1
|
Sun T, Li X, Zhang Y, Zou B, Zhang Y. ILF2: a multifaceted regulator in malignant tumors and its prospects as a biomarker and therapeutic target. Front Oncol 2024; 14:1513979. [PMID: 39735599 PMCID: PMC11671367 DOI: 10.3389/fonc.2024.1513979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024] Open
Abstract
Interleukin enhancer binding factor 2 (ILF2), formerly called nuclear factor 45 (NF45), is widely expressed in normal human tissues. ILF2 often binds to interleukin enhancer binding factor 3 (ILF3) and regulates gene expression in several ways, participating in multiple DNA and RNA metabolism pathways. Recent studies have shown that ILF2 expression is significantly upregulated in esophageal cancer, lung cancer, gastric cancer, and other malignant tumors, which can promote tumor development and tumor cell proliferation, affect the cell cycle, and induce epithelial-mesenchymal transition. ILF2 expression is closely related to tumor cell migration and invasion, neo-angiogenesis, and patient prognosis. ILF2 is expected to become a biomarker for the early diagnosis of patients with tumors and assessing their prognosis. This article reviews the role of ILF2 in malignant tumors and its related mechanisms.
Collapse
Affiliation(s)
- Tonglin Sun
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Bingwen Zou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Weng J, Yang S, Shen J, Liu H, Xu Y, Hao D, Wang S. Molecular dynamics simulation reveals DNA-specific recognition mechanism via c-Myb in pseudo-palindromic consensus of mim-1 promoter. J Zhejiang Univ Sci B 2023; 24:883-895. [PMID: 37752090 PMCID: PMC10522569 DOI: 10.1631/jzus.b2200634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 09/28/2023]
Abstract
This study aims to gain insight into the DNA-specific recognition mechanism of c-Myb transcription factor during the regulation of cell early differentiation and proliferation. Therefore, we chose the chicken myeloid gene, mitochondrial import protein 1 (mim-1), as a target to study the binding specificity between potential dual-Myb-binding sites. The c-Myb-binding site in mim-1 is a pseudo-palindromic sequence AACGGTT, which contains two AACNG consensuses. Simulation studies in different biological scenarios revealed that c-Myb binding with mim-1 in the forward strand (complex F) ismore stable than that inthereverse strand (complex R). The principal component analysis (PCA) dynamics trajectory analyses suggested an opening motion of the recognition helices of R2 and R3 (R2R3), resulting in the dissociation of DNA from c-Myb in complex R at 330 K, triggered by the reduced electrostatic potential on the surface of R2R3. Furthermore, the DNA confirmation and hydrogen-bond interaction analyses indicated that the major groove width of DNA increased in complex R, which affected on the hydrogen-bond formation ability between R2R3 and DNA, and directly resulted in the dissociation of DNA from R2R3. The steered molecular dynamics (SMD) simulation studies also suggested that the electrostatic potential, major groove width, and hydrogen bonds made major contribution to the DNA-specific recognition. In vitro trials confirmed the simulation results that c-Myb specifically bound to mim-1 in the forward strand. This study indicates that the three-dimensional (3D) structure features play an important role in the DNA-specific recognition mechanism by c-Myb besides the AACNG consensuses, which is beneficial to understanding the cell early differentiation and proliferation regulated by c-Myb, as well as the prediction of novel c-Myb-binding motifs in tumorigenesis.
Collapse
Affiliation(s)
- Jinru Weng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Shuo Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130021, China
| | - Jinkang Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Hongsen Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yuzi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Dongyun Hao
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS), Changchun 130033, China.
| | - Shan Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
3
|
Lu JT, Yan ZY, Xu TX, Zhao F, Liu L, Li F, Guo W. Reciprocal regulation of LINC00941 and SOX2 promotes progression of esophageal squamous cell carcinoma. Cell Death Dis 2023; 14:72. [PMID: 36717549 PMCID: PMC9886991 DOI: 10.1038/s41419-023-05605-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
LINC00941 is a novel long noncoding RNA (lncRNA) and emerging as an important factor in cancer development. However, the exact function and relative regulatory mechanism of LINC00941 in carcinogenesis of esophageal squamous cell carcinoma (ESCC) remain to be further clarified. The present study was to investigate the expression level, functions, and mechanisms of LINC00941 in ESCC tumorigenesis. LINC00941 was significantly upregulated in ESCC, and upregulated LINC00941 was correlated with dismal patient outcomes. LINC00941 functioned as an oncogene by promoting cells proliferation, stemness, migration, and invasion in ESCC. In terms of mechanisms, SOX2 could bind directly to the promoter region of LINC00941 and activate its transcription. In turn, LINC00941 upregulated SOX2 through interacting with interleukin enhancer binding factor 2 (ILF2) and Y-box binding protein 1 (YBX1) at the transcriptional and post-transcriptional levels. LINC00941 recruited ILF2 and YBX1 to the promoter region of SOX2, leading to upregulation of the transcription of SOX2. Moreover, LINC00941 could promote the binding ability of ILF2 and YBX1 on mRNA of SOX2 and further stabilize SOX2 mRNA. Therefore, LINC00941 contributed to the malignant behaviors of ESCC cells via the unrestricted increase in SOX2 expression. In conclusion, our data indicate that LINC00941 exacerbates ESCC progression through forming a LINC00941-ILF2/YBX1-SOX2 positive feedback loop, and LINC00941 may be a promising prognostic and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jun-Tao Lu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhao-Yang Yan
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tong-Xin Xu
- Department of CT&MRI, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fan Zhao
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
4
|
Zhang H, Che Y, Xuan B, Wu X, Li H. Serine hydroxymethyltransferase 2 (SHMT2) potentiates the aggressive process of oral squamous cell carcinoma by binding to interleukin enhancer-binding factor 2 (ILF2). Bioengineered 2022; 13:8785-8797. [PMID: 35333683 PMCID: PMC9161932 DOI: 10.1080/21655979.2022.2051886] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a frequent threatening head and neck malignancy. Serine hydroxymethyltransferase 2 (SHMT2) was identified to be upregulated in OSCC and its high expression was associated with poor patient prognosis. This paper set out to assess the influence of SHMT2 on OSCC progression and the potential mechanisms related to interleukin enhancer-binding factor 2 (ILF2). First of all, reverse transcription-quantitative PCR (RT-qPCR) and western blot examined the expression of SHMT2 and ILF2 in OSCC cells. Cell Counting Kit-8 (CCK-8) and colony formation assays appraised cell proliferation. Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling (TUNEL) staining was to estimate the apoptotic rate of cells. Further, wound healing and transwell assays verified the migration and invasion of cells. Western blot was adopted to detect the expression of factors related to apoptosis, migration, and epithelial–mesenchymal transition (EMT). The possible interaction of SHMT2 and ILF2 was predicted by a Molecular INTeraction (MINT) and BioGRID databases and determined using co-immunoprecipitation (IP) assay. Subsequently, ILF2 was overexpressed to investigate whether SHMT2 regulated OSCC progression by binding to ILF2. Results implied that SHMT2 possessed increased expression in OSCC cells, and OSCC cell viability, migration, invasion, EMT were inhibited and apoptosis was potentiated after its silencing. ILF2 bound to SHMT2 and ILF2 expression was downregulated after SHMT2 silencing in OSCC cells. Importantly, ILF2 overexpression abolished the suppressive role of SHMT2 interference in the progression of OSCC. Collectively, SHMT2 could promote the progression of OSCC by binding to ILF2.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| | - Yilei Che
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| | - Bin Xuan
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| | - Xiaozhen Wu
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| | - Hui Li
- Department of Stomatology, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
5
|
Wei S, Dai S, Zhang C, Zhao R, Zhao Z, Song Y, Shan B, Zhao L. LncRNA NR038975, A Serum-Based Biomarker, Promotes Gastric Tumorigenesis by Interacting With NF90/NF45 Complex. Front Oncol 2021; 11:721604. [PMID: 34900675 PMCID: PMC8660099 DOI: 10.3389/fonc.2021.721604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the deadliest cancers, and long noncoding RNAs (lncRNAs) have been reported to be the important regulators during the occurrence and development of GC. The present study identified a novel and functional lncRNA in GC, named NR038975, which was confirmed to be markedly upregulated in the Gene Expression Profiling Interactive Analysis (GEPIA) dataset and our independent cohort of GC tissues. We firstly characterized the full-length sequence and subcellular location of NR038975 in GC cells. Our data demonstrated that upregulated NR038975 expression was significantly related to lymph node metastasis and TNM stage. In addition, knockdown of NR038975 inhibited GC cell proliferation, migration, invasion, and clonogenicity and vice versa. Mechanistically, RNA pull-down and mass spectrometry assays identified the NR038975-binding proteins and NF90/NF45 complex, and the binding was also confirmed by RNA immunoprecipitation and confocal experiments. We further demonstrated that genetic deficiency of NR038975 abrogated the interaction between NF45 and NF90. Moreover, NF90 increased the stability of NR038975. Thus, NR038975-NF90/NF45 will be an important combinational target of GC. Finally, we detected NR038975 in serum exosomes and serum of GC patients. Our results indicated that NR038975 was a biomarker for gastric tumorigenesis. The current study demonstrated that NR038975 is a novel lncRNA that is clinically and functionally engaged in GC progression and might be a novel diagnostic marker and potential therapeutic target.
