1
|
Araujo NGR, da Silva Junior FC, Santos LVDS, Batistuzzo de Medeiros SR, Felzenszwalb I, Araújo-Lima CF. Molecular docking and in silico analysis of the pharmacokinetics, toxicological profile and differential gene expression of bioactive compounds from Cyrtopodium glutiniferum. Toxicol Rep 2024; 13:101810. [PMID: 39629241 PMCID: PMC11612344 DOI: 10.1016/j.toxrep.2024.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
The genus Cyrtopodium, from the Orchidaceae family, is widely used for its therapeutic properties in the treatment of tuberculosis, abscesses, urinary infection, and colds. C. glutiniferum, one of the species of this genus, is endemic in Brazil and largely used in herbal medicine. Thus, it is of great interest to recognize its composition, the properties of the molecules found in it. This study aimed to perform the in silico analysis of the main compounds from C. glutiniferum, on the platforms pKCSM, SwissADME, LAZAR, CLC-pred, ToxTree, DIGEPred, STRING, and Cytoscape. Further than this, the molecular docking was performed. The compounds present in the aqueous extract of C. glutiniferum were identified by UHPLC-MS/MS, finding Arbutin, Caffeic acid 4-O-glucoside, and Dihydroformononetin as the three most abundant molecules. The evaluation of the gastrointestinal absorption of Dihydroformononetin is given as high, also managing to cross the blood-brain barrier, while Arbutin can only be absorbed by the gastrointestinal tract and Caffeic acid 4-O-glucoside had very low absorption. Further analysis showed that Arbutin and Dihydroformononetin are possible leading molecules for drug synthesis, according to the prediction. Toxicological aspects were analysed, and no adverse effects were noted, but there were divergences in the mutagenic prediction of Arbutin and Dihydroformononetin, having different results in the used platforms, demonstrating that a cautious analysis and data insertion is needed in these tools to optimize them. The analysis of the differentially expressed genes predicted that the compounds can regulate several genes, including some genes associated with carcinogenesis and inflammation. The Molecular docking analysis showed high binding affinities of the molecules with different proteins. Therefore, C. glutiniferum demonstrates the potential to be used as a phytotherapeutic. The same was given through the in silico analysis of the three compounds found in the orchid, that show good individual potential.
Collapse
Affiliation(s)
- Natália Gonçalves Ribeiro Araujo
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, IBRAG/UERJ (University of the State of Rio de Janeiro), 87 - Fundos, 4th floor, Vila Isabel, Rio de Janeiro, RJ 20551-030, Brazil
| | | | - Lizandra Vitória de Souza Santos
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, IBRAG/UERJ (University of the State of Rio de Janeiro), 87 - Fundos, 4th floor, Vila Isabel, Rio de Janeiro, RJ 20551-030, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Laboratory of Biology and Molecular Mutagenesis, Department of Biology, Center for Biosciences/UFRN (Federal University of Rio Grande do Norte), 3000 Av. Sen. Salgado Filho-Lagoa Nova, Natal, RN 59064-741, Brazil
| | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, IBRAG/UERJ (University of the State of Rio de Janeiro), 87 - Fundos, 4th floor, Vila Isabel, Rio de Janeiro, RJ 20551-030, Brazil
| | - Carlos Fernando Araújo-Lima
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, IBRAG/UERJ (University of the State of Rio de Janeiro), 87 - Fundos, 4th floor, Vila Isabel, Rio de Janeiro, RJ 20551-030, Brazil
- Integrated Environmental Mutagenesis Laboratory, Federal University of Rio de Janeiro State (UNIRIO), R. Frei Caneca, 94 - Centro, Rio de Janeiro, RJ 20211-010, Brazil
| |
Collapse
|
2
|
Yang H, Ai H, Zhang J, Ma J, Liu K, Li Z. UPS: Opportunities and challenges for gastric cancer treatment. Front Oncol 2023; 13:1140452. [PMID: 37077823 PMCID: PMC10106573 DOI: 10.3389/fonc.2023.1140452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Gastric cancer remains the fourth most frequently diagnosed malignancy and the fifth leading cause of cancer-related mortality worldwide owning to the lack of efficient drugs and targets for therapy. Accumulating evidence indicates that UPS, which consists of E1, E2, and E3 enzymes and proteasome, plays an important role in the GC tumorigenesis. The imbalance of UPS impairs the protein homeostasis network during development of GC. Therefore, modulating these enzymes and proteasome may be a promising strategy for GC target therapy. Besides, PROTAC, a strategy using UPS to degrade the target protein, is an emerging tool for drug development. Thus far, more and more PROTAC drugs enter clinical trials for cancer therapy. Here, we will analyze the abnormal expression enzymes in UPS and summarize the E3 enzymes which can be developed in PROTAC so that it can contribute to the development of UPS modulator and PROTAC technology for GC therapy.
