1
|
Wenzel EM, Pedersen NM, Elfmark LA, Wang L, Kjos I, Stang E, Malerød L, Brech A, Stenmark H, Raiborg C. Intercellular transfer of cancer cell invasiveness via endosome-mediated protease shedding. Nat Commun 2024; 15:1277. [PMID: 38341434 PMCID: PMC10858897 DOI: 10.1038/s41467-024-45558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Overexpression of the transmembrane matrix metalloproteinase MT1-MMP/MMP14 promotes cancer cell invasion. Here we show that MT1-MMP-positive cancer cells turn MT1-MMP-negative cells invasive by transferring a soluble catalytic ectodomain of MT1-MMP. Surprisingly, this effect depends on the presence of TKS4 and TKS5 in the donor cell, adaptor proteins previously implicated in invadopodia formation. In endosomes of the donor cell, TKS4/5 promote ADAM-mediated cleavage of MT1-MMP by bridging the two proteases, and cleavage is stimulated by the low intraluminal pH of endosomes. The bridging depends on the PX domains of TKS4/5, which coincidently interact with the cytosolic tail of MT1-MMP and endosomal phosphatidylinositol 3-phosphate. MT1-MMP recruits TKS4/5 into multivesicular endosomes for their subsequent co-secretion in extracellular vesicles, together with the enzymatically active ectodomain. The shed ectodomain converts non-invasive recipient cells into an invasive phenotype. Thus, TKS4/5 promote intercellular transfer of cancer cell invasiveness by facilitating ADAM-mediated shedding of MT1-MMP in acidic endosomes.
Collapse
Affiliation(s)
- Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Nina Marie Pedersen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Liv Anker Elfmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ling Wang
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ingrid Kjos
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Espen Stang
- Laboratory for Molecular and Cellular Cancer Research, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Lene Malerød
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Section for Physiology and Cell Biology, Dept. of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
2
|
Tanaka N, Sakamoto T. MT1-MMP as a Key Regulator of Metastasis. Cells 2023; 12:2187. [PMID: 37681919 PMCID: PMC10486781 DOI: 10.3390/cells12172187] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Membrane type1-matrix metalloproteinase (MT1-MMP) is a member of metalloproteinases that is tethered to the transmembrane. Its major function in cancer progression is to directly degrade the extracellular matrix components, which are mainly type I-III collagen or indirectly type IV collagen through the activation of MMP-2 with a cooperative function of the tissue inhibitor of metalloproteinase-2 (TIMP-2). MT1-MMP is expressed as an inactive form (zymogen) within the endoplasmic reticulum (ER) and receives truncation processing via furin for its activation. Upon the appropriate trafficking of MT1-MMP from the ER, the Golgi apparatus to the cell surface membrane, MT1-MMP exhibits proteolytic activities to the surrounding molecules such as extracellular matrix components and cell surface molecules. MT1-MMP also retains a non-proteolytic ability to activate hypoxia-inducible factor 1 alpha (HIF-1A) via factors inhibiting the HIF-1 (FIH-1)-Mint3-HIF-1 axis, resulting in the upregulation of glucose metabolism and oxygen-independent ATP production. Through various functions of MT1-MMP, cancer cells gain motility on migration/invasion, thus causing metastasis. Despite the long-time efforts spent on the development of MT1-MMP interventions, none have been accomplished yet due to the side effects caused by off-target effects. Recently, MT1-MMP-specific small molecule inhibitors or an antibody have been reported and these inhibitors could potentially be novel agents for cancer treatment.
Collapse
Affiliation(s)
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan;
| |
Collapse
|
3
|
Fromme JE, Zigrino P. The Role of Extracellular Matrix Remodeling in Skin Tumor Progression and Therapeutic Resistance. Front Mol Biosci 2022; 9:864302. [PMID: 35558554 PMCID: PMC9086898 DOI: 10.3389/fmolb.2022.864302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix remodeling in the skin results from a delicate balance of synthesis and degradation of matrix components, ensuring tissue homeostasis. These processes are altered during tumor invasion and growth, generating a microenvironment that supports growth, invasion, and metastasis. Apart from the cellular component, the tumor microenvironment is rich in extracellular matrix components and bound factors that provide structure and signals to the tumor and stromal cells. The continuous remodeling in the tissue compartment sustains the developing tumor during the various phases providing matrices and proteolytic enzymes. These are produced by cancer cells and stromal fibroblasts. In addition to fostering tumor growth, the expression of specific extracellular matrix proteins and proteinases supports tumor invasion after the initial therapeutic response. Lately, the expression and structural modification of matrices were also associated with therapeutic resistance. This review will focus on the significant alterations in the extracellular matrix components and the function of metalloproteinases that influence skin cancer progression and support the acquisition of therapeutic resistance.
