1
|
Wu X, Wang Z, Luo L, Shu D, Wang K. Metabolomics in hepatocellular carcinoma: From biomarker discovery to precision medicine. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 4:1065506. [PMID: 36688143 PMCID: PMC9845953 DOI: 10.3389/fmedt.2022.1065506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health burden, and is mostly diagnosed at late and advanced stages. Currently, limited and insensitive diagnostic modalities continue to be the bottleneck of effective and tailored therapy for HCC patients. Moreover, the complex reprogramming of metabolic patterns during HCC initiation and progression has been obstructing the precision medicine in clinical practice. As a noninvasive and global screening approach, metabolomics serves as a powerful tool to dynamically monitor metabolic patterns and identify promising metabolite biomarkers, therefore holds a great potential for the development of tailored therapy for HCC patients. In this review, we summarize the recent advances in HCC metabolomics studies, including metabolic alterations associated with HCC progression, as well as novel metabolite biomarkers for HCC diagnosis, monitor, and prognostic evaluation. Moreover, we highlight the application of multi-omics strategies containing metabolomics in biomarker discovery for HCC. Notably, we also discuss the opportunities and challenges of metabolomics in nowadays HCC precision medicine. As technologies improving and metabolite biomarkers discovering, metabolomics has made a major step toward more timely and effective precision medicine for HCC patients.
Collapse
Affiliation(s)
- Xingyun Wu
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zihao Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Dan Shu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China,Correspondence: Kui Wang Dan Shu
| | - Kui Wang
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China,Correspondence: Kui Wang Dan Shu
| |
Collapse
|
2
|
Chen W, Li Q, Hou R, Liang H, Zhang Y, Yang Y. An integrated metabonomics study to reveal the inhibitory effect and metabolism regulation of taurine on breast cancer. J Pharm Biomed Anal 2022; 214:114711. [PMID: 35306435 DOI: 10.1016/j.jpba.2022.114711] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Breast cancer is a common metastatic malignant tumor in women. Taurine has been found to have anti-tumor effects on a variety of cancers. However, to the best of our knowledge, the role of taurine in the metastasis of breast cancer has not been reported. Thus, this study examined the effects of taurine on the growth and lung metastasis of breast cancer. Furthermore, the metabolism of serum, tumor tissue, and lung metastasis tissue were studied in a 4T1 subcutaneously transplanted breast cancer model through the integration of a 1H NMR-based metabonomics approach and histopathological assessments. The results showed that taurine significantly attenuated the tumor growth and lung metastasis, improved the pathological structure of tumor and lung tissue, and improved the metabolic disorders in 4T1 breast cancer mice. Additionally, taurine reversed the changes in serum lactate, creatine, and choline caused by the progression of breast cancer tumors. The levels of leucine/isoleucine, valine, alanine, arginine, methionine, glutamate, histidine, trimethylamine oxide (TMAO), taurine, and glucose in tumor tissues decreased, with an increment in lipids, lactate, and N-acetyl glycoprotein. Also, there was a reversal of leucine/isoleucine, valine, lactate, arginine, N-acetyl glycoprotein, glutamate, histidine, choline, and glycerophosphocholine/phosphocholine (GPC/PC) in the lung tissues. These metabolites changes were involved in the metabolic pathways of glycolysis, choline, amino acid, and lipid, suggesting that taurine exerted anti-breast cancer effects through the regulation of the underlying metabolism. This study provides a scientific basis for the adoption of taurine in the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
| | - Qian Li
- College of Life Sciences and Biopharmaceuticals, PR China
| | | | - Huaguo Liang
- College of Life Sciences and Biopharmaceuticals, PR China
| | - Yongli Zhang
- College of Life Sciences and Biopharmaceuticals, PR China.
| | - Yongxia Yang
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Province Key Laboratory for Biotechnology Drug Candidates, PR China.
| |
Collapse
|
3
|
Martin-Grau M, Marrachelli VG, Monleon D. Rodent models and metabolomics in non-alcoholic fatty liver disease: What can we learn? World J Hepatol 2022; 14:304-318. [PMID: 35317178 PMCID: PMC8891675 DOI: 10.4254/wjh.v14.i2.304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/13/2021] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) prevalence has increased drastically in recent decades, affecting up to 25% of the world’s population. NAFLD is a spectrum of different diseases that starts with asymptomatic steatosis and continues with development of an inflammatory response called steatohepatitis, which can progress to fibrosis. Several molecular and metabolic changes are required for the hepatocyte to finally vary its function; hence a “multiple hit” hypothesis seems a more accurate proposal. Previous studies and current knowledge suggest that in most cases, NAFLD initiates and progresses through most of nine hallmarks of the disease, although the triggers and mechanisms for these can vary widely. The use of animal models remains crucial for understanding the disease and for developing tools based on biological knowledge. Among certain requirements to be met, a good model must imitate certain aspects of the human NAFLD disorder, be reliable and reproducible, have low mortality, and be compatible with a simple and feasible method. Metabolism studies in these models provides a direct reflection of the workings of the cell and may be a useful approach to better understand the initiation and progression of the disease. Metabolomics seems a valid tool for studying metabolic pathways and crosstalk between organs affected in animal models of NAFLD and for the discovery and validation of relevant biomarkers with biological understanding. In this review, we provide a brief introduction to NAFLD hallmarks, the five groups of animal models available for studying NAFLD and the potential role of metabolomics in the study of experimental NAFLD.
Collapse
Affiliation(s)
- Maria Martin-Grau
- Department of Pathology, University of Valencia, Valencia 46010, Spain
| | - Vannina G Marrachelli
- Department of Physiology, University of Valencia, Valencia 46010, Spain
- Health Research Institute INCLIVA, Valencia 46010, Spain
| | - Daniel Monleon
- Department of Pathology, University of Valencia, Valencia 46010, Spain
- Health Research Institute INCLIVA, Valencia 46010, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid 28029, Spain
| |
Collapse
|
4
|
Wang KX, Du GH, Qin XM, Gao L. 1H-NMR-based metabolomics reveals the biomarker panel and molecular mechanism of hepatocellular carcinoma progression. Anal Bioanal Chem 2022; 414:1525-1537. [PMID: 35024914 DOI: 10.1007/s00216-021-03768-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most extensive and most deadly cancers in the world. Biomarkers for early diagnosis of HCC are still lacking, and noninvasive and effective biomarkers are urgently needed. Metabolomics is committed to studying the changes of metabolites under stimulation, and provides a new approach for discovery of potential biomarkers. In the current work, 1H nuclear magnetic resonance (NMR) metabolomics approach was utilized to explore the potential biomarkers in HCC progression, and the biomarker panel was evaluated by receiver operating characteristic (ROC) curve analyses. Our results revealed that a biomarker panel consisting of hippurate, creatinine, putrescine, choline, and taurine might be involved in HCC progression. Functional pathway analysis showed that taurine and hypotaurine metabolism is markedly involved in the occurrence and development of HCC. Furthermore, our results indicated that the TPA activity and the level and expression of PKM2 were gradually increased in HCC progression. This research provides a scientific basis for screening potential biomarkers of HCC.
Collapse
Affiliation(s)
- Ke-Xin Wang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| |
Collapse
|
5
|
Glinskikh A, Snytnikova O, Zelentsova E, Borisova M, Tsentalovich Y, Akulov A. The Effect of Blood Contained in the Samples on the Metabolomic Profile of Mouse Brain Tissue: A Study by NMR Spectroscopy. Molecules 2021; 26:molecules26113096. [PMID: 34067246 PMCID: PMC8196876 DOI: 10.3390/molecules26113096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Recently, metabolic profiling of the tissue in the native state or extracts of its metabolites has become increasingly important in the field of metabolomics. An important factor, in this case, is the presence of blood in a tissue sample, which can potentially lead to a change in the concentration of tissue metabolites and, as a result, distortion of experimental data and their interpretation. (2) In this paper, the metabolomic profiling based on NMR spectroscopy was performed to determine the effect of blood contained in the studied samples of brain tissue on their metabolomic profile. We used 13 male laboratory CD-1® IGS mice for this study. The animals were divided into two groups. The first group of animals (n = 7) was subjected to the perfusion procedure, and the second group of animals (n = 6) was not perfused. The brain tissues of the animals were homogenized, and the metabolite fraction was extracted with a water/methanol/chloroform solution. Samples were studied by high-frequency 1H-NMR spectroscopy with subsequent statistical data analysis. The group comparison was performed with the use of the Student's test. We identified 36 metabolites in the brain tissue with the use of NMR spectroscopy. (3) For the major set of studied metabolites, no significant differences were found in the brain tissue metabolite concentrations in the native state and after the blood removal procedure. (4) Thus, it was shown that the presence of blood does not have a significant effect on the metabolomic profile of the brain in animals without pathologies.