Collapse
Affiliation(s)
- Hang Yang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Huihan Ai
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jialin Zhang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jie Ma
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Zhi Li, ; Kangdong Liu,
| | - Zhi Li
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Zhi Li, ; Kangdong Liu,
| |
Collapse
|
3
|
Yuen JG, Fesler A, Hwang GR, Chen LB, Ju J. Development of 5-FU-modified tumor suppressor microRNAs as a platform for novel microRNA-based cancer therapeutics. Mol Ther 2022; 30:3450-3461. [PMID: 35933584 PMCID: PMC9637772 DOI: 10.1016/j.ymthe.2022.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNA (miRNAs) are pleiotropic post-transcriptional modulators of gene expression. Their inherently pleiotropic nature makes miRNAs strong candidates for the development of cancer therapeutics, yet despite their potential, there remains a challenge to deliver nucleic acid-based therapies into cancer cells. We developed a novel approach to modify miRNAs by replacing the uracil bases with 5-fluorouracil (5-FU) in the guide strand of tumor suppressor miRNAs, thereby combining the therapeutic effect of 5-FU with tumor-suppressive effect of miRNAs to create a potent, multi-targeted therapeutic molecule without altering its native RNAi function. To demonstrate the general applicability of this approach to other tumor-suppressive miRNAs, we screened a panel of 12 novel miRNA mimetics in several cancer types, including leukemia, breast, gastric, lung, and pancreatic cancer. Our results show that 5-FU-modified miRNA mimetics have increased potency (low nanomolar range) in inhibiting cancer cell proliferation and that these mimetics can be delivered into cancer cells without delivery vehicle both in vitro and in vivo, thus representing significant advancements in the development of therapeutic miRNAs for cancer. This work demonstrates the potential of fluoropyrimidine modifications that can be broadly applicable and may serve as a platform technology for future miRNA and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- John G Yuen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Ga-Ram Hwang
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lan-Bo Chen
- Curamir Therapeutics Inc., Woburn, MA 01801, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Curamir Therapeutics Inc., Woburn, MA 01801, USA.
| |
Collapse
|
4
|
Shao J, Feng Q, Jiang W, Yang Y, Liu Z, Li L, Yang W, Zou Y. E3 ubiquitin ligase RBX1 drives the metastasis of triple negative breast cancer through a FBXO45-TWIST1-dependent degradation mechanism. Aging (Albany NY) 2022; 14:5493-5510. [PMID: 35802537 PMCID: PMC9320552 DOI: 10.18632/aging.204163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Triple-negative breast cancer (TNBC) patients are at high risk of recurrence and metastasis in the early stages, although receiving standard treatment. However, the underlying mechanism of TNBC remains unclear. Here, the critical effect of E3 ubiquitin ligase RBX1 in the metastasis of TNBC was reported for the first time. We discovered that RBX1 expression was evidently raised in the tissues of TNBC. Our clinical research displayed that high RBX1 expression was markedly related to poor distant invasion and survival. Functional analysis exhibited that RBX1 facilitated metastasis of TNBC cells through increasing EMT. Furthermore, we demonstrated that RBX1 knockdown increased the levels of the Twist family bHLH transcription factor 1 (TWIST1), is a significant regulator in the EMT process in some cancers. It can be observed an evident positive correlation between the TWIST1 and RBX1 levels, further confirming that EMT induced by RBX1 in TNBC cells is determined by TWIST1. Mechanistically, RBX1 modulates the expression of TWIST1 via modulating FBXO45, directly binding to FBXO45, and facilitating its degradation and ubiquitination. Briefly, our findings confirm that RBX1 is probably a new biomarker of TNBC carcinogenesis, thus suggesting that targeting the RBX1/FBXO45/TWIST1 axis may be an underlying strategy for TNBC treatment.
Collapse
Affiliation(s)
- Jun Shao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qian Feng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Weifan Jiang
- Department of Urology Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yuting Yang
- Department of Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhiqiang Liu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| | - Liang Li
- Emergency Department, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, Jiangxi Province, China
| | - Wenlong Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yufeng Zou
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Nanchang 330006, Jiangxi Province, China.,Department of Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
5
|
Shen N, Wang Q, Qiu Y, Wang Y, Li D, Li M. Clinicopathological and prognostic role of ROC1 in neoplasms: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e29806. [PMID: 35777041 PMCID: PMC9239593 DOI: 10.1097/md.0000000000029806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Regulator of cullins 1 (ROC1) is frequently overexpressed in multiple tumors, and many pieces of research demonstrate that ROC1 is associated with the prognosis and development of a diversity of neoplasms and it is able to serve as a promising prognostic biomarker. Here we performed this meta-analysis to evaluate the prognostic and clinicopathological significance of ROC1 in patients suffering from cancer. METHODS We searched Pubmed, Embase, Web of Science, Chinese National Knowledge Infrastructure (CNKI), and WanFang database. The role of ROC1 in cancers was evaluated by pooled hazard ratios (HRs), odd ratios (ORs) and 95% confidence intervals (CIs). RESULTS In total, 9 studies including 1002 patients were enrolled in this analysis. The pooled results showed that patients with high expression of ROC1 had poor overall survival (OS) (HR: 2.04, 95% CI: 1.48-2.60, P < 0.001) and recurrence-free survival (RFS) (HR: 1.727, 95% CI: 0.965-2.488, P < 0.001). Additionally, elevated expression of ROC1 was significantly correlated with advanced clinical Tumor Node Metastasis stage (OR: 2.708, 95% CI: 1.856-3.951, P < 0.001), positive lymph node metastasis (OR: 1.968; 95% CI: 1.294-2.993, P = .002), large tumor size (OR: 1.522, 95% CI: 1.079-2.149, P = .017) and poor tumor differentiation (OR: 2.448, 95% CI: 1.793-3.344, P < 0.001). CONCLUSIONS Elevated ROC1 expression predicted worse prognosis and advanced pathological parameters in various cancers. ROC1 was a significant prognostic biomarker for poor survival in human cancers.