Collapse
Affiliation(s)
- Sisi Wei
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Suli Dai
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cong Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruinian Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Zang B, Wang W, Wang Y, Li P, Xia T, Liu X, Chen D, Piao HL, Qi H, Ma Y. Metabolomic Characterization Reveals ILF2 and ILF3 Affected Metabolic Adaptions in Esophageal Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:721990. [PMID: 34568427 PMCID: PMC8459612 DOI: 10.3389/fmolb.2021.721990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is a common malignant disease in eastern countries. However, a study of the metabolomic characteristics associated with other biological factors in esophageal squamous cell carcinoma (ESCC) is limited. Interleukin enhancer binding factor 2 (ILF2) and ILF3, double-stranded RNA-binding proteins, have been reported to contribute to the occurrence and development of various types of malignancy. Nevertheless, the underlying functions of ILF2 and ILF3 in ESCC metabolic reprogramming have never been reported. This study aimed to contribute to the metabolic characterization of ESCC and to investigate the metabolomic alterations associated with ILF2 and ILF3 in ESCC tissues. Here, we identified 112 differential metabolites, which were mainly enriched in phosphatidylcholine biosynthesis, fatty acid metabolism, and amino acid metabolism pathways, based on liquid chromatography–mass spectrometry and capillary electrophoresis–mass spectrometry approaches using ESCC tissues and paired para-cancer tissues from twenty-eight ESCC patients. In addition, ILF2 and ILF3 expression were significantly elevated in EC tissues compared to the histologically normal samples, and closely associated with PI3K/AKT and MAPK signaling pathways in ESCC. Moreover, in ESCC tissues with a high ILF2 expression, several short-chain acyl-carnitines (C3:0, C4:0, and C5:0) related to the BCAA metabolic pathway and long-chain acyl-carnitines (C14:0, C16:0, C16:0-OH, and C18:0) involved in the oxidation of fatty acids were obviously upregulated. Additionally, a series of intermediate metabolites involved in the glycolysis pathway, including G6P/F6P, F1,6BP, DHAP, G3P, and 2,3BPG, were remarkably downregulated in highly ILF3-expressed ESCC tissues compared with the corresponding para-cancer tissues. Overall, these findings may provide evidence for the roles of ILF2 and ILF3 during the process of ESCC metabolic alterations, and new insights into the development of early diagnosis and treatment for ESCC. Further investigation is needed to clarify the underlying mechanism of ILF2 and ILF3 on acyl-carnitines and the glycolysis pathway, respectively.
Collapse
Affiliation(s)
- Bin Zang
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yiqian Wang
- Department of Radiotherapy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengfei Li
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Tian Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Di Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yegang Ma
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
7
|
Shiu TY, Lin HH, Shih YL, Feng AC, Huang HH, Huang TY, Hsieh CB, Chang WK, Hsieh TY. CRNDE-h transcript/miR-136-5p axis regulates interleukin enhancer binding factor 2 expression to promote hepatocellular carcinoma cell proliferation. Life Sci 2021; 284:119708. [PMID: 34153299 DOI: 10.1016/j.lfs.2021.119708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
AIMS Hepatocellular carcinoma (HCC) is a primary malignancy of the hepatocyte. Interleukin enhancer binding factor 2 (ILF2) plays a role in the development of HCC. However, the regulatory mechanisms of ILF2 expression in HCC remain unclear. In this study, we aimed to identify ILF2-targeting microRNAs (miRNAs) and to explore how they affect ILF2 expression in HCC. MAIN METHODS The tissue specimens were collected from 25 HCC patients. The underlying regulatory mechanism of ILF2 expression in HCC progression was determined using luciferase reporter assay, quantitative real-time PCR, Western blotting, and BrdU incorporation assay. KEY FINDINGS Of predicted miRNA candidates (miR-122-5p, miR-425-5p, miR-136-5p, miR-7-5p, miR-421 and miR-543), a statistically significant inverse correlation by linear correlation analysis was observed between miR-136-5p and ILF2 mRNA expressions in patients with HCC (r = -0.627, P < 0.001). Further analysis demonstrated that ILF2 was directly regulated by miR-136-5p. In addition, we showed that long noncoding RNA colorectal neoplasia differentially expressed-h (lncRNA CRNDE-h) transcript expression was significantly up-regulated in HCC, and a miR-136-5p binding site was newly found in the lncRNA CRNDE-h transcript sequence using IntaRNA tool. In terms of mechanism, highly-expressed lncRNA CRNDE-h transcript can sponge miR-136-5p, thereby preventing it from interacting with target ILF2 mRNA while promoting the proliferation of HCC cells. SIGNIFICANCE The lncRNA CRNDE-h/miR-136-5p/ILF2 axis plays a significant regulatory role in HCC progression, which may partly explain the pathogenic mechanisms of HCC and may provide promising potential targets for the diagnosis, treatment, and prognosis of HCC.