Collapse
Affiliation(s)
- Anastasia Glinskikh
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentiev Avenue, 10, 630090 Novosibirsk, Russia; (A.G.); (M.B.); (A.A.)
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya str. 3a, 630090 Novosibirsk, Russia; (E.Z.); (Y.T.)
- Faculty of Fundamental Medicine, Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russia
| | - Olga Snytnikova
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya str. 3a, 630090 Novosibirsk, Russia; (E.Z.); (Y.T.)
- Correspondence:
| | - Ekaterina Zelentsova
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya str. 3a, 630090 Novosibirsk, Russia; (E.Z.); (Y.T.)
- Faculty of Fundamental Medicine, Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russia
| | - Maria Borisova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentiev Avenue, 10, 630090 Novosibirsk, Russia; (A.G.); (M.B.); (A.A.)
| | - Yuri Tsentalovich
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya str. 3a, 630090 Novosibirsk, Russia; (E.Z.); (Y.T.)
- Faculty of Fundamental Medicine, Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russia
| | - Andrey Akulov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentiev Avenue, 10, 630090 Novosibirsk, Russia; (A.G.); (M.B.); (A.A.)
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya str. 3a, 630090 Novosibirsk, Russia; (E.Z.); (Y.T.)
| |
Collapse
|
6
|
Animal Models: A Useful Tool to Unveil Metabolic Changes in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12113318. [PMID: 33182674 PMCID: PMC7696782 DOI: 10.3390/cancers12113318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) represents an important health problem. At the moment, systemic therapies offered only modest clinical benefits. Thus, HCC represents a cancer extremely difficult to treat, and therapeutic breakthroughs are urgently needed. Metabolic reprogramming of neoplastic cells has been recognized as one of the core hallmarks of cancer. Experimental animal models represent an important tool that allows to investigate metabolic changes underlying HCC development and progression. In the present review, we characterize available rodent models of hepatocarcinogenesis. Moreover, we discuss the possibility that pharmacological targeting of Warburg metabolism may represent an additional tool to improve already available therapeutic approaches for HCC. Abstract Hepatocellular carcinoma (HCC) is one the most frequent and lethal human cancers. At present, no effective treatment for advanced HCC exist; therefore, the overall prognosis for HCC patients remains dismal. In recent years, a better knowledge of the signaling pathways involved in the regulation of HCC development and progression, has led to the identification of novel potential targets for therapeutic strategies. However, the obtained benefits from current therapeutic options are disappointing. Altered cancer metabolism has become a topic of renewed interest in the last decades, and it has been included among the core hallmarks of cancer. In the light of growing evidence for metabolic reprogramming in cancer, a wide number of experimental animal models have been exploited to study metabolic changes characterizing HCC development and progression and to further expand our knowledge of this tumor. In the present review, we discuss several rodent models of hepatocarcinogenesis, that contributed to elucidate the metabolic profile of HCC and the implications of these changes in modulating the aggressiveness of neoplastic cells. We also highlight the apparently contrasting results stemming from different animal models. Finally, we analyze whether these observations could be exploited to improve current therapeutic strategies for HCC.
Collapse
|
7
|
Moon CM, Shin SS, Heo SH, Jeong YY. Metabolic Alterations Associated with Early-Stage Hepatocellular Carcinoma and Their Correlation with Aging and Enzymatic Activity in Patients with Viral Hepatitis-Induced Liver Cirrhosis: A Preliminary Study. J Clin Med 2020; 9:jcm9030765. [PMID: 32178316 PMCID: PMC7141398 DOI: 10.3390/jcm9030765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/26/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Liver cirrhosis (LC) can develop hepatocellular carcinoma (HCC). However, noninvasive early diagnosis of HCCs in the cirrhotic liver is still challenging. We aimed to quantify the hepatic metabolites in normal control (NC), cirrhotic liver without HCC, cirrhotic liver with HCC (CLH), and early-stage HCC groups using proton magnetic resonance spectroscopy (1H-MRS) with a long echo-time (TE) and to assess the potential association between the levels of hepatic metabolites in these four groups and aging and enzymatic activity. Thirty NCs, 30 viral hepatitis-induced LC patients without HCC, and 30 viral hepatitis-induced LC patients with HCC were included in this study. 1H-MRS measurements were performed on a localized voxel of the normal liver parenchyma (n = 30) from NCs, cirrhotic liver parenchyma (n = 30) from LC patients without HCC, and each of the cirrhotic liver parenchyma (n = 30) and HCC (n = 30) from the same patients in the CLH group. Generalized estimating equations were used to evaluate potential risk factors for changes in metabolite levels. Potential associations between metabolite levels and age and serum enzymatic activities were assessed by correlation analysis. The levels of lactate+triglyceride (Lac+TG) and choline (Cho) in HCC were significantly higher compared to those in LC and CLH. A potential risk factor for changes in the Lac+TG and Cho levels was age, specifically 60–80 years of age. In particular, the Lac+TG level was associated with a high odds ratio of HCC in males aged 60–80 years. The Lac+TG and Cho concentrations were positively correlated with lactate dehydrogenase and alkaline phosphatase activities, respectively. Our findings suggested that 1H-MRS measurement with a long TE was useful in quantifying hepatic Lac+TG and Cho levels, where higher Lac+TG and Cho levels were most likely associated with HCC-related metabolism in the viral hepatitis-induced cirrhotic liver. Further, the level of Lac+TG in HCC was highly correlated with older age and lactate dehydrogenase activity.
Collapse
Affiliation(s)
- Chung-Man Moon
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
- Research Institute of Medical Sciences, Chonnam National University, Gwangju 61469, Korea
| | - Sang Soo Shin
- Department of Radiology, Chonnam National University Medical School, Gwangju 61469, Korea; (S.H.H.); (Y.Y.J.)
- Department of Radiology, Chonnam National University Hospital, Gwangju 61469, Korea
- Correspondence: ; Tel.: +82-62-220-5882; Fax: +82-62-226-4380
| | - Suk Hee Heo
- Department of Radiology, Chonnam National University Medical School, Gwangju 61469, Korea; (S.H.H.); (Y.Y.J.)
- Department of Radiology, Chonnam National University, Hwasun Hospital, Hwasun 58128, Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Medical School, Gwangju 61469, Korea; (S.H.H.); (Y.Y.J.)
- Department of Radiology, Chonnam National University, Hwasun Hospital, Hwasun 58128, Korea
| |
Collapse
|
8
|
Skill NJ, Elliott CM, Ceballos B, Saxena R, Pepin R, Bettcher L, Ellensberg M, Raftery D, Malucio MA, Ekser B, Mangus RS, Kubal CA. Metabolomic Characterization of Human Model of Liver Rejection Identifies Aberrancies Linked to Cyclooxygenase (COX) and Nitric Oxide Synthase (NOS). Ann Transplant 2019; 24:341-349. [PMID: 31182705 PMCID: PMC6582681 DOI: 10.12659/aot.913800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute liver rejection (ALR), a significant complication of liver transplantation, burdens patients, healthcare payers, and the healthcare providers due to an increase in morbidity, cost, and resources. Despite clinical resolution, ALR is associated with an increased risk of graft loss. A unique protocol of delayed immunosuppression used in our institute provided a model to characterize metabolomic profiles in human ALR. MATERIAL AND METHODS Twenty liver allograft biopsies obtained 48 hours after liver transplantation in the absence of immunosuppression were studied. Hepatic metabolites were quantitated in these biopsies by liquid chromatography and mass spectroscopy (LC/MS). Metabolite profiles were compared among: 1) biopsies with reperfusion injury but no histological evidence of rejection (n=7), 2) biopsies with histological evidence of moderate or severe rejection (n=5), and 3) biopsies with histological evidence of mild rejection (n=8). RESULTS There were 133 metabolites consistently detected by LC/MS and these were prioritized using variable importance to projection (VIP) analysis, comparing moderate or severe rejection vs. no rejection or mild rejection using partial least squares discriminant statistical analysis (PLS-DA). Twenty metabolites were identified as progressively different. Further PLS-DA using these metabolites identified 3 metabolites (linoleic acid, γ-linolenic acid, and citrulline) which are associated with either cyclooxygenase or nitric oxide synthase functionality. CONCLUSIONS Hepatic metabolic aberrancies associated with cyclooxygenase and nitric oxide synthase function occur contemporaneous with ALR. Additional studies are required to better characterize the role of these metabolic pathways to enhance utility of the metabolomics approach in diagnosis and outcomes of ALR.