Collapse
Affiliation(s)
- Julia E. Fromme
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- *Correspondence: Paola Zigrino,
| |
Collapse
|
4
|
Hamidi AA, Khalili-Tanha G, Nasrpour Navaei Z, Moghbeli M. Long non-coding RNAs as the critical regulators of epithelial mesenchymal transition in colorectal tumor cells: an overview. Cancer Cell Int 2022; 22:71. [PMID: 35144601 PMCID: PMC8832734 DOI: 10.1186/s12935-022-02501-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/30/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer mortality and a major health challenge worldwide. Despite advances in therapeutic and diagnostic methods, there is still a poor prognosis in CRC patients. Tumor recurrence and metastasis are the main causes of high mortality rate in these patients, which are due to late diagnosis in advanced tumor stages. Epithelial-mesenchymal transition (EMT) is known to be the most important cause of CRC metastasis, during which tumor cells obtain metastasis ability by losing epithelial features and gaining mesenchymal features. Long non-coding RNAs (lncRNAs) are pivotal regulators of EMT process. Regarding the higher stability of lncRNAs compared with coding RNAs in body fluids, they can be used as non-invasive diagnostic markers for EMT process. In the present review, we summarized all of the lncRNAs involved in regulation of EMT process during CRC progression and metastasis. It was observed that lncRNAs mainly induced the EMT process in CRC cells by regulation of EMT-related transcription factors, Poly comb repressive complex (PRC), and also signaling pathways such as WNT, NOTCH, MAPK, and Hippo.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Nasrpour Navaei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Potential Roles of Exosomal lncRNAs in the Intestinal Mucosal Immune Barrier. J Immunol Res 2021; 2021:7183136. [PMID: 34485536 PMCID: PMC8413039 DOI: 10.1155/2021/7183136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022] Open
Abstract
The intestinal mucosal immune barrier protects the host from the invasion of foreign pathogenic microorganisms. Immune cells and cytokines in the intestinal mucosa maintain local and systemic homeostasis by participating in natural and adaptive immunity. Deficiency of the intestinal mucosal immune barrier is associated with a variety of intestinal illnesses. Exosomes are phospholipid bilayer nanovesicles that allow cell-cell communication by secreting physiologically active substances including proteins, lipids, transcription factors, mRNAs, micro-RNAs (miRNAs), and long noncoding RNAs (lncRNAs). Exosomal lncRNAs are involved in immune cell differentiation and the modulation of the immune response. This review briefly introduces the potential role of exosomal lncRNAs in the intestinal mucosal immune barrier and discusses their relevance to intestinal illnesses.
Collapse
|
6
|
Guo J, Liang Y, Xue D, Shen J, Cai Y, Zhu J, Fu YX, Peng H. Tumor-conditional IL-15 pro-cytokine reactivates anti-tumor immunity with limited toxicity. Cell Res 2021; 31:1190-1198. [PMID: 34376814 DOI: 10.1038/s41422-021-00543-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
IL-15 is a promising cytokine to expand NK and CD8+ T cells for cancer immunotherapy, but its application is limited by dose-limiting, on-target off-tumor toxicity. Here, we have developed a next-generation IL-15 that is activated inside the tumor microenvironment (TME). This pro-IL-15 has the extracellular domain of IL-15Rβ fused to the N-terminus of sIL-15-Fc through a tumor-enriched Matrix Metalloproteinase (MMP) cleavable peptide linker to block its activity. Unlike sIL-15-Fc, pro-IL-15 does not activate the peripheral expansion of NK cells and T cells, thus reducing systemic toxicity, but it still preserves efficient anti-tumor abilities. In various mouse tumors, the anti-tumor effect of pro-IL-15 depends on intratumoral CD8+ T cells and IFN-γ. Pro-IL-15 increases the stem-like TCF1+Tim-3-CD8+ T cells within tumor tissue and helps overcome immune checkpoint blockade (ICB) resistance. Moreover, pro-IL-15 synergizes with current tyrosine kinase inhibitor (TKI) targeted-therapy in a poorly inflamed TUBO tumor model, suggesting that pro-IL-15 helps overcome targeted-therapy resistance. Our results demonstrate a next-generation IL-15 cytokine that can stimulate potent anti-tumor activity without severe toxicity.
Collapse
Affiliation(s)
- Jingya Guo
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Liang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Diyuan Xue
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Shen
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yueqi Cai
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiankun Zhu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Hua Peng
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Oweida A, Paquette B. Reconciling two opposing effects of radiation therapy: stimulation of cancer cell invasion and activation of anti-cancer immunity. Int J Radiat Biol 2021; 99:951-963. [PMID: 34264178 DOI: 10.1080/09553002.2021.1956005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE The damage caused by radiation therapy to cancerous and normal cells inevitably leads to changes in the secretome profile of pro and anti-inflammatory mediators. The inflammatory response depends on the dose of radiation and its fractionation, while the inherent radiosensitivity of each patient dictates the intensity and types of adverse reactions. This review will present an overview of two apparently opposite reactions that may occur after radiation treatment: induction of an antitumor immune response and a protumoral response. Emphasis is placed on the molecular and cellular mechanisms involved. CONCLUSIONS By understanding how radiation changes the balance between anti- and protumoral effects, these forces can be manipulated to optimize radiation oncology treatments.
