1
|
Liu S, He X, Liang S, Wu A, Liu L, Hu W. Carbon ion irradiation mobilizes antitumor immunity: from concept to the clinic. Radiat Oncol 2025; 20:85. [PMID: 40405246 PMCID: PMC12100795 DOI: 10.1186/s13014-025-02647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 04/23/2025] [Indexed: 05/24/2025] Open
Abstract
Carbon ion radiotherapy (CIRT), a type of particle therapy, is at the forefront of clinical oncology treatments due to its superior physical properties and biological performance. Although CIRT has demonstrated outstanding therapeutic outcomes in clinical settings, the biological mechanisms underpinning its effects, particularly its immunogenic potential and the superiority of its induced antitumor immune response compared to photon radiotherapy, remain areas of active investigation. This review summarizes the latest research progress on the mechanisms of antitumor immune responses triggered by CIRT and discusses preclinical and clinical studies related to combined CIRT and immunotherapy (CCIT). Against the backdrop of extensive research and significant clinical efficacy achieved by combining radiotherapy with immunotherapy, this review provides a theoretical foundation for a better understanding of the superior tumor cell-killing effects of CIRT and the underlying immunological mechanisms. Further insights into the factors affecting the efficacy, toxic effects, and developmental limitations of this combination therapy mode will be instrumental in guiding the conduction of CCIT studies.
Collapse
Affiliation(s)
- Shanghai Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiangyang He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Siqi Liang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Anqing Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| | - Lu Liu
- Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
2
|
Cao J, Yuan J, Liu N, Huang K, Guo M. Microglial dynamics and emerging therapeutic strategies in CNS homeostasis and pathology. Front Pharmacol 2025; 16:1577809. [PMID: 40432891 PMCID: PMC12106359 DOI: 10.3389/fphar.2025.1577809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), are highly dynamic and play critical roles in maintaining CNS homeostasis. Under normal conditions, microglia continuously monitor their environment, clear cellular debris, and regulate homeostasis. In response to disease or injury, however, they undergo rapid morphological and functional changes, often adopting an amoeboid shape that facilitates phagocytosis of abnormal cells, pathogens, and external antigens. Microglia also proliferate in areas of injury or pathology, contributing to immune responses and tissue remodeling. Recently, pharmacological approaches targeting microglial depletion and repopulation have gained attention as a means to reset or modulate microglial function. Techniques such as CSF1R inhibition enable transient depletion of microglia, followed by rapid repopulation, potentially restoring homeostatic functions and mitigating chronic inflammation. This review explores the current understanding of microglial dynamics and highlights emerging therapeutic applications of microglial depletion and repopulation within the CNS.
Collapse
Affiliation(s)
- Jie Cao
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | | | | | | | - Mingwei Guo
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
3
|
Shu M, Zhang J, Huang H, Chen Y, Shi Y, Zeng H, Shao L. Advances in the Regulation of Hematopoietic Homeostasis by Programmed Cell Death Under Radiation Conditions. Stem Cell Rev Rep 2025; 21:935-952. [PMID: 40056317 DOI: 10.1007/s12015-025-10863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
The application of nuclear energy and the frequent occurrence of nuclear contamination have made radiation safety a major challenge to global public health. As a radiation-sensitive target organ, bone marrow is susceptible to both acute and chronic damage effects of ionizing radiation on the hematopoietic system. Researchers have demonstrated that radiation disrupts hematopoietic homeostasis through direct damage to hematopoietic stem cells, which inhibits hematopoietic regeneration indirectly through damage to hematopoietic progenitor cells and their downstream cell populations. However, the multi-target regulatory mechanism of radiation perturbation of hematopoietic homeostasis remains to be systematically elucidated. Recent studies have revealed that, in addition to the classical apoptotic pathway, non-apoptotic programmed cell death modes (e.g. pyroptosis, necroptosis, and ferroptosis) may be involved in the regulation of radiation-induced hematopoietic injury. A systematic review of the roles of the aforementioned programmed death pathways was presented in radiation-damaged hematopoietic cells, with a view to providing a scientific basis for targeted intervention in radiation-induced myelosuppression.
Collapse
Affiliation(s)
- Manling Shu
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, P.R. China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Jinfu Zhang
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, P.R. China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Haocong Huang
- Department of Medicine, Jinggangshan University, Ji'an, 343000, P.R. China
| | - Yuxin Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Yubing Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China.
- Basic Medical Experiment Center, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China.
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Lijian Shao
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, P.R. China.
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China.
| |
Collapse
|
4
|
Thesing L, Sievert M, Panuganti BA, Aubreville M, Meyer T, Müller-Diesing F, Scherzad A, Hackenberg S, Goncalves M. Characterization of irradiated mucosa using confocal laser endomicroscopy in the upper aerodigestive tract. Eur Arch Otorhinolaryngol 2025; 282:2507-2514. [PMID: 40119146 DOI: 10.1007/s00405-025-09318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/03/2025] [Indexed: 03/24/2025]
Abstract
PURPOSE Confocal laser endomicroscopy (CLE) enables a real time in-vivo optical biopsy of the upper aerodigestive tract. Previous studies demonstrated its potential in identifying malignant tissue, but none examined mucosa treated with radiotherapy. This study characterizes the appearance of irradiated mucosa using CLE. METHODS We recorded 58 CLE sequences (860 s, 6,884 frames) in 10 patients previously treated with radiotherapy for upper aerodigestive tract tumors. A corresponding tissue biopsy (formalin-fixed, H&E stained) was taken as the reference standard for each sequence. We analyzed each sequence regarding differences from normal mucosa and characterized irradiated mucosa in CLE. RESULTS Irradiated mucosa in CLE exhibits irregular tissue architecture. Radiation induces DNA damage, apoptosis, and tissue inflammation, leading to hyperkeratotic and fibrotic tissue. Consequently, CLE showed a wider range of cellular morphologic and tissue structural aberrancies, in comparison to normal, non-irradiated mucosa. In addition to regular honeycomb-like patterns, the tissue displayed uneven, blurry, and cell-rich areas. Irradiated mucosa appears more irregular and variable in CLE than radiation-naïve mucosa. CONCLUSION Irradiated mucosa can be differentiated from healthy tissue using CLE, but its higher baseline morphological variability may mimic malignancy. Further research is needed to clarify its impact on tumor detection and refine existing scoring systems.
Collapse
Affiliation(s)
| | - Matti Sievert
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander-Universität Erlangen- Nürnberg, University Hospital, Erlangen, Germany
| | - Bharat Akhanda Panuganti
- Department of Otolaryngology- Head and Neck Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Marc Aubreville
- Flensburg University of Applied Sciences, Flensburg, Germany
| | - Till Meyer
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Flurin Müller-Diesing
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Agmal Scherzad
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Miguel Goncalves
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Chen J, Wang S, Ding Y, Xu D, Zheng S. Radiotherapy-induced alterations in tumor microenvironment: metabolism and immunity. Front Cell Dev Biol 2025; 13:1568634. [PMID: 40356601 PMCID: PMC12066526 DOI: 10.3389/fcell.2025.1568634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Tumor metabolism plays a pivotal role in shaping immune responses within the tumor microenvironment influencing tumor progression, immune evasion, and the efficacy of cancer therapies. Radiotherapy has been shown to impact both tumor metabolism and immune modulation, often inducing immune activation through damage-associated molecular patterns and the STING pathway. In this study, we analyse the particular characteristics of the tumour metabolic microenvironment and its effect on the immune microenvironment. We also review the changes in the metabolic and immune microenvironment that are induced by radiotherapy, with a focus on metabolic sensitisation to the effects of radiotherapy. Our aim is to contribute to the development of research ideas in the field of radiotherapy metabolic-immunological studies.
Collapse
Affiliation(s)
- Jinpeng Chen
- Department of General Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
- Southeast University Medical School, Nanjing, Jiangsu, China
| | - Sheng Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Yue Ding
- Department of General Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
- Southeast University Medical School, Nanjing, Jiangsu, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiya Zheng
- Southeast University Medical School, Nanjing, Jiangsu, China
- Department of Oncology, Southeast University, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Abe J, Chau K, Mojiri A, Wang G, Oikawa M, Samanthapudi VSK, Osborn AM, Ostos-Mendoza KC, Mariscal-Reyes KN, Mathur T, Jain A, Herrmann J, Yusuf SW, Krishnan S, Deswal A, Lin SH, Kotla S, Cooke JP, Le NT. Impacts of Radiation on Metabolism and Vascular Cell Senescence. Antioxid Redox Signal 2025. [PMID: 40233257 DOI: 10.1089/ars.2024.0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Significance: This review investigates how radiation therapy (RT) increases the risk of delayed cardiovascular disease (CVD) in cancer survivors. Understanding the mechanisms underlying radiation-induced CVD is essential for developing targeted therapies to mitigate these effects and improve long-term outcomes for patients with cancer. Recent Advances: Recent studies have primarily focused on metabolic alterations induced by irradiation in various cancer cell types. However, there remains a significant knowledge gap regarding the role of chronic metabolic alterations in normal cells, particularly vascular cells, in the progression of CVD after RT. Critical Issues: This review centers on RT-induced metabolic alterations in vascular cells and their contribution to senescence accumulation and chronic inflammation across the vasculature post-RT. We discuss key metabolic pathways, including glycolysis, the tricarboxylic acid cycle, lipid metabolism, glutamine metabolism, and redox metabolism (nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADP+)/NADPH). We further explore the roles of regulatory proteins such as p53, adenosine monophosphate-activated protein kinase, and mammalian target of rapamycin in driving these metabolic dysregulations. The review emphasizes the impact of immune-vascular crosstalk mediated by the senescence-associated secretory phenotype, which perpetuates metabolic dysfunction, enhances chronic inflammation, drives senescence accumulation, and causes vascular damage, ultimately contributing to cardiovascular pathogenesis. Future Directions: Future research should prioritize identifying therapeutic targets within these metabolic pathways or the immune-vascular interactions influenced by RT. Correcting metabolic dysfunction and reducing chronic inflammation through targeted therapies could significantly improve cardiovascular outcomes in cancer survivors. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Junichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khanh Chau
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Anahita Mojiri
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Masayoshi Oikawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Venkata S K Samanthapudi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abigail M Osborn
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Tammay Mathur
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Abhishek Jain
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
7
|
Wang C, Fan X, Shi Y, Tang F. Radiation-Induced Brain Injury with Special Reference to Astrocytes as a Therapeutic Target. J Integr Neurosci 2025; 24:25907. [PMID: 40152565 DOI: 10.31083/jin25907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 03/29/2025] Open
Abstract
Radiotherapy is one of the primary modalities for oncologic treatment and has been utilized at least once in over half of newly diagnosed cancer patients. Cranial radiotherapy has significantly enhanced the long-term survival rates of patients with brain tumors. However, radiation-induced brain injury, particularly hippocampal neuronal damage along with impairment of neurogenesis, inflammation, and gliosis, adversely affects the quality of life for these patients. Astrocytes, a type of glial cell that are abundant in the brain, play essential roles in maintaining brain homeostasis and function. Despite their importance, the pathophysiological changes in astrocytes induced by radiation have not been thoroughly investigated, and no systematic or comprehensive review addressing the effects of radiation on astrocytes and related diseases has been conducted. In this paper, we review current studies on the neurophysiological roles of astrocytes following radiation exposure. We describe the pathophysiological changes in astrocytes, including astrogliosis, astrosenescence, and the associated cellular and molecular mechanisms. Additionally, we summarize the roles of astrocytes in radiation-induced impairments of neurogenesis and the blood-brain barrier (BBB). Based on current research, we propose that brain astrocytes may serve as potential therapeutic targets for treating radiation-induced brain injury (RIBI) and subsequent neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, Jiangsu, China
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602 Singapore, Singapore
| | - Xingjuan Fan
- Department of Neurology, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, China
| | - Yunwei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, Jiangsu, China
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602 Singapore, Singapore
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602 Singapore, Singapore
| |
Collapse
|
8
|
Chen Y, Wang D, Luo H, Tan M, Wang Q, Wu X, Du T, Zhang Q, Yuan W. STAT1 increases the sensitivity of lung adenocarcinoma to carbon ion irradiation via HO-1-mediated ferroptosis. Mol Cell Biochem 2025:10.1007/s11010-025-05240-z. [PMID: 40087208 DOI: 10.1007/s11010-025-05240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Radiotherapy is a vital treatment agent for lung adenocarcinoma (LUAD) patients, while radioresistance remains a major factor in treatment failure. Here, we aimed to elucidate how signal transducer and activator of transcription 1 (STAT1) affected sensitivity to carbon ion irradiation for LUAD cells in vivo and in vitro. The results of colony formation, CCK-8, EdU, and calcein-AM/PI double-staining assays demonstrated that the overexpression of STAT1 markedly enhanced the inhibitory effect of carbon ion irradiation on the viability of LUAD cells (A549 and PC9 cells). Lactate dehydrogenase (LDH) leakage assays identified ferroptosis as the predominant form of cell death induced by STAT1 overexpression in LUAD cells. Meanwhile, the ferroptosis-related PCR array confirmed heme oxygenase 1 (HO-1) as a potential effector molecule of STAT1-induced ferroptosis. Mechanistically, STAT1 overexpression resulted in phosphorylation at the serine 727 residue, triggering the upregulation of HO-1 expression and subsequent labile iron pool (LIP) accumulation. This process amplified the Fenton reaction, leading to increased reactive oxygen species (ROS), lipid peroxides (LPO), and glutathione (GSH) depletion. HO-1 knockdown eliminated the ferroptosis induced by the overexpression of STAT1. Furthermore, in vivo experiments showed that STAT1 overexpression enhanced the effect of carbon ion irradiation in inhibiting the growth of subcutaneous tumors in nude mice. These findings provide the foundation for the development of the STAT1-HO-1 axis as a radiosensitization target for LUAD patients.