Collapse
Affiliation(s)
- Nicholas J Skill
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Campbell M Elliott
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Brian Ceballos
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Romil Saxena
- Department of Pathology, Indiana University Medical School, Indianapolis, IN, USA
| | - Robert Pepin
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Lisa Bettcher
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Matthew Ellensberg
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Mary A Malucio
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Burcin Ekser
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | - Richard S Mangus
- Department of Surgery, Indiana University Medical School, Indianapolis, IN, USA
| | | |
Collapse
|
9
|
Identification of the Potential Metabolic Pathways Involved in the Hepatic Tumorigenesis of Rat Diethylnitrosamine-Induced Hepatocellular Carcinoma via 1H NMR-Based Metabolomic Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9367082. [PMID: 30719453 PMCID: PMC6334336 DOI: 10.1155/2019/9367082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/27/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023]
Abstract
The systemic investigation of the metabolic pathways associated with the hepatic tumorigenesis is important to discover novel biomarkers and identify the potential pathogenesis. Here, the 1H nuclear magnetic resonance- (1H NMR-) based metabolomic analysis was used to monitor the whole process of rat diethylnitrosamine-induced HCC. Intraperitoneal administration of diethylnitrosamine (DEN) was used to induce primary HCCs in male Sprague-Dawley rats. Magnetic resonance imaging (MRI) examinations were performed to follow the tumor formation and growth in the liver and H&E staining was used to confirm MR imaging findings. The rats with DEN treatment and control rats without DEN were euthanized at the time points of 3, 8, and 15 weeks after the start of modeling. 1H NMR-based metabolomic analysis was used to explore hepatic metabolite changes and certify key metabolic pathways in the process of tumor tumorigenesis. Our MRI results depicted the formation of HCC nodules in ten rats 14 weeks after DEN injection which were confirmed by histology. Twenty-four different metabolites were identified and quantified by 1H NMR spectroscopy; OPLS-DA models and corresponding VIP plots analysis further identified ten metabolites associated with the abnormal metabolism. The aberrant glucose, lipid, and glutathione-glutamine-glutamate metabolism could be detected involving in the process of hepatic tumorigenesis, which provides an important evidence for the in-depth study of subsequent molecular mechanisms, especially the glutathione-glutamine-glutamate metabolism.
Collapse
|
10
|
Guo W, Tan HY, Wang N, Wang X, Feng Y. Deciphering hepatocellular carcinoma through metabolomics: from biomarker discovery to therapy evaluation. Cancer Manag Res 2018; 10:715-734. [PMID: 29692630 PMCID: PMC5903488 DOI: 10.2147/cmar.s156837] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of death from cancer, with increasing prevalence worldwide. The mortality rate of HCC is similar to its incidence rate, which reflects its poor prognosis. At present, the diagnosis of HCC is still mostly dependent on invasive biopsy, imaging methods, and serum α-fetoprotein (AFP) testing. Because of the asymptomatic nature of early HCC, biopsy and imaging methods usually detect HCC at the middle-late stages. AFP has limited sensitivity and specificity, as many other nonmalignant liver diseases can also result in a very high serum level of AFP. Therefore, better biomarkers with higher sensitivity and specificity at earlier stages are greatly needed. Since metabolic reprogramming is an essential hallmark of cancer and the liver is the metabolic hub of living systems, it is useful to investigate HCC from a metabolic perspective. As a noninvasive and nondestructive approach, metabolomics provides holistic information on dynamically metabolic responses of living systems to both endogenous and exogenous factors. Therefore, it would be conducive to apply metabolomics in investigating HCC. In this review, we summarize recent metabolomic studies on HCC cellular, animal, and clinicopathologic models with attention to metabolomics as a biomarker in cancer diagnosis. Recent applications of metabolomics with respect to therapeutic and prognostic evaluation of HCC are also covered, with emphasis on the potential of treatment by drugs from natural products. In the last section, the current challenges and trends of future development of metabolomics on HCC are discussed. Overall, metabolomics provides us with novel insight into the diagnosis, prognosis, and therapeutic evaluation of HCC.
Collapse
Affiliation(s)
- Wei Guo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hor Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
11
|
Specificities of Human Hepatocellular Carcinoma Developed on Non-Alcoholic Fatty Liver Disease in Absence of Cirrhosis Revealed by Tissue Extracts ¹H-NMR Spectroscopy. Metabolites 2017; 7:metabo7040049. [PMID: 28937622 PMCID: PMC5746729 DOI: 10.3390/metabo7040049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023] Open
Abstract
There is a rising incidence of non-alcoholic fatty liver disease (NAFLD) as well as of the frequency of Hepato-Cellular Carcinoma (HCC) associated with NAFLD. To seek for putative metabolic pathways specific of the NAFLD etiology, we performed comparative metabolomics between HCC associated with NAFLD and HCC associated with cirrhosis. The study included 28 pairs of HCC tissue versus distant Non-Tumoral Tissue (NTT) collected from patients undergoing hepatectomy. HCC was associated with cirrhosis (n = 9), normal liver (n = 6) and NAFLD (n = 13). Metabolomics was performed using 1H-NMR Spectroscopy on tissue extracts and combined to multivariate statistical analysis. In HCC compared to NTT, statistical models showed high levels of lactate and phosphocholine, and low level of glucose. Shared and Unique Structures (SUS) plots were performed to remove the impact of underlying disease on the metabolic profile of HCC. HCC-cirrhosis was characterized by high levels of β-hydroxybutyrate, tyrosine, phenylalanine and histidine whereas HCC-NAFLD was characterized by high levels of glutamine/glutamate. In addition, the overexpression glutamine/glutamate on HCC-NAFLD was confirmed by both Glutamine Synthetase (GS) immuno-staining and NMR-spectroscopy glutamine quantification. This study provides evidence of metabolic specificities of HCC associated with non-cirrhotic NAFLD versus HCC associated with cirrhosis. These alterations could suggest activation of glutamine synthetase pathway in HCC-NAFLD and mitochondrial dysfunction in HCC-cirrhosis, that may be part of specific carcinogenic processes.
Collapse
|
12
|
Li Y, Wang C, Li D, Deng P, Shao X, Hu J, Liu C, Jie H, Lin Y, Li Z, Qian X, Zhang H, Zhao Y. 1H-NMR-based metabolic profiling of a colorectal cancer CT-26 lung metastasis model in mice. Oncol Rep 2017; 38:3044-3054. [PMID: 28901465 DOI: 10.3892/or.2017.5954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/26/2017] [Indexed: 02/05/2023] Open
Abstract
Lung metastasis is an important cause for the low 5-year survival rate of colorectal cancer patients. Understanding the metabolic profile of lung metastasis of colorectal cancer is important for developing molecular diagnostic and therapeutic approaches. We carried out the metabonomic profiling of lung tissue samples on a mouse lung metastasis model of colorectal cancer using 1H-nuclear magnetic resonance (1H-NMR). The lung tissues of mice were collected at different intervals after marine colon cancer cell line CT-26 was intravenously injected into BALB/c mice. The distinguishing metabolites of lung tissue were investigated using 1H-NMR-based metabonomic assay, which is a highly sensitive and non-destructive method for biomarker identification. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were applied to analyze 1H-NMR profiling data to seek potential biomarkers. All of the 3 analyses achieved excellent separations between the normal and metastasis groups. A total of 42 metabolites were identified, ~12 of which were closely correlated with the process of metastasis from colon to lung. These altered metabolites indicated the disturbance of metabolism in metastatic tumors including glycolysis, TCA cycle, glutaminolysis, choline metabolism and serine biosynthesis. Our findings firstly identified the distinguishing metabolites in mouse colorectal cancer lung metastasis models, and indicated that the metabolite disturbance may be associated with the progression of lung metastasis from colon cancer. The altered metabolites may be potential biomarkers that provide a promising molecular approach for clinical diagnosis and mechanistic study of colorectal cancer with lung metastasis.