Collapse
Affiliation(s)
- Ayman Oweida
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Canada
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
8
|
Ansardamavandi A, Tafazzoli-Shadpour M. The functional cross talk between cancer cells and cancer associated fibroblasts from a cancer mechanics perspective. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119103. [PMID: 34293346 DOI: 10.1016/j.bbamcr.2021.119103] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
The function of biological tissues in health and disease is regulated at cellular level and is highly influenced by the physical microenvironment, through the interaction of forces between cells and ECM, which are perceived through mechanosensing pathways. In cancer, both chemical and physical signaling cascades and their interactions are involved during cell-cell and cell-ECM communications to meet requirements of tumor growth. Among stroma cells, cancer associated fibroblasts (CAFs) play key role in tumor growth and pave the way for cancer cells to initiate metastasis and invasion to other tissues, and without recruitment of CAFs, the process of cancer invasion is dysfunctional. This is through an intense chemical and physical cross talks with tumor cells, and interactive remodeling of ECM. During such interaction CAFs apply traction forces and depending on the mechanical properties, deform ECM and in return receive physical signals from the micromechanical environment. Such interaction leads to ECM remodeling by manipulating ECM structure and its mechanical properties. The results are in form of deposition of extra fibers, stiffening, rearrangement and reorganization of fibrous structure, and degradation which are due to a complex secretion and expression of different markers triggered by mechanosensing of tumor cells, specially CAFs. Such events define cancer progress and invasion of cancer cells. A systemic knowledge of chemical and physical factors provides a holistic view of how cancer process and enhances the current treatment methods to provide more diversity among targets that involves tumor cells and ECM structure.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
9
|
Yoshida T, Suganuma N, Sato S, Toda S, Nakayama H, Masudo K, Okubo Y, Hayashi H, Yokose T, Koshikawa N, Rino Y, Iwasaki H, Miyagi Y, Masuda M, Hoshino D. Membrane type 1 matrix metalloproteinase regulates anaplastic thyroid carcinoma cell growth and invasion into the collagen matrix. Biochem Biophys Res Commun 2020; 529:1195-1200. [PMID: 32819585 DOI: 10.1016/j.bbrc.2020.06.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) is one of the most aggressive cancer types; however, the molecular mechanism contributing to the aggressive characteristics remain unclear. Membrane type 1 matrix metalloproteinase (MT1-MMP) plays an important role in cancer invasion and has been associated with a poor prognosis in various malignant neoplasms. In this study, we investigated the relationship between MT1-MMP expression and the proliferation and invasion of ATC cells, along with the association with clinicopathologic factors in patients with ATC. Suppression of MT1-MMP reduced the proliferation and invasion of ATC cells, and suppressed ERK activity, indicating a role in cancer cell proliferation in collagen matrix culture conditions. The expression of MT1-MMP was detected in 29 of 34 (85.3%) surgical specimens from ATC patients. In addition, the expression of MT1-MMP in the tumor lesion was higher than that of normal and stromal tissues. Collectively, these results suggest that elevated MT1-MMP expression plays a role in the pathogenesis of ATC, which may promote its aggressive characteristics such as proliferation and invasion, highlighting a potential new therapeutic target.
Collapse
Affiliation(s)
- Tatsuya Yoshida
- Department of Surgery, Yokohama City University, Yokohama, Japan; Department of Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Nobuyasu Suganuma
- Department of Surgery, Yokohama City University, Yokohama, Japan; Department of Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Shinya Sato
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Soji Toda
- Department of Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Hirotaka Nakayama
- Department of Surgery, Hiratsuka Kyosai Hospital, Hiratsuka, Kanagawa, Japan
| | - Katsuhiko Masudo
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama, Japan
| | - Yoichiro Okubo
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Hiroyuki Hayashi
- Department of Pathology, Yokohama Municipal Citizen's Hospital, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Naohiko Koshikawa
- Division of Cancer Cell Research, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yasushi Rino
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Hiroyuki Iwasaki
- Department of Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Munetaka Masuda
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Daisuke Hoshino
- Organoid Biology Unit, Kanagawa Cancer Center Research Institute, Yokohama, Japan.
| |
Collapse
|
10
|
Aharon L, Aharoni SL, Radisky ES, Papo N. Quantitative mapping of binding specificity landscapes for homologous targets by using a high-throughput method. Biochem J 2020; 477:1701-1719. [PMID: 32296833 PMCID: PMC7376575 DOI: 10.1042/bcj20200188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 01/08/2023]
Abstract
To facilitate investigations of protein-protein interactions (PPIs), we developed a novel platform for quantitative mapping of protein binding specificity landscapes, which combines the multi-target screening of a mutagenesis library into high- and low-affinity populations with sophisticated next-generation sequencing analysis. Importantly, this method generates accurate models to predict affinity and specificity values for any mutation within a protein complex, and requires only a few experimental binding affinity measurements using purified proteins for calibration. We demonstrated the utility of the approach by mapping quantitative landscapes for interactions between the N-terminal domain of the tissue inhibitor of metalloproteinase 2 (N-TIMP2) and three matrix metalloproteinases (MMPs) having homologous structures but different affinities (MMP-1, MMP-3, and MMP-14). The binding landscapes for N-TIMP2/MMP-1 and N-TIMP2/MMP-3 showed the PPIs to be almost fully optimized, with most single mutations giving a loss of affinity. In contrast, the non-optimized PPI for N-TIMP2/MMP-14 was reflected in a wide range of binding affinities, where single mutations exhibited a far more attenuated effect on the PPI. Our new platform reliably and comprehensively identified not only hot- and cold-spot residues, but also specificity-switch mutations that shape target affinity and specificity. Thus, our approach provides a methodology giving an unprecedentedly rich quantitative analysis of the binding specificity landscape, which will broaden the understanding of the mechanisms and evolutionary origins of specific PPIs and facilitate the rational design of specific inhibitors for structurally similar target proteins.