Collapse
Affiliation(s)
- Nirui Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuanjie Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Danyang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Manxiang Li, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277, West Yanta Road, Xi’an, Shaanxi 710061, China (e-mail: )
| |
Collapse
|
6
|
Minatel BC, Cohn DE, Pewarchuk ME, Barros-Filho MC, Sage AP, Stewart GL, Marshall EA, Telkar N, Martinez VD, Reis PP, Robinson WP, Lam WL. Genetic and Epigenetic Mechanisms Deregulate the CRL2pVHL Complex in Hepatocellular Carcinoma. Front Genet 2022; 13:910221. [PMID: 35664333 PMCID: PMC9159809 DOI: 10.3389/fgene.2022.910221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation of ubiquitin-proteasome pathway genes through copy number alteration, promoter hypomethylation, and miRNA deregulation is involved in cancer development and progression. Further characterizing alterations in these genes may uncover novel drug targets across a range of diseases in which druggable alterations are uncommon, including hepatocellular carcinoma (HCC). We analyzed 377 HCC and 59 adjacent non-malignant liver tissue samples, focusing on alterations to component genes of the widely studied CRL2pVHL E3 ubiquitin ligase complex. mRNA upregulation of the component genes was common, and was correlated with DNA hypomethylation and copy number increase, but many tumours displayed overexpression that was not explained by either mechanism. Interestingly, we found 66 miRNAs, including 39 previously unannotated miRNAs, that were downregulated in HCC and predicted to target one or more CRL2pVHL components. Several miRNAs, including hsa-miR-101-3p and hsa-miR-139-5p, were negatively correlated with multiple component genes, suggesting that miRNA deregulation may contribute to CRL2pVHL overexpression. Combining miRNA and mRNA expression, DNA copy number, and methylation status into one multidimensional survival analysis, we found a significant association between greater numbers of alterations and poorer overall survival for multiple component genes. While the intricacies of CRL2pVHL complex gene regulation require additional research, it is evident that multiple causes for the deregulation of these genes must be considered in HCC, including non-traditional mechanisms.
Collapse
Affiliation(s)
- Brenda C. Minatel
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - David E. Cohn
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- *Correspondence: David E. Cohn,
| | - Michelle E. Pewarchuk
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Mateus C. Barros-Filho
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Department of Oncology, Hospital Sírio-Libanes, São Paulo, Brazil
| | - Adam P. Sage
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Greg L. Stewart
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Erin A. Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Nikita Telkar
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Victor D. Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Patricia P. Reis
- Department of Surgery and Orthopedics and Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Wendy P. Robinson
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Wan L. Lam
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| |
Collapse
|
7
|
Du L, Wang D, Wei X, Liu C, Xiao Z, Qian W, Song Y, Hou X. MS275 as Class I HDAC inhibitor displayed therapeutic potential on malignant ascites by iTRAQ-based quantitative proteomic analysis. BMC Gastroenterol 2022; 22:29. [PMID: 35062876 PMCID: PMC8783488 DOI: 10.1186/s12876-022-02101-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Malignant ascites is a manifestation of end stage events in a variety of cancers and is associated with significant morbidity. Epigenetic modulators play a key role in cancer initiation and progression, among which histone deacetylases (HDACs) are considered as one of the most important regulators for various cancer development, such as liver cancer, ovarian cancer, and pancreatic cancer et al. Thus, in this paper, we sought to explore the therapeutic effect of HDAC inhibitor on malignant ascites. METHODS In this report, we tested the therapeutic effect of different isoform selective HDAC inhibitors (Class I HDACI MS275, Class IIa HDACI MC1568, pan-HDAC inhibitors SAHA) on malignant ascites in vitro and in vivo. We further used proteome analysis to find the potential mechanisms for malignant ascites therapy. RESULTS Among the different isoform-selective HDAC inhibitors, the class I selective HDACI, MS275, exhibited preferential inhibition on various ascites cells. MS275 could induce cell cycle arrest in G0/G1 phase and promote apoptosis on ascites cells. Through proteome analysis, we found MS275 could downregulate proteins related to cell cycle progression, such as CDK4, CDC20, CCND1; MS275 could upregulate pro-apoptosis proteins such as PAPR1, LMNB2 and AIFM1; in addition, MS275 could change the expression of tumorigenic proteins related to the specific malignant ascites bearing tumors, such as TSP1 and CDK4 for bladder cancer. We then confirmed that abemaciclib (CDK4/6 selective inhibitor) could inhibit the proliferation of ascites cells, and the combination of abemaciclib and MS275 had synergistic anti-tumor effect. Finally, we found that MS275 could in vivo inhibit malignant ascites progression (ascites volume: 2.9 ± 1.0 mL vs 7.5 ± 1.2 mL, p < 0.01), tumor growth, and prolong 66% of the life-span when compared with the untreated group. CONCLUSION This present research revealed that the class I selective HDAC inhibitor, MS275, could effectively inhibit malignant ascites development and tumor growth via multiple pathways. These results indicated that HDACI could have great potential for clinical therapy of malignant ascites.
Collapse
Affiliation(s)
- Li Du
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xiuqi Wei
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Chang Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Zhuanglong Xiao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yuhu Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
8
|
Epi-miRNAs: Regulators of the Histone Modification Machinery in Human Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4889807. [PMID: 35087589 PMCID: PMC8789461 DOI: 10.1155/2022/4889807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death and disability worldwide. Epigenetic deregulation is one of the most critical mechanisms in carcinogenesis and can be classified into effects on DNA methylation and histone modification. MicroRNAs are small noncoding RNAs involved in fine-tuning their target genes after transcription. Various microRNAs control the expression of histone modifiers and are involved in a variety of cancers. Therefore, overexpression or downregulation of microRNAs can alter cell fate and cause malignancies. In this review, we discuss the role of microRNAs in regulating the histone modification machinery in various cancers, with a focus on the histone-modifying enzymes such as acetylases, deacetylases, methyltransferases, demethylases, kinases, phosphatases, desumoylases, ubiquitinases, and deubiquitinases. Understanding of microRNA-related aberrations underlying histone modifiers in pathogenesis of different cancers can help identify novel therapeutic targets or early detection approaches that allow better management of patients or monitoring of treatment response.