Collapse
Affiliation(s)
- Yan Li
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Chunting Wang
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Dandan Li
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Pengchi Deng
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoni Shao
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Jing Hu
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Chunqi Liu
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Hui Jie
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Yiyun Lin
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Zhuoling Li
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Xinying Qian
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Huaqin Zhang
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Yinglan Zhao
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
13
|
Li T, Deng P. Nuclear Magnetic Resonance technique in tumor metabolism. Genes Dis 2017; 4:28-36. [PMID: 30258906 PMCID: PMC6136591 DOI: 10.1016/j.gendis.2016.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most serious diseases that cause an enormous number of deaths all over the world. Tumor metabolism has great discrimination from that of normal tissues. Exploring the tumor metabolism may be one of the best ways to find biomarkers for cancer detection, diagnosis and to provide novel insights into internal physiological state where subtle changes may happen in metabolite concentrations. Nuclear Magnetic Resonance (NMR) technique nowadays is a popular tool to analyze cell extracts, tissues and biological fluids, etc, since it is a relatively fast and an accurate technique to supply abundant biochemical information at molecular levels for tumor research. In this review, approaches in tumor metabolism are discussed, including sample collection, data profiling and multivariate data analysis methods etc. Some typical applications of NMR are also summarized in tumor metabolism.
Collapse
Affiliation(s)
- Ting Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Pengchi Deng
- Analytical & Testing Center, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Yang Y, Zhang J, Liu Y, Li B, Li J, Zheng L, Wang L. Metabonomic analysis of metastatic lung tissue in breast cancer mice by an integrated NMR-based metabonomics approach. RSC Adv 2017. [DOI: 10.1039/c7ra02069d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study identified the common potential biomarkers for early lung metastasis of breast cancer in two models.
Collapse
Affiliation(s)
- Yongxia Yang
- School of Basic Course
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
- Vascular Biology Research Institute
| | - Jingli Zhang
- School of Basic Course
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
- Vascular Biology Research Institute
| | - Ying Liu
- Vascular Biology Research Institute
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Binglin Li
- School of Basic Course
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
- Vascular Biology Research Institute
| | - Jiangchao Li
- Vascular Biology Research Institute
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Lingyun Zheng
- School of Basic Course
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Lijing Wang
- Vascular Biology Research Institute
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| |
Collapse
|
15
|
Liu J, Man S, Li J, Zhang Y, Meng X, Gao W. Inhibition of diethylnitrosamine-induced liver cancer in rats by Rhizoma paridis saponin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:103-109. [PMID: 27451357 DOI: 10.1016/j.etap.2016.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/07/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
Rhizoma Paridis saponin (RPS) had been regarded as the main active components responsible for the anti-tumor effects of the herb Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz. In the present research, we set up a rat model of diethylnitrosamine (DEN) induced hepatoma to evaluate antitumor effect of RPS. After 20 weeks treatment, rats were sacrificed to perform histopathological examinations, liver function tests, oxidative stress assays and so forth. As a result, DEN-induced hepatoma formation. RPS alleviated levels of liver injury through inhibiting liver tissues of malondialdehyde (MDA) and nitric oxide (NO) formation, increasing superoxide dismutases (SOD) production, and up-regulating expression of GST-α/μ/π in DEN-induced rats. All in all, RPS would be a potent agent inhibiting chemically induced liver cancer in the prospective application.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Jing Li
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yang Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xin Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
16
|
Utilization of metabonomics to identify serum biomarkers in murine H22 hepatocarcinoma and deduce antitumor mechanism of Rhizoma Paridis saponins. Chem Biol Interact 2016; 256:55-63. [PMID: 27369806 DOI: 10.1016/j.cbi.2016.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/27/2016] [Accepted: 06/27/2016] [Indexed: 01/01/2023]
Abstract
Murine H22 hepatocarcinoma model is so popular to be used for the preclinical anticancer candidate's evaluation. However, the metabolic biomarkers of this model were not identified. Meanwhile, Rhizoma Paridis saponins (RPS) as natural products have been found to show strong antitumor activity, while its anti-cancer mechanism is not clear. To search for potential metabolite biomarkers of this model, serum metabonomics approach was applied to detect the variation of metabolite biomarkers and the related metabolism genes and signaling pathway were used to deduce the antitumor mechanisms of RPS. As a result, ten serum metabolites were identified in twenty-four mice including healthy mice, non-treated cancer mice, RPS-treated cancer mice and RPS-treated healthy mice. RPS significantly decreased tumor weight correlates to down-regulating lactate, acetate, N-acetyl amino acid and glutamine signals (p < 0.05), which were marked metabolites screened according to the very important person (VIP), loading plot and receiver operating characteristic curve (ROC) tests. For the analysis of metabolic enzyme related genes, RPS reversed the aerobic glycolysis through activating tumor suppressor p53 and PTEN, and suppressed FASN to inhibit lipogenesis. What's more, RPS repressed Myc and GLS expression and decreased glutamine level. The regulating PI3K/Akt/mTOR and HIF-1α/Myc/Ras networks also participated in these metabolic changes. Taken together, RPS suppressed ATP product made the tumor growth slow, which indicated a good anti-cancer effect and new angle for understanding the mechanism of RPS. In conclusion, this study demonstrated that the utility of (1)H NMR metabolic profiles taken together with tumor weight and viscera index was a promising screening tool for evaluating the antitumor effect of candidates. In addition, RPS was a potent anticancer agent through inhibiting cancer cellular metabolism to suppress proliferation in hepatoma H22 tumor murine, which promoted the application of RPS in the future.
Collapse
|
17
|
Akhtar MT, Mushtaq MY, Verpoorte R, Richardson MK, Choi YH. Zebrafish as a Model for Systems Medicine R&D: Rethinking the Metabolic Effects of Carrier Solvents and Culture Buffers Determined by (1)H NMR Metabolomics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 20:42-52. [PMID: 26669610 DOI: 10.1089/omi.2015.0119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Zebrafish is a frequently employed model organism in systems medicine and biomarker discovery. A crosscutting fundamental question, and one that has been overlooked in the field, is the "system-wide" (omics) effects induced in zebrafish by metabolic solvents and culture buffers. Indeed, any bioactivity or toxicity test requires that the target compounds are dissolved in an appropriate nonpolar solvent or aqueous media. It is important to know whether the solvent or the buffer itself has an effect on the zebrafish model organism. We evaluated the effects of two organic carrier solvents used in research with zebrafish, as well as in drug screening: dimethyl sulfoxide (DMSO) and ethanol, and two commonly used aqueous buffers (egg water and Hank's balanced salt solution). The effects of three concentrations (0.01, 0.1, and 1%) of DMSO and ethanol were tested in the 5-day-old zebrafish embryo using proton nuclear magnetic resonance ((1)H NMR) based metabolomics. DMSO (1% and 0.1%, but not 0.01%) exposure significantly decreased the levels of adenosine triphosphate (ATP), betaine, alanine, histidine, lactate, acetate, and creatine (p < 0.05). By contrast, ethanol exposure did not alter the embryos' metabolome at any concentration tested. The two different aqueous media noted above impacted the zebrafish embryo metabolome as evidenced by changes in valine, alanine, lactate, acetate, betaine, glycine, glutamate, adenosine triphosphate, and histidine. These results show that DMSO has greater effects on the embryo metabolome than ethanol, and thus is used with caution as a carrier solvent in zebrafish biomarker research and oral medicine. Moreover, the DMSO concentration should not be higher than 0.01%. Careful attention is also warranted for the use of the buffers egg water and Hank's balanced salt solution in zebrafish. In conclusion, as zebrafish is widely used as a model organism in life sciences, metabolome changes induced by solvents and culture buffers warrant further attention for robust systems science, and precision biomarkers that will stand the test of time.
Collapse
Affiliation(s)
- Muhammad T Akhtar
- 1 Natural Products Laboratory, Leiden University , Leiden, the Netherlands .,3 Laboratory of Natural Products, Institute of Bioscience, University Putra Malaysia , Serdang, Malaysia
| | - Mian Y Mushtaq
- 1 Natural Products Laboratory, Leiden University , Leiden, the Netherlands .,4 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University , Kuantan, Malaysia
| | - Robert Verpoorte
- 1 Natural Products Laboratory, Leiden University , Leiden, the Netherlands
| | - Michael K Richardson
- 2 Sylvius Laboratory, Institute of Biology, Leiden University , Leiden, the Netherlands
| | - Young H Choi
- 1 Natural Products Laboratory, Leiden University , Leiden, the Netherlands
| |
Collapse
|
18
|
Shariff MI, Tognarelli JM, Lewis MR, Want EJ, Mohamed FEZ, Ladep NG, Crossey MM, Khan SA, Jalan R, Holmes E, Taylor-Robinson SD. Plasma Lipid Profiling in a Rat Model of Hepatocellular Carcinoma: Potential Modulation Through Quinolone Administration. J Clin Exp Hepatol 2015; 5:286-94. [PMID: 26900269 PMCID: PMC4723654 DOI: 10.1016/j.jceh.2015.07.205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS The primary aim of this study was to characterise the blood metabolic profile of hepatocellular carcinoma (HCC) in a rat model, and the secondary aim was to evaluate the effect of the quinolone, norfloxacin on metabolic profiles and exploring the role that gut sterilisation may have on HCC development. METHODS HCC was induced in 10 Fischer rats by administration of intra-peritoneal diethylnitrosamine (DEN) and oral N-nitrosomorpholine. Plasma was collected upon sacrifice. Five of these rats were concomitantly administered oral norfloxacin. Six Fischer non-treated rats acted as healthy controls. Proton nuclear magnetic resonance (NMR) spectra were acquired using a 600 MHz NMR system. RESULTS Control animals were 120 g heavier than diseased counterparts. Proton NMR spectra from diseased rats displayed significant decreases in lipoproteins, unsaturated fatty acids, acetyl-glycoprotein, acetoacetate, and glucose (P ≤ 0.001). Plasma citrate and formate levels were increased (P = 0.02). Norfloxacin appeared to abrogate this effect slightly. CONCLUSION The spectral profiles of plasma in rats with HCC display marked changes with relation to lipid metabolism and cellular turnover. Norfloxacin appears to moderate these metabolic alterations to a small degree.
