1
|
Wang F, Zhou C, Zhu Y, Keshavarzi M. The microRNA Let-7 and its exosomal form: Epigenetic regulators of gynecological cancers. Cell Biol Toxicol 2024; 40:42. [PMID: 38836981 PMCID: PMC11153289 DOI: 10.1007/s10565-024-09884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Many types of gynecological cancer (GC) are often silent until they reach an advanced stage, and are therefore often diagnosed too late for effective treatment. Hence, there is a real need for more efficient diagnosis and treatment for patients with GC. During recent years, researchers have increasingly studied the impact of microRNAs cancer development, leading to a number of applications in detection and treatment. MicroRNAs are a particular group of tiny RNA molecules that regulate regular gene expression by affecting the translation process. The downregulation of numerous miRNAs has been observed in human malignancies. Let-7 is an example of a miRNA that controls cellular processes as well as signaling cascades to affect post-transcriptional gene expression. Recent research supports the hypothesis that enhancing let-7 expression in those cancers where it is downregulated may be a potential treatment option. Exosomes are tiny vesicles that move through body fluids and can include components like miRNAs (including let-7) that are important for communication between cells. Studies proved that exosomes are able to enhance tumor growth, angiogenesis, chemoresistance, metastasis, and immune evasion, thus suggesting their importance in GC management.
Collapse
Affiliation(s)
- Fei Wang
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Chundi Zhou
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Yanping Zhu
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China.
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Otmani K, Rouas R, Berehab M, Lewalle P. The regulatory mechanisms of oncomiRs in cancer. Biomed Pharmacother 2024; 171:116165. [PMID: 38237348 DOI: 10.1016/j.biopha.2024.116165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Cancer development is a complex process that primarily results from the combination of genetic alterations and the dysregulation of major signalling pathways due to interference with the epigenetic machinery. As major epigenetic regulators, miRNAs are central players in the control of many key tumour development factors. These miRNAs have been classified as oncogenic miRNAs (oncomiRs) when they target tumour suppressor genes and tumour suppressor miRNAs (TS miRNAs) when they inhibit oncogene protein expression. Most of the mechanisms that modulate oncomiR expression are linked to transcriptional or posttranscriptional regulation. However, non-transcriptional processes, such as gene amplification, have been described as alternative processes that are responsible for increasing oncomiR expression. The current review summarises the different mechanisms controlling the upregulation of oncomiR expression in cancer cells and the tumour microenvironment (TME). Detailed knowledge of the mechanism underlying the regulation of oncomiR expression in cancer may pave the way for understanding the critical role of oncomiRs in cancer development and progression.
Collapse
Affiliation(s)
- Khalid Otmani
- Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Redouane Rouas
- Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mimoune Berehab
- Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Lewalle
- Hematology Laboratory, Hematology Department, Hôpital Universitaire de Bruxelles (H.U.B.) Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
3
|
Ormenezi I, Ribeiro-Silva A, Rosa-E-Silva JC, Meola J, Candido-Dos-Reis FJ, Poli-Neto OB. Immunohistochemical expression of Drosha is reduced in eutopic and ectopic endometrium of women with adenomyosis. Braz J Med Biol Res 2022; 55:e12375. [PMID: 36515351 DOI: 10.1590/1414-431x2022e12375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to evaluate the immunohistochemical expression of Dicer, Drosha, and Exportin-5 in the eutopic and ectopic endometrium of women with adenomyosis. Twenty-two paired ectopic and eutopic endometrium from women with adenomyosis and 10 eutopic endometrium samples from control women undergoing hysterectomy were included in the study. Paraffin-embedded tissue blocks were cut and stained for immunohistochemistry. The percentage of epithelial cells positively marked was identified digitally after an automated slide scanning process. Mann-Whitney test or Wilcoxon signed-rank test was performed for independent and paired groups, respectively. A lower expression of Drosha was observed in the eutopic endometrium of women with adenomyosis than in the eutopic endometrium of women without the disease (69.9±3.4% vs 85.2±2.9%, respectively) (P=0.016; 95%CI: 3.4 to 27.4%). We also detected lower Drosha expression in the ectopic endometrium of women with adenomyosis than in the eutopic endometrium of the same women (59.6±3.2% vs 69.9±3.4%, respectively) (P=0.004; 95%CI: 2.3 to 16.7%). Additionally, we observed a correlation between Drosha expression in the ectopic and paired eutopic endometrium (P=0.034, rho=0.454). No significant difference in Dicer or Exportin expression was observed. Predominant pattern of cytoplasmic staining for the anti-Drosha antibody and both a nuclear and cytoplasmic pattern for the anti-Exportin antibody were observed. Drosha expression was significantly lower in the endometrium of women with adenomyosis compared to the eutopic endometrium of asymptomatic women without the disease. Furthermore, its expression was lower in the ectopic endometrium but correlated to the paired eutopic endometrium.
Collapse
Affiliation(s)
- I Ormenezi
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A Ribeiro-Silva
- Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - J C Rosa-E-Silva
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - J Meola
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - F J Candido-Dos-Reis
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - O B Poli-Neto
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
4
|
Fields CJ, Li L, Hiers NM, Li T, Sheng P, Huda T, Shan J, Gay L, Gu T, Bian J, Kilberg MS, Renne R, Xie M. Sequencing of Argonaute-bound microRNA/mRNA hybrids reveals regulation of the unfolded protein response by microRNA-320a. PLoS Genet 2021; 17:e1009934. [PMID: 34914716 PMCID: PMC8675727 DOI: 10.1371/journal.pgen.1009934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNA) are short non-coding RNAs widely implicated in gene regulation. Most metazoan miRNAs utilize the RNase III enzymes Drosha and Dicer for biogenesis. One notable exception is the RNA polymerase II transcription start sites (TSS) miRNAs whose biogenesis does not require Drosha. The functional importance of the TSS-miRNA biogenesis is uncertain. To better understand the function of TSS-miRNAs, we applied a modified Crosslinking, Ligation, and Sequencing of Hybrids on Argonaute (AGO-qCLASH) to identify the targets for TSS-miRNAs in HCT116 colorectal cancer cells with or without DROSHA knockout. We observed that miR-320a hybrids dominate in TSS-miRNA hybrids identified by AGO-qCLASH. Targets for miR-320a are enriched for the eIF2 signaling pathway, a downstream component of the unfolded protein response. Consistently, in miR-320a mimic- and antagomir- transfected cells, differentially expressed gene products are associated with eIF2 signaling. Within the AGO-qCLASH data, we identified the endoplasmic reticulum (ER) chaperone calnexin as a direct miR-320a down-regulated target, thus connecting miR-320a to the unfolded protein response. During ER stress, but not amino acid deprivation, miR-320a up-regulates ATF4, a critical transcription factor for resolving ER stress. In summary, our study investigates the targetome of the TSS-miRNAs in colorectal cancer cells and establishes miR-320a as a regulator of unfolded protein response.
Collapse
Affiliation(s)
- Christopher J. Fields
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Lu Li
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Nicholas M. Hiers
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Tianqi Li
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Taha Huda
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Jixiu Shan
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Lauren Gay
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Tongjun Gu
- Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Michael S. Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Rolf Renne
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
5
|
Otmani K, Lewalle P. Tumor Suppressor miRNA in Cancer Cells and the Tumor Microenvironment: Mechanism of Deregulation and Clinical Implications. Front Oncol 2021; 11:708765. [PMID: 34722255 PMCID: PMC8554338 DOI: 10.3389/fonc.2021.708765] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that have been identified as important posttranscriptional regulators of gene expression. miRNAs production is controlled at multiple levels, including transcriptional and posttranscriptional regulation. Extensive profiling studies have shown that the regulation of mature miRNAs expression plays a causal role in cancer development and progression. miRNAs have been identified to act as tumor suppressors (TS) or as oncogenes based on their modulating effect on the expression of their target genes. Upregulation of oncogenic miRNAs blocks TS genes and leads to tumor formation. In contrast, downregulation of miRNAs with TS function increases the translation of oncogenes. Several miRNAs exhibiting TS properties have been studied. In this review we focus on recent studies on the role of TS miRNAs in cancer cells and the tumor microenvironment (TME). Furthermore, we discuss how TS miRNA impacts the aggressiveness of cancer cells, with focus of the mechanism that regulate its expression. The study of the mechanisms of miRNA regulation in cancer cells and the TME may paved the way to understand its critical role in the development and progression of cancer and is likely to have important clinical implications in a near future. Finally, the potential roles of miRNAs as specific biomarkers for the diagnosis and the prognosis of cancer and the replacement of tumor suppressive miRNAs using miRNA mimics could be promising approaches for cancer therapy.