Collapse
|
9
|
Zhou M, Cheng H, Fu Y, Zhang J. Long noncoding RNA DARS-AS1 regulates TP53 ubiquitination and affects ovarian cancer progression by modulation miR-194-5p/RBX1 axis. J Biochem Mol Toxicol 2021; 35:e22865. [PMID: 34328246 DOI: 10.1002/jbt.22865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Ovarian cancer is a malignant tumor with a poor prognosis, its underlying mechanism is still unclear. OBJECTIVE In this study, long noncoding RNA DARS-AS1 was studied to identify its function in the development of ovarian cancer. METHODS Perform functional experiments to detect the effects of DARS-AS1 on the proliferation, apoptosis, and migration of ovarian cancer cells A2780. The luciferase report, immunoprecipitation (IP) experiment, and ubiquitination level determination verify that RBX1 ubiquitination and mediate the degradation of tumor suppressor gene TP53. RESULTS Knockdown of DARS-AS1 can inhibit cell proliferation, migration, and apoptosis, and the application of miR-194-5p inhibitors can prevent this process. Luciferase and IP experiments showed that DARS-AS1 regulates the expression of RBX1 by binding to miR-194-5p, and RBX1 mediates its degradation through ubiquitination of TP53.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Gynecological Oncology, Shaanxi Cancer Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Hao Cheng
- Department of Ultrasonography, Shaanxi Cancer Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Yulan Fu
- Department of Gynecological Oncology, Shaanxi Cancer Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Jun Zhang
- Department of Gynecological Oncology, Shaanxi Cancer Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Wu C, Wang Z, Tian X, Wang J, Zhang Y, Wu B. Long non-coding RNA DDX11-AS1 promotes esophageal carcinoma cell proliferation and migration through regulating the miR-514b-3p/RBX1 axis. Bioengineered 2021; 12:3772-3786. [PMID: 34281459 PMCID: PMC8806645 DOI: 10.1080/21655979.2021.1940617] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Esophageal carcinoma (ESCA) is one of the most aggressive malignancies with extremely high morbidity and mortality. At present, limited advancement in ESCA treatment has achieved. Therefore, it is urgent to explore the pathogenesis and progression mechanism of ESCA to provide the basis for the formulation of novel therapeutic strategies. Previous studies have found that long non-coding RNA (lncRNA) DDX11-AS1 expression enhances the paclitaxel resistance of ESCA cells. However, the mechanisms underlying the drug resistance conferred by lncRNA DDX11-AS1 in ESCA remains to be elucidated. Our research aims to clarify the role and mechanism of lncRNA DDX11-AS1 in regulating the progression of ESCA. We found that the expression of lncRNA DDX11-AS1 in ESCA tissues and cell lines was significantly upregulated. Subsequently, silencing lncRNA DDX11-AS1 significantly inhibited the proliferation, migration and invasion of ESCA cells, and induced the level of cell apoptosis. In terms of mechanism, our data showed that miR-514b-3p/RING box protein 1 (RBX1) axis played a crucial role in the oncogenic function of lncRNA DDX11-AS1. LncRNA DDX11-AS1 expression impaired the inhibitory function of miR-514b-3p on RBX1 through sponging effect. Taken together, our data support the notion that lncRNA DDX11-AS1 promotes the progression of ESCA through miR-514b-3p/RBX1 axis. Our research uncovers the novel regulatory role of lncRNA DDX11-AS1 in ESCA and lays a theoretical basis for developing novel treatment strategy of ESCA.
Collapse
Affiliation(s)
- Chao Wu
- Department of Anorectal Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhibin Wang
- Department of Oncology, the Fifth Hospital of Wuhan, Wuhan, Hubei, China
| | - Xuetao Tian
- Department of Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Thoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianqiang Wang
- Department of Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Hepatobiliary Hernia and Vascular Surgery, Huazhong University of Science and Technology, Wuhan, Zhejiang, China
| | - Yuesong Zhang
- Department of Anorectal Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Biao Wu
- Department of Thoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Thoracic Surgery, Ningbo Yinzhou NO.2 Hospital, Ningbo, China
| |
Collapse
|
11
|
Wang J, Zhang M, Hu X, She J, Sun R, Qin S, Li D. miRNA-194 predicts favorable prognosis in gastric cancer and inhibits gastric cancer cell growth by targeting CCND1. FEBS Open Bio 2021; 11:1814-1826. [PMID: 33605558 PMCID: PMC8255842 DOI: 10.1002/2211-5463.13125] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/13/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (MiRNAs) play critical roles in regulating target gene expression and multiple cellular processes in human cancer malignant progression. However, the function of miR-194 in gastric cancer (GC) remains unclear and controversial. In this study, we identified a series of miRNAs that can serve as prognostic biomarkers for GC by analysis of miRNA expression using The Cancer Genome Atlas data. Among them, miR-100, miR-125b, miR-199a, and miR-194 were the four most promising prognostic biomarkers in GC due to their significant associations with various clinical characteristics of patients. miR-100, miR-125b, and miR-199a predicted poor prognosis in GC, while miR-194 predicted favorable prognosis in GC. We also provide the first comprehensive transcriptome analysis of miR-194 in GC. Our data suggest that miR-194 tends to regulate target genes by binding to their 3' UTRs in a 7-mer-A1, 7-mer-m8, or 8-mer manner. KEGG pathway analysis showed that the cell cycle was one of the pathways most affected by miR-194 in GC. Moreover, CCND1 was shown to be a novel target gene of miR-194 in GC. Additionally, downregulation of CCND1 by miR-194 in GC further led to cell growth inhibition and cell cycle arrest. In conclusion, miR-100, miR-125b, miR-199a, and miR-194 may have potential as prognostic and diagnostic biomarkers for GC. miR-194 suppresses GC cell growth mainly through targeting CCND1 and induction of cell cycle arrest.
