peripheral serum IL-17A and diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1320632. [PMID: 38711982 PMCID: PMC11070548 DOI: 10.3389/fendo.2024.1320632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Purpose A systematic evaluation and Meta-analysis were performed to determine the relationship between IL-17A levels in ocular aqueous and peripheral venous serum samples and diabetic retinopathy (DR). Methods PubMed, Embase, Web of Science, and CNKI databases were searched from the time of library construction to 2023-09-20.The results were combined using a random-effects model, sensitivity analyses were performed to determine whether the arithmetic was stable and reliable, and subgroup analyses were used to look for possible sources of heterogeneity. Results A total of 7 case-control studies were included. The level of IL-17A was higher in the Nonproliferative DR(NPDR) group than in the Non-DR(NDR) group [SMD=2.07,95%CI(0.45,3.68),P=0.01], and the level of IL-17A in the proliferating DR(PDR) group was higher than that of the NDR group [SMD=4.66,95%CI(1.23,8.08),P<0.00001]. IL-17A levels in peripheral serum and atrial fluid were significantly higher in NPDR and PDR patients than in non-DR patients in subgroup analyses, and detection of peripheral serum IL-17A concentrations could help to assess the risk of progression from NPDR to PDR. Sensitivity analyses suggested that the results of the random-effects arithmetic were stable and reliable. Subgroup analyses based on assay method and sample source showed that the choice of these factors would largely influence the relationship between IL-17A levels and DR. Conclusion Elevated peripheral serum and ocular aqueous humor IL-17A levels in diabetic patients are associated with the risk of DR, IL-17A may serve as a potential predictor or therapeutic target for DR, and IL-17A may be an important predictor of inflammation for the progression of NPDR to PDR. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024532900.
Collapse
Affiliation(s)
- Xiaodong Li
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Ophthalmology, Guiyang, China
| | - Wei Qin
- Zhongshan Hospital of Traditional Chinese Medicine, Ophthalmology, Zhongshan, China
| | - Xuewei Qin
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Ophthalmology, Guiyang, China
| | - Dandan Wu
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Ophthalmology, Guiyang, China
| | - Chenyuan Gao
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Ophthalmology, Guiyang, China
| | - Yinyue Luo
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Ophthalmology, Guiyang, China
| | - Mingchao Xu
- Traditional Chinese Medicine Hospital of Meishan, Ophthalmology, Meishan, China
| |
Collapse
|
21
|
Liu J, Liao X, Li N, Xu Z, Yang W, Zhou H, Liu Y, Zhang Z, Wang G, Hou S. Single‐cell RNA sequencing reveals inflammatory retinal microglia in experimental autoimmune uveitis. MedComm (Beijing) 2024; 5:e534. [PMID: 38585235 PMCID: PMC10999176 DOI: 10.1002/mco2.534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
Autoimmune uveitis (AU) is a kind of immune-mediated disease resulting in irreversible ocular damage and even permanent vision loss. However, the precise mechanism underlying dynamic immune changes contributing to disease initiation and progression of AU remains unclear. Here, we induced an experimental AU (EAU) model with IRBP651-670 and found that day[D]14 was the inflammatory summit with remarking clinical and histopathological manifestations and the activation of retinal microglia exhibited a time-dependent pattern in the EAU course. We conducted single-cell RNA sequencing of retinal immune cells in EAU mice at four time points and found microglia constituting the largest proportion, especially on D14. A novel inflammatory subtype (Cd74high Ccl5high) of retinal microglia was identified at the disease peak that was closely associated with modulating immune responses. In vitro experiments indicated that inflammatory stimuli induced proinflammatory microglia with the upregulation of CD74 and CCL5, and CD74 overexpression in microglia elicited their proinflammatory phenotype via nuclear factor-kappa B signaling that could be attenuated by the treatment of neutralizing CCL5 antibody to a certain extent. In-vivo blockade of Cd74 and Ccl5 effectively alleviated retinal microglial activation and disease phenotype of EAU. Therefore, we propose targeting CD74 and CCL5 of retinal microglia as promising strategies for AU treatment.