Collapse
Affiliation(s)
- Khalid Otmani
- Experimental Hematology Laboratory, Jules Bordet Institute, Université libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
6
|
Akbari A, Sedaghat M, Heshmati J, Tabaeian SP, Dehghani S, Pizarro AB, Rostami Z, Agah S. Molecular mechanisms underlying curcumin-mediated microRNA regulation in carcinogenesis; Focused on gastrointestinal cancers. Biomed Pharmacother 2021; 141:111849. [PMID: 34214729 DOI: 10.1016/j.biopha.2021.111849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin is a bioactive ingredient found in the Rhizomes of Curcuma longa. Curcumin is well known for its chemopreventive and anti-cancer properties. Recent findings have demonstrated several pharmacological and biological impacts of curcumin, related to the control and the management of gastrointestinal cancers. Mechanistically, curcumin exerts its biological impacts via antioxidant and anti-inflammatory effects through the interaction with various transcription factors and signaling molecules. Moreover, epigenetic modulators such as microRNAs (miRNAs) have been revealed as novel targets of curcumin. Curcumin was discovered to regulate the expression of numerous pathogenic miRNAs in gastric, colorectal, esophageal and liver cancers. The present systematic review was performed to identify miRNAs that are modulated by curcumin in gastrointestinal cancers.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Meghdad Sedaghat
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Javad Heshmati
- Songhor Healthcare Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sadegh Dehghani
- Radiation Sciences Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Rostami
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Chen L, Zhu X, Han B, Ji L, Yao L, Wang Z. High Expression of microRNA-223 Indicates a Good Prognosis in Triple-Negative Breast Cancer. Front Oncol 2021; 11:630432. [PMID: 33928027 PMCID: PMC8078593 DOI: 10.3389/fonc.2021.630432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose MicroRNAs can influence many biological processes and have shown promise as cancer biomarkers. Few studies have focused on the expression of microRNA-223 (miR-223) and its precise role in breast cancer (BC). We aimed to examine the expression level of miR-223 and its prognostic value in BC. Methods Tissue microarray (TMA)-based miRNA detection in situ hybridization (ISH) with a locked nucleic acid (LNA) probe was used to detect miR-223 expression in 450 BC tissue samples. Overall survival (OS) and disease-free survival (DFS) were compared between two groups using the Kaplan-Meier method and Cox regression model. Results OS and DFS were prolonged in the high miR-223 expression group compared to the low miR-223 expression group (p < 0.0001 and p = 0.017, respectively), especially in patients with the triple-negative breast cancer (TNBC) subtype (p = 0.046 and p < 0.001, respectively). Univariate and multivariate Cox regression analyses revealed that TNM stage (p = 0.008), the molecular subtype (p = 0.049), and miR-223 (p < 0.001) were independently associated with OS and DFS. External validation was performed with the METABRIC and The Cancer Genome Atlas (TCGA) databases via online webtools and was consistent with the data described above. Conclusions This study provides evidence that high miR-223 expression at diagnosis is associated with improved DFS and OS for BC patients, especially those with the TNBC subtype. miR-223 is a valid and independent prognostic biomarker in BC.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiuzhi Zhu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Boyue Han
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Ji
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Yao
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhonghua Wang
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
8
|
Budakoti M, Panwar AS, Molpa D, Singh RK, Büsselberg D, Mishra AP, Coutinho HDM, Nigam M. Micro-RNA: The darkhorse of cancer. Cell Signal 2021; 83:109995. [PMID: 33785398 DOI: 10.1016/j.cellsig.2021.109995] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
The discovery of micro RNAs (miRNA) in cancer has opened up new vistas for researchers in recent years. Micro RNAs area set of small, endogenous, highly conserved, non-coding RNAs that control the expression of about 30% genes at post-transcriptional levels. Typically, microRNAs impede the translation and stability of messenger RNAs (mRNA), control genes associated with cellular processes namely inflammation, cell cycle regulation, stress response, differentiation, apoptosis, and migration. Compelling findings revealed that miRNA mutations or disruption correspond to diverse human cancers and suggest that miRNAs can function as tumor suppressors or oncogenes. Here we summarize the literature on these master regulators in clinical settings from last three decades as both abrupt cancer therapeutics and as an approach to sensitize tumors to chemotherapy. This review highlights (I) the prevailing perception of miRNA genomics, biogenesis, as well as function; (II) the significant advancements in regulatory mechanisms in the expression of carcinogenic genes; and (III) explains, how miRNA is utilized as a diagnostic and prognostic biomarker for the disease stage indicating survival as well as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Mridul Budakoti
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Abhay Shikhar Panwar
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Diksha Molpa
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Rahul Kunwar Singh
- Department of Microbiology, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| | | | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| |
Collapse
|
9
|
Hajirostamlou M, Ghorbian S. Evaluation of the clinical significance of RNase III enzyme DROSHA in pediatrics acute lymphocytic leukemia. Mol Biol Rep 2021; 48:451-456. [PMID: 33389538 DOI: 10.1007/s11033-020-06072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/08/2020] [Indexed: 12/01/2022]
Abstract
Acute lymphocytic leukemia (ALL) is one of the subtypes of leukemia; it is one of the leading causes of malignancy and morbidity and childhood mortality. This study examined the dysregulation of DROSHA and its clinical implications in ALL. In the case-control investigation, we have included 140 samples, consisting of 70 peripheral whole blood samples diagnosed with ALL and 70 age and sex-matched healthy children, to assess the level of expression of DROSHA mRNA between two groups. Quantitative Real-Time PCR was used to establish the level of DROSHA gene expression in the patients and controls. The results revealed that DROSHA was overexpressed in patients compared with controls (p < 0.001). There were no major differences between DROSHA expression and demographic factors and clinicopathological parameters (p > 0.001). The finding of the study revealed that DROSHA expression in ALL patients is significantly up-regulated; which is suggesting that may be served as a critical role in the pathogenesis of ALL. Also, DROSHA will possibly be utilized as a novel therapeutic target for ALL patients within the future.
Collapse
Affiliation(s)
| | - Saeid Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran.
| |
Collapse
|
10
|
Wang X, Wendel JRH, Emerson RE, Broaddus RR, Creighton CJ, Rusch DB, Buechlein A, DeMayo FJ, Lydon JP, Hawkins SM. Pten and Dicer1 loss in the mouse uterus causes poorly differentiated endometrial adenocarcinoma. Oncogene 2020; 39:6286-6299. [PMID: 32843721 PMCID: PMC7541676 DOI: 10.1038/s41388-020-01434-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Endometrial cancer remains the most common gynecological malignancy in the United States. While the loss of the tumor suppressor, PTEN (phosphatase and tensin homolog), is well studied in endometrial cancer, recent studies suggest that DICER1, the endoribonuclease responsible for miRNA genesis, also plays a significant role in endometrial adenocarcinoma. Conditional uterine deletion of Dicer1 and Pten in mice resulted in poorly differentiated endometrial adenocarcinomas, which expressed Napsin A and HNF1B (hepatocyte nuclear factor 1 homeobox B), markers of clear-cell adenocarcinoma. Adenocarcinomas were hormone-independent. Treatment with progesterone did not mitigate poorly differentiated adenocarcinoma, nor did it affect adnexal metastasis. Transcriptomic analyses of DICER1 deleted uteri or Ishikawa cells revealed unique transcriptomic profiles and global miRNA downregulation. Computational integration of miRNA with mRNA targets revealed deregulated let-7 and miR-16 target genes, similar to published human DICER1-mutant endometrial cancers from TCGA (The Cancer Genome Atlas). Similar to human endometrial cancers, tumors exhibited dysregulation of ephrin-receptor signaling and transforming growth factor-beta signaling pathways. LIM kinase 2 (LIMK2), an essential molecule in p21 signal transduction, was significantly upregulated and represents a novel mechanism for hormone-independent pathogenesis of endometrial adenocarcinoma. This preclinical mouse model represents the first genetically engineered mouse model of poorly differentiated endometrial adenocarcinoma.
Collapse
Affiliation(s)
- Xiyin Wang
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jillian R H Wendel
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert E Emerson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Russell R Broaddus
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Aaron Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Francesco J DeMayo
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Shannon M Hawkins
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
11
|
Lee Y, Ahn EH, Ryu CS, Kim JO, An HJ, Cho SH, Kim JH, Kim YR, Lee WS, Kim NK. Association between microRNA machinery gene polymorphisms and recurrent implantation failure. Exp Ther Med 2020; 19:3113-3123. [PMID: 32226488 PMCID: PMC7092926 DOI: 10.3892/etm.2020.8556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the potential association of five miRNA machinery gene polymorphisms (DICER1 rs3742330A>G, DROSHA rs10719T>C, RAN rs14035C>T, XPO5 rs11077A>C and DGCR8 rs417309G>A) with recurrent implantation failure (RIF), a clinical condition in which good-quality embryos repeatedly fail to implant following two or more in vitro fertilization cycles, and its associated risk factors in Korean women. Therefore, the present study performed genotype analysis and assessed the frequency of these miRNA gene polymorphisms in patients diagnosed with RIF (n=119) and randomly selected controls (n=210) with at least one live birth and no history of pregnancy loss. The DROSHA rs10719T>C and RAN rs14035C>T polymorphisms were identified to be significantly associated with decreased prevalence of RIF. Additionally, the DROSHA rs10719 TC and the RAN rs14035 CT genotypes were present at significantly lower frequencies in the RIF group than in the control group (adjusted odds ratio=0.550; 95% CI, 0.339-0.893; P=0.016; and adjusted odds ratio=0.590; 95% CI, 0.363-0.958; P=0.033, respectively). Furthermore, the combined RAN rs14035 CT+TT genotype was observed to be associated with decreased RIF prevalence (adjusted odds ratio=0.616; 95% CI, 0.386-0.982; P=0.042). Genotype combination analysis for the various miRNA polymorphisms revealed that the DROSHA TC genotype exhibited a highly significant negative association with RIF prevalence when combined with the RAN CT genotype (adjusted odds ratio=0.314; 95% CI, 0.147-0.673; P=0.003; false discovery rate-adjusted P=0.023). The present study revealed an association between the DROSHA rs10719 and RAN rs14035 3'UTR polymorphisms and decreased risk of RIF in Korean women, which suggests that these gene polymorphisms could represent potential markers for predicting RIF risk.