Collapse
Affiliation(s)
- Tzu-Yue Shiu
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsuan-Hwai Lin
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - Yu-Lueng Shih
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - An-Chieh Feng
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsin-Hung Huang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Tien-Yu Huang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chung-Bao Hsieh
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wei-Kuo Chang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Tsai-Yuan Hsieh
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
8
|
Nourreddine S, Lavoie G, Paradis J, Ben El Kadhi K, Méant A, Aubert L, Grondin B, Gendron P, Chabot B, Bouvier M, Carreno S, Roux PP. NF45 and NF90 Regulate Mitotic Gene Expression by Competing with Staufen-Mediated mRNA Decay. Cell Rep 2021; 31:107660. [PMID: 32433969 DOI: 10.1016/j.celrep.2020.107660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/16/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
In human cells, the expression of ∼1,000 genes is modulated throughout the cell cycle. Although some of these genes are controlled by specific transcriptional programs, very little is known about their post-transcriptional regulation. Here, we analyze the expression signature associated with all 687 RNA-binding proteins (RBPs) and identify 39 that significantly correlate with cell cycle mRNAs. We find that NF45 and NF90 play essential roles in mitosis, and transcriptome analysis reveals that they are necessary for the expression of a subset of mitotic mRNAs. Using proteomics, we identify protein clusters associated with the NF45-NF90 complex, including components of Staufen-mediated mRNA decay (SMD). We show that depletion of SMD components increases the binding of mitotic mRNAs to the NF45-NF90 complex and rescues cells from mitotic defects. Together, our results indicate that the NF45-NF90 complex plays essential roles in mitosis by competing with the SMD machinery for a common set of mRNAs.
Collapse
Affiliation(s)
- Sami Nourreddine
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Justine Paradis
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | | | - Antoine Méant
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Léo Aubert
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Benoit Grondin
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Sébastien Carreno
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
9
|
Jiang X, Zhang X, Ren C, Ruan Y, Lu Y, Yuan L, Li J, Yan A, Wang Y, Luo P, Hu C, Chen T. Interleukin-2 enhancer binding factor 2 (ILF2) in pacific white shrimp (Litopenaeus vannamei): Alternatively spliced isoforms with different responses in the immune defenses against vibrio infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103975. [PMID: 33383068 DOI: 10.1016/j.dci.2020.103975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Alternative splicing is an essential molecular mechanism that increase the protein diversity of a species to regulate important biological processes. As a transcription factor, Interleukin-2 enhancer binding factor 2 (ILF2) regulates the functions of interleukin-2 (IL-2) at the levels of transcription, splicing and translation, and plays other critical roles in the immune system. ILF2 is well-documented in vertebrates, while little is currently known in crustacean species such as the Pacific white shrimp (Litopenaeus vannamei). In the present study, five cDNA for spliced isoforms of Lv-ILF2 were identified, in which four of them are the full-length long isoforms (Lv-ILF2-L1, Lv-ILF2-L2, Lv-ILF2-L3 and Lv-ILF2-L4) and one of them is a truncated short isoform (Lv-ILF2-S). The whole sequence of ILF2 gene from L. vannamei was obtained, which is 11,680 bp in length with 9 exons separated by 8 introns. All five isoforms contain a domain associated with zinc fingers (DZF). Two alternative splicing types (alternative 5' splice site and alternative 3' splice site) were identified in the five isoforms. The Lv-ILF2 mRNA showed a broad distribution in all detected tissues, and the Lv-ILF2-L transcript levels were higher than those of Lv-ILF2-S in corresponding tissues. The mRNA levels of Lv-ILF2-S in the hepatopancreas, heart, muscle and stomach, but not in the eyestalk, were significantly increased after challenges with Vibrio harveyi or lipopolysaccharide (LPS), while no significant changes were observed for the transcript levels of Lv-ILF2-L in these tissues under the same immune stimulants. On the contrary, the transcript levels of neither Lv-ILF2-S nor Lv-ILF2-L were affected by challenges of polyinosinic: polycytidylic acid [Poly (I:C)]. In addition, after knockdown of the Lv-ILF2 mRNA level by siRNA, the mortality of shrimp and the hepatopancreatic bacterial numbers were significantly increased under V. harveyi challenge, indicating that Lv-ILF2 might participate in the immune defenses against V. harveyi invasion. Collectively, our study here supplied the first evidence for a novel splicing mechanism of ILF2 transcripts, and provided a functional link between the Lv-ILF2 isoforms and the capacity against pathogenic Vibrio in penaeid shrimp.
Collapse
Affiliation(s)
- Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| | - Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| | - Yao Ruan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yongtong Lu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lihong Yuan
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaxi Li
- School of Stomatology and Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Aifen Yan
- School of Stomatology and Medicine, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yanhong Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China.
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
10
|
He Z, Chen J, Chen X, Wang H, Tang L, Han C. microRNA-377 acts as a suppressor in esophageal squamous cell carcinoma through CBX3-dependent P53/P21 pathway. J Cell Physiol 2020; 236:107-120. [PMID: 33459391 DOI: 10.1002/jcp.29631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/30/2020] [Indexed: 12/19/2022]
Abstract
Stem cells play pivotal roles in esophageal squamous cell carcinoma (ESCC) recurrence and metastasis. The self-renewal ability of stem cells was associated with specific microRNAs (miRs). Herein, we identified the effects of miR-377 on ESCC stem cell activities. First, the expression of miR-377 in ESCC and adjacent normal tissues was determined. The relationship between miR-377 and chromobox protein homolog 3 (CBX3) was assessed by a dual-luciferase reporter gene assay. miR-377 was overexpressed or inhibited in ESCC stem cells to explore its role in ESCC. To further investigate the mechanism of miR-377 in ESCC, cells were introduced with short hairpin RNA against CBX3 or pifithrin-α (inhibitor of P53 pathway). Besides, the expression of P21, P53, CD133, CD13, Nanog, sex determining region Y-Box 2 (Sox2), and octamer-binding transcription factor 4 (Oct4), cell sphere formation, colony formation, and proliferation were evaluated respectively. Finally, limiting dilution assay in vivo and tumor xenograft in nude mice were conducted to confirm the roles of miR-377 in vivo. miR-377 was poorly expressed in ESCC. Overexpression of miR-377 could suppress the stem-like trait of ESCC as well as the tumor growth in vivo. miR-377 targeted CBX3 to activate the P53/P21 pathway. Besides, the expression of stem-like markers including CD133, CD13, Oct4, Sox2, and Nanog was decreased, and the abilities of cell sphere formation, colony formation, proliferation, and tumorigenicity were significantly reduced by overexpressing miR-377 or silencing CBX3. The results were reversed after inactivating the P53/P21 pathway. In summary, upregulation of miR-377 inhibits the self-renewal of ESCC stem cells by inhibiting CBX3 expression and promoting activation of the P53/P21 pathway.