Collapse
Affiliation(s)
- Jiangyi Liu
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Xingyun Liao
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| | - Na Li
- Department of Laboratory MedicineBeijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Zongren Xu
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Wang Yang
- Department of KidneyFirst Affiliated HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Hongxiu Zhou
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Yusen Liu
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Zhi Zhang
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Guoqing Wang
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye DiseasesChongqing Eye InstituteChongqingChina
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren HospitalCapital Medical UniversityBeijing Ophthalmology and Visual Sciences Key LaboratoryBeijingChina
| |
Collapse
|
22
|
Lu A, Liu Z, Su G, Yang P. Global Research Status Regarding Uveitis in the Last Decade. Ocul Immunol Inflamm 2024; 32:326-335. [PMID: 36698094 DOI: 10.1080/09273948.2023.2170251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/27/2023]
Abstract
PURPOSE To provide an overview on global uveitis research in the last decade in terms of countries/regions, organizations, scholars, journals, trending topics, and fundings. METHODS This cross-sectional bibliometric analysis yielded 10656 uveitis publications in English for subsequent bibliometric analysis. RESULTS In terms of the number of publications, the leading country/region was the USA (3007). The most productive organization was the University College London (420). The most productive research team was Professor Yang's group (146). A higher h-index was noted in University College London (48). Professor Rosenbaum was the first h-index holder (32). Keywords of interest included topics such as biologics, COVID and OCT. Publications by Ocular Immunology and Inflammation (968) ranked the first position. CONCLUSIONS The USA is the leading force in uveitis study. Asian countries/regions, such as China (mainland) and India, are exerting a substantial role worldwide. Trendy topics cover COVID-19, OCTA.
Collapse
Affiliation(s)
- Ao Lu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Zhangluxi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| |
Collapse
|
23
|
Peng X, Li H, Zhu L, Zhao S, Li Z, Li S, DongtingWu, Chen J, Zheng S, Su W. Single-cell sequencing of the retina shows that LDHA regulates pathogenesis of autoimmune uveitis. J Autoimmun 2024; 143:103160. [PMID: 38160538 DOI: 10.1016/j.jaut.2023.103160] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Autoimmune uveitis (AU) is a severe disorder causing poor vision and blindness. However, the cellular dynamics and pathogenic mechanisms underlying retinal injury in uveitis remain unclear. In this study, single-cell RNA sequencing of the retina and cervical draining lymph nodes in experimental autoimmune uveitis mice was conducted to identify the cellular spatiotemporal dynamics and upregulation of the glycolysis-related gene LDHA. Suppression of LDHA can rescue the imbalance of T effector (Teff) cells/T regulator (Treg) cells under inflammation via downregulation of the glycolysis-PI3K signaling circuit and inhibition of the migration of CXCR4+ Teff cells towards retinal tissue. Furthermore, LDHA and CXCR4 are upregulated in the peripheral blood mononuclear cells of Vogt-Koyanagi-Harada patients. The LDHA inhibitor suppresses CD4+ T cell proliferation in humans. Therefore, our data indicate that the autoimmune environment of uveitis regulates Teff cell accumulation in the retina via glycolysis-associated LDHA. Modulation of this target may provide a novel therapeutic strategy for treating AU.
Collapse
Affiliation(s)
- Xuening Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Sichen Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Si Li
- Sun Yat-sen University, Guangzhou 510060, China
| | - DongtingWu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | | | - Songguo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Shanghai Jiaotong University School of Medicine, 201600, Shanghai, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
24
|
Xiang S, Chen J, Deng M, Wang Z, Li X, Lin D, Zhou J. Celastrol ameliorates experimental autoimmune uveitis through STAT3 targeting and gut microenvironment reprofiling. Int Immunopharmacol 2024; 127:111339. [PMID: 38064813 DOI: 10.1016/j.intimp.2023.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Extensive research has revealed the favorable effects of celastrol (CEL) against various diseases, but the role of CEL in autoimmune uveitis remains unexplored. METHODS We first assessed the prophylactical and therapeutical effects of CEL on autoimmune uveitis via rat experimental autoimmune uveitis model. After network pharmacology, functional enrichment and molecular docking analyses, we predicted the potential target of CEL and validated its effect on EAU by clinical and histopathological scores, Evans blue staining, immunofluorescence assay and western blotting. Then we evaluated the role of CEL in the gut environment by 16S rRNA sequencing and untargeted metabolomic analysis. RESULTS We confirmed that CEL treatment suppressed the pathological TH17 response, inhibited the migration of inflammatory cells, and preserved the integrity of BRB via targeting STAT3-IL17 pathway. Furthermore, CEL was found to reduce the relative abundance of opportunistic pathogenic bacteria including Clostridium_sensu_stricto_1, Parasutterella and GCA-900066575, and enrich the relative abundance of beneficial Oscillospirales and Ruminococcus_torques_group in EAU rats by fecal 16S rRNA sequencing. Meanwhile, CEL treatment reshaped the gut metabolites in the EAU rats by increasing the relative concentrations of cholic acid, progesterone and guggulsterone, and decreasing the relative levels of isoproterenol, creatinine and phenylacetylglutamine. CONCLUSIONS CEL exerts its ameliorative effects on the experimental autoimmune uveitis through the dual mechanisms of targeting STAT3 and reprofiling the gut microenvironment.