Collapse
Affiliation(s)
- Yubin Lee
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea.,CHA Fertility Center, Seoul Station, Seoul 04637, Republic of Korea
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea
| | - Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Jung Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Sung Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi 13497, Republic of Korea
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi 13497, Republic of Korea
| | - Woo Sik Lee
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| |
Collapse
|
12
|
MicroRNAs Contribute to Breast Cancer Invasiveness. Cells 2019; 8:cells8111361. [PMID: 31683635 PMCID: PMC6912645 DOI: 10.3390/cells8111361] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer statistics in 2018 highlight an 8.6 million incidence in female cancers, and 4.2 million cancer deaths globally. Moreover, breast cancer is the most frequent malignancy in females and twenty percent of these develop metastasis. This provides only a small chance for successful therapy, and identification of new molecular markers for the diagnosis and prognostic prediction of metastatic disease and development of innovative therapeutic molecules are therefore urgently required. Differentially expressed microRNAs (miRNAs) in cancers cause multiple changes in the expression of the tumorigenesis-promoting genes which have mostly been investigated in breast cancers. Herein, we summarize recent data on breast cancer-specific miRNA expression profiles and their participation in regulating invasive processes, in association with changes in cytoskeletal structure, cell-cell adhesion junctions, cancer cell-extracellular matrix interactions, tumor microenvironments, epithelial-to-mesenchymal transitions and cancer cell stem abilities. We then focused on the epigenetic regulation of individual miRNAs and their modified interactions with other regulatory genes, and reviewed the function of miRNA isoforms and exosome-mediated miRNA transfer in cancer invasiveness. Although research into miRNA’s function in cancer is still ongoing, results herein contribute to improved metastatic cancer management.
Collapse
|
13
|
Mironova N, Vlassov V. Surveillance of Tumour Development: The Relationship Between Tumour-Associated RNAs and Ribonucleases. Front Pharmacol 2019; 10:1019. [PMID: 31572192 PMCID: PMC6753386 DOI: 10.3389/fphar.2019.01019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Tumour progression is accompanied by rapid cell proliferation, loss of differentiation, the reprogramming of energy metabolism, loss of adhesion, escape of immune surveillance, induction of angiogenesis, and metastasis. Both coding and regulatory RNAs expressed by tumour cells and circulating in the blood are involved in all stages of tumour progression. Among the important tumour-associated RNAs are intracellular coding RNAs that determine the routes of metabolic pathways, cell cycle control, angiogenesis, adhesion, apoptosis and pathways responsible for transformation, and intracellular and extracellular non-coding RNAs involved in regulation of the expression of their proto-oncogenic and oncosuppressing mRNAs. Considering the diversity/variability of biological functions of RNAs, it becomes evident that extracellular RNAs represent important regulators of cell-to-cell communication and intracellular cascades that maintain cell proliferation and differentiation. In connection with the elucidation of such an important role for RNA, a surge in interest in RNA-degrading enzymes has increased. Natural ribonucleases (RNases) participate in various cellular processes including miRNA biogenesis, RNA decay and degradation that has determined their principal role in the sustention of RNA homeostasis in cells. Findings were obtained on the contribution of some endogenous ribonucleases in the maintenance of normal cell RNA homeostasis, which thus prevents cell transformation. These findings directed attention to exogenous ribonucleases as tools to compensate for the malfunction of endogenous ones. Recently a number of proteins with ribonuclease activity were discovered whose intracellular function remains unknown. Thus, the comprehensive investigation of physiological roles of RNases is still required. In this review we focused on the control mechanisms of cell transformation by endogenous ribonucleases, and the possibility of replacing malfunctioning enzymes with exogenous ones.
Collapse
Affiliation(s)
- Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
14
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs regulating post-transcriptional gene expression. They play important roles in many biological processes under physiological or pathological conditions, including development, metabolism, tumorigenesis, metastasis, and immune response. Over the past 15 years, significant insights have been gained into the roles of miRNAs in cancer. Depending on the cancer type, miRNAs can act as oncogenes, tumor suppressors, or metastasis regulators. In this review, we focus on the role of miRNAs as components of molecular networks regulating metastasis. These miRNAs, termed metastamiRs, promote or inhibit metastasis through various mechanisms, including regulation of migration, invasion, colonization, cancer stem cell properties, epithelial-mesenchymal transition, and microenvironment. Some of these metastamiRs represent attractive therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Jongchan Kim
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fan Yao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhenna Xiao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Macharia LW, Wanjiru CM, Mureithi MW, Pereira CM, Ferrer VP, Moura-Neto V. MicroRNAs, Hypoxia and the Stem-Like State as Contributors to Cancer Aggressiveness. Front Genet 2019; 10:125. [PMID: 30842790 PMCID: PMC6391339 DOI: 10.3389/fgene.2019.00125] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that play key regulatory roles in cancer acting as both oncogenes and tumor suppressors. Due to their potential roles in improving cancer prognostic, predictive, diagnostic and therapeutic approaches, they have become an area of intense research focus in recent years. Several studies have demonstrated an altered expression of several miRNAs under hypoxic condition and even shown that the hypoxic microenvironment drives the selection of a more aggressive cancer cell population through cellular adaptations referred as the cancer stem-like cell. These minor fractions of cells are characterized by their self-renewal abilities and their ability to maintain the tumor mass, suggesting their crucial roles in cancer development. This review aims to highlight the interconnected role between miRNAs, hypoxia and the stem-like state in contributing to the cancer aggressiveness as opposed to their independent contributions, and it is based in four aggressive tumors, namely glioblastoma, cervical, prostate, and breast cancers.
Collapse
Affiliation(s)
- Lucy Wanjiku Macharia
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Muriithi Wanjiru
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Valéria Pereira Ferrer
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Poursadegh Zonouzi AA, Shekari M, Nejatizadeh A, Shakerizadeh S, Fardmanesh H, Poursadegh Zonouzi A, Rahmati-Yamchi M, Tozihi M. Impaired expression of Drosha in breast cancer. Breast Dis 2018; 37:55-62. [PMID: 28598829 DOI: 10.3233/bd-170274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Impaired miRNAs processing pathway is one interesting scenario for global downregulation of the miRNAome in various types of malignancy. We previously reported that DGCR8 and Dicer genes dysregulated in patients with breast cancer. OBJECTIVE To evaluate the expression pattern of Drosha in patients with breast cancer. METHODS We evaluated the mRNA expression level of Drosha in 70 fresh breast carcinomas and adjacent non-neoplastic tissue using quantitative real-time PCR and assessed the possible correlation between its expression and clinicopathological parameters. RESULTS Our results revealed that mRNA expression level of Drosha was decreased in tumors when compared to adjacent non-neoplastic tissue. However, this difference is not statistically significant (P > 0.05). Downregulation of Drosha is related to older age at diagnosis, higher histological grade, higher tumor size and metastasis. However, there was no significant correlation between Drosha expression level and clinicopathological parameters (P > 0.05). We found that Drosha expression negatively correlated with DGCR8 (P = 0.043), whereas dysregulated expression levels of Drosha and Dicer are positively correlated with to each other (P < 0.0001). CONCLUSION This study provides evidence that the expression of Drosha is impaired in breast cancer. However, the molecular basis of observed expression pattern have remained inexplicable and should be further investigated.
Collapse
Affiliation(s)
| | - Mohammad Shekari
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Azim Nejatizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Samira Shakerizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hedieh Fardmanesh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | - Majid Tozihi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Jeong W, Bae H, Lim W, Song G. Dicer1, AGO3, and AGO4 microRNA machinery genes are differentially expressed in developing female reproductive organs and overexpressed in cancerous ovaries of chickens. J Anim Sci 2018; 95:4857-4868. [PMID: 29293730 DOI: 10.2527/jas2017.1846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
MicroRNA (miRNA)-mediated gene silencing is a key mechanism regulating numerous biological processes such as development of organs and tumorigenesis. The expression of miRNA machinery genes linked to miRNA biogenesis and processing is finely regulated. Despite accumulating evidence for chicken miRNA in the female reproduction system, precise regulatory mechanisms are largely unknown. Therefore, the objective of this study was to determine changes in expression levels of miRNA machinery genes in developmental stages of the oviduct and ovarian carcinogenesis of laying hens. In the present study, differential expression of miRNA machinery genes during ovarian carcinogenesis was determined using cancerous and normal ovaries collected from normal laying hens and hens with cancer. Our results showed that 3 miRNA machinery genes (, , and ) were differentially expressed as laying hens' reproductive organs developed. These genes were simultaneously upregulated in cancerous ovaries compared with those in normal ovaries. Their transcripts were abundantly localized in glandular epithelial cells of cancerous ovaries. Our results indicate that , , and play critical roles in the development of reproductive organs and ovarian carcinogenesis in laying hens, suggesting that simultaneous overexpression of these genes might serve as a prognostic factor for ovarian cancer.