Collapse
Affiliation(s)
- Lidan Aharon
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shay-Lee Aharoni
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville 32224, Florida, USA
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
11
|
Duan F, Peng Z, Yin J, Yang Z, Shang J. Expression of MMP-14 and prognosis in digestive system carcinoma: a meta-analysis and databases validation. J Cancer 2020; 11:1141-1150. [PMID: 31956360 PMCID: PMC6959085 DOI: 10.7150/jca.36469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
Background: The Matrix metalloproteinase-14 (MMP-14) expression has been shown to be overexpressed in different cancers. However, there is no comprehensive quantitative evaluation of the MMP-14 prognostic value in digestive system carcinoma (DSC). The aim of this study is to explore the correlation between the MMP-14 expression and DSC prognosis. Methods: We conducted a meta-analysis to estimate the association strength between MMP-14 expression and prognosis. GEPIA and Kaplan Meier plotters were used to assess overall survival (OS), disease-free survival (DFS)/progression-free survival (PFS) in DSC patients and the differential expression of MMP-14 in DSC tissues and adjacent tissues. Results: A total of 20 studies including 2,519 patients with OS and 438 patients with DFS/PFS data were analyzed in evidence synthesis. Overall, the combined hazard ratio (HR) with 95% confidence interval (95% CI) was 1.98 (95%Cl: 1.77-2.22, P<0.001) for OS and 3.61 (95%Cl: 2.39-5.43, P<0.001) for DFS/PFS. For subgroup analyses, significant correlations were revealed between increased MMP-14 expression and poor OS in patients with gastric cancer (HR=2.21, 95%CI: 1.76-2.77, P<0.001), esophageal carcinoma (HR=2.01, 95%CI: 1.58-2.57, P<0.001), oral cancer (HR = 1.69, 95% CI: 1.30-2.20, P < 0.001) (HR=2.14, 95%CI 1.35-2.19, P<0.001) and hepatocarcinoma. In database verification analyses, the MMP-14 expression levels in normal tissues were significantly higher than that in DSC tissues, and significant associations were observed between high MMP-14 expression levels and poor prognosis. Conclusions: The high expression levels of MMP-14 might predict poor prognosis in DSC. Larger prospective clinical cohort studies are required to validate the prognostic role.
Collapse
Affiliation(s)
- Fujiao Duan
- Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China.,College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhen Peng
- Department of Infectious Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Jingjing Yin
- College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhongyu Yang
- College of Art and Science, The Ohio State University, Columbus, Ohio, US
| | - Jia Shang
- Department of Infectious Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| |
Collapse
|
12
|
Tian L, Zhao ZF, Xie L, Zhu JP. Taurine up-regulated 1 accelerates tumorigenesis of colon cancer by regulating miR-26a-5p/MMP14/p38 MAPK/Hsp27 axis in vitro and in vivo. Life Sci 2019; 239:117035. [PMID: 31697952 DOI: 10.1016/j.lfs.2019.117035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/12/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
AIMS The purpose of this study was to investigate the role of long non-coding RNA taurine-upregulated gene 1 (TUG1) in colon cancer (Cc) and related molecular mechanisms. MATERIALS AND METHODS RT-qPCR, Western blot and immunohistochemistry were used to detect the expression of related proteins. BrdU and Transwell assays were used to detect cell proliferation and invasion, respectively. Immunofluorescence was used to detect the expression of Vimentin. KEY FINDINGS TUG1 expression was up-regulated in CaCO-2, SW620 and HT-29 cells, while miR-26a-5p was down-regulated. Bioinformatics analysis showed that miR-26a-5p was the target of TUG1, and the targeting relationship was further confirmed by dual-luciferase report analysis. Besides, matrix metalloproteinases-14 (MMP-14) was a target of mir-26a-5p. Knockdown of TUG1 by shRNA (sh-TUG1) inhibited MMP-14 expression. Functional analysis showed that sh-TUG1 significantly inhibited Cc cell proliferation, invasion and epithelial-mesenchymal transformation (EMT). Notably, miR-26a-5p inhibitor reversed the promotion of Cc caused by sh-TUG1. Mechanically, the overexpression of TUG1 significantly up-regulated the levels of MMP-14, VEGF, p-p38 mitogen-activated protein kinase (p-p38 MAPK) and p-HSP27 (heat shock protein 27), and promoted the proliferation, invasion and EMT of Cc cells. However, MAPK pathway inhibitor SB203580 has shown the opposite effect. Additionally, animal studies have shown that sh-TUG1 inhibited tumor growth and motility in vivo in the same way. SIGNIFICANCE This study demonstrated that TUG1 accelerates the development of colon cancer by regulating miR-26a-5p/MMP14/p38 MAPK/Hsp27 axis in vitro and in vivo. Therefore, TUG1 provides a new direction for the treatment of Cc.
Collapse
Affiliation(s)
- Lei Tian
- Department of Gastroenterol, Jinzhou Medical University, Affilliated Hospital 1, Jinzhou, 121000, Liaoning Province, People's Republic of China.
| | - Zhi-Feng Zhao
- Department of Gastroenterol, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Ling Xie
- Department of Anatomy, Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Jin-Peng Zhu
- Department of Gastroenterol, Jinzhou Medical University, Affilliated Hospital 1, Jinzhou, 121000, Liaoning Province, People's Republic of China
| |
Collapse
|
13
|
The Expanding Role of MT1-MMP in Cancer Progression. Pharmaceuticals (Basel) 2019; 12:ph12020077. [PMID: 31137480 PMCID: PMC6630478 DOI: 10.3390/ph12020077] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
For over 20 years, membrane type 1 matrix metalloproteinase (MT1-MMP) has been recognized as a key component in cancer progression. Initially, the primary roles assigned to MT1-MMP were the activation of proMMP-2 and degradation of fibrillar collagen. Proteomics has revealed a great array of MT1-MMP substrates, and MT1-MMP selective inhibitors have allowed for a more complete mapping of MT1-MMP biological functions. MT1-MMP has extensive sheddase activities, is both a positive and negative regulator of angiogenesis, can act intracellularly and as a transcription factor, and modulates immune responses. We presently examine the multi-faceted role of MT1-MMP in cancer, with a consideration of how the diversity of MT1-MMP behaviors impacts the application of MT1-MMP inhibitors.