Collapse
Affiliation(s)
- Jingjie Wang
- Hubei Key Laboratory of Embryonic Stem Cell ResearchSchool of Basic Medical SciencesHubei University of MedicineShiyanChina
- Laboratory of Tumor BiologySchool of Biomedical EngineeringHubei University of MedicineShiyanChina
| | - Meixin Zhang
- Hubei Key Laboratory of Embryonic Stem Cell ResearchSchool of Basic Medical SciencesHubei University of MedicineShiyanChina
| | - Xinhui Hu
- Hubei Key Laboratory of Embryonic Stem Cell ResearchSchool of Basic Medical SciencesHubei University of MedicineShiyanChina
| | - Jiajun She
- Hubei Key Laboratory of Embryonic Stem Cell ResearchSchool of Basic Medical SciencesHubei University of MedicineShiyanChina
| | - Ruonan Sun
- Hubei Key Laboratory of Embryonic Stem Cell ResearchSchool of Basic Medical SciencesHubei University of MedicineShiyanChina
| | - Shanshan Qin
- Hubei Key Laboratory of Embryonic Stem Cell ResearchSchool of Basic Medical SciencesHubei University of MedicineShiyanChina
- Laboratory of Tumor BiologySchool of Biomedical EngineeringHubei University of MedicineShiyanChina
| | - Dandan Li
- Hubei Key Laboratory of Embryonic Stem Cell ResearchSchool of Basic Medical SciencesHubei University of MedicineShiyanChina
- Laboratory of Tumor BiologySchool of Biomedical EngineeringHubei University of MedicineShiyanChina
| |
Collapse
|
12
|
Cai S, Weng Y, Miao F. MicroRNA-194 inhibits PRC1 activation of the Wnt/β-catenin signaling pathway to prevent tumorigenesis by elevating self-renewal of non-side population cells and side population cells in esophageal cancer stem cells. Cell Tissue Res 2021; 384:353-366. [PMID: 33591442 DOI: 10.1007/s00441-021-03412-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
Abstract
Esophageal cancer (EC) is a leading cause of cancer-related deaths worldwide. Recent studies highlight roles for microRNAs (miRNAs) in EC. Microarray analysis identified miR-194 as downregulated in EC. However, little is known about the role of miR-194 in regulating self-renewal or other biological properties of EC stem cells. RT-qPCR and Western blot confirmed the downregulation of miR-194 in EC stem cells and revealed the upregulation of protein regulator of cytokinesis 1 (PRC1) in EC. Dual-luciferase reporter assay confirmed miR-194 targeting of PRC1 resulting in its downregulation. MiR-194 overexpression or PRC1 silencing reduced PRC1 expression, preventing the activation of the Wnt/β-catenin signaling pathway. Inhibition of the Wnt/β-catenin signaling pathway prevented the proliferation, invasion, and self-renewal of EC stem cells while promoting apoptosis. Furthermore, overexpressing miR-194 or silencing PRC1 in nude mice decreased the tumor formation ability of EC stem cells in vivo. Taken together, miR-194 prevents the progression of EC by downregulating PRC1 and inactivating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shuang Cai
- Department of Digestive Endoscopy, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China
| | - Yang Weng
- Department of Digestive Endoscopy, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China
| | - Feng Miao
- Department of Digestive Endoscopy, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China.
| |
Collapse
|
13
|
Song Q, Feng S, Peng W, Li A, Ma T, Yu B, Liu HM. Cullin-RING Ligases as Promising Targets for Gastric Carcinoma Treatment. Pharmacol Res 2021; 170:105493. [PMID: 33600940 DOI: 10.1016/j.phrs.2021.105493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Gastric carcinoma has serious morbidity and mortality, which seriously threats human health. The studies on gastrointestinal cell biology have shown that the ubiquitination modification that occurs after protein translation plays an essential role in the pathogenesis of gastric carcinoma. Protein ubiquitination is catalyzed by E3 ubiquitin ligase and can regulate various substrate proteins in different cellular pathways. Cullin-RING E3 ligase (CRLs) is a representative of the E3 ubiquitin ligase family, which requires cullin (CUL) neddylation modification for activation to regulate homeostasis of ~20% of cellular proteins. The substrate molecules regulated by CRLs are often involved in many cell progressions such as cell cycle progression, cell apoptosis, DNA damage and repair. Given that CRLs play an important role in modulation of biological activities, so targeting a certain CULs member neddylation may be an attractive strategy for selectively controlling the cellular proteins levels to achieve the goal of cancer treatment. In this review, we will discuss the roles of CULs and Ring protein in gastric carcinoma and summarize the current neddylation modulators for gastric carcinoma treatment.