Collapse
|
18
|
Frixa T, Sacconi A, Cioce M, Roscilli G, Ferrara FF, Aurisicchio L, Pulito C, Telera S, Carosi M, Muti P, Strano S, Donzelli S, Blandino G. MicroRNA-128-3p-mediated depletion of Drosha promotes lung cancer cell migration. Carcinogenesis 2017; 39:293-304. [DOI: 10.1093/carcin/bgx134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/06/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tania Frixa
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Mario Cioce
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | | | | | | | - Claudio Pulito
- Molecular Chemoprevention Group, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Stefano Telera
- Department of Neurosurgery, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Mariantonia Carosi
- Department of Pathology, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University Hamilton, Hamilton, ON Ontario, Canada
| | - Sabrina Strano
- Molecular Chemoprevention Group, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
- Department of Oncology, Juravinski Cancer Center, McMaster University Hamilton, Hamilton, ON Ontario, Canada
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
- Department of Oncology, Juravinski Cancer Center, McMaster University Hamilton, Hamilton, ON Ontario, Canada
| |
Collapse
|
19
|
Kim S, Song ML, Min H, Hwang I, Baek SK, Kwon TK, Park JW. miRNA biogenesis-associated RNase III nucleases Drosha and Dicer are upregulated in colorectal adenocarcinoma. Oncol Lett 2017; 14:4379-4383. [PMID: 28943952 PMCID: PMC5605964 DOI: 10.3892/ol.2017.6674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
Drosha and Dicer are important regulators of microRNA (miRNA) biogenesis, and it has been suggested that their aberrant regulation may cause colorectal cancer (CRC). The aim of the present study was to evaluate the mRNA expression levels of these two important RNase III nucleases and their association with clinical features in CRC specimens from South Korean patients. The expression levels of Drosha and Dicer mRNA were investigated in 77 CRC tissues and adjacent histologically non-neoplastic tissues using the quantitative polymerase chain reaction. The expression levels of Drosha and Dicer mRNA were identified to be upregulated in CRC. Neither the Drosha nor the Dicer mRNA expression level was associated with any clinical parameter, including sex, age, TNM stage, body mass index and carcinoembryonic antigen titer in patients with CRC. Furthermore, the expression levels of Drosha and Dicer mRNA were not associated with each other. The miRNA biogenesis-associated RNase III nucleases Drosha and Dicer are significantly upregulated in CRC, suggesting their importance in the pathobiology of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Dalseo, Daegu 42601, Republic of Korea
- Institute of Medical Science, Keimyung University, Dalseo, Daegu 42601, Republic of Korea
| | - Mei Ling Song
- Graduate School of Nursing, College of Nursing, Keimyung University, Dalseo, Daegu 42601, Republic of Korea
| | - Hyeonji Min
- Department of Immunology, School of Medicine, Keimyung University, Dalseo, Daegu 42601, Republic of Korea
| | - Ilseon Hwang
- Department of Pathology, School of Medicine, Keimyung University, Dalseo, Daegu 42601, Republic of Korea
| | - Seong Kyu Baek
- Department of Surgery, Dongsan Medical Center, Keimyung University, Jung, Daegu 41931, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Dalseo, Daegu 42601, Republic of Korea
- Institute of Medical Science, Keimyung University, Dalseo, Daegu 42601, Republic of Korea
| | - Jong-Wook Park
- Department of Immunology, School of Medicine, Keimyung University, Dalseo, Daegu 42601, Republic of Korea
- Institute of Medical Science, Keimyung University, Dalseo, Daegu 42601, Republic of Korea
| |
Collapse
|
20
|
Targeting epithelial-mesenchymal plasticity in cancer: clinical and preclinical advances in therapy and monitoring. Biochem J 2017; 474:3269-3306. [PMID: 28931648 DOI: 10.1042/bcj20160782] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
The concept of epithelial-mesenchymal plasticity (EMP), which describes the dynamic flux within the spectrum of phenotypic states that invasive carcinoma cells may reside, is being increasingly recognised for its role in cancer progression and therapy resistance. The myriad of events that are able to induce EMP, as well as the more recently characterised control loops, results in dynamic transitions of cancerous epithelial cells to more mesenchymal-like phenotypes through an epithelial-mesenchymal transition (EMT), as well as the reverse transition from mesenchymal phenotypes to an epithelial one. The significance of EMP, in its ability to drive local invasion, generate cancer stem cells and facilitate metastasis by the dissemination of circulating tumour cells (CTCs), highlights its importance as a targetable programme to combat cancer morbidity and mortality. The focus of this review is to consolidate the existing knowledge on the strategies currently in development to combat cancer progression via inhibition of specific facets of EMP. The prevalence of relapse due to therapy resistance and metastatic propensity that EMP endows should be considered when designing therapy regimes, and such therapies should synergise with existing chemotherapeutics to benefit efficacy. To further improve upon EMP-targeted therapies, it is imperative to devise monitoring strategies to assess the impact of such treatments on EMP-related phenomenon such as CTC burden, chemosensitivity/-resistance and micrometastasis in patients.
Collapse
|
21
|
Kim J, Park WJ, Jeong KJ, Kang SH, Kwon SY, Kim S, Park JW. Racial Differences in Expression Levels of miRNA Machinery-Related Genes, Dicer, Drosha, DGCR8, and AGO2, in Asian Korean Papillary Thyroid Carcinoma and Comparative Validation Using the Cancer Genome Atlas. Int J Genomics 2017; 2017:5789769. [PMID: 28352639 PMCID: PMC5352891 DOI: 10.1155/2017/5789769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/08/2016] [Accepted: 01/11/2017] [Indexed: 01/15/2023] Open
Abstract
Aberrant regulation of microRNA (miRNA) machinery components is associated with various human cancers, including papillary thyroid carcinoma (PTC), which is the most common type of thyroid cancer, and a higher prevalent female malignancy. The purpose of this study is to investigate racial differences in mRNA expression levels of four miRNA machinery components, Dicer, Drosha, DGCR8, and AGO2, and their correlations with clinicopathological characteristics. Forty PTC samples from female Asian Korean PTC patients were enrolled. Using qPCR, we examined mRNA expression levels of the components and next validated our results by comparison with results of female white American in the TCGA PTC project. Interestingly, mRNA expression levels of the selected factors were altered in the TCGA PTC samples. However, only Drosha showed a significantly lower expression level in Asian Korean PTC samples. Furthermore, the mRNA expression levels of the four components showed no association with clinicopathological characteristics in both groups. On the other hand, positive correlations were observed between altered mRNA expression levels of Dicer and Drosha and DGCR8 and Drosha in TCGA PTC samples. These findings collectively revealed that altered mRNA expression levels of miRNA machinery components might be responsible for racial differences in the carcinogenesis of PTC.
Collapse
Affiliation(s)
- Jaegil Kim
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Woo-Jae Park
- Department of Biochemistry, School of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Kwang-Joon Jeong
- Department of Microbiology, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju 61469, Republic of Korea
| | - Sun Hee Kang
- Department of Surgery, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Sun Young Kwon
- Department of Pathology, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Shin Kim
- Department of Immunology, School of Medicine & Institute of Medical Science, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Jong-Wook Park
- Department of Immunology, School of Medicine & Institute of Medical Science, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| |
Collapse
|
22
|
MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16:203-222. [PMID: 28209991 DOI: 10.1038/nrd.2016.246] [Citation(s) in RCA: 3462] [Impact Index Per Article: 432.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In just over two decades since the discovery of the first microRNA (miRNA), the field of miRNA biology has expanded considerably. Insights into the roles of miRNAs in development and disease, particularly in cancer, have made miRNAs attractive tools and targets for novel therapeutic approaches. Functional studies have confirmed that miRNA dysregulation is causal in many cases of cancer, with miRNAs acting as tumour suppressors or oncogenes (oncomiRs), and miRNA mimics and molecules targeted at miRNAs (antimiRs) have shown promise in preclinical development. Several miRNA-targeted therapeutics have reached clinical development, including a mimic of the tumour suppressor miRNA miR-34, which reached phase I clinical trials for treating cancer, and antimiRs targeted at miR-122, which reached phase II trials for treating hepatitis. In this article, we describe recent advances in our understanding of miRNAs in cancer and in other diseases and provide an overview of current miRNA therapeutics in the clinic. We also discuss the challenge of identifying the most efficacious therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics.