Collapse
|
14
|
MT1-MMP-dependent cell migration: proteolytic and non-proteolytic mechanisms. Biochem Soc Trans 2019; 47:811-826. [PMID: 31064864 PMCID: PMC6599156 DOI: 10.1042/bst20180363] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 01/01/2023]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a type I transmembrane proteinase that belongs to the matrix metalloproteinase (MMP) family. It is a potent modifier of cellular microenvironment and promotes cell migration and invasion of a wide variety of cell types both in physiological and pathological conditions. It promotes cell migration by degrading extracellular matrix on the cell surface and creates a migration path, by modifying cell adhesion property by shedding cell adhesion molecules to increase cell motility, and by altering cellular metabolism. Thus, MT1-MMP is a multifunctional cell motility enhancer. In this review, we will discuss the current understanding of the proteolytic and non-proteolytic mechanism of MT1-MMP-dependent cell migration.
Collapse
|
15
|
Liu Z, Wu K, Wu J, Tian D, Chen Y, Yang Z, Wu A. NEAT1 is a potential prognostic biomarker for patients with nasopharyngeal carcinoma. J Cell Biochem 2019; 120:9831-9838. [PMID: 30618186 DOI: 10.1002/jcb.28263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/22/2018] [Indexed: 01/14/2023]
Abstract
Nuclear paraspeckle assembly transcript 1 (NEAT1) has been found to be dysregulated and associated with clinical progression in various human cancers. The clinical and prognostic value of NEAT1 in nasopharyngeal carcinoma (NPC) was still controversial. The aim of our study was to provide more sufficient evidence that NEAT1 expression is correlated with overall survival in patients with NPC. NEAT1 expression was detected in NPC tissue samples, and the relationship between NEAT1 expression and clinical parameters, including prognosis, was analyzed. The meta-analysis was performed to further assess the prognostic significance of NEAT1 expression in patients with NPC. In our study, we found that the levels of NEAT1 expression were increased in NPC clinical tissue specimens, and associated with advanced M classification and clinical stages. Moreover, the Kaplan-Meier analysis suggested that the levels of NEAT1 expression were negatively associated with the overall survival of patients with NPC. Furthermore, univariate and multivariate Cox regression analyses showed that NEAT1 high-expression was an independent unfavorable prognostic factor in patients with NPC. Finally, we conducted a meta-analysis including 297 patients with NPC from the three studies, and found the pooled HR (95% confidence interval [CI]) was 1.64 (95% CI: 0.68-3.93) for the random effects model and 2.04 (95% CI: 1.42-2.95) for the fixed effect model. In conclusion, NEAT1 is a potential prognostic biomarker for NPC, but more studies are needed to further verify the prognostic value of NEAT1 in patients with NPC.
Collapse
Affiliation(s)
- Zhuoxing Liu
- Department of Oncology, Heyuan People's Hospital, Affiliated Heyuan Hospital of Jinan University, Heyuan, Guangdong, China
| | - Kunpeng Wu
- Department of Oncology, Heyuan People's Hospital, Affiliated Heyuan Hospital of Jinan University, Heyuan, Guangdong, China
| | - Jian Wu
- Department of Oncology, Heyuan People's Hospital, Affiliated Heyuan Hospital of Jinan University, Heyuan, Guangdong, China
| | - Dan Tian
- Department of Oncology, Heyuan People's Hospital, Affiliated Heyuan Hospital of Jinan University, Heyuan, Guangdong, China
| | - Yue Chen
- Department of Oncology, Heyuan People's Hospital, Affiliated Heyuan Hospital of Jinan University, Heyuan, Guangdong, China
| | - Zhixiong Yang
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Aibing Wu
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
16
|
Di D, Chen L, Guo Y, Wang L, Wang H, Ju J. Association of BCSC-1 and MMP-14 with human breast cancer. Oncol Lett 2018; 15:5020-5026. [PMID: 29552138 PMCID: PMC5840690 DOI: 10.3892/ol.2018.7972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/22/2018] [Indexed: 01/14/2023] Open
Abstract
Breast cancer suppressor candidate-1 (BCSC-1) is a candidate tumor suppressor gene that was identified recently. Decreased levels of BCSC-1 have been detected in a variety of cancer types in previous studies. Matrix metalloproteinase (MMP)-14 is a membrane-type MMP that plays an important role in tumor progression and prognosis. Previous research has indicated that MMP-14 is highly expressed in different cancer types and promotes tumor invasion or metastasis by remodeling the extracellular matrix. However, there have been few reports on BCSC-1 and MMP-14 in human breast cancer in recent years. In the present study, the association of BCSC-1 and MMP-14 with human breast cancer was investigated. The immunohistochemical analysis results revealed reduced expression of BCSC-1 and overexpression of MMP-14 in breast cancer tissues compared with adjacent normal breast tissues. Quantitative polymerase chain reaction and western blot analyses also showed that BCSC-1 was expressed at significantly lower levels, and that MMP-14 was expressed at significantly higher levels in breast cancer tissues compared with healthy breast tissue. Furthermore, decreased expression of BCSC-1 and overexpression of MMP-14 were associated with tumor cellular differentiation, lymph node metastasis and distant metastasis. A correlational analysis between BCSC-1 and MMP-14 was also conducted, and the results indicated a negative correlation between the two. In conclusion, the current findings indicate that BCSC-1 is downregulated, while MMP-14 is overexpressed in human breast cancer. These two genes may play important roles during the process of human breast cancer development.