Collapse
Key Words
- 1-D, one-dimensional
- 1H, human proton
- CPMG, Carr-Purcell-Meiboom-Gill 3B
- DEN, diethylnitrosamine
- FID, free induction decay
- HCC, hepatocellular carcinoma
- HDL, high-density lipoprotein
- LDL, low-density lipoprotein
- NMOR, N-nitrosomorpholine
- NMR spectroscopy
- NMR, nuclear magnetic resonance
- NOESY, nuclear overhauser effect spectroscopy
- PCA, principal components analysis
- PLS-DA, partial least squares discriminant analysis
- Q2, goodness of prediction
- R2, goodness of fit
- RD, relaxation delay
- RF, radiofrequency
- SBP, spontaneous bacterial peritonitis
- TLR-4, Toll-like receptor 4
- VLDL, very low-density lipoprotein
- hepatocellular carcinoma
- metabonomics
- norfloxacin
Collapse
Affiliation(s)
- Mohamed I.F. Shariff
- Liver Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Joshua M. Tognarelli
- Liver Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom,Address for correspondence: Joshua Tognarelli, Liver Unit, Department Of Medicine, 10th Floor QEQM Wing, St Mary's Hospital Campus, Imperial College London, South Wharf Street, London W2 1NY, United Kingdom. Tel.: +44 207 886 6454; fax: +44 207 724 9369.
| | - Matthew R. Lewis
- Department of Surgery and Cancer, Imperial College London, Division of Computational and Systems Medicine, London SW7 2AZ, United Kingdom
| | - Elizabeth J. Want
- Department of Surgery and Cancer, Imperial College London, Division of Computational and Systems Medicine, London SW7 2AZ, United Kingdom
| | | | - Nimzing G. Ladep
- Liver Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom,Department of Surgery and Cancer, Imperial College London, Division of Computational and Systems Medicine, London SW7 2AZ, United Kingdom
| | - Mary M.E. Crossey
- Liver Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom,Department of Surgery and Cancer, Imperial College London, Division of Computational and Systems Medicine, London SW7 2AZ, United Kingdom
| | - Shahid A. Khan
- Liver Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Rajiv Jalan
- Department of Medicine, University College London, Royal Free Hospital, London NW3 2QG, United Kingdom
| | - Elaine Holmes
- Department of Surgery and Cancer, Imperial College London, Division of Computational and Systems Medicine, London SW7 2AZ, United Kingdom
| | - Simon D. Taylor-Robinson
- Liver Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Man S, Li J, Fan W, Chai H, Liu Z, Gao W. Inhibition of pulmonary adenoma in diethylnitrosamine-induced rats by Rhizoma paridis saponins. J Steroid Biochem Mol Biol 2015. [PMID: 26196122 DOI: 10.1016/j.jsbmb.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nowadays, people pay more and more attention to the natural products based on their multiple targets in the antitumor treatment. In our previous research, Rhizoma paridis saponins (RPS) were regarded as potent anticancer agent that elicits programmed cell death and inhibits metastases in murine lung adenocarcinoma in vivo. In the present study, we set up a rat model of diethylnitrosamine (DEN) induced pulmonary adenoma to evaluate the antitumor effects of RPS again. After 20 weeks treatment, rats were sacrificed in order to perform histopathological examinations, blood biochemistry, immunohistochemistry, western blot, PCR and metabonomics. As a result, DEN induced pulmonary adenoma generation in the lungs and damaged hepatocytes and hepatoma formation in the livers. RPS effectively attenuated hepatotoxic and inhibited pulmonary adenoma through down-regulating expression of MMP-9 and up-regulating level of TIMP-2 in DEN-induced rats. Meanwhile, RPS remarkably decreased energy metabolism, and glycine, serine and threonine metabolism to block the tumor growth. In conclusion, RPS would be a potent anticancer agent used in the prospective application.
Collapse
Affiliation(s)
- Shuli Man
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jing Li
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Fan
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hongyan Chai
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhen Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenyuan Gao
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
20
|
Turmeric enhancing anti-tumor effect of Rhizoma paridis saponins by influencing their metabolic profiling in tumors of H22 hepatocarcinoma mice. Pathol Res Pract 2015; 211:948-54. [PMID: 26471217 DOI: 10.1016/j.prp.2015.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 08/15/2015] [Accepted: 09/09/2015] [Indexed: 11/21/2022]
Abstract
Rhizoma Paridis saponins combined with turmeric (RT) showed well anti-hepatocarcinoma activities in our previous research. The aim of this study was to investigate the progression of the biochemical response to RT and capture metabolic variations during intragastric administration of their compatibility. In the experiment, histopathological examination and (1)H NMR method were developed and validated for the metabolic profiling of RT intervention in H22 tumor growth. Data were analyzed with principal components analysis (PCA) and partial least-squares discrimination analysis (PLS-DA). As a result, Rhizoma paridis saponins (RPS) or RT induced inflammatory cell infiltration in tumors. RT also mediated the tumor microenvironment to promote anti-tumor immunity of mice. RT significantly inhibited tumor growth rate through suppressing levels of amino acids containing alanine, asparagine, glutamine, putrescine, and sarcosine, lipid compounds, and carbohydrates like myo-inositol and arabinose in the tumor tissues. In conclusion, these results uncovered unexpectedly poor nutritional conditions in the RT-treated tumor tissues whose effect was stronger than RPS's. Therefore, RT could be a novel anticancer agent that targets on cancer metabolism through starving tumors reducing viability of cancer cells.
Collapse
|
21
|
Farid SG, Morris-Stiff G. "OMICS" technologies and their role in foregut primary malignancies. Curr Probl Surg 2015; 52:409-41. [PMID: 26527526 DOI: 10.1067/j.cpsurg.2015.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 08/03/2015] [Indexed: 12/18/2022]
|
22
|
Lemaire L, Franconi F, Siegler B, Legendre C, Garcion E. In vitro expansion of U87-MG human glioblastoma cells under hypoxic conditions affects glucose metabolism and subsequent in vivo growth. Tumour Biol 2015; 36:7699-710. [PMID: 25934335 DOI: 10.1007/s13277-015-3458-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/13/2015] [Indexed: 12/22/2022] Open
Abstract
Hypoxia is a characteristic feature of solid tumors leading to the over expression of hypoxia-inducible factor (HIF)-1α protein and therefore to a specific cellular behavior. However, even though the oxygen tension in tumors is low (<5 %), most of the cell lines used in cancer studies are grown under 21 % oxygen tension. This work focuses on the impact of oxygen conditions during in vitro cell culture on glucose metabolism using 1-(13)C-glucose. Growing U87-MG glioma cells under hypoxic conditions leads to a two- to threefold reduction of labeled glutamine and an accumulation of fructose. However, under both hypoxic and normoxic conditions, glucose is used for de novo synthesis of pyrimidine since the (13)C label is found both in the uracil and ribose moieties. Labeling of the ribose ring demonstrates that U87-MG glioma cells use the reversible branch of the non-oxidative pentose phosphate pathway. Interestingly, stereotactic implantation of U87-MG cells grown under normoxia or mild hypoxia within the striatum of nude mice led to differential growth; the cells grown under hypoxia retaining an imprint of the oxygen adaptation as their development is then slowed down.