Collapse
|
23
|
Cytoplasmic Drosha Is Aberrant in Precancerous Lesions of Gastric Carcinoma and Its Loss Predicts Worse Outcome for Gastric Cancer Patients. Dig Dis Sci 2016; 61:1080-90. [PMID: 26694172 DOI: 10.1007/s10620-015-3986-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 11/30/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND The nuclear localization of Drosha is critical for its function as a microRNA maturation regulator. Dephosphorylation of Drosha at serine 300 and serine 302 disrupts its nuclear localization, and aberrant distribution of Drosha has been detected in some tumors. AIMS The purpose of the present study was to assess cytoplasmic/nuclear Drosha expression in gastric cancer carcinogenesis and progression. METHODS Drosha expression and its subcellular location was investigated by immunohistochemical staining of a set of tissue microarrays composed of normal adjacent tissues (374), chronic gastritis (137), precancerous lesions (94), and gastric adenocarcinoma (829) samples, and in gastric cancer cell lines with varying differentiation by immunofluorescence and western blot assay. RESULTS Gradual loss of cytoplasmic Drosha was accompanied by tumor progression in both gastric cancer tissues and cell lines, and was inversely associated with tumor volume (P = 0.002), tumor grade (P < 0.001), tumor stage (P = 0.018), and distant metastasis (P = 0.026). Aberrant high levels of cytoplasmic Drosha were apparent in intestinal metaplasia and dysplasia tissues. The levels of nuclear Drosha were sharply decreased in chronic gastritis and maintained through precancerous lesions to gastric cancer. High levels of cytoplasmic Drosha predicted longer survival (LR = 7.088, P = 0.008) in gastric cancer patients. CONCLUSIONS Our data provide novel insights into gastric cancer that cytoplasmic Drosha potentially plays a role in preventing carcinogenesis and tumor progression, and may be an independent predictor of patient outcome.
Collapse
|
24
|
Rupaimoole R, Calin GA, Lopez-Berestein G, Sood AK. miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discov 2016; 6:235-46. [PMID: 26865249 DOI: 10.1158/2159-8290.cd-15-0893] [Citation(s) in RCA: 515] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED miRNAs are a key component of the noncoding RNA family. The underlying mechanisms involved in the interplay between the tumor microenvironment and cancer cells involve highly dynamic factors such as hypoxia and cell types such as cancer-associated fibroblasts and macrophages. Although miRNA levels are known to be altered in cancer cells, recent evidence suggests a critical role for the tumor microenvironment in regulating miRNA biogenesis, methylation, and transcriptional changes. Here, we discuss the complex protumorigenic symbiotic role between tumor cells, the tumor microenvironment, and miRNA deregulation. SIGNIFICANCE miRNAs play a central role in cell signaling and homeostasis. In this article, we provide insights into the regulatory mechanisms involved in the deregulation of miRNAs in cancer cells and the tumor microenvironment and discuss therapeutic intervention strategies to overcome this deregulation.
Collapse
Affiliation(s)
- Rajesha Rupaimoole
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
25
|
Abstract
MicroRNAs (miRNAs) are integral to the gene regulatory network. A single miRNA is capable of controlling the expression of hundreds of protein coding genes and modulate a wide spectrum of biological functions, such as proliferation, differentiation, stress responses, DNA repair, cell adhesion, motility, inflammation, cell survival, senescence and apoptosis, all of which are fundamental to tumorigenesis. Overexpression, genetic amplification, and gain-of-function mutation of oncogenic miRNAs ("onco-miRs") as well as genetic deletion and loss-of-function mutation of tumor suppressor miRNAs ("suppressor-miRs") are linked to human cancer. In addition to the dysregulation of a specific onco-miR or suppressor-miRs, changes in global miRNA levels resulting from a defective miRNA biogenesis pathway play a role in tumorigenesis. The function of individual onco-miRs and suppressor-miRs and their target genes in cancer has been described in many different articles elsewhere. In this review, we primarily focus on the recent development regarding the dysregulation of the miRNA biogenesis pathway and its contribution to cancer.
Collapse
Affiliation(s)
- Akiko Hata
- a Cardiovascular Research Institute, University of California , San Francisco , CA , USA
| | - Risa Kashima
- a Cardiovascular Research Institute, University of California , San Francisco , CA , USA
| |
Collapse
|
26
|
Vasilatou D, Sioulas VD, Pappa V, Papageorgiou SG, Vlahos NF. The role of miRNAs in endometrial cancer. Epigenomics 2015; 7:951-9. [PMID: 26443384 DOI: 10.2217/epi.15.41] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
miRNAs are small noncoding RNAs that regulate gene expression at the post-transcriptional level. Since their discovery, miRNAs have been associated with every cell function including malignant transformation and metastasis. Endometrial cancer is the most common gynecologic malignancy. However, improvement should be made in interobserver agreement on histological typing and individualized therapeutic approaches. This article summarizes the role of miRNAs in endometrial cancer pathogenesis and treatment.
Collapse
Affiliation(s)
- Diamantina Vasilatou
- Second Department of Internal Medicine & Research Institute, Hematology Unit, Athens University Medical School, Attikon University Hospital, Athens, Greece
| | | | - Vasiliki Pappa
- Second Department of Internal Medicine & Research Institute, Hematology Unit, Athens University Medical School, Attikon University Hospital, Athens, Greece
| | - Sotirios G Papageorgiou
- Second Department of Internal Medicine & Research Institute, Hematology Unit, Athens University Medical School, Attikon University Hospital, Athens, Greece
| | - Nikolaos F Vlahos
- 2nd Department of Obstetrics & Gynecology, University of Athens, Aretaieion Hospital, Athens, Greece
| |
Collapse
|
27
|
Kim S, Lee JH, Nam SI. Dicer Is Down-regulated and Correlated with Drosha in Idiopathic Sudden Sensorineural Hearing Loss. J Korean Med Sci 2015; 30:1183-8. [PMID: 26240498 PMCID: PMC4520951 DOI: 10.3346/jkms.2015.30.8.1183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/30/2015] [Indexed: 01/01/2023] Open
Abstract
Previously, we reported the expression levels of specific microRNA machinery components, DGCR8 and AGO2, and their clinical association in patients with idiopathic sudden hearing loss (SSNHL). In the present study, we investigated the other important components of microRNA machinery and their association with clinical parameters in SSNHL patients. Fifty-seven patients diagnosed with SSNHL and fifty healthy volunteers were included in this study. We evaluated mRNA expression levels of Dicer and Drosha in whole blood of patients with SSNHL and the control group, using RT & real-time PCR analysis. The Dicer mRNA expression level was down-regulated in patients with SSNHL. However, the Drosha mRNA expression level was not significantly altered in patients with SSNHL. Neither the Dicer nor Drosha mRNA expression level was not associated with any clinical parameters, including age, sex, duration of initial treatment from onset (days), initial Pure tone average, Siegel's criteria, WBC, and Erythrocyte sedimentation rate. However, mRNA expression levels of Dicer and Drosha were positively correlated to each other in patients with SSNHL. In this study, we demonstrated for the first time that the Dicer mRNA expression level was down-regulated in patients with SSNHL, suggesting its important role in pathobiology of SSNHL development.
Collapse
Affiliation(s)
- Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Korea
| | - Jae-ho Lee
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, Korea
| | - Sung-Il Nam
- Department of Otorhinolaryngology, School of Medicine, Keimyung University, Daegu, Korea
| |
Collapse
|
28
|
Dysregulated expression of Dicer in invasive ductal breast carcinoma. Med Oncol 2015; 32:203. [PMID: 26076803 DOI: 10.1007/s12032-015-0643-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 05/19/2015] [Indexed: 12/21/2022]
Abstract
Several lines of evidence suggest that the global down-regulation of the microRNAome (miRNAome) involved in pathogenesis of various malignancies. Impaired microRNAs processing pathway is one possible mechanism for global down-regulation of the miRNAome. Dicer is a key enzyme in miRNA processing pathway, and dysregulation of its expression has been suggested as a possible cause of miRNAome alterations observed in various cancers. However, Dicer mRNA expression in invasive ductal breast carcinoma (IDC) has not been investigated in depth. Therefore, this study aimed to evaluate the mRNA expression of Dicer in IDC and also to assess the correlation of its expression with clinicopathological parameters including age, histological grade, tumor size and lymph node metastasis. We investigated the expression of the Dicer in seventy fresh invasive ductal breast carcinomas and matched adjacent non-neoplastic tissue by quantitative real-time PCR using validated reference genes. In addition, the possible impact of clinicopathological characteristics on Dicer expression levels was analyzed. Our results showed that Dicer mRNA expression is down-regulated in slightly more than half (51.43 %) of the tumor specimens when compared to adjacent non-neoplastic tissue. Comparison of the Dicer expression level between tumor and matched adjacent non-neoplastic tissue showed that there is no statistical significant differences between them (P = 0.425). We also found that Dicer mRNA expression in IDC samples was not correlated with clinicopathological features. In conclusion, our findings provide additional evidence to support the hypothesis that Dicer expression down-regulated in breast cancer. This study suggested that the decreased expression of Dicer may be potential underlying mechanism in pathogenesis of IDC.