Collapse
Affiliation(s)
- Shengjin Xiang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jinrun Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Mengyun Deng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zixiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xingyi Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Dan Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Jianhong Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
25
|
Shchukina I, Bohacova P, Artyomov MN. T cell control of inflammaging. Semin Immunol 2023; 70:101818. [PMID: 37611324 DOI: 10.1016/j.smim.2023.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
T cells are a critical component of the immune system, found in abundance in blood, secondary lymphoid organs, and peripheral tissues. As individuals age, T cells are particularly susceptible to changes, making them one of the most affected immune subsets. These changes can have significant implications for age-related dysregulations, including the development of low-grade inflammation - a hallmark of aging known as inflammaging. In this review, we first present age-related changes in the functionality of the T cell compartment, including dysregulation of cytokine and chemokine production and cytotoxicity. Next, we discuss how these changes can contribute to the development and maintenance of inflammaging. Furthermore, we will summarize the mechanisms through which age-related changes in T cells may drive abnormal physiological outcomes.
Collapse
Affiliation(s)
- Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Pavla Bohacova
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
26
|
Wei Y, Yang C, Liu Y, Sun D, Li X, Wei R, Nian H. Mettl3 induced miR-338-3p expression in dendritic cells promotes antigen-specific Th17 cell response via regulation of Dusp16. FASEB J 2023; 37:e23277. [PMID: 37878342 DOI: 10.1096/fj.202300893r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/25/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
Pathogenic Th17 cells are critical drivers of multiple autoimmune diseases, including uveitis and its animal model, experimental autoimmune uveitis (EAU). However, how innate immune signals modulate pathogenic Th17 responses remains largely unknown. Here, we showed that miR-338-3p endowed dendritic cells (DCs) with an increased ability to activate interphotoreceptor retinoid-binding protein (IRBP)1-20 -specific Th17 cells by promoting the production of IL-6, IL-1β, and IL-23. In vivo administration of LV-miR-338-infected DCs promoted pathogenic Th17 responses and exacerbated EAU development. Mechanistically, dual-specificity phosphatase 16 (Dusp16) was a molecular target of miR-338-3p. miR-338-3p repressed Dusp16 and therefore strengthened the mitogen-activated protein kinase (MAPK) p38 signaling, resulting in increased production of Th17-polarizing cytokines and subsequent pathogenic Th17 responses. In addition, methyltransferase like 3 (Mettl3), a key m6A methyltransferase, mediated the upregulation of miR-338-3p in activated DCs. Together, our findings identify a vital role for Mettl3/miR-338-3p/Dusp16/p38 signaling in DCs-driven pathogenic Th17 responses and suggest a potential therapeutic avenue for uveitis and other Th17 cell-related autoimmune disorders.
Collapse
Affiliation(s)
- Yankai Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Chao Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yuling Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
27
|
Abstract
Organismal aging exhibits wide-ranging hallmarks in divergent cell types across tissues, organs, and systems. The advancement of single-cell technologies and generation of rich datasets have afforded the scientific community the opportunity to decode these hallmarks of aging at an unprecedented scope and resolution. In this review, we describe the technological advancements and bioinformatic methodologies enabling data interpretation at the cellular level. Then, we outline the application of such technologies for decoding aging hallmarks and potential intervention targets and summarize common themes and context-specific molecular features in representative organ systems across the body. Finally, we provide a brief summary of available databases relevant for aging research and present an outlook on the opportunities in this emerging field.