Collapse
Affiliation(s)
- Dalin Di
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Lei Chen
- Department of Hematology, The Hospital Affiliated to Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yingying Guo
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Lina Wang
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Huidong Wang
- Breast Surgery Center, Weifang People's Hospital, Weifang, Shandong 261053, P.R. China
| | - Jiyu Ju
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
17
|
Thakur V, Bedogni B. The membrane tethered matrix metalloproteinase MT1-MMP at the forefront of melanoma cell invasion and metastasis. Pharmacol Res 2016; 111:17-22. [DOI: 10.1016/j.phrs.2016.05.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 01/18/2023]
|
18
|
Baniak N, Senger JL, Ahmed S, Kanthan SC, Kanthan R. Gastric biomarkers: a global review. World J Surg Oncol 2016; 14:212. [PMID: 27514667 PMCID: PMC4982433 DOI: 10.1186/s12957-016-0969-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gastric cancer is an aggressive disease with a poor 5-year survival and large global burden of disease. The disease is biologically and genetically heterogeneous with a poorly understood carcinogenesis at the molecular level. Despite the many prognostic, predictive, and therapeutic biomarkers investigated to date, gastric cancer continues to be detected at an advanced stage with resultant poor clinical outcomes. MAIN BODY This is a global review of gastric biomarkers with an emphasis on HER2, E-cadherin, fibroblast growth factor receptor, mammalian target of rapamycin, and hepatocyte growth factor receptor as well as sections on microRNAs, long noncoding RNAs, matrix metalloproteinases, PD-L1, TP53, and microsatellite instability. CONCLUSION A deeper understanding of the pathogenesis and biological features of gastric cancer, including the identification and characterization of diagnostic, prognostic, predictive, and therapeutic biomarkers, hopefully will provide improved clinical outcomes.
Collapse
Affiliation(s)
- Nick Baniak
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK S7N 0W8 Canada
| | - Jenna-Lynn Senger
- Department of Surgery, University of Alberta, 116 St & 85 Ave, Edmonton, T6G 2R3, T6G 2B7 AB Canada
| | - Shahid Ahmed
- Division of Medical Oncology, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK S7N 0W8 Canada
| | - S. C. Kanthan
- Department of General Surgery, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK S7N 0W8 Canada
| | - Rani Kanthan
- Department of General Surgery, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK S7N 0W8 Canada
| |
Collapse
|
19
|
de Lucas AG, Schuhmacher AJ, Oteo M, Romero E, Cámara JA, de Martino A, Arroyo AG, Morcillo MÁ, Squatrito M, Martinez-Torrecuadrada JL, Mulero F. Targeting MT1-MMP as an ImmunoPET-Based Strategy for Imaging Gliomas. PLoS One 2016; 11:e0158634. [PMID: 27462980 PMCID: PMC4962974 DOI: 10.1371/journal.pone.0158634] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 06/20/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A critical challenge in the management of Glioblastoma Multiforme (GBM) tumors is the accurate diagnosis and assessment of tumor progression in a noninvasive manner. We have identified Membrane-type 1 matrix metalloproteinase (MT1-MMP) as an attractive biomarker for GBM imaging since this protein is actively involved in tumor growth and progression, correlates with tumor grade and is closely associated with poor prognosis in GBM patients. Here, we report the development of an immunoPET tracer for effective detection of MT1-MMP in GBM models. METHODS An anti-human MT1-MMP monoclonal antibody (mAb), LEM2/15, was conjugated to p-isothiocyanatobenzyl-desferrioxamine (DFO-NCS) for 89Zr labeling. Biodistribution and PET imaging studies were performed in xenograft mice bearing human GBM cells (U251) expressing MT1-MMP and non-expressing breast carcinoma cells (MCF-7) as negative control. Two orthotopic brain GBM models, patient-derived neurospheres (TS543) and U251 cells, with different degrees of blood-brain barrier (BBB) disruption were also used for PET imaging experiments. RESULTS 89Zr labeling of DFO-LEM2/15 was achieved with high yield (>90%) and specific activity (78.5 MBq/mg). Biodistribution experiments indicated that 89Zr-DFO-LEM2/15 showed excellent potential as a radiotracer for detection of MT1-MMP positive GBM tumors. PET imaging also indicated a specific and prominent 89Zr-DFO-LEM2/15 uptake in MT1-MMP+ U251 GBM tumors compared to MT1-MMP- MCF-7 breast tumors. Results obtained in orthotopic brain GBM models revealed a high dependence of a disrupted BBB for tracer penetrance into tumors. 89Zr-DFO-LEM2/15 showed much higher accumulation in TS543 tumors with a highly disrupted BBB than in U251 orthotopic model in which the BBB permeability was only partially increased. Histological analysis confirmed the specificity of the immunoconjugate in all GBM models. CONCLUSION A new anti MT1-MMP-mAb tracer, 89Zr-DFO-LEM2/15, was synthesized efficiently. In vivo validation showed high-specific-contrast imaging of MT1-MMP positive GBM tumors and provided strong evidence for utility of MT1-MMP-targeted immunoPET as an alternate to nonspecific imaging of GBM.
Collapse
Affiliation(s)
- A. G. de Lucas
- Biomedical Application of Radioisotopes Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - A. J. Schuhmacher
- Seve Ballesteros Foundation Brain Tumour Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - M. Oteo
- Biomedical Application of Radioisotopes Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - E. Romero
- Biomedical Application of Radioisotopes Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - J. A. Cámara
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - A. de Martino
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - A. G. Arroyo
- Matrix Metalloproteases Lab, Spanish National Center for Cardiovascular Research (CNIC), Madrid Spain
| | - M. Á. Morcillo
- Biomedical Application of Radioisotopes Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - M. Squatrito
- Seve Ballesteros Foundation Brain Tumour Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- * E-mail: (FM); (JLMT); (MS)
| | | | - F. Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- * E-mail: (FM); (JLMT); (MS)
| |
Collapse
|
20
|
Tu C, Zhou J, Yuan L. Letter regarding "MT1-MMP is not a good prognosticator of cancer survival: evidence from 11 studies" by Wu KP et al. Tumour Biol 2016; 37:5761-3. [PMID: 26819210 DOI: 10.1007/s13277-016-4910-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022] Open
Abstract
With great interest, we carefully read a meta-analysis entitled "MT1-MMP is not a good prognosticator of cancer survival: evidence from 11 studies" in Tumor Biology (by Wu KP et al.), in which the investigators aimed to assess the association between MT1-MMP expression and prognosis of patients with various types of cancers by calculating the pooled hazard ratio (HR) with corresponding 95 % confidence interval (95 % CI). They have reached an important conclusion that MT1-MMP overexpression indicated an unfavorable overall survival (OS) in cancers and the pooled HR (95 % CI) was 2.46 (95 % CI 1.75-3.47). In addition, subgroup analysis showed the HRs (95 % CI) were 3.73 (95 % CI 2.67-5.21) and 2.46 (95 % CI 1.69-3.59) for MT1-MMP in lung cancer and gastric cancer, respectively. Before these results can be accepted, we would like to address several concerns related to this meta-analysis.