Collapse
|
29
|
Abstract
MicroRNAs (miRNAs) are critical regulators of gene expression. Amplification and overexpression of individual 'oncomiRs' or genetic loss of tumour suppressor miRNAs are associated with human cancer and are sufficient to drive tumorigenesis in mouse models. Furthermore, global miRNA depletion caused by genetic and epigenetic alterations in components of the miRNA biogenesis machinery is oncogenic. This, together with the recent identification of novel miRNA regulatory factors and pathways, highlights the importance of miRNA dysregulation in cancer.
Collapse
Affiliation(s)
- Shuibin Lin
- 1] Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA. [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Richard I Gregory
- 1] Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA. [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA. [3] Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA. [4] Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
30
|
|
31
|
Sianou A, Galyfos G, Moragianni D, Andromidas P, Kaparos G, Baka S, Kouskouni E. The role of microRNAs in the pathogenesis of endometrial cancer: a systematic review. Arch Gynecol Obstet 2015; 292:271-82. [PMID: 25697925 DOI: 10.1007/s00404-015-3660-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Epigenetics seem to play a primary role in the current research on the pathogenesis of different types of endometrial cancer. Data so far indicate that microRNAs regulate different pathways that could lead to carcinogenesis when not functioning properly. The aim of this review is to summarize current knowledge on microRNAs that have been associated with endometrial cancer development. MATERIAL AND METHODS From July 2014 to August 2014, we conducted a comprehensive research utilizing major online search engines (Pubmed, Crossref, Google Scholar). The main keywords used in our search were endometrial cancer/carcinoma; microRNA; epigenetics; novel biomarkers; pathogenesis. RESULTS Overall, we identified 155 studies, although only 77 were eligible for this review. Different miRNAs were identified to contribute either promoting the carcinogenesis in the endometrium or inhibiting different steps of endometrial cancer development. Tumour growth, cell proliferation, apoptosis and invasion metastasis have been identified as the main processes where miRNAs seem to be implicated. CONCLUSIONS microRNAs are effective regulators of gene expression that has a significant role in the pathogenesis of endometrial cancer. Research concerning possible therapeutic implications has been promising, although there is still a significant distance to be covered between research observations and clinical results. Extensive preclinical and translational research is still required to improve the efficacy and minimize unwanted effects of miRNAs-based therapy.
Collapse
Affiliation(s)
- Argiri Sianou
- Department of Microbiology, Areteion Hospital, University of Athens Medical School, Athens, Greece,
| | | | | | | | | | | | | |
Collapse
|
32
|
Role of microRNAs in cancers of the female reproductive tract: insights from recent clinical and experimental discovery studies. Clin Sci (Lond) 2014; 128:153-80. [PMID: 25294164 DOI: 10.1042/cs20140087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
microRNAs (miRNAs) are small RNA molecules that represent the top of the pyramid of many tumorigenesis cascade pathways as they have the ability to affect multiple, intricate, and still undiscovered downstream targets. Understanding how miRNA molecules serve as master regulators in these important networks involved in cancer initiation and progression open up significant innovative areas for therapy and diagnosis that have been sadly lacking for deadly female reproductive tract cancers. This review will highlight the recent advances in the field of miRNAs in epithelial ovarian cancer, endometrioid endometrial cancer and squamous-cell cervical carcinoma focusing on studies associated with actual clinical information in humans. Importantly, recent miRNA profiling studies have included well-characterized clinical specimens of female reproductive tract cancers, allowing for studies correlating miRNA expression with clinical outcomes. This review will summarize the current thoughts on the role of miRNA processing in unique miRNA species present in these cancers. In addition, this review will focus on current data regarding miRNA molecules as unique biomarkers associated with clinically significant outcomes such as overall survival and chemotherapy resistance. We will also discuss why specific miRNA molecules are not recapitulated across multiple studies of the same cancer type. Although the mechanistic contributions of miRNA molecules to these clinical phenomena have been confirmed using in vitro and pre-clinical mouse model systems, these studies are truly only the beginning of our understanding of the roles miRNAs play in cancers of the female reproductive tract. This review will also highlight useful areas for future research regarding miRNAs as therapeutic targets in cancers of the female reproductive tract.
Collapse
|
33
|
Li R, Jia Y, Zou H, Zhao R. Breed-specific expression ofDROSHA, DICERandAGO2is regulated by glucocorticoid-mediated miRNAs in the liver of newborn piglets. Anim Genet 2014; 45:817-26. [DOI: 10.1111/age.12232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Runsheng Li
- 1 Weigang; Key Laboratory of Animal Physiology & Biochemistry; Nanjing Agricultural University; Nanjing 210095 China
| | - Yimin Jia
- 1 Weigang; Key Laboratory of Animal Physiology & Biochemistry; Nanjing Agricultural University; Nanjing 210095 China
| | - Huafeng Zou
- 1 Weigang; Key Laboratory of Animal Physiology & Biochemistry; Nanjing Agricultural University; Nanjing 210095 China
| | - Ruqian Zhao
- 1 Weigang; Key Laboratory of Animal Physiology & Biochemistry; Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|
34
|
Chinnappan M, Singh AK, Kakumani PK, Kumar G, Rooge SB, Kumari A, Varshney A, Rastogi A, Singh AK, Sarin SK, Malhotra P, Mukherjee SK, Bhatnagar RK. Key elements of the RNAi pathway are regulated by hepatitis B virus replication and HBx acts as a viral suppressor of RNA silencing. Biochem J 2014; 462:347-58. [PMID: 24902849 DOI: 10.1042/bj20140316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The host-mediated RNAi pathways restrict replication of viruses in plant, invertebrate and vertebrate systems. However, comparatively little is known about the interplay between RNAi and various viral infections in mammalian hosts. We show in the present study that the siRNA-mediated silencing of Drosha, Dicer and Ago2 [argonaute RISC (RNA-induced silencing complex) catalytic component 2] transcripts in Huh7 cells resulted in elevated levels of HBV (hepatitis B virus)-specific RNAs and, conversely, we observed a decrease in mRNA and protein levels of same RNAi components in HepG2 cells infected with HBV. Similar reductions were also detectable in CHB (chronic hepatitis B) patients. Analysis of CHB liver biopsy samples, with high serum HBV DNA load (>log108 IU/ml), revealed a reduced mRNA and protein levels of Drosha, Dicer and Ago2. The low expression levels of key RNAi pathway components in CHB patient samples as well as hepatic cells established a link between HBV replication and RNAi components. The HBV proteins were also examined for RSS (RNA-silencing suppressor) properties. Using GFP-based reversion of silencing assays, in the present study we found that HBx is an RSS protein. Through a series of deletions and substitution mutants, we found that the full-length HBx protein is required for optimum RSS activity. The in vitro dicing assays revealed that the HBx protein inhibited the human Dicer-mediated processing of dsRNAs into siRNAs. Together, our results suggest that the HBx protein might function as RSS to manipulate host RNAi defence, in particular by abrogating the function of Dicer. The present study may have implications in the development of newer strategies to combat HBV infection.
Collapse
Affiliation(s)
- Mahendran Chinnappan
- *International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | - Avishek Kumar Singh
- †Institute of Liver and Biliary Sciences (ILBS), D-1, Vasant Kunj, New Delhi, India
| | - Pavan Kumar Kakumani
- *International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | - Gautam Kumar
- *International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | | | - Anupama Kumari
- †Institute of Liver and Biliary Sciences (ILBS), D-1, Vasant Kunj, New Delhi, India
| | - Aditi Varshney
- †Institute of Liver and Biliary Sciences (ILBS), D-1, Vasant Kunj, New Delhi, India
| | - Archana Rastogi
- †Institute of Liver and Biliary Sciences (ILBS), D-1, Vasant Kunj, New Delhi, India
| | - Ashok Kumar Singh
- ‡Department of Zoology, University of Delhi, New Delhi, DL 110007, India
| | - Shiv Kumar Sarin
- †Institute of Liver and Biliary Sciences (ILBS), D-1, Vasant Kunj, New Delhi, India
| | - Pawan Malhotra
- *International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | | | - Raj Kamal Bhatnagar
- *International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067 New Delhi, India
| |
Collapse
|
35
|
Huang JT, Wang J, Srivastava V, Sen S, Liu SM. MicroRNA Machinery Genes as Novel Biomarkers for Cancer. Front Oncol 2014; 4:113. [PMID: 24904827 PMCID: PMC4032885 DOI: 10.3389/fonc.2014.00113] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/01/2014] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) directly and indirectly affect tumorigenesis. To be able to perform their myriad roles, miRNA machinery genes, such as Drosha, DGCR8, Dicer1, XPO5, TRBP, and AGO2, must generate precise miRNAs. These genes have specific expression patterns, protein-binding partners, and biochemical capabilities in different cancers. Our preliminary analysis of data from The Cancer Genome Atlas consortium on multiple types of cancer revealed significant alterations in these miRNA machinery genes. Here, we review their biological structures and functions with an eye toward understanding how they could serve as cancer biomarkers.