Collapse
Affiliation(s)
- Qianqian Song
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Siqi Feng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Wenjun Peng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Anqi Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ting Ma
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Bin Yu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
14
|
Wang H, Lu Y, Wang M, Wu Y, Wang X, Li Y. Roles of E3 ubiquitin ligases in gastric cancer carcinogenesis and their effects on cisplatin resistance. J Mol Med (Berl) 2021; 99:193-212. [PMID: 33392633 DOI: 10.1007/s00109-020-02015-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022]
Abstract
Although gastric cancer (GC) is one of the most common cancers with high incidence and mortality rates, its pathogenesis is still not elucidated. GC carcinogenesis is complicated and involved in the activation of oncoproteins and inactivation of tumor suppressors. The ubiquitin-proteasome system (UPS) is crucial for protein degradation and regulation of physiological and pathological processes. E3 ubiquitin ligases are pivotal enzymes in UPS, containing various subfamily proteins. Previous studies report that some E3 ligases, including SKP2, CUL1, and MDM2, act as oncoproteins in GC carcinogenesis. On the other hand, FBXW7, FBXL5, FBXO31, RNF43, and RNF180 exert as tumor suppressors in GC carcinogenesis. Moreover, E3 ligases modulate cell growth, cell apoptosis, and cell cycle; thus, it is complicated to confer cisplatin resistance/sensitivity in GC cells. The intrinsic and acquired cisplatin resistance limits its clinical application against GC. In this review, we explore oncogenic and tumor suppressive roles of E3 ligases in GC carcinogenesis and focus on the effects of E3 ligases on cisplatin resistance in GC cells, which will provide novel therapeutic targets for GC therapy, especially for cisplatin-resistant patients.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yida Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Mingliang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Youliang Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaodong Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
15
|
The functional analysis of Cullin 7 E3 ubiquitin ligases in cancer. Oncogenesis 2020; 9:98. [PMID: 33130829 PMCID: PMC7603503 DOI: 10.1038/s41389-020-00276-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023] Open
Abstract
Cullin (CUL) proteins have critical roles in development and cancer, however few studies on CUL7 have been reported due to its characteristic molecular structure. CUL7 forms a complex with the ROC1 ring finger protein, and only two F-box proteins Fbxw8 and Fbxw11 have been shown to bind to CUL7. Interestingly, CUL7 can interact with its substrates by forming a novel complex that is independent of these two F-box proteins. The biological implications of CUL-ring ligase 7 (CRL7) suggest that the CRL7 may not only perform a proteolytic function but may also play a non-proteolytic role. Among the existing studied CRL7-based E3 ligases, CUL7 exerts both tumor promotion and suppression in a context-dependent manner. Currently, the mechanism of CUL7 in cancer remains unclear, and no studies have addressed potential therapies targeting CUL7. Consistent with the roles of the various CRL7 adaptors exhibit, targeting CRL7 might be an effective strategy for cancer prevention and treatment. We systematically describe the recent major advances in understanding the role of the CUL7 E3 ligase in cancer and further summarize its potential use in clinical therapy.
Collapse
|
16
|
Synergistic Beneficial Effect of Docosahexaenoic Acid (DHA) and Docetaxel on the Expression Level of Matrix Metalloproteinase-2 (MMP-2) and MicroRNA-106b in Gastric Cancer. J Gastrointest Cancer 2020; 51:70-75. [PMID: 30680612 DOI: 10.1007/s12029-019-00205-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common cancers with the majority of patients recognized in advanced stages. The efficacy of using docosahexaenoic acid (DHA) as a supplementary agent has been suggested in treatment along with chemotherapeutics including docetaxel. However, the molecular signatures of such beneficial effects are not well-understood. OBJECTIVE(S) We aimed to evaluate the effects of DHA and docetaxel on the expression level of metastasis-related genes, including MMP-2 and talin-2, and their controlling miRNAs, miR-106b and miR-194, in metastatic GC cell line, MKN45. METHOD(S) GC cell line, MKN45, was cultured, and determination of IC50 of DHA was done by MTT test. Cells were treated with docetaxel, DHA, and their combination for 24 h, and then total RNA was extracted and cDNA synthesis was done using standard protocols. The expression level of target genes, MMP-2 and talin-2, and miR-106b and miR-194 were determined by using quantitative real-time PCR. RESULTS The expression level of MMP-2 was decreased significantly in all treated cells. However, talin-2 showed significant downregulation only after treatment with docetaxel. In contrary to increased expression after treatment with docetaxel, DHA led to a significant under-expression of miR-106b. The similar effect was seen for miR-194. CONCLUSION(S) Combination of docetaxel and DHA led to the significant downregulation of MMP-2. Also, DHA lowered the docetaxel-mediated upregulation of miR-106b oncomiR. In conclusion, supplementation of docetaxel therapy with DHA in GC patients would be considered as a beneficial approach in cancer treatment.
Collapse
|
17
|
Wang L, Tang D, Wu T, Sun F. ELF1-mediated LUCAT1 promotes choroidal melanoma by modulating RBX1 expression. Cancer Med 2020; 9:2160-2170. [PMID: 31968402 PMCID: PMC7064025 DOI: 10.1002/cam4.2859] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/10/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are essential regulators of gene expression and biological behaviors. However, the contribution of lncRNA LUCAT1 to choroidal melanoma (CM) remains unexplored. Here, we examined the expression of LUCAT1 in CM cells by qRT‐PCR and investigated its biological effects by cell counting kit‐8, EdU, TUNEL, transwell assays, and Western blot. Bioinformatics tools were applied to find RNA candidates for further study. Moreover, mechanistic experiments including RNA immunoprecipitation assay, pull‐down assay, and luciferase reporter assay confirmed the relation or interaction among the indicated molecules. Here, we reported ELF1 as the transcription activator of LUCAT1. Functionally, elevated expression of LUCAT1 positively regulated CM cell proliferation, metastasis, and epithelial‐mesenchymal transition process. In addition, we verified the competing endogenous RNA (ceRNA) hypothesis of LUCAT1 and confirmed LUCAT1 modulates CM progression by modulating miR‐514a/b‐3p/RBX1 axis. Meanwhile, miR‐514a/b‐3p was suggested to repress CM progression, whereas RBX1 was unmasked to aggravate CM development. Of note, RBX1 overexpression rescued the inhibitory effect of LUCAT1 silence on the biological processes of CM cells. Altogether, this study unveiled the modulation axis ELF1/LUCAT1/miR‐514a/b‐3p/RBX1 and evidenced LUCAT1 as a promoter in CM for the first time, providing a novel insight into future treatment of CM.