Collapse
Affiliation(s)
- L Lemaire
- INSERM U 1066, 'Micro et Nanomédecines Biomimétiques - MINT' IBS - CHU, 4, rue Larrey, 49933, Angers, France. .,LUNAM Université, Université Angers, UMR-S1066, Angers, France.
| | - F Franconi
- PRIMEX, Université d'Angers, LUNAM Université, Angers, France.,PIAM, Université d'Angers, LUNAM Université, Angers, France
| | - B Siegler
- PIAM, Université d'Angers, LUNAM Université, Angers, France
| | - C Legendre
- INSERM U 1066, 'Micro et Nanomédecines Biomimétiques - MINT' IBS - CHU, 4, rue Larrey, 49933, Angers, France.,LUNAM Université, Université Angers, UMR-S1066, Angers, France
| | - E Garcion
- INSERM U 1066, 'Micro et Nanomédecines Biomimétiques - MINT' IBS - CHU, 4, rue Larrey, 49933, Angers, France.,LUNAM Université, Université Angers, UMR-S1066, Angers, France
| |
Collapse
|
23
|
Shao Y, Zhu B, Zheng R, Zhao X, Yin P, Lu X, Jiao B, Xu G, Yao Z. Development of urinary pseudotargeted LC-MS-based metabolomics method and its application in hepatocellular carcinoma biomarker discovery. J Proteome Res 2014; 14:906-16. [PMID: 25483141 DOI: 10.1021/pr500973d] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the pestilent malignancies leading to cancer-related death. Discovering effective biomarkers for HCC diagnosis is an urgent demand. To identify potential metabolite biomarkers, we developed a urinary pseudotargeted method based on liquid chromatography-hybrid triple quadrupole linear ion trap mass spectrometry (LC-QTRAP MS). Compared with nontargeted method, the pseudotargeted method can achieve better data quality, which benefits differential metabolites discovery. The established method was applied to cirrhosis (CIR) and HCC investigation. It was found that urinary nucleosides, bile acids, citric acid, and several amino acids were significantly changed in liver disease groups compared with the controls, featuring the dysregulation of purine metabolism, energy metabolism, and amino metabolism in liver diseases. Furthermore, some metabolites such as cyclic adenosine monophosphate, glutamine, and short- and medium-chain acylcarnitines were the differential metabolites of HCC and CIR. On the basis of binary logistic regression, butyrylcarnitine (carnitine C4:0) and hydantoin-5-propionic acid were defined as combinational markers to distinguish HCC from CIR. The area under curve was 0.786 and 0.773 for discovery stage and validation stage samples, respectively. These data show that the established pseudotargeted method is a complementary one of targeted and nontargeted methods for metabolomics study.
Collapse
Affiliation(s)
- Yaping Shao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cui MH, Branch CA, Cahill SM, Quinn TJ, Adem A, Libutti SK, Yuan Z. In vivo proton MR spectroscopy of pancreatic neuroendocrine tumors in a multiple endocrine neoplasia type 1 conditional knockout mouse model. Magn Reson Med 2014; 74:1221-6. [PMID: 25392979 DOI: 10.1002/mrm.25529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE MR spectroscopy (MRS) can improve diagnosis and follow treatment in cancer. However, no study has yet reported application of in vivo (1)H-MRS in malignant pancreatic lesions. This study quantitatively determined whether in vivo (1)H-MRS on multiple endocrine neoplasia type 1 (Men1) conditional knockout (KO) mice and their wild type (WT) littermates could detect differences in total choline (tCho) levels between tumor and control pancreas. METHODS Relative tCho levels in pancreatic tumors or pancreata from KO and WT mice were determined using in vivo (1)H-MRS at 9.4 T. The levels of Cho-containing compounds were also quantified using in vitro (1)H-NMR on extracts of pancreatic tissues from KO and WT mice, respectively, and on extracts of pancreatic tissues from patients with pancreatic neuroendocrine tumors (PNETs). RESULTS tCho levels measured by in vivo (1)H-MRS were significantly higher in PNETs from KO mice compared to the normal pancreas from WT mice. The elevated choline-containing compounds were also identified in pancreatic tumors from KO mice and tissues from patients with PNETs via in vitro (1)H-NMR. CONCLUSION These results indicate the potential use of tCho levels estimated via in vivo (1)H-MRS in differentiating malignant pancreatic tumors from benign tumors.
Collapse
Affiliation(s)
- Min-Hui Cui
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Radiology, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Craig A Branch
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Radiology, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sean M Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Thomas J Quinn
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Asha Adem
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Steven K Libutti
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ziqiang Yuan
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
25
|
Mushtaq MY, Choi YH, Verpoorte R, Wilson EG. Extraction for metabolomics: access to the metabolome. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:291-306. [PMID: 24523261 DOI: 10.1002/pca.2505] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/21/2013] [Accepted: 12/26/2013] [Indexed: 05/24/2023]
Abstract
INTRODUCTION The value of information obtained from a metabolomic study depends on how much of the metabolome is present in analysed samples. Thus, only a comprehensive and reproducible extraction method will provide reliable data because the metabolites that will be measured are those that were extracted and all conclusions will be built around this information. OBJECTIVE To discuss the efficiency and reliability of available sample pre-treatment methods and their application in different fields of metabolomics. METHODS The review has three sections: the first deals with pre-extraction techniques, the second discusses the choice of extraction solvents and their main features and the third includes a brief description of the most used extraction techniques: microwave-assisted extraction, solid-phase extraction, supercritical fluid extraction, Soxhlet and a new method developed in our laboratory--the comprehensive extraction method. RESULTS Examination of over 200 studies showed that sample collection, homogenisation, grinding and storage could affect the yield and reproducibility of results. They also revealed that apart from the solvent used for extraction, the extraction techniques have a decisive role on the metabolites available for analysis. CONCLUSION It is essential to evaluate efficacy and reproducibility of sample pre-treatment as a first step to ensure the reliability of a metabolomic study. Among the reviewed methods, the comprehensive extraction method appears to provide a promising approach for extracting diverse types of metabolites.
Collapse
Affiliation(s)
- Mian Yahya Mushtaq
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA, Leiden, The Netherlands
| | | | | | | |
Collapse
|
26
|
Bezabeh T, Ijare OB, Nikulin AE, Somorjai RL, Smith IC. MRS-based Metabolomics in Cancer Research. MAGNETIC RESONANCE INSIGHTS 2014; 7:1-14. [PMID: 25114549 PMCID: PMC4122556 DOI: 10.4137/mri.s13755] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/30/2013] [Accepted: 12/30/2013] [Indexed: 12/18/2022]
Abstract
Metabolomics is a relatively new technique that is gaining importance very rapidly. MRS-based metabolomics, in particular, is becoming a useful tool in the study of body fluids, tissue biopsies and whole organisms. Advances in analytical techniques and data analysis methods have opened a new opportunity for such technology to contribute in the field of diagnostics. In the MRS approach to the diagnosis of disease, it is important that the analysis utilizes all the essential information in the spectra, is robust, and is non-subjective. Although some of the data analytic methods widely used in chemical and biological sciences are sketched, a more extensive discussion is given of a 5-stage Statistical Classification Strategy. This proposes powerful feature selection methods, based on, for example, genetic algorithms and novel projection techniques. The applications of MRS-based metabolomics in breast cancer, prostate cancer, colorectal cancer, pancreatic cancer, hepatobiliary cancers, gastric cancer, and brain cancer have been reviewed. While the majority of these applications relate to body fluids and tissue biopsies, some in vivo applications have also been included. It should be emphasized that the number of subjects studied must be sufficiently large to ensure a robust diagnostic classification. Before MRS-based metabolomics can become a widely used clinical tool, however, certain challenges need to be overcome. These include manufacturing user-friendly commercial instruments with all the essential features, and educating physicians and medical technologists in the acquisition, analysis, and interpretation of metabolomics data.