Collapse
Affiliation(s)
- Yanliang Chen
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Donggang West Road, Lanzhou, 730030, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, Gansu, China
| | - Dandan Wang
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Donggang West Road, Lanzhou, 730030, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, Gansu, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, Gansu, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Mingyu Tan
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Donggang West Road, Lanzhou, 730030, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, Gansu, China
| | - Qian Wang
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Donggang West Road, Lanzhou, 730030, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, Gansu, China
| | - Xun Wu
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Donggang West Road, Lanzhou, 730030, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, Gansu, China
| | - Tianqi Du
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Donggang West Road, Lanzhou, 730030, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, Gansu, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, Gansu, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Wenzhen Yuan
- The First School of Clinical Medicine, Lanzhou University, Chengguan District, No. 1, Donggang West Road, Lanzhou, 730030, Gansu, China.
- The First Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
9
|
Sarikaya I. Radionuclide treatments of cancer: molecular mechanisms, biological responses, histopathological changes, and role of PET imaging. Nucl Med Commun 2025; 46:193-203. [PMID: 39654504 DOI: 10.1097/mnm.0000000000001941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Radiation treatments [radiotherapy and radionuclide treatments (RNTs)] are one of the main and effective treatment modalities of cancer. Globally, the number of cancer patients treated with radionuclides are much less as compared to number of radiotherapy cases but with the development of new radiotracers, most notably 177 Lu and 225 Ac-labeled prostate-specific membrane antigen ligands, and 223 Ra-dichloride for prostate cancer and 177 Lu-somatostatin analogs for neuroendocrine tumors, there is a significant rise in RNTs in the last decade. As therapeutic applications of nuclear medicine is on the rise, the aim of this review is to summarize biological responses to radiation treatments and molecular mechanisms of radiation-induced cell death (e.g. ionization, DNA damages such as double-strand breaks, DNA repair mechanisms, types of cell deaths such as apoptosis, necrosis, and immunogenic cell death), histopathological changes with radiation treatments, and role of PET imaging in RNTs as part of radionuclide theranostics for selecting and planning patients for RNTs, dosimetry, predicting and assessing response to RNTs, predicting toxicities, and other possible PET findings which may be seen after RNTs such as activation of immune system.
Collapse
Affiliation(s)
- Ismet Sarikaya
- Department of Nuclear Medicine, Faculty of Medicine, Kirklareli University, Kirklareli, Turkey
| |
Collapse
|
10
|
Saini S, Gurung P. A comprehensive review of sensors of radiation-induced damage, radiation-induced proximal events, and cell death. Immunol Rev 2025; 329:e13409. [PMID: 39425547 PMCID: PMC11742653 DOI: 10.1111/imr.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Radiation, a universal component of Earth's environment, is categorized into non-ionizing and ionizing forms. While non-ionizing radiation is relatively harmless, ionizing radiation possesses sufficient energy to ionize atoms and disrupt DNA, leading to cell damage, mutation, cancer, and cell death. The extensive use of radionuclides and ionizing radiation in nuclear technology and medical applications has sparked global concern for their capacity to cause acute and chronic illnesses. Ionizing radiation induces DNA damage either directly through strand breaks and base change or indirectly by generating reactive oxygen species (ROS) and reactive nitrogen species (RNS) via radiolysis of water. This damage triggers a complex cellular response involving recognition of DNA damage, cell cycle arrest, DNA repair mechanisms, release of pro-inflammatory cytokines, and cell death. This review focuses on the mechanisms of radiation-induced cellular damage, recognition of DNA damage and subsequent activation of repair processes, and the critical role of the innate immune response in resolution of the injury. Emphasis is placed on pattern recognition receptors (PRRs) and related receptors that detect damage-associated molecular patterns (DAMPs) and initiate downstream signaling pathways. Radiation-induced cell death pathways are discussed in detail. Understanding these processes is crucial for developing strategies to mitigate the harmful effects of radiation and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Saurabh Saini
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Iowa City Veterans Affairs (VA) Medical CenterIowa CityIowaUSA
| | - Prajwal Gurung
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Iowa City Veterans Affairs (VA) Medical CenterIowa CityIowaUSA
- Interdisciplinary Graduate Program in Human ToxicologyUniversity of IowaIowa CityIowaUSA
- Immunology Graduate ProgramUniversity of IowaIowa CityIowaUSA
- Center for Immunology and Immune Based DiseaseUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
11
|
González-Johnson L, Fariña A, Farías G, Zomosa G, Pinilla-González V, Rojas-Solé C. Exploring Neuroprotection against Radiation-Induced Brain Injury: A Review of Key Compounds. NEUROSCI 2024; 5:462-484. [PMID: 39484304 PMCID: PMC11503407 DOI: 10.3390/neurosci5040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
Brain radiation is a crucial tool in neuro-oncology for enhancing local tumor control, but it can lead to mild-to-profound and progressive impairments in cognitive function. Radiation-induced brain injury is a significant adverse effect of radiotherapy for cranioencephalic tumors, primarily caused by indirect cellular damage through the formation of free radicals. This results in late neurotoxicity manifesting as cognitive impairment due to free radical production. The aim of this review is to highlight the role of different substances, such as drugs used in the clinical setting and antioxidants such as ascorbate, in reducing the neurotoxicity associated with radiation-induced brain injury. Currently, there is mainly preclinical and clinical evidence supporting the benefit of these interventions, representing a cost-effective and straightforward neuroprotective strategy.
Collapse
Affiliation(s)
- Lucas González-Johnson
- Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile; (G.F.); (V.P.-G.); (C.R.-S.)
- University of Chile Clinical Hospital, Santiago 8380453, Chile;
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Ariel Fariña
- Fundación Arturo López Pérez, Santiago 7500921, Chile;
- Faculty of Medicine, Universidad de los Andes, Santiago 12455, Chile
| | - Gonzalo Farías
- Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile; (G.F.); (V.P.-G.); (C.R.-S.)
- University of Chile Clinical Hospital, Santiago 8380453, Chile;
| | - Gustavo Zomosa
- University of Chile Clinical Hospital, Santiago 8380453, Chile;
| | - Víctor Pinilla-González
- Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile; (G.F.); (V.P.-G.); (C.R.-S.)
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8330111, Chile
| | - Catalina Rojas-Solé
- Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile; (G.F.); (V.P.-G.); (C.R.-S.)
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8330111, Chile
| |
Collapse
|
12
|
Yang WC, Wei MF, Lee YH, Huang CS, Kuo SH. Radiosensitizing effects of CDK4/6 inhibitors in hormone receptor-positive and HER2-negative breast cancer mediated downregulation of DNA repair mechanism and NF-κB-signaling pathway. Transl Oncol 2024; 49:102092. [PMID: 39153367 PMCID: PMC11381799 DOI: 10.1016/j.tranon.2024.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/05/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024] Open
Abstract
CDK4/6 inhibitors combined with endocrine therapy prolonged survival in hormone receptor (HR)-positive and HER2-negative advanced breast cancer. We investigated whether CDK4/6 inhibitors enhance radiosensitivity and their underlying mechanisms of this subtype of breast cancer. In vitro and in vivo experiments were conducted using two HR-positive and HER2-negative breast cancer cell lines (MCF-7 and T-47D), CDK4/6 inhibitors (ribociclib and palbociclib) and radiotherapy (RT) to assess the biological functions and mechanisms. The radiation-enhancing effect was assessed using clonogenic assays; γH2AX and 53BP1 levels were assessed by immunofluorescence to evaluate DNA damage. The levels of phospho (p)-ERK, c-Myc, and DNA-double strand break (DSB)-related molecules, p-DNA-PKcs, Rad51, and p-ATM, were assessed by western blotting. We used an NF-κB p65 transcription factor assay kit to evaluate NF-κB activity. We evaluated the antitumor effect of the combination of RT and ribociclib through the MCF-7 orthotopic xenograft model. The synergistic effects of combining RT with ribociclib and palbociclib pretreatment were demonstrated by clonogenic assay. CDK4/6 inhibitors synergistically increased the numbers of RT-induced γH2AX and 53BP1, downregulated the expression of p-DNA-PKcs, Rad51 and p-ATM activated by RT, and reduced RT-triggering p-ERK expression, NF-κB activation, and its down-streaming gene, c-Myc. Combined ribociclib and RT reduced the growth of MCF-7 cell xenograft tumors, and downregulated the immunohistochemical expression of p-ERK, p-NF-κB p65, and c-Myc compared to that in the control group. Combining CDK4/6 inhibitors enhanced radiosensitivity of HR-positive and HER2-negative breast cancer cells at least by reducing DNA-DSB repair and weakening the activation of ERK and NF-κB signaling by RT.
Collapse
Affiliation(s)
- Wen-Chi Yang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Radiation Oncology, National Taiwan University Cancer Center and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Feng Wei
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chiun-Sheng Huang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan; Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
13
|
Shi S, Zhong H, Zhang Y, Mei Q. Targeted delivery of nano-radiosensitizers for tumor radiotherapy. Coord Chem Rev 2024; 518:216101. [DOI: 10.1016/j.ccr.2024.216101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
McNeil BL, Ramogida CF. From cyclotrons to chromatography and beyond: a guide to the production and purification of theranostic radiometals. Chem Soc Rev 2024; 53:10409-10449. [PMID: 39360601 DOI: 10.1039/d4cs00802b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Recent clinical success with metal-based radiopharmaceuticals has sparked an interest in the potential of these drugs for personalized medicine. Although often overlooked, the success and global impact of nuclear medicine is contingent upon the purity and availability of medical isotopes, commonly referred to as radiometals. For nuclear medicine to reach its true potential and change patient lives, novel production and purification techniques that increase inventory of radiometals are desperately needed. This tutorial review serves as a resource for those both new and experienced in nuclear medicine by providing a detailed explanation of the foundations for the production and purification of radiometals, stemming from nuclear physics, analytical chemistry, and so many other fields, all in one document. The fundamental science behind targetry, particle accelerators, nuclear reactors, nuclear reactions, and radiochemical separation are presented in the context of the field. Finally, a summary of the latest breakthroughs and a critical discussion of the threats and future potential of the most utilized radiometals is also included. With greater understanding of the fundamentals, fellow scientists will be able to better interpret the literature, identify knowledge gaps or problems and ultimately invent new production and purification pathways to increase the global availability of medical isotopes.