Collapse
Affiliation(s)
- Jing-Tao Huang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vibhuti Srivastava
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Adams CM, Eischen CM. Inactivation of p53 is insufficient to allow B cells and B-cell lymphomas to survive without Dicer. Cancer Res 2014; 74:3923-34. [PMID: 24840646 DOI: 10.1158/0008-5472.can-13-1866] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inactivation of p53, the master regulator of cellular stress and damage signals, often allows cells that should die or senesce to live. Loss of Dicer, an RNase III-like enzyme critical in microRNA biogenesis, causes embryonic lethality and activation of the p53 pathway. Several nonhematopoietic cell types that contain inactivated p53 have been shown to survive Dicer deletion, suggesting that p53 loss may protect cells from the negative consequences of Dicer deletion. However, here, we report that loss of p53 did not provide a survival advantage to B cells, as they underwent rapid apoptosis upon Dicer deletion. Moreover, a deficiency in p53 neither rescued the Dicer deletion-induced delay in Myc-driven B-cell lymphomagenesis, nor allowed a single B-cell lymphoma to develop with biallelic deletion of Dicer. A p53 deficiency did, however, restore the pre-B/B-cell phenotype and CD19 surface expression of the lymphomas that emerged in conditional Dicer knockout Eμ-myc transgenic mice. Moreover, p53 loss in transformed B cells did not confer protection from apoptosis, as Dicer deletion in established p53-null B-cell lymphomas induced apoptosis, and all of the 1,260 B-cell lymphoma clones analyzed that survived Cre-mediated Dicer deletion retained at least one allele of Dicer. Moreover, Dicer deletion in lymphomas in vivo reduced tumor burden and prolonged survival. Therefore, inactivation of p53 is insufficient to allow untransformed B cells and B-cell lymphomas to survive without Dicer, presenting a potential therapeutic opportunity for the treatment of B-cell lymphomas.
Collapse
Affiliation(s)
- Clare M Adams
- Authors' Affiliation: Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine M Eischen
- Authors' Affiliation: Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
37
|
Sun H, Li Q, Yang T, Wang W. Quantitative assessment of the association between microRNA-499 rs3746444 A/G polymorphism and cancer risk. Tumour Biol 2013; 35:2351-8. [DOI: 10.1007/s13277-013-1407-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/09/2013] [Indexed: 12/31/2022] Open
|
38
|
Acetylation of drosha on the N-terminus inhibits its degradation by ubiquitination. PLoS One 2013; 8:e72503. [PMID: 24009686 PMCID: PMC3757024 DOI: 10.1371/journal.pone.0072503] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022] Open
Abstract
The RNase III enzyme Drosha initiates microRNA (miRNA) biogenesis in the nucleus by cleaving primary miRNA transcripts into shorter precursor molecules that are subsequently exported into the cytoplasm for further processing. While numerous disease states appear to be associated with aberrant expression of Drosha, the molecular mechanisms that regulate its protein levels are largely unknown. Here, we report that ubiquitination and acetylation regulate Drosha protein levels oppositely. Deacetylase inhibitors trichostatin A (TSA) and nicotinamide (NIA) increase Drosha protein level as measured by western blot but have no effects on its mRNA level in HEK293T cells. TSA increases miRNA-143 production in a miRNA sensor assay and in a qPCR analysis in HEK293T cells. Treatment of AGS and HEK293T cells with proteasome inhibitors MG132 or Omuralide increases Drosha protein levels. Furthermore, the N-terminal, but not the C-terminal Drosha can be acetylated by multiple acetyl transferases including p300, CBP and GCN5. Acetylation of Drosha competes with its ubquitination, inhibiting the degradation induced by the ubiquitin-proteasome pathway, thereby increasing Drosha protein levels. Infection of the gastric mucosa AGS cells by H. pylori, the gastric cancer associated carcinogen, leads to the ubiquitination and reduction of Drosha protein levels. H. pylori infection of AGS cells has no significant effects on Drosha mRNA levels. Our findings establish a central mechanism of protein homeostasis as playing a critical role in miRNA biogenesis.
Collapse
|
39
|
Cawley K, Logue SE, Gorman AM, Zeng Q, Patterson J, Gupta S, Samali A. Disruption of microRNA biogenesis confers resistance to ER stress-induced cell death upstream of the mitochondrion. PLoS One 2013; 8:e73870. [PMID: 23977393 PMCID: PMC3747093 DOI: 10.1371/journal.pone.0073870] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 07/29/2013] [Indexed: 01/08/2023] Open
Abstract
Global downregulation of microRNAs (miRNAs) is a common feature of human tumors and has been shown to enhance cancer progression. Several components of the miRNA biogenesis machinery (XPO5, DICER and TRBP) have been shown to act as haploinsufficient tumor suppressors. How the deregulation of miRNA biogenesis promotes tumor development is not clearly understood. Here we show that loss of miRNA biogenesis increased resistance to endoplasmic reticulum (ER) stress-induced cell death. We observed that HCT116 cells with a DICER hypomorphic mutation (Exn5/Exn5) or where DICER or DROSHA were knocked down were resistant to ER stress-induced cell death. Extensive analysis revealed little difference in the unfolded protein response (UPR) of WT compared to Exn5/Exn5 HCT116 cells upon ER stress treatment. However, analysis of the intrinsic apoptotic pathway showed that resistance occurred upstream of the mitochondria. In particular, BAX activation and dissipation of mitochondrial membrane potential was attenuated, and there was altered expression of BCL-2 family proteins. These observations demonstrate a key role for miRNAs as critical modulators of the ER stress response. In our model, downregulation of miRNA biogenesis delays ER stress-induced apoptosis. This suggests that disrupted miRNA biogenesis may contribute to cancer progression by inhibiting ER stress-induced cell death.
Collapse
Affiliation(s)
- Karen Cawley
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
- School of Natural Sciences National University of Ireland, Galway, Ireland
| | - Susan E. Logue
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
- School of Natural Sciences National University of Ireland, Galway, Ireland
| | - Adrienne M. Gorman
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
- School of Natural Sciences National University of Ireland, Galway, Ireland
| | - Qingping Zeng
- MannKind Corporation, Valencia, California, United States of America
| | - John Patterson
- MannKind Corporation, Valencia, California, United States of America
| | - Sanjeev Gupta
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
- School of Medicine, Clinical Science Institute, National University of Ireland, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
- School of Natural Sciences National University of Ireland, Galway, Ireland
- * E-mail:
| |
Collapse
|
40
|
Expression of the RNase III enzyme DROSHA is reduced during progression of human cutaneous melanoma. Mod Pathol 2013; 26:902-10. [PMID: 23370771 PMCID: PMC5025290 DOI: 10.1038/modpathol.2012.225] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/08/2012] [Accepted: 11/14/2012] [Indexed: 01/02/2023]
Abstract
Aberrant expression of microRNAs (miRNAs) and their biogenesis factors has been frequently observed in different types of cancer. We recently reported that expression of DICER1 is reduced in metastatic melanoma. Nevertheless, so far very little is known about the expression pattern of other miRNA biogenesis factors in this type of malignancy. Here, we investigated the expression pattern of DROSHA in a large set of melanocytic lesions (n=409) by tissue microarray and immunohistochemistry. We found that nuclear expression of DROSHA is markedly reduced in the early stages of melanoma progression (P=0.0001) and is inversely correlated with melanoma thickness (P=0.0001), AJCC stages (P=0.0001), and ulceration status (P=0.002). We also confirmed the reduced expression of nuclear DROSHA by a second specific antibody raised against a different region of the DROSHA protein. In addition, we observed that the reduced nuclear expression of DROSHA during melanoma progression is accompanied by an increased cytoplasmic expression of this protein (P=0.0001). Finally, we found that expression pattern of DROSHA varies from that of DICER1 and concomitant loss of expression of both DICER1 and DROSHA confers the worse outcome for melanoma patients. Our results demonstrate a reduced nuclear expression of DROSHA, which further highlights a perturbed miRNA biogenesis pathway in melanoma. In addition, the aberrant subcellular localization of DROSHA indicates possible deregulation in the mechanisms responsible for its proper localization in the nucleus.