Collapse
Affiliation(s)
- Lina Wang
- Tianjin Medical University Eye Hospital, Tianjin, China.,Tianjin First Central Hospital, Tianjin, China
| | - Dongrun Tang
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Tong Wu
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Fengyuan Sun
- Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
18
|
Madadi S, Schwarzenbach H, Saidijam M, Mahjub R, Soleimani M. Potential microRNA-related targets in clearance pathways of amyloid-β: novel therapeutic approach for the treatment of Alzheimer's disease. Cell Biosci 2019; 9:91. [PMID: 31749959 PMCID: PMC6852943 DOI: 10.1186/s13578-019-0354-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Imbalance between amyloid-beta (Aβ) peptide synthesis and clearance results in Aβ deregulation. Failure to clear these peptides appears to cause the development of Alzheimer's disease (AD). In recent years, microRNAs have become established key regulators of biological processes that relate among others to the development and progression of neurodegenerative diseases, such as AD. This review article gives an overview on microRNAs that are involved in the Aβ cascade and discusses their inhibitory impact on their target mRNAs whose products participate in Aβ clearance. Understanding of the mechanism of microRNA in the associated signal pathways could identify novel therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Massoud Saidijam
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
19
|
Tang H, Zhao H, Yu ZY, Feng X, Fu BS, Qiu CH, Zhang JW. MicroRNA-194 inhibits cell invasion and migration in hepatocellular carcinoma through PRC1-mediated inhibition of Wnt/β-catenin signaling pathway. Dig Liver Dis 2019; 51:1314-1322. [PMID: 30948333 DOI: 10.1016/j.dld.2019.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a commonly occurring malignancy accompanied by significant mortality rates. More recently, extensive investigations into microRNA (miRNA) expression profiles have been conducted to identify their ability to inhibit tumors. Thus, this study explored the role of miR-194 in epithelial-mesenchymal transition (EMT), cell invasion and migration through Wnt/β-catenin signaling pathway by binding to protein regulator of cytokinesis 1 (PRC1) in HCC. METHODS Initially, HCC related microarray data were retrieved and analyzed, and regulatory miRNAs of PRC1 were predicted accordingly. Next, the roles of miR-194, PRC1, and Wnt/β-catenin signaling pathway in HCC were determined, with relationship between PRC1 and miR-194 being verified subsequently. The role of miR-194 in cell EMT, migration, proliferation and invasion was evaluated through gain- and loss- function studies. Finally, tumor xenograft in nude mice was induced to assess tumor growth of HCC. RESULTS miR-194 affected HCC development in Wnt/β-catenin signaling pathway with putative binding sites to PRC1. MiR-194 could target PRC1. MiR-194 was downregulated while PRC1 was upregulated in HCC tissues. Additionally, miR-194 elevation and PRC1 silencing could suppress EMT, growth, proliferation, invasion, and migration in HCC cells by inactivating Wnt/β-catenin signaling pathway. CONCLUSION Taken together, this study demonstrated that miR-194 inhibited EMT, cell invasion and migration through inactivation of PRC1-dependent Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hui Tang
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Hui Zhao
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Zhen-Yu Yu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Xiao Feng
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Bin-Sheng Fu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Chun-Hui Qiu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China.
| | - Jian-Wen Zhang
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
20
|
Meng X, Li Z, Zhou S, Xiao S, Yu P. miR-194 suppresses high glucose-induced non-small cell lung cancer cell progression by targeting NFAT5. Thorac Cancer 2019; 10:1051-1059. [PMID: 30900402 PMCID: PMC6500961 DOI: 10.1111/1759-7714.13038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Background Diabetes mellitus (DM) is linked to an increased risk of lung cancer; however, the exact molecular basis is unclear. Methods We used a microarray method and found a group of microRNAs differently expressed in lung cancer cells at high or low glucose treatment. Results Among these, miR‐194 changed significantly, which indicated further analysis. miR‐194 was significantly downregulated in non‐small cell lung cancer (NSCLC) cells cultured in high glucose (HG) medium and clinical NSCLC tissues with DM. The introduction of miR‐194 significantly suppressed the proliferation, migration, and invasion of lung cancer cells induced by HG, suggesting that miR‐194 may be a suppressor during HG‐induced NSCLC progression. Further analysis indicated that NFAT5 was a direct target gene of miR‐194, evidenced by the direct binding of miR‐194 with the 3’untranslated region of NFAT5. MiR‐194 could decrease the expression of NFAT5 at both messenger RNA and protein levels, while overexpression of NFAT5 reversed the decreased proliferation, migration, and invasion ability mediated by miR‐194 in lung cancer cells. Conclusion Our findings provide new insight into the mechanism of NSCLC progression. Therapeutically, miR‐194 may serve as a potential target for the treatment of lung cancer patients with DM.