Collapse
Affiliation(s)
- Brooke L McNeil
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| |
Collapse
|
15
|
Dey P, Das R, Chatterjee S, Paul R, Ghosh U. Combined effects of carbon ion radiation and PARP inhibitor on non-small cell lung carcinoma cells: Insights into DNA repair pathways and cell death mechanisms. DNA Repair (Amst) 2024; 144:103778. [PMID: 39486351 DOI: 10.1016/j.dnarep.2024.103778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024]
Abstract
The utilization of high linear energy transfer (LET) carbon ion (12C-ion) in radiotherapy has witnessed a notable rise in managing highly metastatic, recurrent, and chemo/radio-resistant human cancers. Non-small cell lung cancer (NSCLC) presents a formidable challenge due to its chemo-resistance and aggressive nature, resulting in poor prognosis and survival rates. In a previous study, we demonstrated that the combination of 12C-ion with the poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) olaparib significantly mitigated metastasis in A549 cells. Here, we delve into the underlying rationale behind the combined action of olaparib with 12C-ion, focusing on DNA repair pathways and cell death mechanisms in asynchronous NSCLC A549 cells following single and combined treatments. Evaluation included analysis of colony-forming ability, DNA damage assessed by γH2AX foci, expression profiling of key proteins involved in Homologous Recombination (HR) and Non-Homologous End Joining (NHEJ) repair pathways, caspase-3 activation, apoptotic body formation, and autophagic cell death. Our findings reveal that both PARPi olaparib and rucaparib sensitize A549 cells to 12C-ion exposure, with olaparib exhibiting superior sensitization. Moreover, 12C-ion exposure alone significantly downregulates both HR and NHEJ repair pathways by reducing the expression of MRE11--RAD51 and Ku70-Ku80 protein complexes at 24 h post-treatment. Notably, the combination of olaparib pre-treatment with 12C-ion markedly inhibits both HR and NHEJ pathways, culminating in DNA damage-induced apoptotic and autophagic cell death. Thus we are the first to demonstrate that olaparib sensitizes NSCLC cells to carbon ion by interfering with HR and NHEJ pathway. These insights underscore the promising therapeutic potential of combining PARP inhibition with carbon ion exposure for effective NSCLC management.
Collapse
Affiliation(s)
- Payel Dey
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India
| | - Rima Das
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India
| | - Sandipan Chatterjee
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India
| | - Roni Paul
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India
| | - Utpal Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India.
| |
Collapse
|
16
|
Srinivasan D, Subbarayan R, Srivastava N, Radhakrishnan A, Adtani PN, Chauhan A, Krishnamoorthy L. A comprehensive overview of radiation therapy impacts of various cancer treatments and pivotal role in the immune system. Cell Biochem Funct 2024; 42:e4103. [PMID: 39073207 DOI: 10.1002/cbf.4103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
The cancer treatment landscape is significantly evolving, focusing on advanced radiation therapy methods to maximize effectiveness and minimize the adverse effects. Recognized as a pivotal component in cancer and disease treatment, radiation therapy (RT) has drawn attention in recent research that delves into its intricate interplay with inflammation and the immune response. This exploration unveils the underlying processes that significantly influence treatment outcomes. In this context, the potential advantages of combining bronchoscopy with RT across diverse clinical scenarios, alongside the targeted impact of brachytherapy, are explored. Concurrently, radiation treatments serve multifaceted roles such as DNA repair, cell elimination, and generating immune stress signaling molecules known as damage-associated molecular patterns, elucidating their effectiveness in treating various diseases. External beam RT introduces versatility by utilizing particles such as photons, electrons, protons, or carbon ions, each offering distinct advantages. Advanced RT techniques contribute to the evolving landscape, with emerging technologies like FLASH, spatially fractionated RT, and others poised to revolutionize the field. The comprehension of RT, striving for improved treatment outcomes, reduced side effects, and facilitating personalized and innovative treatments for cancer and noncancer patients. After navigating these advancements, the goal is fixed to usher in a new era in which RT is a cornerstone of precision and effectiveness in medical interventions. In summarizing the myriad findings, the review underscores the significance of understanding the differential impacts of radiation approaches on inflammation and immune modulation, offering valuable insights for developing innovative therapeutic interventions that harness the immune system in conjunction with RT.
Collapse
Affiliation(s)
- Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Pooja Narain Adtani
- Department of Basic Medical and Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| | - Ankush Chauhan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Loganathan Krishnamoorthy
- Department of Allied Health Sciences-FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
17
|
Saif-Elnasr M, Samy EM, Abdel-Khalek AF. Cerium oxide nanoparticles display antioxidant and antiapoptotic effects on gamma irradiation-induced hepatotoxicity. Cell Biochem Funct 2024; 42:e4092. [PMID: 38978266 DOI: 10.1002/cbf.4092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/03/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Throughout radiotherapy, radiation of the hepatic tissue leads to damage of the hepatocytes. We designed the current study to examine how cerium oxide nanoparticles (CONPs) modulate gamma irradiation-induced hepatotoxicity in rats. Animals received CONPs (15 mg/kg body weight [BW], ip) single daily dose for 14 days, and they were exposed on the seventh day to a single dose of gamma radiation (6 Gy). Results showed that irradiation increased serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase activities. Furthermore, it elevated oxidative stress biomarker; malondialdehyde (MDA) and inhibited the activities of antioxidant enzymes (superoxide dismutase and glutathione peroxidase) in hepatic tissues homogenate. Additionally, hepatic apoptotic markers; caspase-3 (Casp-3) and Casp-9 were elevated and the B-cell lymphoma-2 (Bcl-2) gene level was decreased in rats exposed to radiation dose. We observed that CONPs can modulate these changes, where CONPs reduced liver enzyme activities, MDA, and apoptotic markers levels, in addition, it elevated antioxidant enzyme activities and Bcl-2 gene levels, as well as improved histopathological changes in the irradiated animals. So our results concluded that CONPs had the ability to act as radioprotector defense against hepatotoxicity resulted during radiotherapy.
Collapse
Affiliation(s)
- Mostafa Saif-Elnasr
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Esraa M Samy
- Department of Drug Radiation Research, National Center for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Assmaa Fathi Abdel-Khalek
- Internal Medicine Unit, Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
18
|
Ronca R, Supuran CT. Carbonic anhydrase IX: An atypical target for innovative therapies in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189120. [PMID: 38801961 DOI: 10.1016/j.bbcan.2024.189120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Carbonic anhydrases (CAs), are metallo-enzymes implicated in several pathophysiological processes where tissue pH regulation is required. CA IX is a tumor-associated CA isoform induced by hypoxia and involved in the adaptation of tumor cells to acidosis. Indeed, several tumor-driving pathways can induce CA IX expression, and this in turn has been associated to cancer cells invasion and metastatic features as well as to induction of stem-like features, drug resistance and recurrence. After its functional and structural characterization CA IX targeting approaches have been developed to inhibit its activity in neoplastic tissues, and to date this field has seen an incredible acceleration in terms of therapeutic options and biological readouts. Small molecules inhibitors, hybrid/dual targeting drugs, targeting antibodies and adoptive (CAR-T based) cell therapy have been developed at preclinical level, whereas a sulfonamide CA IX inhibitor and an antibody entered Phase Ib/II clinical trials for the treatment and imaging of different solid tumors. Here recent advances on CA IX biology and pharmacology in cancer, and its therapeutic targeting will be discussed.
Collapse
Affiliation(s)
- Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy.
| |
Collapse
|
19
|
Yamashita K, Yasui H, Bo T, Fujimoto M, Inanami O. Mechanism of the Radioresistant Colorectal Cancer Cell Line SW480RR Established after Fractionated X Irradiation. Radiat Res 2024; 202:38-50. [PMID: 38779845 DOI: 10.1667/rade-23-00021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Radioresistant cancer cells are risk factors for recurrence and are occasionally detected in recurrent tumors after radiotherapy. Intratumor heterogeneity is believed to be a potential cause of treatment resistance. Heterogeneity in DNA content has also been reported in human colorectal cancer; however, little is known about how such heterogeneity changes with radiotherapy or how it affects cancer radioresistance. In the present study, we established radioresistant clone SW480RR cells after fractionated X-ray irradiation of human colorectal cancer-derived SW480.hu cells, which are composed of two cell populations with different chromosome numbers, and examined how cellular radioresistance changed with fractionated radiotherapy. Compared with the parental cell population, which mostly comprised cells with higher ploidy, the radioresistant clones showed lower ploidy and less initial DNA damage. The lower ploidy cells in the parental cell population were identified as having radioresistance prior to irradiation; thus, SW480RR cells were considered intrinsically radioresistant cells selected from the parental population through fractionated irradiation. This study presents a practical example of the emergence of radioresistant cells from a cell population with ploidy heterogeneity after irradiation. The most likely mechanism is the selection of an intrinsically radioresistant population after fractionated X-ray irradiation, with a background in which lower ploidy cells exhibit lower initial DNA damage.
Collapse
Affiliation(s)
- Koya Yamashita
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoki Bo
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masaki Fujimoto
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Lerouge L, Ruch A, Pierson J, Thomas N, Barberi-Heyob M. Non-targeted effects of radiation therapy for glioblastoma. Heliyon 2024; 10:e30813. [PMID: 38778925 PMCID: PMC11109805 DOI: 10.1016/j.heliyon.2024.e30813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Radiotherapy is recommended for the treatment of brain tumors such as glioblastoma (GBM) and brain metastases. Various curative and palliative scenarios suggest improved local-regional control. Although the underlying mechanisms are not yet clear, additional therapeutic effects have been described, including proximity and abscopal reactions at the treatment site. Clinical and preclinical data suggest that the immune system plays an essential role in regulating the non-targeted effects of radiotherapy for GBM. This article reviews current biological mechanisms for regulating the non-targeted effects caused by external and internal radiotherapy, and how they might be applied in a clinical context. Optimization of therapeutic regimens requires assessment of the complexity of the host immune system on the activity of immunosuppressive or immunostimulatory cells, such as glioma-associated macrophages and microglia. This article also discusses recent preclinical models adapted to post-radiotherapy responses. This narrative review explores and discusses the current status of immune responses both locally via the "bystander effect" and remotely via the "abscopal effect". Preclinical and clinical observations demonstrate that unirradiated cells, near or far from the irradiation site, can control the tumor response. Nevertheless, previous studies do not address the problem in its global context, and present gaps regarding the link between the role of the immune system in the control of non-targeted effects for different types of radiotherapy and different fractionation schemes applied to GBM. This narrative synthesis of the scientific literature should help to update and critique available preclinical and medical knowledge. Indirectly, it will help formulate new research projects based on the synthesis and interpretation of results from a non-systematic selection of published studies.
Collapse
Affiliation(s)
- Lucie Lerouge
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine, CNRS, 54500 Vandœuvre-lès-Nancy, France
| | - Aurélie Ruch
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine, CNRS, 54500 Vandœuvre-lès-Nancy, France
| | - Julien Pierson
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine, CNRS, 54500 Vandœuvre-lès-Nancy, France
| | - Noémie Thomas
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine, CNRS, 54500 Vandœuvre-lès-Nancy, France
| | - Muriel Barberi-Heyob
- Department of Biology, Signals and Systems in Cancer and Neuroscience, CRAN, UMR7039, Université de Lorraine, CNRS, 54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
21
|
Fowler-Shorten DJ, Hellmich C, Markham M, Bowles KM, Rushworth SA. BCL-2 inhibition in haematological malignancies: Clinical application and complications. Blood Rev 2024; 65:101195. [PMID: 38523032 DOI: 10.1016/j.blre.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
B-cell lymphoma-2 (BCL-2) family proteins are fundamental regulators of the intrinsic apoptotic pathway which modulate cellular fate. In many haematological malignancies, overexpression of anti-apoptotic factors (BCL-2, BCL-XL and MCL-1) circumvent apoptosis. To address this cancer hallmark, a concerted effort has been made to induce apoptosis by inhibiting BCL-2 family proteins. A series of highly selective BCL-2 homology 3 (BH3) domain mimetics are in clinical use and in ongoing clinical trials for acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML), chronic lymphocytic leukaemia (CLL), and multiple myeloma (MM). These inhibitors serve as promising candidates, both as single agents or in combination therapy to improve patient outcomes. In other diseases such as follicular lymphoma, efficacy has been notably limited. There are also clinical problems with BCL-2 family inhibition, including drug resistance, disease relapse, tumour lysis syndrome, and clinically relevant cytopenias. Here, we provide a balanced view on both the clinical benefits of BCL-2 inhibition as well as the associated challenges.