Collapse
Affiliation(s)
- Tedros Bezabeh
- Department of Chemistry, University of Winnipeg, Winnipeg, Manitoba, Canada. ; Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada. ; Innovative Biodiagnostics Inc, Winnipeg, Manitoba, Canada
| | - Omkar B Ijare
- Department of Chemistry, University of Winnipeg, Winnipeg, Manitoba, Canada. ; Innovative Biodiagnostics Inc, Winnipeg, Manitoba, Canada
| | | | | | - Ian Cp Smith
- Department of Chemistry, University of Winnipeg, Winnipeg, Manitoba, Canada. ; Departments of Anatomy and Human Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada. ; Innovative Biodiagnostics Inc, Winnipeg, Manitoba, Canada
| |
Collapse
|
27
|
Zhou L, Liao Y, Yin P, Zeng Z, Li J, Lu X, Zheng L, Xu G. Metabolic profiling study of early and late recurrence of hepatocellular carcinoma based on liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 966:163-70. [PMID: 24582150 DOI: 10.1016/j.jchromb.2014.01.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/01/2014] [Accepted: 01/30/2014] [Indexed: 12/12/2022]
Abstract
The objectives of this pilot study were to predict early postoperative recurrence in hepatocellular carcinoma (HCC) patients based on metabolic features and to explore the related metabolic disturbances. Liquid chromatography-mass spectrometry-based metabolic profiling was performed on the plasma of 18 late recurrent and 22 early recurrent HCC patients. Metabolic differences were found to be related to amino acid, bile acid, cholesterol, fatty acid, phospholipid and carbohydrate metabolism. Bile acids, steroids and fatty acids showed significant variation in the early recurrent HCC group compared to the late recurrence group. Decreased levels of polyunsaturated eicosapentaenoic acid, docosahexaenoic acid and linolenic acid were found to be specific metabolic features for early recurrence. With the combination of methionine, GCDCA and cholesterol sulfate, 85% of the early recurrent HCCs can be predicted correctly with the corresponding area under the curve (AUC) equal to 0.95 in the training set, and 80% of the early recurrent HCCs can be predicted correctly with the corresponding AUC equal to 0.91 in the test set.
Collapse
Affiliation(s)
- Lina Zhou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuan Liao
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen (Zhongshan) University, Guangzhou, PR China
| | - Peiyuan Yin
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhongda Zeng
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jia Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xin Lu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Limin Zheng
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen (Zhongshan) University, Guangzhou, PR China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
28
|
Qin XY, Wei F, Tanokura M, Ishibashi N, Shimizu M, Moriwaki H, Kojima S. The effect of acyclic retinoid on the metabolomic profiles of hepatocytes and hepatocellular carcinoma cells. PLoS One 2013; 8:e82860. [PMID: 24376596 PMCID: PMC3871542 DOI: 10.1371/journal.pone.0082860] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 11/06/2013] [Indexed: 02/07/2023] Open
Abstract
Background/Purpose Acyclic retinoid (ACR) is a promising chemopreventive agent for hepatocellular carcinoma (HCC) that selectively inhibits the growth of HCC cells (JHH7) but not normal hepatic cells (Hc). To better understand the molecular basis of the selective anti-cancer effect of ACR, we performed nuclear magnetic resonance (NMR)-based and capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS)-based metabolome analyses in JHH7 and Hc cells after treatment with ACR. Methodology/Principal Findings NMR-based metabolomics revealed a distinct metabolomic profile of JHH7 cells at 18 h after ACR treatment but not at 4 h after ACR treatment. CE-TOFMS analysis identified 88 principal metabolites in JHH7 and Hc cells after 24 h of treatment with ethanol (EtOH) or ACR. The abundance of 71 of these metabolites was significantly different between EtOH-treated control JHH7 and Hc cells, and 49 of these metabolites were significantly down-regulated in the ACR-treated JHH7 cells compared to the EtOH-treated JHH7 cells. Of particular interest, the increase in adenosine-5′-triphosphate (ATP), the main cellular energy source, that was observed in the EtOH-treated control JHH7 cells was almost completely suppressed in the ACR-treated JHH7 cells; treatment with ACR restored ATP to the basal levels observed in both EtOH-control and ACR-treated Hc cells (0.72-fold compared to the EtOH control-treated JHH7 cells). Moreover, real-time PCR analyses revealed that ACR significantly increased the expression of pyruvate dehydrogenase kinases 4 (PDK4), a key regulator of ATP production, in JHH7 cells but not in Hc cells (3.06-fold and 1.20-fold compared to the EtOH control, respectively). Conclusions/Significance The results of the present study suggest that ACR may suppress the enhanced energy metabolism of JHH7 cells but not Hc cells; this occurs at least in part via the cancer-selective enhancement of PDK4 expression. The cancer-selective metabolic pathways identified in this study will be important targets of the anti-cancer activity of ACR.
Collapse
Affiliation(s)
- Xian-Yang Qin
- Micro-signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, Wako, Saitama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Feifei Wei
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Naoto Ishibashi
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, KOWA Company, Ltd., Tokyo, Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hisataka Moriwaki
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Soichi Kojima
- Micro-signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
29
|
The metabolomic window into hepatobiliary disease. J Hepatol 2013; 59:842-58. [PMID: 23714158 PMCID: PMC4095886 DOI: 10.1016/j.jhep.2013.05.030] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/14/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
The emergent discipline of metabolomics has attracted considerable research effort in hepatology. Here we review the metabolomic data for non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), alcoholic liver disease (ALD), hepatitis B and C, cholecystitis, cholestasis, liver transplantation, and acute hepatotoxicity in animal models. A metabolomic window has permitted a view into the changing biochemistry occurring in the transitional phases between a healthy liver and hepatocellular carcinoma or cholangiocarcinoma. Whether provoked by obesity and diabetes, alcohol use or oncogenic viruses, the liver develops a core metabolomic phenotype (CMP) that involves dysregulation of bile acid and phospholipid homeostasis. The CMP commences at the transition between the healthy liver (Phase 0) and NAFLD/NASH, ALD or viral hepatitis (Phase 1). This CMP is maintained in the presence or absence of cirrhosis (Phase 2) and whether or not either HCC or CCA (Phase 3) develops. Inflammatory signalling in the liver triggers the appearance of the CMP. Many other metabolomic markers distinguish between Phases 0, 1, 2 and 3. A metabolic remodelling in HCC has been described but metabolomic data from all four Phases demonstrate that the Warburg shift from mitochondrial respiration to cytosolic glycolysis foreshadows HCC and may occur as early as Phase 1. The metabolic remodelling also involves an upregulation of fatty acid β-oxidation, also beginning in Phase 1. The storage of triglycerides in fatty liver provides high energy-yielding substrates for Phases 2 and 3 of liver pathology. The metabolomic window into hepatobiliary disease sheds new light on the systems pathology of the liver.
Collapse
|
30
|
Baniasadi H, Gowda GAN, Gu H, Zeng A, Zhuang S, Skill N, Maluccio M, Raftery D. Targeted metabolic profiling of hepatocellular carcinoma and hepatitis C using LC-MS/MS. Electrophoresis 2013; 34:2910-7. [PMID: 23856972 DOI: 10.1002/elps.201300029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 06/01/2013] [Accepted: 06/25/2013] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) infection of the liver is a global health problem and a major risk factor for the development of hepatocellular carcinoma (HCC). Sensitive methods are needed for the improved and earlier detection of HCC, which would provide better therapy options. Metabolic profiling of the high-risk population (HCV patients) and those with HCC provides insights into the process of liver carcinogenesis and possible biomarkers for earlier cancer detection. Seventy-three blood metabolites were quantitatively profiled in HCC (n = 30) and cirrhotic HCV (n = 22) patients using a targeted approach based on LC-MS/MS. Sixteen of 73 targeted metabolites differed significantly (p < 0.05) and their levels varied up to a factor of 3.3 between HCC and HCV. Four of these 16 metabolites (methionine, 5-hydroxymethyl-2'-deoxyuridine, N2,N2-dimethylguanosine, and uric acid) that showed the lowest p values were used to develop and internally validate a classification model using partial least squares discriminant analysis. The model exhibited high classification accuracy for distinguishing the two groups with sensitivity, specificity, and area under the receiver operating characteristic curve of 97%, 95%, and 0.98, respectively. A number of perturbed metabolic pathways, including amino acid, purine, and nucleotide metabolism, were identified based on the 16 biomarker candidates. These results provide a promising methodology to distinguish cirrhotic HCV patients, who are at high risk to develop HCC, from those who have already progressed to HCC. The results also provide insights into the altered metabolism between HCC and HCV.