Collapse
Affiliation(s)
- Chao Tu
- Department of Geriatric Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Jianping Zhou
- Department of Geriatric Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Lianwen Yuan
- Department of Geriatric Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
21
|
Chen J, Ju HL, Yuan XY, Wang TJ, Lai BQ. SOX4 is a potential prognostic factor in human cancers: a systematic review and meta-analysis. Clin Transl Oncol 2015; 18:65-72. [PMID: 26250764 DOI: 10.1007/s12094-015-1337-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/20/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of the this study was to analyze the status of sex-determining region Y-related high-mobility group box 4 (SOX4) expression in varied human cancers and its correlation with overall survival in patients with human cancers. METHODS To observe initially the expression status of SOX4 in twenty kinds of human cancers at protein database (The Human Protein Atlas). We systematically and carefully searched the studies from electronic databases and seriously identified according to eligibility criteria. The correlation between SOX4 expression and overall survival in human cancers was evaluated through Review Manager. RESULTS We found that SOX4 expression was significantly positive in most types of human cancer tissues, and the positive rate of SOX4 expression was about 78 % in overall cancer tissues. Furthermore, a total of 10 studies which included 1348 cancer patients were included in the final analysis. Meta-analysis showed that SOX4 overexpression was correlated with a poor overall survival and the pooled hazard ratio (HR), and corresponding 95 % confidence interval (CI) was 1.67 (95 % CI 1.01-2.78). From subgroup analyses, we present evidence that SOX4 overexpression was an unfavorable prognostic factor for colorectal cancer patients' recurrence-free survival and gastric cancer patients' overall survival, and the pooled HRs (95 % CI) were 1.73 (95 % CI 1.04-2.88) and 3.74 (95 % CI 1.04-13.45), respectively. CONCLUSIONS In summary, SOX4 is a potential prognostic biomarker in human cancers.
Collapse
Affiliation(s)
- J Chen
- Department of Anaesthesiology and Surgery, The Tumor Hospital of Shanxi Province, Xi'an, 710061, Shanxi, China
| | - H L Ju
- Department of Anaesthesiology and Surgery, The Tumor Hospital of Shanxi Province, Xi'an, 710061, Shanxi, China
| | - X Y Yuan
- Department of Stomatology, The Jiaotong Hospital of Shanxi Province, Xi'an, 710068, Shanxi, China
| | - T J Wang
- Department of Anaesthesiology and Surgery, The Tumor Hospital of Shanxi Province, Xi'an, 710061, Shanxi, China
| | - B Q Lai
- Intensive Care Unit, The Tumor Hospital of Shanxi Province, No. 309 Yanta Road West, Xi'an, 710061, Shanxi, China.
| |
Collapse
|
22
|
Li W, Li S, Deng L, Yang S, Li M, Long S, Chen S, Lin F, Xiao L. Decreased MT1-MMP in gastric cancer suppressed cell migration and invasion via regulating MMPs and EMT. Tumour Biol 2015. [PMID: 25851348 DOI: 10.1007/s13277-015-3381-7 10.1007/s13277-015-3381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP) has been identified to play a significant role in several types of cancers, but little is known about the significance of MT1-MMP in gastric cancer patients. The purpose of this study is to investigate the involvement of MT1-MMP in tumor progression of gastric cancer. MT1-MMP expression levels were examined in gastric cancer tissues and cells, and normal gastric tissues and cells. The effects and molecular mechanisms of MT1-MMP expression on cell proliferation, migration, and invasion were also explored. In our results, MT1-MMP messenger RNA (mRNA) and protein expression levels were significantly increased in gastric cancer tissue. Moreover, the overexpression of MT1-MMP was positively associated with the status of clinical stage and lymph node metastasis through real-time PCR. Furthermore, knocking down MT1-MMP expression significantly suppressed the cell migration and invasion in vitro and regulated the expression of MMPs and epithelial-mesenchymal transition (EMT)-associated genes. In conclusions, our study demonstrates that MT1-MMP was overexpressed in gastric cancer tissue, and reduced expression of MT1-MMP suppressed cell migration, invasion, and through regulating the expression of MMPs and the process of EMT in gastric cancer.