Collapse
|
41
|
Xu YY, Wu HJ, Ma HD, Xu LP, Huo Y, Yin LR. MicroRNA-503 suppresses proliferation and cell-cycle progression of endometrioid endometrial cancer by negatively regulating cyclin D1. FEBS J 2013; 280:3768-79. [PMID: 23731275 DOI: 10.1111/febs.12365] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/17/2013] [Accepted: 05/28/2013] [Indexed: 01/02/2023]
Abstract
MicroRNAs (miRNAs) are post-transcriptional inhibitor regulators of gene expression that act by directly binding complementary mRNA and are key determinants of cancer initiation and progression. In this study, we revealed a role for the tumor-suppressor miRNA miR-503 in endometrioid endometrial cancer (EEC) cells. The miR-503 expression level gradually decreases across normal endometrial tissues, endometrial tissues with complex atypical hyperplasia, and EEC tissues. A relatively high level of miR-503 in EEC tissues indicates a longer survival time in EEC patients. The expression of a cell cycle-associated oncogene encoding cyclin D1 (CCND1) was inversely correlated with miR-503 expression in EEC tissues and cell lines. CCND1 has a binding sequence of miR-503 within its 3' untranslated region, and was confirmed to be a direct target of miR-503 by the fluorescent reporter assays. Increasing the miR-503 level in EEC cells suppressed cell viability, colon formation activity and cell-cycle progression, and the inhibited oncogenic phenotypes induced by miR-503 were alleviated by ectopic expression of CCND1 without the untranslated region sequence. Furthermore, in vivo studies also suggested a suppressive effect of miR-503 on EEC cell-derived xenografts. miR-503 increased in cell cycle-arrested EEC cells, and was restored to a normal level in EEC cells after cell cycle re-entry, while CCND1 displayed the opposite expression pattern. Collectively, this study suggested that miR-503 plays a tumor-suppressor role by targeting CCND1. Abnormal suppression of miR-503 leads to an increase in the CCND1 level, which may promote carcinogenesis and progression of EEC.
Collapse
Affiliation(s)
- Yan-Ying Xu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | | | | | | | | | | |
Collapse
|
42
|
He Y, Zhou Y, Xi Q, Cui H, Luo T, Song H, Nie X, Wang L, Ying B. Genetic Variations in MicroRNA Processing Genes Are Associated with Susceptibility in Depression. DNA Cell Biol 2012; 31:1499-506. [PMID: 22694265 DOI: 10.1089/dna.2012.1660] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yong He
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yi Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Qian Xi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Haoyuan Cui
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Tongxing Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Haolan Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xin Nie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Lanlan Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
43
|
Geeleher P, Huang SR, Gamazon ER, Golden A, Seoighe C. The regulatory effect of miRNAs is a heritable genetic trait in humans. BMC Genomics 2012; 13:383. [PMID: 23272639 PMCID: PMC3532363 DOI: 10.1186/1471-2164-13-383] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 07/30/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND microRNAs (miRNAs) have been shown to regulate the expression of a large number of genes and play key roles in many biological processes. Several previous studies have quantified the inhibitory effect of a miRNA indirectly by considering the expression levels of genes that are predicted to be targeted by the miRNA and this approach has been shown to be robust to the choice of prediction algorithm. Given a gene expression dataset, Cheng et al. defined the regulatory effect score (RE-score) of a miRNA as the difference in the gene expression rank of targets of the miRNA compared to non-targeted genes. RESULTS Using microarray data from parent-offspring trios from the International HapMap project, we show that the RE-score of most miRNAs is correlated between parents and offspring and, thus, inter-individual variation in RE-score has a genetic component in humans. Indeed, the mean RE-score across miRNAs is correlated between parents and offspring, suggesting genetic differences in the overall efficiency of the miRNA biogenesis pathway between individuals. To explore the genetics of this quantitative trait further, we carried out a genome-wide association study of the mean RE-score separately in two HapMap populations (CEU and YRI). No genome-wide significant associations were discovered; however, a SNP rs17409624, in an intron of DROSHA, was significantly associated with mean RE-score in the CEU population following permutation-based control for multiple testing based on all SNPs mapped to the canonical miRNA biogenesis pathway; of 244 individual miRNA RE-scores assessed in the CEU, 214 were associated (p < 0.05) with rs17409624. The SNP was also nominally significantly associated (p = 0.04) with mean RE-score in the YRI population. Interestingly, the same SNP was associated with 17 (8.5% of all expressed) miRNA expression levels in the CEU. We also show here that the expression of the targets of most miRNAs is more highly correlated with global changes in miRNA regulatory effect than with the expression of the miRNA itself. CONCLUSIONS We present evidence that miRNA regulatory effect is a heritable trait in humans and that a polymorphism of the DROSHA gene contributes to the observed inter-individual differences.
Collapse
Affiliation(s)
- Paul Geeleher
- Department of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | | | | | | | | |
Collapse
|
44
|
Hawkins SM, Andreu-Vieyra CV, Kim TH, Jeong JW, Hodgson MC, Chen R, Creighton CJ, Lydon JP, Gunaratne PH, DeMayo FJ, Matzuk MM. Dysregulation of uterine signaling pathways in progesterone receptor-Cre knockout of dicer. Mol Endocrinol 2012; 26:1552-66. [PMID: 22798293 DOI: 10.1210/me.2012-1042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epithelial-stromal interactions in the uterus are required for normal uterine functions such as pregnancy, and multiple signaling pathways are essential for this process. Although Dicer and microRNA (miRNA) have been implicated in several reproductive processes, the specific roles of Dicer and miRNA in uterine development are not known. To address the roles of miRNA in the regulation of key uterine pathways, we generated a conditional knockout of Dicer in the postnatal uterine epithelium and stroma using progesterone receptor-Cre. These Dicer conditional knockout females are sterile with small uteri, which demonstrate significant defects, including absence of glandular epithelium and enhanced stromal apoptosis, beginning at approximately postnatal d 15, with coincident expression of Cre and deletion of Dicer. Specific miRNA (miR-181c, -200b, -101, let-7d) were down-regulated and corresponding predicted proapoptotic target genes (Bcl2l11, Aldh1a3) were up-regulated, reflecting the apoptotic phenomenon. Although these mice had normal serum hormone levels, critical uterine signaling pathways, including progesterone-responsive genes, Indian hedgehog signaling, and the Wnt/β-catenin canonical pathway, were dysregulated at the mRNA level. Importantly, uterine stromal cell proliferation in response to progesterone was absent, whereas uterine epithelial cell proliferation in response to estradiol was maintained in adult uteri. These data implicate Dicer and appropriate miRNA expression as essential players in the regulation of multiple uterine signaling pathways required for uterine development and appropriate function.
Collapse
Affiliation(s)
- Shannon M Hawkins
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ravi A, Gurtan AM, Kumar MS, Bhutkar A, Chin C, Lu V, Lees JA, Jacks T, Sharp PA. Proliferation and tumorigenesis of a murine sarcoma cell line in the absence of DICER1. Cancer Cell 2012; 21:848-55. [PMID: 22698408 PMCID: PMC3385871 DOI: 10.1016/j.ccr.2012.04.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 03/07/2012] [Accepted: 04/24/2012] [Indexed: 12/13/2022]
Abstract
MicroRNAs are a class of short ~22 nucleotide RNAs predicted to regulate nearly half of all protein coding genes, including many involved in basal cellular processes and organismal development. Although a global reduction in miRNAs is commonly observed in various human tumors, complete loss has not been documented, suggesting an essential function for miRNAs in tumorigenesis. Here we present the finding that transformed or immortalized Dicer1 null somatic cells can be isolated readily in vitro, maintain the characteristics of DICER1-expressing controls and remain stably proliferative. Furthermore, Dicer1 null cells from a sarcoma cell line, though depleted of miRNAs, are competent for tumor formation. Hence, miRNA levels in cancer may be maintained in vivo by a complex stabilizing selection in the intratumoral environment.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Blotting, Northern
- Blotting, Western
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cells, Cultured
- DEAD-box RNA Helicases/deficiency
- DEAD-box RNA Helicases/genetics
- Flow Cytometry
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- MicroRNAs/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonuclease III/deficiency
- Ribonuclease III/genetics
- Sarcoma/genetics
- Sarcoma/metabolism
- Sarcoma/pathology
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Arvind Ravi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Health Sciences and Technology Program, Cambridge, MA 02139, USA
| | - Allan M. Gurtan
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Madhu S. Kumar
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Christine Chin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Victoria Lu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jacqueline A. Lees
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Tyler Jacks
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Phillip A. Sharp
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
- To whom correspondence should be addressed.
| |
Collapse
|
46
|
Parisi C, Giorgi C, Batassa EM, Braccini L, Maresca G, D'agnano I, Caputo V, Salvatore A, Pietrolati F, Cogoni C, Catalanotto C. Ago1 and Ago2 differentially affect cell proliferation, motility and apoptosis when overexpressed in SH-SY5Y neuroblastoma cells. FEBS Lett 2011; 585:2965-71. [PMID: 21846468 DOI: 10.1016/j.febslet.2011.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 01/20/2023]
Abstract
Argonaute are a conserved class of proteins central to the microRNA pathway. We have highlighted a novel and non-redundant function of Ago1 versus Ago2; the two core factors of the miRNA-associated RISC complex. Stable overexpression of Ago1 in neuroblastoma cells causes the cell cycle to slow down, a decrease in cellular motility and a stronger apoptotic response upon UV irradiation. These effects, together with a significant increase in p53 levels, suggest that Ago1 may act as a tumor-suppressor factor, a function also supported by GEO Profiles microarrays that inversely correlate Ago1 expression levels with cell proliferation rates.
Collapse
Affiliation(s)
- Chiara Parisi
- Department of Cellular Biotechnology and Hematology, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|