Collapse
Affiliation(s)
- Zhisheng He
- Department of Thoracic Surgery Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Junjing Chen
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Xiaoliang Chen
- Department of Thoracic Surgery Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Huanyuan Wang
- Department of Thoracic Surgery Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Lang Tang
- Department of Thoracic Surgery Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Chunbin Han
- Department of Thoracic Surgery Oncology, Jiangxi Cancer Hospital, Nanchang, China
| |
Collapse
|
11
|
Fan Z, Chen X, Liu L, Zhu C, Xu J, Yin X, Sheng Y, Zhu Z, Wen L, Zuo X, Zheng X, Zhang Y, Xu J, Huang H, Zhou F, Sun L, Luo J, Zhang D, Chen X, Cui Y, Hao Y, Cui Y, Zhang X, Chen R. Association of the Polymorphism rs13259960 in SLEAR With Predisposition to Systemic Lupus Erythematosus. Arthritis Rheumatol 2020; 72:985-996. [PMID: 31930717 DOI: 10.1002/art.41200] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Genome-wide association studies have identified many susceptibility loci for systemic lupus erythematosus (SLE). However, most of these loci are located in noncoding regions of the genome. Long noncoding RNAs (lncRNAs) are pervasively expressed and have been reported to be involved in various diseases. This study aimed to explore the genetic significance of lncRNAs in SLE. METHODS A genome-wide survey of SLE risk variants in lncRNA gene loci was performed in Han Chinese subjects (4,556 with SLE and 9,451 healthy controls). The functional relevance of an SLE risk variant in one of the lncRNA genes was explored using biochemical and molecular cell biology analyses. In vitro loss-of-function and gain-of-function strategies were used to clarify the functional and phenotypic relevance of this SLE susceptibility lncRNA. Moreover, correlation of this lncRNA with the degree of apoptosis in the peripheral blood of SLE patients was evaluated. RESULTS A novel SLE susceptibility locus in a lncRNA gene, designated SLEAR (for SLE-associated RNA), was identified at the single-nucleotide polymorphism rs13259960 (odds ratio 1.35, Pcombined = 1.03 × 10-11 ). The A>G variation at rs13259960, located in an intronic enhancer, was found to impair STAT1 recruitment to the enhancer that loops to the SLEAR promoter, resulting in decreased SLEAR production in peripheral blood mononuclear cells from patients with SLE (3 with the G/G genotype, 22 with A/G, and 103 with A/A at rs13259960; P = 0.0241). Moreover, SLEAR interacted with the RNA binding proteins interleukin enhancer binding factor 2, heterogeneous nuclear RNP F, and TATA-binding protein-associated factor 15, to form a complex for transcriptional activation of the downstream antiapoptotic genes. In addition, SLEAR regulated apoptosis of Jurkat cells in vitro, and its expression level was correlated with the degree of cell death in the peripheral blood of patients with SLE (r = 0.824, P = 2.15 × 10-8 ; n = 30). CONCLUSION These findings suggest a mechanism by which the risk variant at rs13259960 modulates SLEAR expression and confers a predisposition to SLE. Taken together, these results may give insights into the etiology of SLE.
Collapse
Affiliation(s)
- Zhen Fan
- Chinese Academy of Sciences, Beijing, China
| | | | - Lu Liu
- Huashan Hospital and Fudan University, Shanghai, China, and First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Caihong Zhu
- The First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Jinhua Xu
- Huashan Hospital and Fudan University, Shanghai, China
| | - Xianyong Yin
- Huashan Hospital and Fudan University, Shanghai, China, and First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Yujun Sheng
- Huashan Hospital and Fudan University, Shanghai, China, and First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Zhengwei Zhu
- Huashan Hospital and Fudan University, Shanghai, China, and First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Leilei Wen
- Huashan Hospital and Fudan University, Shanghai, China, and First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Xianbo Zuo
- The First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Xiaodong Zheng
- The First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Yaohua Zhang
- Huashan Hospital and Fudan University, Shanghai, China
| | - Jingkai Xu
- The First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - He Huang
- The First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Fusheng Zhou
- The First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | - Liangdan Sun
- The First Affiliated Hospital of Anhui Medical University and Anhui Medical University, Hefei, China
| | | | | | | | - Ya Cui
- Chinese Academy of Sciences, Beijing, China
| | - Yajing Hao
- Chinese Academy of Sciences, Beijing, China
| | - Yong Cui
- China-Japan Friendship Hospital, Beijing, China
| | - Xuejun Zhang
- Huashan Hospital and Fudan University, Shanghai, China
| | - Runsheng Chen
- Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing, China, and Guangdong Geneway Decoding Bio-Tech Co. Ltd, Foshan, China
| |
Collapse
|
12
|
Avasarala S, Wu PY, Khan SQ, Yanlin S, Van Scoyk M, Bao J, Di Lorenzo A, David O, Bedford MT, Gupta V, Winn RA, Bikkavilli RK. PRMT6 Promotes Lung Tumor Progression via the Alternate Activation of Tumor-Associated Macrophages. Mol Cancer Res 2020; 18:166-178. [PMID: 31619507 PMCID: PMC6942249 DOI: 10.1158/1541-7786.mcr-19-0204] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/29/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022]
Abstract
Increased expression of protein arginine methyl transferase 6 (PRMT6) correlates with worse prognosis in lung cancer cases. To interrogate the in vivo functions of PRMT6 in lung cancer, we developed a tamoxifen-inducible lung-targeted PRMT6 gain-of-function mouse model, which mimics PRMT6 amplification events in human lung tumors. Lung-targeted overexpression of PRMT6 accelerated cell proliferation de novo and potentiated chemical carcinogen (urethane)-induced lung tumor growth. To explore the molecular mechanism/s by which PRMT6 promotes lung tumor growth, we used proteomics-based approaches and identified interleukin-enhancer binding protein 2 (ILF2) as a novel PRMT6-associated protein. Furthermore, by using a series of in vitro gain-of-function and loss-of-function experiments, we defined a new role for the PRMT6-ILF2 signaling axis in alternate activation of tumor-associated macrophages (TAM). Interestingly, we have also identified macrophage migration inhibitory factor, which has recently been shown to regulate alternate activation of TAMs, as an important downstream target of PRMT6-ILF2 signaling. Collectively, our findings reveal a previously unidentified noncatalytic role for PRMT6 in potentiating lung tumor progression via the alternate activation of TAMs. IMPLICATIONS: This is the first study to demonstrate an in vivo role for PRMT6 in lung tumor progression via the alternate activation of TAMs.
Collapse
Affiliation(s)
- Sreedevi Avasarala
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Pei-Ying Wu
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Samia Q Khan
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Su Yanlin
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Michelle Van Scoyk
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jianqiang Bao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Alessandra Di Lorenzo
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Odile David
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Vineet Gupta
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Robert A Winn
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Cancer Center, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Rama Kamesh Bikkavilli
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
- University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
13
|
Jin J, Wang W, Ai S, Liu W, Song Y, Luo Z, Zhang Q, Wu K, Liu Y, Wu J. Enterovirus 71 Represses Interleukin Enhancer-Binding Factor 2 Production and Nucleus Translocation to Antagonize ILF2 Antiviral Effects. Viruses 2019; 12:v12010022. [PMID: 31878072 PMCID: PMC7019514 DOI: 10.3390/v12010022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/23/2022] Open
Abstract
Enterovirus 71 (EV71) infection causes hand-foot-mouth disease (HFMD), meningoencephalitis, neonatal sepsis, and even fatal encephalitis in children, thereby presenting a serious risk to public health. It is important to determine the mechanisms underlying the regulation of EV71 infection. In this study, we initially show that the interleukin enhancer-binding factor 2 (ILF2) reduces EV71 50% tissue culture infective dose (TCID50) and attenuates EV71 plaque-formation unit (PFU), thereby repressing EV71 infection. Microarray data analyses show that ILF2 mRNA is reduced upon EV71 infection. Cellular studies indicate that EV71 infection represses ILF2 mRNA expression and protein production in human leukemic monocytes (THP-1) -differentiated macrophages and human rhabdomyosarcoma (RD) cells. In addition, EV71 nonstructural protein 2B interacts with ILF2 in human embryonic kidney (HEK293T) cells. Interestingly, in the presence of EV71 2B, ILF2 is translocated from the nucleus to the cytoplasm, and it colocalizes with 2B in the cytoplasm. Therefore, we present a distinct mechanism by which EV71 antagonizes ILF2-mediated antiviral effects by inhibiting ILF2 expression and promoting ILF2 translocation from the nucleus to the cytoplasm through its 2B protein.
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Wenbiao Wang
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (Z.L.)
| | - Sha Ai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Yu Song
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Zhen Luo
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (Z.L.)