Collapse
Affiliation(s)
- Dominic J Fowler-Shorten
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Charlotte Hellmich
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK; Department of Haematology, Norfolk and Norwich University Hospital NHS Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Matthew Markham
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Kristian M Bowles
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK; Department of Haematology, Norfolk and Norwich University Hospital NHS Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Stuart A Rushworth
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK.
| |
Collapse
|
22
|
Hu D, Miao M, Zhou H, Gu X, Wang X, Teichmann AT, Wang Q, Yang Y. A Case Report of Malignant Perivascular Epithelioid Cell Tumors of the Uterus and Literature Review. Int J Womens Health 2024; 16:619-628. [PMID: 38645980 PMCID: PMC11027917 DOI: 10.2147/ijwh.s453226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/09/2024] [Indexed: 04/23/2024] Open
Abstract
Perivascular epithelioid cell tumors (PEComas) are rare mesenchymal tumors originating from perivascular epithelioid cells. In gynecological system, the uterus is one of the most common sites affected by PEComas. Most PEComas are benign, and patients usually have a good prognosis. However, malignant uterus PEComa is rare, and better comprehensive epidemiological investigations are needed. To date, there are a few reported cases of uterus PEComa. We herein report a rare case of malignant PEComa occurred in the uterine corpus and cervix, possibly accompanied by pulmonary lymphangioleiomyomatosis (PLAM). In addition, 55 cases of malignant uterus PEComa were picked out and collected in the data base of PubMed and Medline. On the one hand, the age of onset, population distribution, clinical manifestations, metastatic sites and routes of metastasis were analysed. On the other hand, a summary of the epidemiology, pathogenesis, diagnosis, and treatments of uterus PEComa was given.
Collapse
Affiliation(s)
- Daifeng Hu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Mengyue Miao
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Hui Zhou
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xia Gu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People’s Republic of China
| | - Xuedan Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Qin Wang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Youzhe Yang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
23
|
Shea AG, Idrissou MB, Torres AI, Chen T, Hernandez R, Morris ZS, Sodji QH. Immunological effects of radiopharmaceutical therapy. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1331364. [PMID: 39355211 PMCID: PMC11440989 DOI: 10.3389/fnume.2024.1331364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/14/2024] [Indexed: 10/03/2024]
Abstract
Radiation therapy (RT) is a pillar of cancer therapy used by more than half of all cancer patients. Clinically, RT is mostly delivered as external beam radiation therapy (EBRT). However, the scope of EBRT is limited in the metastatic setting, where all sites of disease need to be irradiated. Such a limitation is attributed to radiation-induced toxicities, for example on bone marrow and hematologic toxicities, resulting from a large EBRT field. Radiopharmaceutical therapy (RPT) has emerged as an alternative to EBRT for the irradiation of all sites of metastatic disease. While RPT can reduce tumor burden, it can also impact the immune system and anti-tumor immunity. Understanding these effects is crucial for predicting and managing treatment-related hematological toxicities and optimizing their integration with other therapeutic modalities, such as immunotherapies. Here, we review the immunomodulatory effects of α- and β-particle emitter-based RPT on various immune cell lines, such as CD8+ and CD4+ T cells, natural killer (NK) cells, and regulatory T (Treg) cells. We briefly discuss Auger electron-emitter (AEE)-based RPT, and finally, we highlight the combination of RPT with immune checkpoint inhibitors, which may offer potential therapeutic synergies for patients with metastatic cancers.
Collapse
Affiliation(s)
- Amanda G. Shea
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Malick Bio Idrissou
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Ana Isabel Torres
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Tessa Chen
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Reiner Hernandez
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Quaovi H. Sodji
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
24
|
Almeida A, Godfroid C, Leavitt RJ, Montay-Gruel P, Petit B, Romero J, Ollivier J, Meziani L, Sprengers K, Paisley R, Grilj V, Limoli CL, Romero P, Vozenin MC. Antitumor Effect by Either FLASH or Conventional Dose Rate Irradiation Involves Equivalent Immune Responses. Int J Radiat Oncol Biol Phys 2024; 118:1110-1122. [PMID: 37951550 PMCID: PMC11093276 DOI: 10.1016/j.ijrobp.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/14/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE The capability of ultrahigh dose rate FLASH radiation therapy to generate the FLASH effect has opened the possibility to enhance the therapeutic index of radiation therapy. The contribution of the immune response has frequently been hypothesized to account for a certain fraction of the antitumor efficacy and tumor kill of FLASH but has yet to be rigorously evaluated. METHODS AND MATERIALS To investigate the immune response as a potentially important mechanism of the antitumor effect of FLASH, various murine tumor models were grafted either subcutaneously or orthotopically into immunocompetent mice or in moderately and severely immunocompromised mice. Mice were locally irradiated with single dose (20 Gy) or hypofractionated regimens (3 × 8 or 2 × 6 Gy) using FLASH (≥2000 Gy/s) and conventional (CONV) dose rates (0.1 Gy/s), with/without anti-CTLA-4. Tumor growth was monitored over time and immune profiling performed. RESULTS FLASH and CONV 20 Gy were isoeffective in delaying tumor growth in immunocompetent and moderately immunodeficient hosts and increased tumor doubling time to >14 days versus >7 days in control animals. Similar observations were obtained with a hypofractionated scheme, regardless of the microenvironment (subcutaneous flank vs ortho lungs). Interestingly, in profoundly immunocompromised mice, 20 Gy FLASH retained antitumor activity and significantly increased tumor doubling time to >14 days versus >8 days in control animals, suggesting a possible antitumor mechanism independent of the immune response. Analysis of the tumor microenvironment showed similar immune profiles after both irradiation modalities with significant decrease of lymphoid cells by ∼40% and a corresponding increase of myeloid cells. In addition, FLASH and CONV did not increase transforming growth factor-β1 levels in tumors compared with unirradiated control animals. Furthermore, when a complete and long-lasting antitumor response was obtained (>140 days), both modalities of irradiation were able to generate a long-term immunologic memory response. CONCLUSIONS The present results clearly document that the tumor responses across multiple immunocompetent and immunodeficient mouse models are largely dose rate independent and simultaneously contradict a major role of the immune response in the antitumor efficacy of FLASH. Therefore, our study indicates that FLASH is as potent as CONV in modulating antitumor immune response and can be used as an immunomodulatory agent.
Collapse
Affiliation(s)
- Aymeric Almeida
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Céline Godfroid
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| | - Ron J Leavitt
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pierre Montay-Gruel
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Radiation Oncology Department, Iridium Netwerk, Wilrijk (Antwerp), Belgium; Antwerp Research in Radiation Oncology (AReRO), Centre for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Benoit Petit
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jackeline Romero
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jonathan Ollivier
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lydia Meziani
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kevin Sprengers
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Ryan Paisley
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Veljko Grilj
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California
| | - Pedro Romero
- Department of Oncology UNIL CHUV, University of Lausanne, Épalinges, Switzerland
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
25
|
Marino N, Bedeschi M, Vaccari ME, Cambiaghi M, Tesei A. Glitches in the brain: the dangerous relationship between radiotherapy and brain fog. Front Cell Neurosci 2024; 18:1328361. [PMID: 38515789 PMCID: PMC10956129 DOI: 10.3389/fncel.2024.1328361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Up to approximately 70% of cancer survivors report persistent deficits in memory, attention, speed of information processing, multi-tasking, and mental health functioning, a series of symptoms known as "brain fog." The severity and duration of such effects can vary depending on age, cancer type, and treatment regimens. In particular, every year, hundreds of thousands of patients worldwide undergo radiotherapy (RT) for primary brain tumors and brain metastases originating from extracranial tumors. Besides its potential benefits in the control of tumor progression, recent studies indicate that RT reprograms the brain tumor microenvironment inducing increased activation of microglia and astrocytes and a consequent general condition of neuroinflammation that in case it becomes chronic could lead to a cognitive decline. Furthermore, radiation can induce endothelium reticulum (ER) stress directly or indirectly by generating reactive oxygen species (ROS) activating compensatory survival signaling pathways in the RT-surviving fraction of healthy neuronal and glial cells. In particular, the anomalous accumulation of misfolding proteins in neuronal cells exposed to radiation as a consequence of excessive activation of unfolded protein response (UPR) could pave the way to neurodegenerative disorders. Moreover, exposure of cells to ionizing radiation was also shown to affect the normal proteasome activity, slowing the degradation rate of misfolded proteins, and further exacerbating ER-stress conditions. This compromises several neuronal functions, with neuronal accumulation of ubiquitinated proteins with a consequent switch from proteasome to immunoproteasome that increases neuroinflammation, a crucial risk factor for neurodegeneration. The etiology of brain fog remains elusive and can arise not only during treatment but can also persist for an extended period after the end of RT. In this review, we will focus on the molecular pathways triggered by radiation therapy affecting cognitive functions and potentially at the origin of so-called "brain fog" symptomatology, with the aim to define novel therapeutic strategies to preserve healthy brain tissue from cognitive decline.
Collapse
Affiliation(s)
- Noemi Marino
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Martina Bedeschi
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Melania Elettra Vaccari
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Marco Cambiaghi
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Tesei
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
26
|
Osapoetra LO, Dasgupta A, DiCenzo D, Fatima K, Quiaoit K, Saifuddin M, Karam I, Poon I, Husain Z, Tran WT, Sannachi L, Czarnota GJ. Quantitative US Delta Radiomics to Predict Radiation Response in Individuals with Head and Neck Squamous Cell Carcinoma. Radiol Imaging Cancer 2024; 6:e230029. [PMID: 38391311 PMCID: PMC10988345 DOI: 10.1148/rycan.230029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Purpose To investigate the role of quantitative US (QUS) radiomics data obtained after the 1st week of radiation therapy (RT) in predicting treatment response in individuals with head and neck squamous cell carcinoma (HNSCC). Materials and Methods This prospective study included 55 participants (21 with complete response [median age, 65 years {IQR: 47-80 years}, 20 male, one female; and 34 with incomplete response [median age, 59 years {IQR: 39-79 years}, 33 male, one female) with bulky node-positive HNSCC treated with curative-intent RT from January 2015 to October 2019. All participants received 70 Gy of radiation in 33-35 fractions over 6-7 weeks. US radiofrequency data from metastatic lymph nodes were acquired prior to and after 1 week of RT. QUS analysis resulted in five spectral maps from which mean values were extracted. We applied a gray-level co-occurrence matrix technique for textural analysis, leading to 20 QUS texture and 80 texture-derivative parameters. The response 3 months after RT was used as the end point. Model building and evaluation utilized nested leave-one-out cross-validation. Results Five delta (Δ) parameters had statistically significant differences (P < .05). The support vector machines classifier achieved a sensitivity of 71% (15 of 21), a specificity of 76% (26 of 34), a balanced accuracy of 74%, and an area under the receiver operating characteristic curve of 0.77 on the test set. For all the classifiers, the performance improved after the 1st week of treatment. Conclusion A QUS Δ-radiomics model using data obtained after the 1st week of RT from individuals with HNSCC predicted response 3 months after treatment completion with reasonable accuracy. Keywords: Computer-Aided Diagnosis (CAD), Ultrasound, Radiation Therapy/Oncology, Head/Neck, Radiomics, Quantitative US, Radiotherapy, Head and Neck Squamous Cell Carcinoma, Machine Learning Clinicaltrials.gov registration no. NCT03908684 Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
| | | | - Daniel DiCenzo
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Kashuf Fatima
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Karina Quiaoit
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Murtuza Saifuddin
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Irene Karam
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Ian Poon
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Zain Husain
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - William T. Tran
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Lakshmanan Sannachi
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Gregory J. Czarnota
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| |
Collapse
|
27
|
Chen W, Yang C, Chen B, Xi M, Chen B, Li Q. Management of metastatic bone disease of melanoma. Melanoma Res 2024; 34:22-30. [PMID: 37939058 DOI: 10.1097/cmr.0000000000000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
One of the most aggressive tumors arising from the skin, mucosa, and uvea is malignant melanoma, which easily metastasizes. Bone tissue is one of the most typical locations for distant metastasis, and around 5%-20% of patients eventually acquired skeletal metastases. For decades, the incidence of bone metastases was higher, bringing greater burden on the family, society, and healthcare system owing to the progress of targeted therapy and immunotherapy, which prolonging the survival time substantially. Moreover, bone metastases result in skeletal-related events, which influence the quality of life, obviously. Appropriate intervention is therefore crucial. To obtain the optimum cost-effectiveness, existing treatment algorithm must be integrated, which is still controversial. We have aimed to throw light on current views concerning the formation, biological and clinical features, and treatment protocol of melanoma bone metastases to guide the decision-making process.