Collapse
Affiliation(s)
- Wenfeng Li
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China
| | - Shouzhi Li
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China
| | - Liang Deng
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China
| | - Shibin Yang
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China
| | - Mingzhe Li
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China
| | - Shuo Long
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China
| | - Sile Chen
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China
| | - Fuxiang Lin
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China
| | - Longbin Xiao
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China.
| |
Collapse
|
23
|
|
24
|
Li W, Li S, Deng L, Yang S, Li M, Long S, Chen S, Lin F, Xiao L. Decreased MT1-MMP in gastric cancer suppressed cell migration and invasion via regulating MMPs and EMT. Tumour Biol 2015; 36:6883-9. [PMID: 25851348 DOI: 10.1007/s13277-015-3381-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/24/2015] [Indexed: 02/08/2023] Open
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP) has been identified to play a significant role in several types of cancers, but little is known about the significance of MT1-MMP in gastric cancer patients. The purpose of this study is to investigate the involvement of MT1-MMP in tumor progression of gastric cancer. MT1-MMP expression levels were examined in gastric cancer tissues and cells, and normal gastric tissues and cells. The effects and molecular mechanisms of MT1-MMP expression on cell proliferation, migration, and invasion were also explored. In our results, MT1-MMP messenger RNA (mRNA) and protein expression levels were significantly increased in gastric cancer tissue. Moreover, the overexpression of MT1-MMP was positively associated with the status of clinical stage and lymph node metastasis through real-time PCR. Furthermore, knocking down MT1-MMP expression significantly suppressed the cell migration and invasion in vitro and regulated the expression of MMPs and epithelial-mesenchymal transition (EMT)-associated genes. In conclusions, our study demonstrates that MT1-MMP was overexpressed in gastric cancer tissue, and reduced expression of MT1-MMP suppressed cell migration, invasion, and through regulating the expression of MMPs and the process of EMT in gastric cancer.
Collapse
Affiliation(s)
- Wenfeng Li
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China
| | - Shouzhi Li
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China
| | - Liang Deng
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China
| | - Shibin Yang
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China
| | - Mingzhe Li
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China
| | - Shuo Long
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China
| | - Sile Chen
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China
| | - Fuxiang Lin
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China
| | - Longbin Xiao
- Department of Gastrointestinal Surgery of the Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, Guangdong, China.
| |
Collapse
|
25
|
Dong Y, Chen G, Gao M, Tian X. Increased expression of MMP14 correlates with the poor prognosis of Chinese patients with gastric cancer. Gene 2015; 563:29-34. [PMID: 25748728 DOI: 10.1016/j.gene.2015.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 01/31/2023]
Abstract
The role of matrix metalloproteinase 14 (MMP14) has been identified to involve tumor progression and prognosis. The purpose of this study is to investigate the role of MMP14 in tumor progression and prognosis of gastric cancer. This study indicated that MMP14 mRNA and protein were overexpressed in gastric cancer tissue (P<0.001 and P=0.037, respectively) and significantly associated with clinical stage (P=0.005), lymph node metastasis (P=0.003), and distant metastasis (P=0.017). Moreover, we found that the overexpression of MMP14 was a significant predictor of poor prognosis for gastric cancer patients (P<0.001). Furthermore, we performed a meta-analysis which included 594 cases from 3 studies and showed that MMP14 overexpression was a significantly poor prognostic factor in Chinese patients with gastric cancer and HR (95% CI) was 2.17 (1.64-2.86). In conclusion, MMP14 plays an important role on gastric cancer progression and prognosis and acts as a convictive biomarker for prognostic prediction for Chinese patients with gastric cancer.
Collapse
Affiliation(s)
- Yichen Dong
- Department of General Surgery, Laiwu People's Hospital, Laiwu 271100, Shandong, China
| | - Guohua Chen
- Shandong University, Jinan 250100, Shandong, China
| | - Mingming Gao
- Second Department of Health, Laiwu People's Hospital, Laiwu 271100, Shandong, China
| | - Xia Tian
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, Jining 272011, Shandong, China.
| |
Collapse
|
26
|
Cheng L, Ding Y, Jiang H. WITHDRAWN: Decreased membrane-type 1 matrix metalloproteinase in gastric cancer suppressed cell migration and invasion via regulating matrix metalloproteinases and epithelial–mesenchymal transition. J Surg Res 2015. [DOI: 10.1016/j.jss.2015.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Xiang X, Zhao X, Qu H, Li D, Yang D, Pu J, Mei H, Zhao J, Huang K, Zheng L, Tong Q. Hepatocyte nuclear factor 4 alpha promotes the invasion, metastasis and angiogenesis of neuroblastoma cells via targeting matrix metalloproteinase 14. Cancer Lett 2015; 359:187-97. [PMID: 25592038 DOI: 10.1016/j.canlet.2015.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 12/31/2022]
Abstract
Matrix metalloproteinase 14 (MMP-14) is the only membrane-anchored MMP that plays critical roles in tumorigenesis and aggressiveness. However, the regulatory mechanisms underlying the high MMP-14 expression in neuroblastoma (NB), a highly malignant tumor in childhood, still remain unclear. Herein, we applied an integrative approach to analyze the public datasets, and identified hepatocyte nuclear factor 4 alpha (HNF4α) as a crucial transcription factor facilitating the MMP-14 expression in NB. In clinical NB tissues, HNF4α was up-regulated and positively correlated with MMP-14 expression, and was an independent prognostic factor for unfavorable outcome of patients. Luciferase reporter and chromatin immunoprecipitation assays indicated that HNF4α directly targeted the binding site within the MMP-14 promoter to facilitate its transcription. Knockdown of HNF4α suppressed the invasion, metastasis and angiogenesis of NB cells in vitro and in vivo. Conversely, ectopic expression of HNF4α promoted the invasion, metastasis and angiogenesis of NB cells. Importantly, restoration of MMP-14 expression prevented the tumor cells from HNF4α-mediated changes in these biological features. Taken together, HNF4α exhibits oncogenic activity that affects the aggressiveness and angiogenesis of NB through activating the transcription of MMP-14.
Collapse
Affiliation(s)
- Xuan Xiang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiang Zhao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongxia Qu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dehua Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiarui Pu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jihe Zhao
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|