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (Z.L.)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.J.); (S.A.); (W.L.); (Y.S.); (Q.Z.); (K.W.); (Y.L.)
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (Z.L.)
- Correspondence: ; Tel.: +86-27-68754979
| |
Collapse
|
14
|
Li N, Liu T, Li H, Zhang L, Chu L, Meng Q, Qiao Q, Han W, Zhang J, Guo M, Zhao J. ILF2 promotes anchorage independence through direct regulation of PTEN. Oncol Lett 2019; 18:1689-1696. [PMID: 31423236 PMCID: PMC6614677 DOI: 10.3892/ol.2019.10510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Anoikis is a specific form of programmed cell death induced by loss of contact between cells and extracellular matrices or other cells. Only tumor cells that are resistant to anoikis can survive in the state of detachment from the primary tissue during the early stages of metastasis. The ability to resist anoikis is crucial for cancer cell metastasis. ILF2 is a proto-oncogene previously studied in glioma, NSCLC, esophageal cancer and pancreatic ductal carcinoma. The results from the present study revealed that the transcription factor interleukin enhancer-binding factor 2 (ILF2) was highly expressed in non-small cell lung cancer (NSCLC) cell lines compared with in normal cell lines. ChIP and luciferase reporter gene assays demonstrated that ILF2 inhibited the expression level of the tumor suppressor gene phosphatase and tensin homolog (PTEN) by directly binding to its upstream regulatory region. Furthermore, the results from the detection of cell adhesion and apoptosis in cell suspension culture demonstrated that this mechanism enabled NSCLC cells to reduce adherence to the matrix and to survive in this abnormal state. These results suggested that ILF2 may promote the anchorage-independence of NSCLC cells through the suppression of PTEN.
Collapse
Affiliation(s)
- Na Li
- Pathology Department, Xingtai Medical College, Xingtai, Hebei 054000, P.R. China
| | - Tao Liu
- Department of Internal Medicine, Civil Administration General Hospital of Hebei, Xingtai, Hebei 054000, P.R. China
| | - Hui Li
- Pathology Department, Xingtai Medical College, Xingtai, Hebei 054000, P.R. China
| | - Lifang Zhang
- Department of Internal Medicine, Civil Administration General Hospital of Hebei, Xingtai, Hebei 054000, P.R. China
| | - Liping Chu
- Department of Internal Medicine, Civil Administration General Hospital of Hebei, Xingtai, Hebei 054000, P.R. China
| | - Qingge Meng
- Department of Internal Medicine, Xingtai Medical College, The Third Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei 054000, P.R. China
| | - Qinzeng Qiao
- Department of Internal Medicine, Civil Administration General Hospital of Hebei, Xingtai, Hebei 054000, P.R. China
| | - Weikun Han
- Department of Internal Medicine, Civil Administration General Hospital of Hebei, Xingtai, Hebei 054000, P.R. China
| | - Junhui Zhang
- Pathology Department, Xingtai Medical College, Xingtai, Hebei 054000, P.R. China
| | - Minying Guo
- Pathology Department, Xingtai Medical College, Xingtai, Hebei 054000, P.R. China
| | - Jia Zhao
- Department of Internal Medicine, The Third Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei 054000, P.R. China
| |
Collapse
|
15
|
Cellular Interleukin Enhancer-Binding Factor 2, ILF2, Inhibits Japanese Encephalitis Virus Replication In Vitro. Viruses 2019; 11:v11060559. [PMID: 31212927 PMCID: PMC6631381 DOI: 10.3390/v11060559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/01/2019] [Accepted: 06/16/2019] [Indexed: 12/29/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a zoonotic mosquito-borne flavivirus which is the leading causative agent of viral encephalitis in endemic regions. JEV NS3 is a component of the viral replicase complex and is a multifunctional protein. In this study, interleukin enhancer-binding factor 2 (ILF2) is identified as a novel cellular protein interacting with NS3 through co-immunoprecipitation assay and LC-MS/MS. The expression of ILF2 is decreased in JEV-infected human embryonic kidney (293T) cells. The knockdown of endogenous ILF2 by special short hairpin RNA (shRNA) positively regulates JEV propagation, whereas the overexpression of ILF2 results in a significantly reduced JEV genome synthesis. Further analysis revealed that the knockdown of ILF2 positively regulates viral replication by JEV replicon system studies. These results suggest that ILF2 may act as a potential antiviral agent against JEV infection.
Collapse
|
16
|
Wu TH, Shi L, Lowe AW, Nicolls MR, Kao PN. Inducible expression of immediate early genes is regulated through dynamic chromatin association by NF45/ILF2 and NF90/NF110/ILF3. PLoS One 2019; 14:e0216042. [PMID: 31022259 PMCID: PMC6483252 DOI: 10.1371/journal.pone.0216042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 04/14/2019] [Indexed: 12/11/2022] Open
Abstract
Immediate early gene (IEG) transcription is rapidly activated by diverse stimuli. This transcriptional regulation is assumed to involve constitutively expressed nuclear factors that are targets of signaling cascades initiated at the cell membrane. NF45 (encoded by ILF2) and its heterodimeric partner NF90/NF110 (encoded by ILF3) are chromatin-interacting proteins that are constitutively expressed and localized predominantly in the nucleus. Previously, NF90/NF110 chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) in K562 erythroleukemia cells revealed its enriched association with chromatin at active promoters and strong enhancers. NF90/NF110 specifically occupied the promoters of IEGs. Here, ChIP in serum-starved HEK293 cells demonstrated that NF45 and NF90/NF110 pre-exist and specifically occupy the promoters of IEG transcription factors EGR1, FOS and JUN. Cellular stimulation with phorbol myristyl acetate increased NF90/NF110 chromatin association, while decreasing NF45 chromatin association at promoters of EGR1, FOS and JUN. In HEK293 cells stably transfected with doxycycline-inducible shRNA vectors targeting NF90/NF110 or NF45, doxycycline-mediated knockdown of NF90/NF110 or NF45 attenuated the inducible expression of EGR1, FOS, and JUN at the levels of transcription, RNA and protein. Dynamic chromatin association of NF45 and NF90/NF110 at IEG promoters are observed upon stimulation, and NF45 and NF90/NF110 contribute to inducible transcription of IEGs. NF45 and NF90/NF110 operate as chromatin regulators of the immediate early response.
Collapse
Affiliation(s)
- Ting-Hsuan Wu
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Biomedical Informatics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lingfang Shi
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Anson W. Lowe
- Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mark R. Nicolls
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter N. Kao
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
ILF2 Directly Binds and Stabilizes CREB to Stimulate Malignant Phenotypes of Liver Cancer Cells. Anal Cell Pathol (Amst) 2019; 2019:1575031. [PMID: 30881868 PMCID: PMC6387701 DOI: 10.1155/2019/1575031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/12/2018] [Accepted: 10/20/2018] [Indexed: 12/14/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) is overexpressed and has an oncogenic role in hepatocellular carcinoma (HCC). Interleukin enhancer binding factor 2 (ILF2) has become research hotspot in liver cancer recently. However, it is still unclear whether and how CREB and ILF2 interact with each other. And how this interaction exerts its role in occurrence and development of liver cancer is still unclear. Here, we found that ILF2 directly bound with CREB, and this binding was essential for the malignant phenotypes of liver cancer cells. Moreover, we found that ILF2 acted as one of the upstream proteins of CREB and promoted CREB only in the protein level, whereas ILF2 expression was not regulated by CREB. Mechanistically, ILF2 bound to the pKID domain of CREB and stimulated its phosphorylation at Ser133. Taken together, our study finds a novel interaction between CREB and ILF2 in liver cancer, and this interaction might play a role in the diagnosis and remedy of liver cancer.