Collapse
Affiliation(s)
- Wenyan Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Chen Yang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Biqi Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Mian Xi
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Baoqing Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Qiaoqiao Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine
- Guangdong Esophageal Cancer Research Institute
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| |
Collapse
|
28
|
Zefrei FJ, Shormij M, Dastranj L, Alvandi M, Shaghaghi Z, Farzipour S, Zarei-Polgardani N. Ferroptosis Inducers as Promising Radiosensitizer Agents in Cancer Radiotherapy. Curr Radiopharm 2024; 17:14-29. [PMID: 37974441 DOI: 10.2174/0118744710262369231110065230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 11/19/2023]
Abstract
Radiotherapy (RT) failure has historically been mostly attributed to radioresistance. Ferroptosis is a type of controlled cell death that depends on iron and is caused by polyunsaturated fatty acid peroxidative damage. Utilizing a ferroptosis inducer may be a successful tactic for preventing tumor growth and radiotherapy-induced cell death. A regulated form of cell death known as ferroptosis is caused by the peroxidation of phospholipids containing polyunsaturated fatty acids in an iron-dependent manner (PUFA-PLs). The ferroptosis pathway has a number of important regulators. By regulating the formation of PUFA-PLs, the important lipid metabolism enzyme ACSL4 promotes ferroptosis, whereas SLC7A11 and (glutathione peroxidase 4) GPX4 prevent ferroptosis. In addition to introducing the ferroptosis inducer chemicals that have recently been demonstrated to have a radiosensitizer effect, this review highlights the function and methods by which ferroptosis contributes to RT-induced cell death and tumor suppression in vitro and in vivo.
Collapse
Affiliation(s)
- Fatemeh-Jalali Zefrei
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammd Shormij
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences-Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leila Dastranj
- Department of Physics, Hakim Sabzevari University, Sabzevar, Iran
| | - Maryam Alvandi
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Shaghaghi
- Department of Radiopharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soghra Farzipour
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Nasim Zarei-Polgardani
- Department of Animal Sciences and Marine Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, G.C, Evin, Tehran, Iran
| |
Collapse
|
29
|
Mahmoudi R, Afshar S, Amini R, Jalali A, Saidijam M, Najafi R. Evaluation of BMP-2 as a Differentiating and Radiosensitizing Agent for Colorectal Cancer Stem Cells. Curr Stem Cell Res Ther 2024; 19:83-93. [PMID: 36998132 DOI: 10.2174/1574888x18666230330085615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Despite effective clinical responses, a large proportion of patients undergo resistance to radiotherapy. The low response rate to current treatments in different stages of colorectal cancer depends on the prominent role of stem cells in cancer. OBJECTIVE In the present study, the role of BMP-2 as an ionizing radiation-sensitive factor in colorectal cancer cells was investigated. METHODS A sphere formation assay was used for the enrichment of HCT-116 cancer stem cells (CSCs). The effects of combination therapy (BMP-2+ radiation) on DNA damage response (DDR), proliferation, and apoptosis were evaluated in HCT-116 and CSCs. Gene expressions of CSCs and epithelialmesenchymal transition (EMT) markers were also evaluated. RESULTS We found that the sphere formation assay showed a significant increase in the percentage of CSCs. Moreover, expression of CSCs markers, EMT-related genes, and DNA repair proteins significantly decreased in HCT-116 cells compared to the CSCs group after radiation. In addition, BMP-2 promoted the radiosensitivity of HCT-116 cells by decreasing the survival rate of the treated cells at 2, 4, and 6 Gy compared to the control group in HCT-116 cells. CONCLUSION Our findings indicated that BMP-2 could affect numerous signaling pathways involved in radioresistance. Therefore, BMP-2 can be considered an appealing therapeutic target for the treatment of radioresistant human colorectal cancer.
Collapse
Affiliation(s)
- Roghayeh Mahmoudi
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Jalali
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
30
|
Mohammadgholi M, Hosseinimehr SJ. Crosstalk between Oxidative Stress and Inflammation Induced by Ionizing Radiation in Healthy and Cancerous Cells. Curr Med Chem 2024; 31:2751-2769. [PMID: 37026495 DOI: 10.2174/0929867330666230407104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 04/08/2023]
Abstract
Radiotherapy (RT) is a unique modality in cancer treatment with no replacement in many cases and uses a tumoricidal dose of various ionizing radiation (IR) types to kill cancer cells. It causes oxidative stress through reactive oxygen species (ROS) production or the destruction of antioxidant systems. On the other hand, RT stimulates the immune system both directly and indirectly by releasing danger signals from stress-exposed and dying cells. Oxidative stress and inflammation are two reciprocal and closely related mechanisms, one induced and involved by the other. ROS regulates the intracellular signal transduction pathways, which participate in the activation and expression of pro-inflammatory genes. Reciprocally, inflammatory cells release ROS and immune system mediators during the inflammation process, which drive the induction of oxidative stress. Oxidative stress or inflammation-induced damages can result in cell death (CD) or survival mechanisms that may be destructive for normal cells or beneficial for cancerous cells. The present study has focused on the radioprotection of those agents with binary effects of antioxidant and anti-inflammatory mechanisms IR-induced CD.
Collapse
Affiliation(s)
- Mohsen Mohammadgholi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
31
|
He J, Yan Y, Zhang J, Wei Z, Li H, Xing L. Synergistic treatment strategy: combining CAR-NK cell therapy and radiotherapy to combat solid tumors. Front Immunol 2023; 14:1298683. [PMID: 38162672 PMCID: PMC10755030 DOI: 10.3389/fimmu.2023.1298683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Immunotherapy, notably chimeric antigen receptor (CAR) modified natural killer (NK) cell therapy, has shown exciting promise in the treatment of hematologic malignancies due to its unique advantages including fewer side effects, diverse activation mechanisms, and wide availability. However, CAR-NK cell therapies have demonstrated limited efficacy against solid tumors, primarily due to challenges posed by the solid tumor microenvironment. In contrast, radiotherapy, a well-established treatment modality, has been proven to modulate the tumor microenvironment and facilitate immune cell infiltration. With these observations, we hypothesize that a novel therapeutic strategy integrating CAR-NK cell therapy with radiotherapy could enhance the ability to treat solid tumors. This hypothesis aims to address the obstacles CAR-NK cell therapies face within the solid tumor microenvironment and explore the potential efficacy of their combination with radiotherapy. By capitalizing on the synergistic advantages of CAR-NK cell therapy and radiotherapy, we posit that this could lead to improved prognoses for patients with solid tumors.
Collapse
Affiliation(s)
- Jie He
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yushan Yan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jun Zhang
- Asclepius (Soochow) Technology Company Group, Suzhou, Jiangsu, China
| | - Zhiming Wei
- Asclepius (Soochow) Technology Company Group, Suzhou, Jiangsu, China
| | - Huashun Li
- Asclepius (Soochow) Technology Company Group, Suzhou, Jiangsu, China
| | - Ligang Xing
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
32
|
Abdelaziz RF, Hussein AM, Kotob MH, Weiss C, Chelminski K, Stojanovic T, Studenik CR, Aufy M. Enhancement of Radiation Sensitivity by Cathepsin L Suppression in Colon Carcinoma Cells. Int J Mol Sci 2023; 24:17106. [PMID: 38069428 PMCID: PMC10707098 DOI: 10.3390/ijms242317106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer is one of the main causes of death globally. Radiotherapy/Radiation therapy (RT) is one of the most common and effective cancer treatments. RT utilizes high-energy radiation to damage the DNA of cancer cells, leading to their death or impairing their proliferation. However, radiation resistance remains a significant challenge in cancer treatment, limiting its efficacy. Emerging evidence suggests that cathepsin L (cath L) contributes to radiation resistance through multiple mechanisms. In this study, we investigated the role of cath L, a member of the cysteine cathepsins (caths) in radiation sensitivity, and the potential reduction in radiation resistance by using the specific cath L inhibitor (Z-FY(tBu)DMK) or by knocking out cath L with CRISPR/Cas9 in colon carcinoma cells (caco-2). Cells were treated with different doses of radiation (2, 4, 6, 8, and 10), dose rate 3 Gy/min. In addition, the study conducted protein expression analysis by western blot and immunofluorescence assay, cytotoxicity MTT, and apoptosis assays. The results demonstrated that cath L was upregulated in response to radiation treatment, compared to non-irradiated cells. In addition, inhibiting or knocking out cath L led to increased radiosensitivity in contrast to the negative control group. This may indicate a reduced ability of cancer cells to recover from radiation-induced DNA damage, resulting in enhanced cell death. These findings highlight the possibility of targeting cath L as a therapeutic strategy to enhance the effectiveness of RT. Further studies are needed to elucidate the underlying molecular mechanisms and to assess the translational implications of cath L knockout in clinical settings. Ultimately, these findings may contribute to the development of novel treatment approaches for improving outcomes of RT in cancer patients.
Collapse
Affiliation(s)
- Ramadan F. Abdelaziz
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (R.F.A.); (M.H.K.); (C.W.); (M.A.)
- Division of Human Health, International Atomic Energy Agency, Wagramer Str. 5, 1400 Vienna, Austria;
| | - Ahmed M. Hussein
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (R.F.A.); (M.H.K.); (C.W.); (M.A.)
| | - Mohamed H. Kotob
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (R.F.A.); (M.H.K.); (C.W.); (M.A.)
| | - Christina Weiss
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (R.F.A.); (M.H.K.); (C.W.); (M.A.)
| | - Krzysztof Chelminski
- Division of Human Health, International Atomic Energy Agency, Wagramer Str. 5, 1400 Vienna, Austria;
| | - Tamara Stojanovic
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Christian R. Studenik
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (R.F.A.); (M.H.K.); (C.W.); (M.A.)
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria; (R.F.A.); (M.H.K.); (C.W.); (M.A.)
| |
Collapse
|
33
|
Wang C, Zhao M, Xie J, Wang H, Gu Z, Sun F. Colon-Targeted Release of Gel Microspheres Loaded with Antioxidative Fullerenol for Relieving Radiation-Induced Colon Injury and Regulating Intestinal Flora. Adv Healthc Mater 2023; 12:e2301758. [PMID: 37657180 DOI: 10.1002/adhm.202301758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Radiation-induced colitis is a serious clinical problem worldwide. However, the current treatment options for this condition have limited efficacy and can cause side effects. To address this issue, colon-targeted fullerenol@pectin@chitosan gel microspheres (FPCGMs) are developed, which can aggregate on colon tissue for a long time, scavenge free radicals generated in the process of radiation, and regulate intestinal flora to mitigate damage to colonic tissue. First, FPCGMs exhibit acid resistance and colon-targeted release properties, which reduce gastrointestinal exposure and extend the local colonic drug residence time. Second, fullerenol, which has a superior scavenging ability and chemical stability, reduces oxidative stress in colonic epithelial cells. Based on this, it is found that FPCGMs significantly reduce inflammation in colonic tissue, mitigated damage to tight junctions of colonic epithelial cells, and significantly relieved radiation-induced colitis in mice. Moreover, 16S ribosomal DNA (16S rDNA) sequencing results show that the composition of the intestinal flora is optimized after FPCGMs are utilized, indicating that the relative abundance of probiotics increases while harmful bacteria are inhibited. These findings suggest that it is a promising candidate for treating radiation-induced colitis.