Collapse
Affiliation(s)
- Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; ,
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xu Chi
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China;
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; ,
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Zhejun Ji
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China;
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China;
- University of Chinese Academy of Sciences, Beijing, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; ,
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China;
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Shome A, Mugisho OO, Niederer RL, Rupenthal ID. Comprehensive Grading System for Experimental Autoimmune Uveitis in Mice. Biomedicines 2023; 11:2022. [PMID: 37509662 PMCID: PMC10377264 DOI: 10.3390/biomedicines11072022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Experimental autoimmune uveitis (EAU) is the most commonly used animal model to study the progression of chronic uveitis and to test various therapies to treat the disease. However, to accurately evaluate the effectiveness of such treatments, a grading system that combines the latest imaging techniques with definitive quantitative grading thresholds is required. This study aimed to develop a comprehensive grading system that objectively evaluates EAU progression in C57BL/6J mice. EAU was induced following immunisation with interphotoreceptor retinoid-binding protein (IRBP) and pertussis toxin. Weekly fundus and optical coherence tomography (OCT) images were acquired over 12 weeks using a Micron IV imaging system. Each mouse was graded (between 0 to 4) based on changes seen on both the fundus (optic disc, retinal blood vessels and retinal tissue) and OCT (vitreous and retinal layers) images. A total EAU response (with a maximum score of 48) was calculated for each mouse based on the sum of the individual scores each week. Analysis of the clinical scores depicted a gradual increase in inflammatory signs including optic disc and vascular swelling, leukocyte infiltration in the vitreous, lesions in the retina and formation of granulomas and hyper-reflective foci in the retinal layers in EAU mice, with most signs reaching a plateau towards the end of the study period. Development of these signs into sight-threatening complications such as optic disc atrophy, structural damage to the retina and subretinal oedema were noted in 80-90% of mice suggesting consistent disease induction. Overall, a comprehensive and objective grading system encompassing all pathologies occurring in EAU mice was developed to enhance the preclinical evaluation of novel uveitis treatments.
Collapse
Affiliation(s)
- Avik Shome
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, The New Zealand National Eye Centre, University of Auckland, Auckland 1142, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, The New Zealand National Eye Centre, University of Auckland, Auckland 1142, New Zealand
| | - Rachael L Niederer
- Department of Ophthalmology, The New Zealand National Eye Centre, University of Auckland, Auckland 1142, New Zealand
- Te Whatu Ora Te Toka Tumai, Auckland 1142, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, The New Zealand National Eye Centre, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
29
|
Li H, Xie L, Zhu L, Li Z, Wang R, Liu X, Huang Z, Chen B, Gao Y, Wei L, He C, Ju R, Liu Y, Liu X, Zheng Y, Su W. Multicellular immune dynamics implicate PIM1 as a potential therapeutic target for uveitis. Nat Commun 2022; 13:5866. [PMID: 36195600 PMCID: PMC9532430 DOI: 10.1038/s41467-022-33502-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Uveitis is a severe autoimmune disease, and a common cause of blindness; however, its individual cellular dynamics and pathogenic mechanism remain poorly understood. Herein, by performing single-cell RNA sequencing (scRNA-seq) on experimental autoimmune uveitis (EAU), we identify disease-associated alterations in cell composition and transcriptional regulation as the disease progressed, as well as a disease-related molecule, PIM1. Inhibiting PIM1 reduces the Th17 cell proportion and increases the Treg cell proportion, likely due to regulation of PIM1 to the protein kinase B (AKT)/Forkhead box O1 (FOXO1) pathway. Moreover, inhibiting PIM1 reduces Th17 cell pathogenicity and reduces plasma cell differentiation. Importantly, the upregulation of PIM1 in CD4+ T cells and plasma cells is conserved in a human uveitis, Vogt-Koyanagi-Harada disease (VKH), and inhibition of PIM1 reduces CD4+ T and B cell expansion. Collectively, a dynamic immune cellular atlas during uveitis is developed and implicate that PIM1 may be a potential therapeutic target for VKH. Uveitis is a complex autoimmune inflammatory disease of the eye and defining molecules involved is a priority. Here the authors use scRNA sequencing in mouse experimental autoimmune uveitis (EAU) and show PIM1 promotes the imbalance of Th17 and Treg cells, and find elevated PIM-1 in human uveitis disease.
Collapse
Affiliation(s)
- He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lihui Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Rong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China. .,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
30
|
Duan R, Xie L, Li H, Wang R, Liu X, Tao T, Yang S, Gao Y, Lin X, Su W. Insights Gained from Single-Cell Analysis of Immune Cells on Cyclosporine A treatment in autoimmune uveitis. Biochem Pharmacol 2022; 202:115116. [DOI: 10.1016/j.bcp.2022.115116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022]
|