Collapse
|
18
|
Wen-Jian Y, Song T, Jun T, Kai-Ying X, Jian-Jun W, Si-Hua W. NF45 promotes esophageal squamous carcinoma cell invasion by increasing Rac1 activity through 14-3-3ε protein. Arch Biochem Biophys 2018; 663:101-108. [PMID: 30550728 DOI: 10.1016/j.abb.2018.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Nuclear factor 45 (NF-45) has been found to be markedly upregulated in several cancers, including esophageal squamous cell carcinoma (ESCC). However, the molecular mechanisms underlying its functions remain unclear. In this study, we confirm that overexpression of NF45 was frequently detected in ESCC tissues and was associated with poor outcome. Overexpression studies revealed that NF-45 promoted cell growth and invasion and upregulated Rac1/Tiam1 signalling via 14-3-3ε protein in ESCC cell lines. This novel mechanism linking upregulated NF45 expression to increased 14-3-3ε/Rac1/Tiam1 signalling and subsequent growth and invasion in ESCC may aid in identification of new therapeutic targets for this disease.
Collapse
Affiliation(s)
- Yao Wen-Jian
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tong Song
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tan Jun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xu Kai-Ying
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wang Jian-Jun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wang Si-Hua
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Masuda K, Kuwano Y. Diverse roles of RNA-binding proteins in cancer traits and their implications in gastrointestinal cancers. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1520. [PMID: 30479000 DOI: 10.1002/wrna.1520] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
Gene expression patterns in cancer cells are strongly influenced by posttranscriptional mechanisms. RNA-binding proteins (RBPs) play key roles in posttranscriptional gene regulation; they can interact with target mRNAs in a sequence- and structure-dependent manner, and determine cellular behavior by manipulating the processing of these mRNAs. Numerous RBPs are aberrantly deregulated in many human cancers and hence, affect the functioning of mRNAs that encode proteins, implicated in carcinogenesis. Here, we summarize the key roles of RBPs in posttranscriptional gene regulation, describe RBPs disrupted in cancer, and lastly focus on RBPs that are responsible for implementing cancer traits in the digestive tract. These evidences may reveal a potential link between changes in expression/function of RBPs and malignant transformation, and a framework for new insights and potential therapeutic applications. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kiyoshi Masuda
- Kawasaki Medical School at Kurashiki-City, Okayama, Japan
| | - Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School at Tokushima-City, Tokushima, Japan
| |
Collapse
|
20
|
Nuclear factor 90 promotes angiogenesis by regulating HIF-1α/VEGF-A expression through the PI3K/Akt signaling pathway in human cervical cancer. Cell Death Dis 2018; 9:276. [PMID: 29449553 PMCID: PMC5833414 DOI: 10.1038/s41419-018-0334-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/28/2023]
Abstract
Vascular endothelial growth factor A (VEGF-A), a fundamental component of angiogenesis, provides nutrients and oxygen to solid tumors, and enhances tumor cell survival, invasion, and migration. Nuclear factor 90 (NF90), a double-stranded RNA-binding protein, is strongly expressed in several human cancers, promotes tumor growth by reducing apoptosis, and increasing cell cycle process. The mechanisms by which cervical cancer cells inducing VEGF-A expression and angiogenesis upon NF90 upregulation remain to be fully established. We demonstrated that NF90 is upregulated in human cervical cancer specimens and the expression of NF90 is paralleled with that of VEGF-A under hypoxia. The expressions of hypoxia inducible factor-1α (HIF-1α) and VEGF-A are downregulated upon NF90 knockdown, which can be rescued by ectopic expression of NF90. Suppression of NF90 decreases the tube formation and cell migration of HUVECs. Moreover, the PI3K/Akt signaling pathway participates in the regulation. Knockdown of NF90 also reduces the tumor growth and angiogenesis of cervical cancer cell line in the mouse xenograft model. Taken together, suppression of NF90 in cervical cancer cell lines can decrease VEGF-A expression, inhibit angiogenesis, and reduce tumorigenic capacity in vivo.
Collapse
|
21
|
Expression and Clinical Significance of ILF2 in Gastric Cancer. DISEASE MARKERS 2017; 2017:4387081. [PMID: 28831206 PMCID: PMC5555027 DOI: 10.1155/2017/4387081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/30/2017] [Accepted: 07/02/2017] [Indexed: 01/29/2023]
Abstract
The aim of this study is to investigate the expression levels and clinical significance of ILF2 in gastric cancer. The mRNA and protein expression levels of ILF2 were, respectively, examined by quantitative real-time PCR (qRT-PCR) and Western blot from 21 paired fresh frozen GC tissues and corresponding normal gastric tissues. In order to analyze the expression pattern of ILF2 in GC, 60 paired paraffin-embedded GC slides and corresponding normal gastric slides were detected by immunohistochemistry (IHC) assay. The correlation between ILF2 protein expression levels and clinicopathological parameters, overall survival (OS), disease-free survival (DFS), and clinical prognosis were analyzed by statistical methods. Significantly higher levels of ILF2 were detected in GC tissues compared with normal controls at both mRNA and protein level. High expression of ILF2 was tightly correlated with depth of invasion, lymph node metastasis, pathological stage, and histological differentiation. Log-rank test showed that high expression of ILF2 was positively associated with poor clinical prognosis. Multivariate analysis identified that ILF2 was an independent prognostic factor for OS and DFS. Our findings suggest that ILF2 may be a valuable biomarker and a novel potential prognosis predictor for GC patients.
Collapse
|
22
|
Yang C, Wang Y, Chen F, Hou Y, Jin J, Liu Q. BRAF-activated non-protein coding RNA (BANCR) advances the development of esophageal squamous cell carcinoma via cell cycle. Open Life Sci 2017. [DOI: 10.1515/biol-2017-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractEsophageal carcinoma is one of the important lethal tumors in the world, but the mechanism of esophageal cancer progression is still unclear. The long non-coding RNAs are known to regulate tumor progression. Here we report that BRAF-activated nonprotein coding RNA (BANCR) is associated with the development of esophageal squamous cell carcinoma (ESCC). The expression levels ofBANCRin 132 ESCC tumor tissues detected by quantitative real-time PCR were significantly higher than that in the adjacent normal tissues. The expression level ofBANCRwas down-regulated by transfecting small interrupting RNA againstBANCR(BANCRsiRNA) in Eca109 cells. Eca109 and TE-1 cells transfected withBANCRsiRNA led to the delayed cell cycles compared to the cells transfected with negative control siRNA. Moreover, MTT assays demonstrated that Eca109 cells transfected withBANCRsiRNA resulted in the inhibition of cell proliferation. These results suggested thatBANCRadvances the development and progression of ESCC cells through regulating their cell cycles.