Collapse
Affiliation(s)
- Chengyan Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Maoru Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiani Xie
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Hongping Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|
34
|
Przygoda M, Bartusik-Aebisher D, Dynarowicz K, Cieślar G, Kawczyk-Krupka A, Aebisher D. Cellular Mechanisms of Singlet Oxygen in Photodynamic Therapy. Int J Mol Sci 2023; 24:16890. [PMID: 38069213 PMCID: PMC10706571 DOI: 10.3390/ijms242316890] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
In this review, we delve into the realm of photodynamic therapy (PDT), an established method for combating cancer. The foundation of PDT lies in the activation of a photosensitizing agent using specific wavelengths of light, resulting in the generation of reactive oxygen species (ROS), notably singlet oxygen (1O2). We explore PDT's intricacies, emphasizing its precise targeting of cancer cells while sparing healthy tissue. We examine the pivotal role of singlet oxygen in initiating apoptosis and other cell death pathways, highlighting its potential for minimally invasive cancer treatment. Additionally, we delve into the complex interplay of cellular components, including catalase and NOX1, in defending cancer cells against PDT-induced oxidative and nitrative stress. We unveil an intriguing auto-amplifying mechanism involving secondary singlet oxygen production and catalase inactivation, offering promising avenues for enhancing PDT's effectiveness. In conclusion, our review unravels PDT's inner workings and underscores the importance of selective illumination and photosensitizer properties for achieving precision in cancer therapy. The exploration of cellular responses and interactions reveals opportunities for refining and optimizing PDT, which holds significant potential in the ongoing fight against cancer.
Collapse
Affiliation(s)
- Maria Przygoda
- Students English Division Science Club, Medical College of The University of Rzeszów, 35-315 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
35
|
Gandhi VV, Gandhi KA, Goda JS, Kumbhare LB, Gota V, Kunwar A. Post-radiation treatment of 3,3'-diselenodipropionic acid augments cell kill by modulating DNA repair and cell migration pathways in A549 cells. IUBMB Life 2023; 75:811-829. [PMID: 37072689 DOI: 10.1002/iub.2727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/14/2023] [Indexed: 04/20/2023]
Abstract
Aim of the present study was to test whether ionizing radiation (IR) treatment along with 3,3'-diselenodipropionic acid (DSePA), a redox active organodiselenide achieved better tumor control by suppressing the growth and migration of lung cancer cells. The results indicated that post-IR (2 Gy) treatment of DSePA (5 μM) led to a significantly higher cell death as compared to that of DSePA and IR treatments separately. Importantly, combinatorial treatment also showed reduction in the proportion of cancer stem cells and the clonogenic survival of A549 cells. The mechanistic studies indicated that combinatorial treatment although exhibited reductive environment (marked by decrease in ROS and increase of GSH/GSSG) at early time points (2-6 h postradiation), slowed DNA repair, inhibited epithelial-mesenchymal transition (EMT)/cell migration and induced significant level of apoptosis. DSePA mediated suppression of ATM/DNAPKs/p53 (DNA damage response signaling) and Akt/G-CSF (EMT) pathways appeared to be the major mechanism responsible for its radio-modulating activity. Finally, the combined treatment of IR (2 Gy × 4) and DSePA (0.1-0.25 mg/kg body weight daily through oral gavage) showed a significantly higher tumor suppression of the A549 xenograft as compared to that of DSePA and IR treatments separately in the mouse model. In conclusion, post-IR treatment of DSePA augmented cell kill by inhibiting DNA repair and cell migration in A549 cells.
Collapse
Affiliation(s)
- Vishwa Vipulkumar Gandhi
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Khushboo Atulkumar Gandhi
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Jayant Sastri Goda
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Department of Radiation Oncology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | | | - Vikram Gota
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Amit Kunwar
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
36
|
Dasgupta A, Saifuddin M, McNabb E, Ho L, Lu L, Vesprini D, Karam I, Soliman H, Chow E, Gandhi S, Trudeau M, Tran W, Curpen B, Stanisz G, Sahgal A, Kolios M, Czarnota GJ. Novel MRI-guided focussed ultrasound stimulated microbubble radiation enhancement treatment for breast cancer. Sci Rep 2023; 13:13566. [PMID: 37604988 PMCID: PMC10442356 DOI: 10.1038/s41598-023-40551-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
Preclinical studies have demonstrated focused ultrasound (FUS) stimulated microbubble (MB) rupture leads to the activation of acid sphingomyelinase-ceramide pathway in the endothelial cells. When radiotherapy (RT) is delivered concurrently with FUS-MB, apoptotic pathway leads to increased cell death resulting in potent radiosensitization. Here we report the first human trial of using magnetic resonance imaging (MRI) guided FUS-MB treatment in the treatment of breast malignancies. In the phase 1 prospective interventional study, patients with breast cancer were treated with fractionated RT (5 or 10 fractions) to the disease involving breast or chest wall. FUS-MB treatment was delivered before 1st and 5th fractions of RT (within 1 h). Eight patients with 9 tumours were treated. All 7 evaluable patients with at least 3 months follow-up treated for 8 tumours had a complete response in the treated site. The maximum acute toxicity observed was grade 2 dermatitis in 1 site, and grade 1 in 8 treated sites, at one month post RT, which recovered at 3 months. No RT-related late effect or FUS-MB related toxicity was noted. This study demonstrated safety of combined FUS-MB and RT treatment. Promising response rates suggest potential strong radiosensitization effects of the investigational modality.Trial registration: clinicaltrials.gov, identifier NCT04431674.
Collapse
Affiliation(s)
- Archya Dasgupta
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON, M4N3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | | | - Evan McNabb
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Ling Ho
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON, M4N3M5, Canada
| | - Lin Lu
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON, M4N3M5, Canada
| | - Danny Vesprini
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON, M4N3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Irene Karam
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON, M4N3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON, M4N3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Edward Chow
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON, M4N3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Sonal Gandhi
- Department of Medical Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Maureen Trudeau
- Department of Medical Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - William Tran
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON, M4N3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Belinda Curpen
- Department of Medical Imaging, Sunnybrook Health Sciences, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Greg Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Biophysics, University of Toronto, Toronto, Canada
- Canada Research Chair in Cancer Imaging, Canadian Institutes of Health Research, Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON, M4N3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | | | - Gregory J Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, T2, Toronto, ON, M4N3M5, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, Canada.
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada.
- Department of Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
37
|
Zhang L, Tang T, Liu L, Li C, Li Y, Geng C. Effect of tumor-infiltrating lymphocytes depending on the presence of postmastectomy radiotherapy on the prognosis in pT1-2N1M0 breast cancer. Front Oncol 2023; 13:1175965. [PMID: 37601690 PMCID: PMC10436467 DOI: 10.3389/fonc.2023.1175965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Background Currently, it remains unclear regarding the association between tumor-infiltrating lymphocytes (TILs) and the efficacy of postoperative radiotherapy in primary tumors. Here we attempted to investigate the effect of TILs depending on the presence of postmastectomy radiotherapy (PMRT) on the prognosis in pT1-2N1M0 breast cancer. Methods The clinical data of pT1-2N1M0 breast cancer patients undergoing mastectomy and axillary lymph node dissection were retrospectively analyzed. The effect of TILs on the prognosis was assessed based on the infiltration degree (low: TILs ≤10%, high: TILs >10%), and then the prognosis of patients with low and high infiltration of TILs was analyzed based on presence or absence of PMRT. Results Totally 213 patients were eligible for the study, including 162 cases of low infiltration and 51 of high infiltration. High-infiltration patients tended to be ER/PR-negative, HER2-positive, and have high histological grade. The infiltration in triple-negative and HER2-positive subtypes was higher compared with Luminal A subtype. Regarding local-regional recurrence-free survival, recurrence-free survival, and overall survival (OS) rates, the differences were all inapparent whether in high- and low-infiltration patients or in high-infiltration patients with/without PMRT. Compared with those without PMRT, low-infiltration patients with PMRT showed a significantly increased OS rate (92.8% vs. 80.0%, p=0.023). Multivariate analysis further confirmed PMRT as an independent predicator of OS in low-infiltration patients (HR: 0.228, 95%CI: 0.081-0.644, p=0.005). Conclusion High infiltration of TILs in pT1-2N1M0 breast cancer may be associated with clinicopathological factors. Low-infiltration patients, but not high-infiltration patients, may derive survival benefits from PMRT.
Collapse
Affiliation(s)
| | | | | | | | | | - Cuizhi Geng
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
38
|
Singh K, Han C, Fleming JL, Becker AP, McElroy J, Cui T, Johnson B, Kumar A, Sebastian E, Showalter CA, Schrock MS, Summers MK, Becker V, Tong ZY, Meng X, Manring HR, Venere M, Bell EH, Robe PA, Grosu AL, Haque SJ, Chakravarti A. TRIB1 confers therapeutic resistance in GBM cells by activating the ERK and Akt pathways. Sci Rep 2023; 13:12424. [PMID: 37528172 PMCID: PMC10394028 DOI: 10.1038/s41598-023-32983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/05/2023] [Indexed: 08/03/2023] Open
Abstract
GBM (Glioblastoma) is the most lethal CNS (Central nervous system) tumor in adults, which inevitably develops resistance to standard treatments leading to recurrence and mortality. TRIB1 is a serine/threonine pseudokinase which functions as a scaffold platform that initiates degradation of its substrates like C/EBPα through the ubiquitin proteasome system and also activates MEK and Akt signaling. We found that increased TRIB1 gene expression associated with worse overall survival of GBM patients across multiple cohorts. Importantly, overexpression of TRIB1 decreased RT/TMZ (radiation therapy/temozolomide)-induced apoptosis in patient derived GBM cell lines in vitro. TRIB1 directly bound to MEK and Akt and increased ERK and Akt phosphorylation/activation. We also found that TRIB1 protein expression was maximal during G2/M transition of cell cycle in GBM cells. Furthermore, TRIB1 bound directly to HDAC1 and p53. Importantly, mice bearing TRIB1 overexpressing tumors had worse overall survival. Collectively, these data suggest that TRIB1 induces resistance of GBM cells to RT/TMZ treatments by activating the cell proliferation and survival pathways thus providing an opportunity for developing new targeted therapeutics.
Collapse
Affiliation(s)
- Karnika Singh
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Chunhua Han
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Jessica L Fleming
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Aline P Becker
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Joseph McElroy
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, OH, 43210, USA
| | - Tiantian Cui
- Department of Radiation Oncology, City of Hope, Duarte, CA, 91010, USA
| | - Benjamin Johnson
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Ashok Kumar
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Ebin Sebastian
- Corewell Health William Beaumont University Hospital, Royal Oak, MI, 48073, USA
| | - Christian A Showalter
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Morgan S Schrock
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Matthew K Summers
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Valesio Becker
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Zhen-Yue Tong
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Xiaomei Meng
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Heather R Manring
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Monica Venere
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Erica H Bell
- Neroscience Research Institute/Department of Neurology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Pierre A Robe
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - A L Grosu
- Freiburg University, 79098, Freiburg, Germany
| | - S Jaharul Haque
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
39
|
Khan MS, Liu C, Meng F, Yang M, Zhou K, Hu R, Wang X, Dai K. X-rays Stimulate Granular Secretions and Activate Protein Kinase C Signaling in Human Platelets. Curr Issues Mol Biol 2023; 45:6024-6039. [PMID: 37504296 PMCID: PMC10378519 DOI: 10.3390/cimb45070380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
X-rays can induce morphological as well as functional changes in cells. Platelets are anuclear cellular fragments originating from megakaryocytes and are the major regulators in hemostasis and thrombosis. Platelet products are irradiated to avoid medical complications associated with platelet transfusion. So far, gamma, UV, and laser radiation have been used for this purpose. However, scientists are divided about the effects of radiation on platelet quality. The present study was designed to explore the possible effects of X-rays in washed human platelets and understand the molecular mechanism behind them. In the present study, we exposed washed human platelets to 10 or 30 Gy X-rays at 0.25 Gy/min. Flow cytometry, aggregometry, and western blot were performed to investigate the effect of X-rays on platelet degranulation, integrin activation, platelet aggregation, and apoptosis. It was found that X-rays immediately induced granular secretions with no effect on GP IIb/IIIa activation. Not surprisingly, due to granule secretions in irradiated platelets, platelet aggregation was significantly reduced. In contrast to granular secretions and platelet aggregation, X-rays induced mitochondrial transmembrane potential depolarization in a time-dependent manner to induce apoptosis and activated protein kinase C (PKC) signaling. This study revealed and explained the molecular mechanism activated by X-rays in washed human platelets. Here we also introduced Gö 6983, a PKC inhibitor, as an agent that counteracts X-ray-induced changes and maintains the integrity of platelets.