Collapse
Affiliation(s)
- Hamid Baniasadi
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Beyoğlu D, Imbeaud S, Maurhofer O, Bioulac-Sage P, Zucman-Rossi J, Dufour JF, Idle JR. Tissue metabolomics of hepatocellular carcinoma: tumor energy metabolism and the role of transcriptomic classification. Hepatology 2013; 58:229-38. [PMID: 23463346 PMCID: PMC3695036 DOI: 10.1002/hep.26350] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/19/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is one of the commonest causes of death from cancer. A plethora of metabolomic investigations of HCC have yielded molecules in biofluids that are both up- and down-regulated but no real consensus has emerged regarding exploitable biomarkers for early detection of HCC. We report here a different approach, a combined transcriptomics and metabolomics study of energy metabolism in HCC. A panel of 31 pairs of HCC tumors and corresponding nontumor liver tissues from the same patients was investigated by gas chromatography-mass spectrometry (GCMS)-based metabolomics. HCC was characterized by ∼2-fold depletion of glucose, glycerol 3- and 2-phosphate, malate, alanine, myo-inositol, and linoleic acid. Data are consistent with a metabolic remodeling involving a 4-fold increase in glycolysis over mitochondrial oxidative phosphorylation. A second panel of 59 HCC that had been typed by transcriptomics and classified in G1 to G6 subgroups was also subjected to GCMS tissue metabolomics. No differences in glucose, lactate, alanine, glycerol 3-phosphate, malate, myo-inositol, or stearic acid tissue concentrations were found, suggesting that the Wnt/β-catenin pathway activated by CTNNB1 mutation in subgroups G5 and G6 did not exhibit specific metabolic remodeling. However, subgroup G1 had markedly reduced tissue concentrations of 1-stearoylglycerol, 1-palmitoylglycerol, and palmitic acid, suggesting that the high serum α-fetoprotein phenotype of G1, associated with the known overexpression of lipid catabolic enzymes, could be detected through metabolomics as increased lipid catabolism. CONCLUSION Tissue metabolomics yielded precise biochemical information regarding HCC tumor metabolic remodeling from mitochondrial oxidation to aerobic glycolysis and the impact of molecular subtypes on this process.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Hepatology Research Group, Department of Clinical Research, University of Bern, Switzerland
| | - Sandrine Imbeaud
- Inserm, UMR-674, Génomiquefonctionnelle des tumeurssolides, IUH, Paris, F-75010 France,Université Paris Descartes, LabexImmuno-oncology, Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique-Hôpitaux de Paris, France
| | - Olivier Maurhofer
- Hepatology Research Group, Department of Clinical Research, University of Bern, Switzerland
| | - Paulette Bioulac-Sage
- Inserm, UMR-1053; Université Victor Segalen Bordeaux 2, Bordeaux, F-33076, France,CHU de Bordeaux, Pellegrin Hospital, Department of Pathology, Bordeaux, F-33076, France
| | - Jessica Zucman-Rossi
- Inserm, UMR-674, Génomiquefonctionnelle des tumeurssolides, IUH, Paris, F-75010 France,Université Paris Descartes, LabexImmuno-oncology, Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique-Hôpitaux de Paris, France
| | - Jean-François Dufour
- Hepatology Research Group, Department of Clinical Research, University of Bern, Switzerland
| | - Jeffrey R. Idle
- Hepatology Research Group, Department of Clinical Research, University of Bern, Switzerland
| |
Collapse
|
32
|
Ye G, Zhu B, Yao Z, Yin P, Lu X, Kong H, Fan F, Jiao B, Xu G. Analysis of Urinary Metabolic Signatures of Early Hepatocellular Carcinoma Recurrence after Surgical Removal Using Gas Chromatography–Mass Spectrometry. J Proteome Res 2012; 11:4361-72. [PMID: 22768978 DOI: 10.1021/pr300502v] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guozhu Ye
- CAS Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Bin Zhu
- The Second Department of Biliary
Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China
| | - Zhenzhen Yao
- Department of Biochemistry & Molecular Biology, Second Military Medical University, 200433, Shanghai, China
| | - Peiyuan Yin
- CAS Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Xin Lu
- CAS Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hongwei Kong
- CAS Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Fei Fan
- The Second Department of Biliary
Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 200438, Shanghai, China
| | - Binghua Jiao
- Department of Biochemistry & Molecular Biology, Second Military Medical University, 200433, Shanghai, China
| | - Guowang Xu
- CAS Key Laboratory of Separation
Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| |
Collapse
|
33
|
Abstract
The burden of cancer is growing worldwide and with it a more desperate need for better tools to detect, diagnose and monitor the disease is required. It is well recognized that cancer cells are characterized by distinct metabolic perturbations. The metabolomics approach involves the comprehensive profiling of the full complement of low MW compounds in a biological system. By applying advanced analytical and statistical tools, the 'metabolome' is mined for biomarkers that are associated with the state of cancer. This review presents an introduction to the main analytical platforms used in metabolomics analyses, such as NMR spectroscopy and MS, as well as the statistical tools used to mine these datasets. The discussion focuses on 'state-of-the-art' investigations on the four cancer types that have received the most study by metabolomics, namely breast, prostate, colorectal and liver cancer.
Collapse
|
34
|
Thompson SM, Callstrom MR, Knudsen B, Anderson JL, Carter RE, Grande JP, Roberts LR, Woodrum DA. Development and preliminary testing of a translational model of hepatocellular carcinoma for MR imaging and interventional oncologic investigations. J Vasc Interv Radiol 2012; 23:385-95. [PMID: 22265247 PMCID: PMC3904802 DOI: 10.1016/j.jvir.2011.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/28/2011] [Accepted: 11/06/2011] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To develop a translational rat hepatocellular carcinoma (HCC) disease model for magnetic resonance (MR) imaging and image-guided interventional oncologic investigations. MATERIALS AND METHODS Male rats underwent sham control surgery (n = 6), selective bile duct ligation (SBDL; n = 4), or common bile duct ligation (CBDL; n = 6), with procedure optimization in four rats and N1S1 hepatoma cell injection into two or three sites in the livers of 12 rats. All rats subsequently underwent MR imaging to assess tumor establishment and volume. Mesenteric angiography and percutaneous MR-guided laser ablation of the liver were performed in a subgroup of animals (n = 4). Animal weight and liver test results were monitored. After harvesting, the livers were subjected to gross and microscopic analysis. Tumor volume and laboratory parameters were assessed between ligation groups. RESULTS MR imaging demonstrated hyperintense T2 and hypointense T1 lesions with tumor induction in five of 10 (50.0%), seven of eight (87.5%), and 12 of 12 (100%) sites in the control, SBDL, and CBDL groups, respectively. Tumor volumes differed significantly by group (P < .02). Mesenteric angiography demonstrated an enhancing tumor stain. Clinical and laboratory assessment revealed a significant decrease in weight (P = .01) and albumin level (P < .01) and an increase in total bilirubin level (P = .02) in CBDL rats but not SBDL rats (P = 1.0). Histologic examination showed high-grade HCCs with local and vascular invasion within the context of early fibrosis in CBDL and SBDL rats. MR-guided laser ablation generated a 1-2-cm ablation zone with histologic findings consistent with reversible and irreversible injury. CONCLUSIONS A biologically relevant rat HCC disease model has been developed for MR imaging and preliminary interventional oncologic applications.
Collapse
MESH Headings
- Animals
- Aortography
- Bile Ducts/surgery
- Carcinoma, Hepatocellular/diagnostic imaging
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/surgery
- Cell Line, Tumor
- Laser Therapy
- Ligation
- Liver Cirrhosis/pathology
- Liver Neoplasms, Experimental/diagnostic imaging
- Liver Neoplasms, Experimental/etiology
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/surgery
- Magnetic Resonance Imaging
- Magnetic Resonance Imaging, Interventional
- Male
- Neoplasm Invasiveness
- Rats
- Rats, Sprague-Dawley
- Time Factors
- Translational Research, Biomedical
- Tumor Burden
Collapse
|
35
|
Kraljevic Pavelic S, Sedic M, Bosnjak H, Spaventi S, Pavelic K. Metastasis: new perspectives on an old problem. Mol Cancer 2011; 10:22. [PMID: 21342498 PMCID: PMC3052211 DOI: 10.1186/1476-4598-10-22] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 02/22/2011] [Indexed: 12/23/2022] Open
Abstract
Many hypotheses have been postulated to explain the intricate nature of the metastatic process, but none of them completely accounted for the actual biological and clinical observations. Consequently, metastasis still remains an open issue with only few metastasis-inducing proteins experimentally validated so far. Recently proposed novel metastatic model, where serial and parallel metastatic processes are adequately integrated, might help to bridge the current gap between experimental results and clinical observations. In addition, the identification, isolation and molecular characterization of cancer stem cells, a population of the cells within the tumour mass able to proliferate, self-renew and induce tumorigenesis, will shed new light on the complex molecular events mediating metastasis, invasion and resistance to therapy. Understanding the molecular basis of these tumour characteristics will usher in a new age of individualized cancer therapy. In this review article, we will provide a current overview of molecular mechanisms underpinning metastasis, and discuss recent findings in this field obtained by global molecular profiling strategies such as proteomics.
Collapse
|