Collapse
Affiliation(s)
- Chunxia Yang
- Department of Oncology, the Changzhou Wujin People’s Hospital, Jiangsu Province, 213000, China
| | - Yue Wang
- Department of Oncology, the Changzhou Wujin People’s Hospital, Jiangsu Province, 213000, China
| | - Fangjun Chen
- Department of Oncology, the affiliated Nanjing Drum Tower Hospital, Nanjing University, Jiangsu Province, 201008, China
| | - Yongzhong Hou
- Institute of Life Sciences, Jiangsu University. Zhenjiang, Jiangsu Province, 212013, China
| | - Jianhua Jin
- Department of Oncology, the Changzhou Wujin People’s Hospital, Jiangsu Province, 213000, China
| | - Qian Liu
- Department of Oncology, the Changzhou Wujin People’s Hospital, Jiangsu Province, 213000, China
| |
Collapse
|
23
|
Bi Y, Shen W, Min M, Liu Y. MicroRNA-7 functions as a tumor-suppressor gene by regulating ILF2 in pancreatic carcinoma. Int J Mol Med 2017; 39:900-906. [PMID: 28259961 PMCID: PMC5360436 DOI: 10.3892/ijmm.2017.2894] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 01/11/2017] [Indexed: 12/31/2022] Open
Abstract
Interleukin enhancer binding factor 2 (ILF2) has been found to be markedly upregulated in pancreatic carcinoma and is involved in the pathogenesis of pancreatic carcinoma. Thus, ILF2 may be a potential target for therapy. Yet, the regulatory mechanisms of ILF2 in pancreatic carcinoma remain largely elusive. In the present study, we demonstrated that ILF2 functioned as an oncogene and regulated epithelial-mesenchymal transition (EMT)-associated genes in pancreatic carcinoma PANC-1 cells. MicroRNA-7 (miR-7) suppressed ILF2 mRNA expression and the protein level in PANC-1 cells. Contrary to ILF2, miRNA-7 functioned as a tumor-suppressor gene and negatively regulated EMT-associated genes in the PANC-1 cells. Curcumin, a polyphenol natural product isolated from the rhizome of the plant Curcuma longa, has emerged as a promising anticancer therapeutic agent. We found that treatment with curcumin increased miR-7 expression and suppressed ILF2 protein in the PANC-1 cells. Thus, we identified ILF2 as a new downstream target gene of curcumin. The results revealed that ILF2 is regulated by miR-7 and suggest that downregulation of miR-7 may be an important factor for the ILF2 overexpression in pancreatic carcinoma.
Collapse
Affiliation(s)
| | | | - Min Min
- Department of Gastroenterology, 307 Hospital of PLA, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Yan Liu
- Department of Gastroenterology, 307 Hospital of PLA, Academy of Military Medical Science, Beijing 100071, P.R. China
| |
Collapse
|
24
|
Cheng S, Jiang X, Ding C, Du C, Owusu-Ansah KG, Weng X, Hu W, Peng C, Lv Z, Tong R, Xiao H, Xie H, Zhou L, Wu J, Zheng S. Expression and Critical Role of Interleukin Enhancer Binding Factor 2 in Hepatocellular Carcinoma. Int J Mol Sci 2016; 17:1373. [PMID: 27556459 PMCID: PMC5000768 DOI: 10.3390/ijms17081373] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023] Open
Abstract
Interleukin enhancer binding factor 2 (ILF2), a transcription factor, regulates cell growth by inhibiting the stabilization of mRNA. Currently, its role has gained recognition as a factor in the tumorigenic process. However, until now, little has been known about the detailed role ILF2 plays in hepatocellular carcinoma (HCC). In this study, we investigated the expression levels of ILF2 in HCC tissue with Western blot and immunohistochemical assays. To examine the effect of ILF2 on liver cancer cell growth and apoptosis, small interfering RNAs (siRNAs) targeting ILF2 were recombined to create lentiviral overexpression vectors. Our results showed higher expression levels of ILF2 mRNA and ILF2 protein in HCC tissue compared with matched peritumoral tissue. Expression of ILF2 may regulate cell growth and apoptosis in liver cancer cells via regulation of B-cell lymphoma 2 (Bcl-2), Bcl-2 related ovarian killer (Bok), Bcl-2-associated X protein (BAX), and cellular inhibitor of apoptosis 1 (cIAP1). Moreover, we inoculated nude mice with liver cancer cells to investigate the effect of ILF2 on tumorigenesis in vivo. As expected, a rapid growth was observed in cancer cells inoculated with a lentiviral vector coding Flag-ILF2 (Lenti-ILF2) compared with the control cells. Hence, these results promote a better understanding of ILF2's potential role as a therapeutic target in HCC.
Collapse
Affiliation(s)
- Shaobing Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou 310003, China.
| | - Xu Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Chaofeng Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Chengli Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Kwabena Gyabaah Owusu-Ansah
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Xiaoyu Weng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Wendi Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Chuanhui Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Zhen Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Rongliang Tong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Heng Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Haiyang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Lin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Jian Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Shusen Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou 310003, China.
| |
Collapse
|
25
|
Ye J, Zhou G, Zhang Z, Sun L, He X, Zhou J. Poly (C)-binding protein 2 (PCBP2) promotes the progression of esophageal squamous cell carcinoma (ESCC) through regulating cellular proliferation and apoptosis. Pathol Res Pract 2016; 212:717-25. [DOI: 10.1016/j.prp.2016.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 04/21/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022]
|
26
|
Zhao ZG, Wang DQ, Hu DF, Li YS, Liu SH. Decreased FOXF1 promotes hepatocellular carcinoma tumorigenesis, invasion, and stemness and is associated with poor clinical outcome. Onco Targets Ther 2016; 9:1743-52. [PMID: 27042124 PMCID: PMC4809324 DOI: 10.2147/ott.s95002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Forkhead box F1 (FOXF1), a member of the forkhead transcription factor superfamily, plays critical roles in the progression of certain types of cancers. However, the expression and function of FOXF1 in human hepatocellular carcinoma (HCC) are still unclear. Quantitative real-time reverse transcription polymerase chain reaction, Western blotting, and immunohistochemistry detected the relatively lower expression status of FOXF1 in HCC cases. Soft agar and transwell assays clearly demonstrated that FOXF1-knockdown cells showed significantly increased in vitro cell tumorigenesis and invasion, and FOXF1-overexpressing cells had significantly reduced growth and invasion potential. Our study also examined the role of FOXF1 in HCC cell stemness by sphere formation, aldehyde dehydrogenase (ALDH1) activity, and CD44/133-positive cell analysis. Enforced FOXF1 expression decreased HCC cell stemness, and the downregulation of FOXF1 promoted cancer cell stemness. The in vivo study showed that overexpressed FOXF1 inhibits nude mouse tumorigenicity with downregulation of CD44 and proliferating cell nuclear antigen. More importantly, loss of FOXF1 expression was linked to poor overall survival time by Kaplan–Meier analysis.