Collapse
Affiliation(s)
- Muhammad Shoaib Khan
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Chunliang Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Fanbi Meng
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Mengnan Yang
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Kangxi Zhou
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Renping Hu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Xuexiang Wang
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou 215006, China
| |
Collapse
|
40
|
Chen X, Cvetkovic D, Chen L, Ma CM. An in-vivo study of the combined therapeutic effects of pulsed non-thermal focused ultrasound and radiation for prostate cancer. Int J Radiat Biol 2023; 99:1716-1723. [PMID: 37191462 DOI: 10.1080/09553002.2023.2214204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE The purpose of this study was to investigate the in vivo combined effects of pulsed focused ultrasound (pFUS) and radiation (RT) for prostate cancer treatment. MATERIALS AND METHODS An animal prostate tumor model was developed by implanting human LNCaP tumor cells in the prostates of nude mice. Tumor-bearing mice were treated with pFUS, RT or both (pFUS + RT) and compared with a control group. Non-thermal pFUS treatment was delivered by keeping the body temperature below 42 °C as measured real-time by MR thermometry and using a pFUS protocol (1 MHz, 25 W focused ultrasound; 1 Hz pulse rate with a 10% duty cycle for 60 sec for each sonication). Each tumor was covered entirely using 4-8 sonication spots. RT treatment with a dose of 2 Gy was delivered using an external beam (6 MV photon energy with dose rate 300MU/min). Following the treatment, mice were scanned weekly with MRI for tumor volume measurement. RESULTS The results showed that the tumor volume in the control group increased exponentially to 142 ± 6%, 205 ± 12%, 286 ± 22% and 410 ± 33% at 1, 2, 3 and 4 weeks after treatment, respectively. In contrast, the pFUS group was 29% (p < 0.05), 24% (p < 0.05), 8% and 9% smaller, the RT group was 7%, 10%, 12% and 18% smaller, and the pFUS + RT group was 32%, 39%, 41% and 44% (all with p < 0.05) smaller than the control group at 1, 2, 3, and 4 weeks post treatment, respectively. Tumors treated by pFUS showed an early response (i.e. the first 2 weeks), while the RT group showed a late response. The combined pFUS + RT treatment showed consistent response throughout the post-treatment weeks. CONCLUSIONS These results suggest that RT combined with non-thermal pFUS can significantly delay the tumor growth. The mechanism of tumor cell killing between pFUS and RT may be different. Pulsed FUS shows early tumor growth delay, while RT contributes to the late effect on tumor growth delay. The addition of pFUS to RT significantly enhanced the therapeutic effect for prostate cancer treatment.
Collapse
Affiliation(s)
- Xiaoming Chen
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Dusica Cvetkovic
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lili Chen
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - C-M Ma
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
41
|
Baaz M, Cardilin T, Lignet F, Zimmermann A, El Bawab S, Gabrielsson J, Jirstrand M. Model-based assessment of combination therapies - ranking of radiosensitizing agents in oncology. BMC Cancer 2023; 23:409. [PMID: 37149596 PMCID: PMC10164338 DOI: 10.1186/s12885-023-10899-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/27/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND To increase the chances of finding efficacious anticancer drugs, improve development times and reduce costs, it is of interest to rank test compounds based on their potential for human use as early as possible in the drug development process. In this paper, we present a method for ranking radiosensitizers using preclinical data. METHODS We used data from three xenograft mice studies to calibrate a model that accounts for radiation treatment combined with radiosensitizers. A nonlinear mixed effects approach was utilized where between-subject variability and inter-study variability were considered. Using the calibrated model, we ranked three different Ataxia telangiectasia-mutated inhibitors in terms of anticancer activity. The ranking was based on the Tumor Static Exposure (TSE) concept and primarily illustrated through TSE-curves. RESULTS The model described data well and the predicted number of eradicated tumors was in good agreement with experimental data. The efficacy of the radiosensitizers was evaluated for the median individual and the 95% population percentile. Simulations predicted that a total dose of 220 Gy (5 radiation sessions a week for 6 weeks) was required for 95% of tumors to be eradicated when radiation was given alone. When radiation was combined with doses that achieved at least 8 [Formula: see text] of each radiosensitizer in mouse blood, it was predicted that the radiation dose could be decreased to 50, 65, and 100 Gy, respectively, while maintaining 95% eradication. CONCLUSIONS A simulation-based method for calculating TSE-curves was developed, which provides more accurate predictions of tumor eradication than earlier, analytically derived, TSE-curves. The tool we present can potentially be used for radiosensitizer selection before proceeding to subsequent phases of the drug discovery and development process.
Collapse
Affiliation(s)
- Marcus Baaz
- Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gothenburg, Sweden.
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden.
| | - Tim Cardilin
- Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gothenburg, Sweden
| | - Floriane Lignet
- Translational Medicine, Quantitative Pharmacology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Astrid Zimmermann
- Translation Innovation Platform Oncology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Samer El Bawab
- Translational Medicine, Quantitative Pharmacology, Merck Healthcare KGaA, Darmstadt, Germany
- Present Address: Translational Medicine, Servier, Suresnes, France
| | | | - Mats Jirstrand
- Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gothenburg, Sweden
| |
Collapse
|
42
|
Von Well E, Fossey A, Booyse M. The relationship of the efficiency of energy conversion into growth as an indicator for the determination of the optimal dose for mutation breeding with the appearance of chromosomal abnormalities and incomplete mitosis after gamma irradiation of kernels of Triticum turgidum ssp. durum L. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023; 62:195-212. [PMID: 37074445 DOI: 10.1007/s00411-023-01026-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
The study aim was to determine the optimal gamma irradiation dose for mutation breeding in Triticum turgidum ssp. durum L. Root, shoot and seedling growth, as well as the efficiency of energy conversion into growth were determined to examine the growth retardation effects of gamma irradiation that are the result of DNA damage (bridges, ring chromosomes, micronuclei, incomplete mitosis) in Triticum turgidum ssp. durum L. The kernels were irradiated with doses of 50, 150, 250 and 350 Gy using a 60Cobalt gamma-ray source. The kernels were placed in germination paper at 25 °C to grow for a 132 h period for the determination of shoot and root growth and the efficiency of energy conversion into growth. Root tips were collected and fixated over a 47.5 h growth period for the determination of the chromosomal abnormalities and incomplete mitosis. The control differed highly significantly (p < 0.01) from irradiated samples at all doses in root growth and from 250 to 350 Gy samples in shoot growth and the efficiency of energy conversion into growth. There was a highly significant (p < 0.01) increase in the number of bridges and micronuclei between 50 Gy samples and samples irradiated with the higher irradiation doses while 50 Gy samples differed only from 250 and 350 Gy samples regarding ring chromosomes and interphase cells with incomplete mitosis. Root and seedling growth on the one hand and the efficiency of energy conversion into growth on the other were found to be measuring different effects of gamma irradiation on plant growth. The latter was used for the determination of the optimal dose for mutation breeding as 155.52 Gy.
Collapse
Affiliation(s)
- Eben Von Well
- ARC-Small Grain Institute, An Institute of the Field Crops Division, Private Bag X29, Bethlehem, 9700, South Africa.
| | - Annabel Fossey
- Graduate Mastery, Boskruin View Office Park, 181 Girdwood Avenue, Bush Hill, Randburg, 2154, South Africa
| | - Mardé Booyse
- ARC Biometry, Private Bag X5013, Stellenbosch, 7599, South Africa
| |
Collapse
|
43
|
Bemidinezhad A, Mirzavi F, Gholamhosseinian H, Gheybi F, Soukhtanloo M. Gold-containing liposomes and glucose-coated gold nanoparticles enhances the radiosensitivity of B16F0 melanoma cells via increasing apoptosis and ROS production. Life Sci 2023; 318:121495. [PMID: 36780937 DOI: 10.1016/j.lfs.2023.121495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
AIM To increase the effectiveness of radiation therapy, metals with high Z number are used as radiosensitizers. In this regard, the effectiveness of various gold nanoparticles as radiosensitizer has been proven. Therefore, this study aimed to evaluate the effects of liposomes containing gold ions (Gold-Lips) and glucose-coated gold nanoparticles (Glu-GNPs) on radiation sensitivity of B16F0 melanoma cells. MAIN METHODS Naked GNPs, Glu-GNPs and Gold-Lips were synthesized and their physicochemical properties were evaluated using DLS. The cytotoxicity and sensitivity of the nanoparticles to radiation were evaluated using MTT and colony formation assay, respectively. Flow cytometry was performed to evaluate the apoptotic effect of nanoparticles on B16F0 cells. The intracellular ROS levels and mRNA expression of Bax, Bcl-2, p53, Caspase-3, and Caspase-7 genes were also evaluated. Finally, caspase 3/7 activity was determined using a luminescence assay kit. KEY FINDINGS The results revealed that GNPs, Glu-GNPs, and Gold-Lips had a desired size and zeta potential. Results from the colony assay showed that the all non-toxic concentrations of Gold-Lips significantly increased cell death in B16F0 cells compared with the Glu-GNPs (p > 0.05). Flow cytometry and Caspase-3/-7 activity confirmed the results of the colony assay and showed that increasing the sensitivity of cells to radiation increases apoptosis. Moreover, we found that Gold-Lips increased the mRNA expression of p53, Bax, and Caspase-3/-7, and decreased the Bcl-2 mRNA expression. SIGNIFICANCE Overall, both Gold-Lips and Glu-GNPs enhanced the radiosensitivity of B16F0 cells, however, Gold-Lips had better effects, which could make them a promising tools in cancer radiotherapy.
Collapse
Affiliation(s)
- Abolfazl Bemidinezhad
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Zhang H, Liu L, Liu J, Dang P, Hu S, Yuan W, Sun Z, Liu Y, Wang C. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer 2023; 22:58. [PMID: 36941614 PMCID: PMC10029244 DOI: 10.1186/s12943-023-01725-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/16/2023] [Indexed: 03/23/2023] Open
Abstract
In recent years, tumor immunotherapy has made significant progress. However, tumor immunotherapy, particularly immune checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors), benefits only a tiny proportion of patients in solid cancers. The tumor microenvironment (TME) acts a significant role in tumor immunotherapy. Studies reported that tumor-associated macrophages (TAMs), as one of the main components of TME, seriously affected the therapeutic effect of PD-1/PD-L1 inhibitors. In this review, we analyzed TAMs from epigenetic and single-cell perspectives and introduced the role and mechanisms of TAMs in anti-programmed death protein 1(anti-PD-1) therapy. In addition, we summarized combination regimens that enhance the efficacy of tumor PD-1/PD-L1 inhibitors and elaborated on the role of the TAMs in different solid cancers. Eventually, the clinical value of TAMs by influencing the therapeutic effect of tumor PD-1/PD-L1 inhibitors was discussed. These above are beneficial to elucidate poor therapeutic effect of PD-1/PD-L1 inhibitors in solid tumors from the point of view of TAMs and explore the strategies to improve its objective remission rate of solid cancers.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Liu
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Pengyuan Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yang Liu
- Department of Radiotherapy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
45
|
Waller V, Tschanz F, Winkler R, Pruschy M. The role of EphA2 in ADAM17- and ionizing radiation-enhanced lung cancer cell migration. Front Oncol 2023; 13:1117326. [PMID: 36998455 PMCID: PMC10043294 DOI: 10.3389/fonc.2023.1117326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
PurposeIonizing radiation (IR) enhances the migratory capacity of cancer cells. Here we investigate in non-small-cell-lung-cancer (NSCLC) cells a novel link between IR-enhanced ADAM17 activity and the non-canonical pathway of EphA2 in the cellular stress response to irradiation.MethodsCancer cell migration in dependence of IR, EphA2, and paracrine signaling mediated by ADAM17 was determined using transwell migration assays. Changes of EphA2 pS897 and mRNA expression levels upon different ADAM17-directed treatment strategies, including the small molecular inhibitor TMI-005, the monoclonal antibody MEDI3622, and shRNAs, were mechanistically investigated. ADAM17-mediated release and cleavage of the EphA2 ligand ephrin-A1 was measured using ELISA and an acellular cleavage assay.ResultsIrradiation with 5 Gy enhanced tumor cell migration of NSCLC NCI-H358 cells in dependence of EphA2. At the same time, IR increased growth factor-induced EphA2 S897 phosphorylation via auto- and paracrine signaling. Genetic and pharmaceutical downregulation of ADAM17 activity abrogated growth factor (e.g. amphiregulin) release, which reduced MAPK pathway-mediated EphA2 S897 phosphorylation in an auto- and paracrine way (non-canonical EphA2-pathway) in NCI-H358 and A549 cells. These signaling processes were associated with reduced cell migration towards conditioned media derived from ADAM17-deficient cells. Interestingly, ADAM17 inhibition with the small molecular inhibitor TMI-005 led to the internalization and proteasomal degradation of EphA2, which was rescued by amphiregulin or MG-132 treatment. In addition, ADAM17 inhibition also abrogated ephrin-A1 cleavage and thereby interfered with the canonical EphA2-pathway.ConclusionWe identified ADAM17 and the receptor tyrosine kinase EphA2 as two important drivers for (IR-) induced NSCLC cell migration and described a unique interrelation between ADAM17 and EphA2. We demonstrated that ADAM17 influences both, EphA2 (pS897) and its GPI-anchored ligand ephrin-A1. Using different cellular and molecular readouts, we generated a comprehensive picture of how ADAM17 and IR influence the EphA2 canonical and non-canonical pathway in NSCLC cells.