Collapse
Affiliation(s)
- Zhen-Guo Zhao
- Department of Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, People's Republic of China; Department of General Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, People's Republic of China
| | - De-Qiang Wang
- Tumor Treatment Center, The Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - De-Fei Hu
- Clinical Laboratory, The Second People's Hospital of Huai'an, Huai'an, People's Republic of China
| | - You-Sheng Li
- Department of Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shuang-Hai Liu
- Department of General Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, People's Republic of China
| |
Collapse
|
27
|
Wang H, Jiang D, Song Q, Xu C, Shi Y, Li X, Huang J, Xu Y, Sujie A, Zeng H, Zhong Y, Tan L, Hou Y. Prognostic impact and potential interaction of EGFR and c-Met in the progression of esophageal squamous cell carcinoma. Tumour Biol 2016; 37:9771-9. [PMID: 26810066 DOI: 10.1007/s13277-015-4692-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022] Open
Abstract
This study is to examine EGFR and c-Met variation in precancerous lesion, early esophageal squamous cell carcinoma (ESCC), and advanced ESCC and to explore their prognostic significance. EGFR and c-Met were detected by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). Of 158 endoscopy resection (ER) specimens, c-Met high expression and FISH positive were 44.9 and 12.6 %, respectively. EGFR high expression and FISH positive were 2.5 and 19.6 %, respectively. Of 84 surgical specimens, c-Met high expression and FISH positive were 50 and 8.3 %, respectively. EGFR high expression and FISH positive were 7.1 and 28.5 %, respectively. A significant correlation was observed between c-Met and EGFR FISH positive both in ER (P < 0.001) and surgical specimens (P = 0.029). Patients with EGFR high expression had poorer disease-free survival (DFS) and overall survival (OS) (P = 0.031 and P = 0.013) in c-Met high-expression group but not in c-Met low-expression group (P = 0.301 and P = 0.439). C-Met FISH positive did not represent a statistically significant adverse prognosis until 24 months later (P = 0.027 and 0.048). EGFR and c-Met might be involved in the tumorigenesis and development of ESCC. EGFR high expression has different prognostic significance in patients with differing c-Met expression status. C-Met FISH positive represent delayed prognostic factor.
Collapse
Affiliation(s)
- Haixing Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Qi Song
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yuan Shi
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiaojing Li
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yifan Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Akesu Sujie
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Haiying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yunshi Zhong
- Endoscopic Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
28
|
Wan C, Gong C, Ji L, Liu X, Wang Y, Wang L, Shao M, Yang L, Fan S, Xiao Y, Wang X, Li M, Zhou G, Zhang Y. NF45 overexpression is associated with poor prognosis and enhanced cell proliferation of pancreatic ductal adenocarcinoma. Mol Cell Biochem 2015; 410:25-35. [PMID: 26276310 DOI: 10.1007/s11010-015-2535-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/06/2015] [Indexed: 02/04/2023]
Abstract
NF45, also referred to as nuclear factor of activated T cells, has been reported to promote the progression of multiple cancer types. However, the expression and physiological significance of NF45 in pancreatic ductal adenocarcinoma (PDAC) remain largely elusive. In this study, we investigated the clinical relevance and potential role of NF45 expression in PDAC development. Western blot analysis revealed that NF45 was remarkably upregulated in PDAC tissues, compared with the adjacent non-tumorous ones. In addition, the expression of NF45 in 122 patients with PDAC was evaluated using immunohistochemistry. In this way, we found that NF45 was abundantly expressed in PDAC tissues, and the expression of NF45 was correlated with tumor size (p = 0.007), histological differentiation (p = 0.033), and TNM stage (p = 0.001). Importantly, patients with low levels of NF45 expression exhibited better postoperative prognosis as compared with those with high NF45 expression. Furthermore, using PDAC cell cultures, we found that interference of NF45 expression using siRNA oligos suppressed PDAC cell proliferation and retarded cell cycle progression. Moreover, depletion of NF45 impaired the levels of cellular cyclin E and proliferating cell nuclear antigen (PCNA). Conversely, overexpression of NF45 facilitated the cell growth and accelerated cell cycle progression. Our results establish NF45 as an important indicator of PDAC prognosis with potential utility as a therapeutic target in this lethal disease.
Collapse
Affiliation(s)
- Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001, Jiangsu, China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chen Gong
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Li Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaorong Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yayun Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Liang Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Mengting Shao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Linlin Yang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shaoqing Fan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yin Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaotong Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Manhua Li
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Yixin Zhang
- Department of General Surgery, Nantong University Cancer Hospital, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
29
|
Liu X, Zhang C, Qian L, Zhang C, Wu K, Yang C, Yan D, Wu X, Shi J. NF45 inhibits cardiomyocyte apoptosis following myocardial ischemia-reperfusion injury. Pathol Res Pract 2015; 211:955-62. [PMID: 26573128 DOI: 10.1016/j.prp.2015.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 08/11/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022]
Abstract
Cardiomyocyte apoptosis, which occurs during ischemia and reperfusion injury, can cause irreversible damage to cardiac function. There is accumulating evidence that nuclear factor 45 (NF45) and regulatory pathways are important in understanding reparative processes in the myocardium. NF45 is a multifunctional regulator of gene expression that participates in the regulation of DNA break repair. Recently, NF45 has been proved to be associated with tumor cell apoptosis in various human malignancies. However, the underlying mechanism of NF45 regulating myocardial ischemia-reperfusion (I/R) injury remains unclear. In this study, western blot showed that NF45 expression decreased after myocardial I/R in vivo. Double immunofluorescent staining revealed that NF45, located in the nucleus of cardiomyocyes, was correlated with cardiomyocyte apoptosis. Furthermore, NF45 expression decreased in H9c2 cells after hypoxia-reoxygenation (H/R) treatment in vitro, which was in line with the results in vivo. Overexpression of NF45 in H9c2 cells reduced cell apoptosis, as evidenced by increased Bcl-2 level, as well as decreased cleaved caspase-3, p53 and p21 expression. The expression of NF45 was reduced by LY294002 (a PI3K/Akt inhibitor), but not SB203580 (a p38 inhibitor), suggesting that NF45 prevented H/R-induced H9c2 cell apoptosis via PI3K/Akt pathway. Our data may supply a novel molecular target for acute myocardial infarction (AMI) therapy.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Chi Zhang
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Long Qian
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Chao Zhang
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Kunpeng Wu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Chen Yang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Daliang Yan
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Xiang Wu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China.
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China.
| |
Collapse
|
30
|
Upregulated expression of polycomb protein Ring1 contributes to poor prognosis and accelerated proliferation in human hepatocellular carcinoma. Tumour Biol 2015; 36:9579-88. [PMID: 26141041 DOI: 10.1007/s13277-015-3721-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022] Open
Abstract
Ring finger protein 1 (Ring1) have recently been reported to be closely related to aggressive tumor features in multiple cancer types, including prostate cancer, non-small-cell lung cancer, and bladder cancer. However, the role of Ring1 in human hepatocarcinogenesis remains unclear. In this study, we aimed at investigating the latent role of Ring1 in hepatocellular carcinoma (HCC) development. The expression of Ring1 was evaluated using Western blot analysis in 8 paired fresh HCC tissues and immunohistochemistry on 98 paraffin-embedded sections from 2005 to 2008. Moreover, RNA interference, CCK-8, colony formation, and flow-cytometry analyses were performed to investigate the role of Ring1 in the regulation of HCC cell proliferation. Compared with adjacent normal tissues, the level of Ring1 was significantly increased in HCC specimens. High expression of Ring1 was associated with histological grade (P = 0.011) and tumor size (P = 0.004), and Ring1 expression was positively related with the proliferation marker Ki-67 (P < 0.001). Moreover, knocking down Ring1 induced growth impairment and G1/S cell cycle arrest in HCC cells. Kaplan-Meier survival curves showed that high expression of Ring1 indicated poor prognosis of HCC (P = 0.03). On the basis of these results, we proposed that the expression of Ring1 protein may be a novel indicator of HCC prognosis.
Collapse
|
31
|
Ni T, Mao G, Xue Q, Liu Y, Chen B, Cui X, Lv L, Jia L, Wang Y, Ji L. Upregulated expression of ILF2 in non-small cell lung cancer is associated with tumor cell proliferation and poor prognosis. J Mol Histol 2015; 46:325-35. [DOI: 10.1007/s10735-015-9624-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/29/2015] [Indexed: 01/13/2023]
|