Collapse
|
46
|
Wang Q, Shao X, Zhang Y, Zhu M, Wang FXC, Mu J, Li J, Yao H, Chen K. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med 2023. [PMID: 36807772 DOI: 10.1002/cam4.5698] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Cancer is now considered a tumor microenvironment (TME) disease, although it was originally thought to be a cell and gene expression disorder. Over the past 20 years, significant advances have been made in understanding the complexity of the TME and its impact on responses to various anticancer therapies, including immunotherapies. Cancer immunotherapy can recognize and kill cancer cells by regulating the body's immune system. It has achieved good therapeutic effects in various solid tumors and hematological malignancies. Recently, blocking of programmed death-1 (PD-1), programmed death-1 ligand-1 (PD-L1), and programmed death Ligand-2 (PD-L2), the construction of antigen chimeric T cells (CAR-T) and tumor vaccines have become popular immunotherapies Tumorigenesis, progression, and metastasis are closely related to TME. Therefore, we review the characteristics of various cells and molecules in the TME, the interaction between PD-1 and TME, and promising cancer immunotherapy therapeutics.
Collapse
Affiliation(s)
- Qingjing Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xueting Shao
- Institute of Pharmaceutical Biotechnology & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuxuan Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Miaojin Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Frederick X C Wang
- The EnMed Program at Houston Methodist Hospital, Texas A&M University College of Medicine and College of Engineering, Houston, Texas, USA
| | - Jianjian Mu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiaxuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
47
|
Amos A, Jiang N, Zong D, Gu J, Zhou J, Yin L, He X, Xu Y, Wu L. Depletion of SOD2 enhances nasopharyngeal carcinoma cell radiosensitivity via ferroptosis induction modulated by DHODH inhibition. BMC Cancer 2023; 23:117. [PMID: 36737723 PMCID: PMC9896811 DOI: 10.1186/s12885-022-10465-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Recurrence due to the development of radioresistance remains a major challenge in the clinical management of nasopharyngeal carcinoma. The objective of this study was to increase the sensitivity of nasopharyngeal carcinoma cells to ionizing radiation by enhancing oxidative stress and ferroptosis caused by disrupting the mitochondrial anti-oxidant enzyme system. METHODS Oxidative stress cell model was constructed by SOD2 knockdown using shRNA. The expression and activity of DHODH was suppressed by siRNA and brequinar in SOD2 depleted cells. Protein levels were determined by western blotting and ferroptosis was assessed by C11 BODIPY and malondialdehyde assay. Cell viability was evaluated using CCK-8 assay while radiotoxicity was assessed by colony formation assay. Cellular ATP level was determined by ATP assay kits, ROS was determined by DCFD and DHE, while mitochondrial oxygen consumption was determined by seahorse assay. Data were analyzed by two-tailed independent t-test. RESULTS Radiation upregulated SOD2 expression and SOD2 depletion increased cellular O2.-, malondialdehyde, and the fluorescence intensity of oxidized C11 BODIPY. It also resulted in mitochondrial damage. Its depletion decreased colony formation both under ionizing and non-ionizing radiation conditions. The ferroptosis inhibitor, deferoxamine, rescued cell viability and colony formation in SOD2 depleted cells. Cellular level of malondialdehyde, fluorescence intensity of oxidized C11 BODIPY, O2.- level, ATP, and mitochondrial oxygen consumption decreased following DHODH inhibition in SOD2 depleted cells. Cell viability and colony formation was rescued by DHODH inhibition in SOD2 depleted cells. CONCLUSION Inducing oxidative stress by SOD2 inhibition sensitized nasopharyngeal carcinoma cells to ionizing radiation via ferroptosis induction. This was found to be dependent on DHODH activity. This suggests that DHODH inhibitors should be used with caution during radiotherapy in nasopharyngeal carcinoma patients.
Collapse
Affiliation(s)
- Alvan Amos
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
- Department of Biochemistry, Kaduna State University, PMB 2339, Tafawa Balewa Way, Kaduna, Nigeria
| | - Ning Jiang
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing, 210009, China
| | - Dan Zong
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing, 210009, China
| | - Jiajia Gu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing, 210009, China
| | - Jiawei Zhou
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
| | - Li Yin
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing, 210009, China
| | - Xia He
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing, 210009, China.
| | - Yong Xu
- Department of Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing, 210009, China.
| | - Lirong Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing, 210009, China.
| |
Collapse
|
48
|
Speckter H, Palque-Santos S, Mota-Gonzalez R, Bido J, Hernandez G, Rivera D, Suazo L, Valenzuela S, Gonzalez-Curi M, Stoeter P. Can Apparent Diffusion Coefficient (ADC) maps replace Diffusion Tensor Imaging (DTI) maps to predict the volumetric response of meningiomas to Gamma Knife Radiosurgery? J Neurooncol 2023; 161:547-554. [PMID: 36745271 DOI: 10.1007/s11060-023-04243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 02/07/2023]
Abstract
PURPOSE Noninvasive methods are desired to predict the treatment response to Stereotactic Radiosurgery (SRS) to improve individual tumor management. In a previous study, we demonstrated that Diffusion Tensor Imaging (DTI)-derived parameter maps significantly correlate to SRS response. This study aimed to analyze and compare the predictive value of intratumoral ADC and DTI parameters in patients with meningiomas undergoing radiosurgery. METHODS MR images of 70 patients treated with Gamma Knife SRS for WHO grade I meningiomas were retrospectively reviewed. MR acquisition included pre- and post-treatment DWI and DTI sequences, and subtractions were calculated to assess for radiation-induced changes in the parameter values. RESULTS After a mean follow-up period (FUP) of 52.7 months, 69 of 70 meningiomas were controlled, with a mean volume reduction of 34.9%. Whereas fractional anisotropy (FA) values of the initial exam showed the highest correlation to tumor volume change at the last FU (CC = - 0.607), followed by the differences between first and second FU values of FA (CC = - 0.404) and the first longitudinal diffusivity (LD) value (CC = - 0.375), the correlation coefficients of all ADC values were comparably low. Nevertheless, all these correlations, except for ADC measured at the first follow-up, reached significance. CONCLUSION For the first time, the prognostic value of ADC maps measured in meningiomas before and at first follow-up after Gamma Knife SRS, was compared to simultaneously acquired DTI parameter maps. Quantities assessed from ADC maps present significant correlations to the volumetric meningioma response but are less effective than correlations with DTI parameters.
Collapse
Affiliation(s)
- Herwin Speckter
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic. .,Department of Radiology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic.
| | - Sarai Palque-Santos
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Ruben Mota-Gonzalez
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Jose Bido
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Giancarlo Hernandez
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Diones Rivera
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Luis Suazo
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Santiago Valenzuela
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Maria Gonzalez-Curi
- Department of Radiology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Peter Stoeter
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic.,Department of Radiology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| |
Collapse
|
49
|
Blaauwgeers H, Lissenberg-Witte BI, Dickhoff C, Duin S, Thunnissen E. Prognostic value of proliferation, PD-L1 and nuclear size in patients with superior sulcus tumours treated with chemoradiotherapy and surgery. J Clin Pathol 2023; 76:111-115. [PMID: 34301798 DOI: 10.1136/jclinpath-2021-207570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/14/2021] [Indexed: 01/24/2023]
Abstract
AIMS The aim of this study was to determine the relationship between proliferative activity, PD-L1 status and nuclear size changes after preoperative chemoradiotherapy (CRT) and the clinical outcome in patients with superior sulcus tumours. METHODS Proliferative activity (MIB-1) and PD-L1 status were estimated by immunohistochemistry in the tumour cells of resection specimen in a series of 33 patients with residual tumour after trimodality therapy for a sulcus superior tumour between 2005 and 2014. A morphometric analysis of both pretreatment and post-treatment tumour materials was also performed. Results were related to disease-free survival and overall survival. RESULTS Low proliferative activity (<20% MIB-1) was associated with better overall survival: 2-year overall survival of 73% compared with 43% and 25%, respectively, for moderate (MIB-1 20%-50%) and high (MIB-1 >50%) proliferative activity (p=0.016). A negative PD-L1 status (<1% positive tumour cells) was also associated with better overall survival (p=0.021). The mean nuclear size of normal lung tissue pneumocytes was significantly smaller compared with the mean nuclear size of tumour cells of the resection specimens (median difference -38.1; range -115.2 to 16.0; p<0.001). The mean nuclear size of tumour cells did not differ between pretreatment biopsies and resection specimens (median difference -4.6; range -75.2 to 86.7; p=0.14). Nuclear size was not associated with survival (p=0.82). CONCLUSIONS Low proliferative activity determined by MIB-1 as well as a negative PD-L1 expression are significantly associated with better overall survival in patients with residual tumour after CRT for superior sulcus tumour.
Collapse
Affiliation(s)
- Hans Blaauwgeers
- Department of Pathology, OLVG LAB BV, Amsterdam, The Netherlands
| | - Birgit I Lissenberg-Witte
- Department of Epidemiology and Data Science, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Chris Dickhoff
- Department of Surgery and Cardiothoracic Surgery, Amsterdam UMC - Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sylvia Duin
- Department of Pathology, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erik Thunnissen
- Department of Pathology, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Filippova KO, Ermakov AM, Popov AL, Ermakova ON, Blagodatsky AS, Chukavin NN, Shcherbakov AB, Baranchikov AE, Ivanov VK. Mitogen-like Cerium-Based Nanoparticles Protect Schmidtea mediterranea against Severe Doses of X-rays. Int J Mol Sci 2023; 24:ijms24021241. [PMID: 36674757 PMCID: PMC9864839 DOI: 10.3390/ijms24021241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Novel radioprotectors are strongly demanded due to their numerous applications in radiobiology and biomedicine, e.g., for facilitating the remedy after cancer radiotherapy. Currently, cerium-containing nanomaterials are regarded as promising inorganic radioprotectors due to their unrivaled antioxidant activity based on their ability to mimic the action of natural redox enzymes like catalase and superoxide dismutase and to neutralize reactive oxygen species (ROS), which are by far the main damaging factors of ionizing radiation. The freshwater planarian flatworms are considered a promising system for testing new radioprotectors, due to the high regenerative potential of these species and an excessive amount of proliferating stem cells (neoblasts) in their bodies. Using planarian Schmidtea mediterranea, we tested CeO2 nanoparticles, well known for their antioxidant activity, along with much less studied CeF3 nanoparticles, for their radioprotective potential. In addition, both CeO2 and CeF3 nanoparticles improve planarian head blastema regeneration after ionizing irradiation by enhancing blastema growth, increasing the number of mitoses and neoblasts' survival, and modulating the expression of genes responsible for the proliferation and differentiation of neoblasts. The CeO2 nanoparticles' action stems directly from their redox activity as ROS scavengers, while the CeF3 nanoparticles' action is mediated by overexpression of "wound-induced genes" and neoblast- and stem cell-regulating genes.
Collapse
Affiliation(s)
- Kristina O. Filippova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Artem M. Ermakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Moscow Region Pedagogical State University, Moscow 141014, Russia
| | - Anton L. Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Correspondence:
| | - Olga N. Ermakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Artem S. Blagodatsky
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Nikita N. Chukavin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Moscow Region Pedagogical State University, Moscow 141014, Russia
| | - Alexander B. Shcherbakov
- Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine
| | - Alexander E. Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|