Collapse
Affiliation(s)
- Xuying Meng
- Department of Diabetic Nephropathy Hemodialysis, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Disease, The Metabolic Disease Hospital of Tianjin Medical University, Tianjin, China.,Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhenjin Li
- Department of Diabetic Nephropathy Hemodialysis, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Disease, The Metabolic Disease Hospital of Tianjin Medical University, Tianjin, China.,Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Saijun Zhou
- Department of Diabetic Nephropathy Hemodialysis, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Disease, The Metabolic Disease Hospital of Tianjin Medical University, Tianjin, China
| | - Shumin Xiao
- Department of Diabetic Nephropathy Hemodialysis, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Disease, The Metabolic Disease Hospital of Tianjin Medical University, Tianjin, China
| | - Pei Yu
- Department of Diabetic Nephropathy Hemodialysis, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Disease, The Metabolic Disease Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
21
|
Weidle UH, Birzele F, Nopora A. MicroRNAs as Potential Targets for Therapeutic Intervention With Metastasis of Non-small Cell Lung Cancer. Cancer Genomics Proteomics 2019; 16:99-119. [PMID: 30850362 PMCID: PMC6489690 DOI: 10.21873/cgp.20116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023] Open
Abstract
The death toll of non-small cell lung cancer (NSCLC) patients is primarily due to metastases, which are poorly amenable to therapeutic intervention. In this review we focus on miRs associated with metastasis of NSCLC as potential new targets for anti-metastatic therapy. We discuss miRs validated as therapeutic targets by in vitro data, identification of target(s) and pathway(s) and in vivo efficacy data in at least one clinically-relevant metastasis-related model. A few of the discussed miRs correlate with the clinical status of NSCLC patients. Using miRs as therapeutic agents has the advantage that targeting a single miR can potentially interfere with several metastatic pathways. Depending on their mode of action, the corresponding miRs can be up- or down-regulated compared to normal matching tissues. Here, we describe therapeutic approaches for reconstitution therapy and miR inhibition, general principles of anti-metastatic therapy as well as current technical pitfalls.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hofman La Roche, Basel, Switzerland
| | - Adam Nopora
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
22
|
Peng Y, Zhang X, Lin H, Deng S, Huang Y, Qin Y, Feng X, Yan R, Zhao Y, Cheng Y, Wei Y, Wang J, Chen W, Fan X, Ashktorab H, Smoot D, Meltzer SJ, Li S, Zhang Z, Jin Z. Inhibition of miR‑194 suppresses the Wnt/β‑catenin signalling pathway in gastric cancer. Oncol Rep 2018; 40:3323-3334. [PMID: 30542715 PMCID: PMC6196585 DOI: 10.3892/or.2018.6773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 10/01/2018] [Indexed: 01/01/2023] Open
Abstract
A mounting body of evidence has revealed that microRNAs (miRs) serve pivotal roles in various developmental processes, and in tumourigenesis, by binding to target genes and subsequently regulating gene expression. Continued activation of the Wnt/β-catenin signalling is positively associated with human malignancy. In addition, miR-194 dysregulation has been implicated in gastric cancer (GC); however, the molecular mechanisms underlying the effects of miR-194 on GC carcinogenesis remain to be elucidated. The present study demonstrated that miR-194 was upregulated in GC tissues and SUFU negative regulator of Ηedgehog signaling (SUFU) was downregulated in GC cell lines. Subsequently, inhibition of miR-194 attenuated nuclear accumulation of β-catenin, which consequently blocked Wnt/β-catenin signalling. In addition, the cytoplasmic translocation of β-catenin induced by miR-194 inhibition was mediated by SUFU. Furthermore, genes associated with the Wnt/β-catenin signalling pathway were revealed to be downregulated following inhibition of the Wnt signalling pathway by miR-194 suppression. Finally, the results indicated that cell apoptosis was markedly increased in response to miR-194 inhibition, strongly suggesting the carcinogenic effects of miR-194 in GC. Taken together, these findings demonstrated that miR-194 may promote gastric carcinogenesis through activation of the Wnt/β-catenin signalling pathway, making it a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Yin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Xiaojing Zhang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Huijuan Lin
- Department of Pathology and Pathophysiology, The Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Shiqi Deng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Yong Huang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Xianling Feng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Ruibin Yan
- Laboratory of Chemical Genomics, The Shenzhen Graduate School of Peking University, Shenzhen, Guangdong 518055, P.R. China
| | - Yanqiu Zhao
- Laboratory of Chemical Genomics, The Shenzhen Graduate School of Peking University, Shenzhen, Guangdong 518055, P.R. China
| | - Yulan Cheng
- Department of Medicine/GI Division, The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Yanjie Wei
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518000, P.R. China
| | - Jian Wang
- Department of Pathology and Pathophysiology, The Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Wangchun Chen
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Xinmin Fan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, College of Medicine, Washington, DC 20060, USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208, USA
| | - Stephen J Meltzer
- Department of Medicine/GI Division, The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Song Li
- Laboratory of Chemical Genomics, The Shenzhen Graduate School of Peking University, Shenzhen, Guangdong 518055, P.R. China
| | - Zhong Zhang
- Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Zhe Jin
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
23
|
Chen Y, Wei H, Liu Y, Zheng S. Promotional effect of microRNA-194 on breast cancer cells via targeting F-box/WD repeat-containing protein 7. Oncol Lett 2018. [PMID: 29541212 DOI: 10.3892/ol.2018.7842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the most common type of malignant cancer in females. An increasing number of studies have revealed that microRNAs (miR), which belong to a class of small non-coding RNAs, serve an important role in a number of human cancer subtypes. In the present study, the role of miR-194 in breast cancer cells and its underlying mechanisms were investigated. The results demonstrated that the serum levels of miR-194 were significantly higher in patients of the poorly differentiated and well-differentiated groups, compared with in healthy adults. Additionally, the serum level of miR-194 was significantly higher in the poorly differentiated group compared with in the well-differentiated group. In order to further investigate the role of miR-194 in breast cancer cells, the present study transfected two breast cancer cell lines, MCF-7 and MDA-MB-231, with an empty vector (control), miR-194 (overexpression), antagomiR-194 (inhibitor, functional knock down) or antagomiR-194 and miR-194. An MTT assay was performed in order to detect the proliferation of breast cancer cells in the various groups. The results revealed that the overexpression of miR-194 significantly accelerated cell proliferation, whereas the inhibition of miR-194 significantly decelerated the proliferation of MCF-7 and MDA-MB-231 cells. Furthermore, the expression levels of cyclin D and cyclin E were significantly upregulated in miR-194 overexpressing cells, and the expression levels of cyclin D and cyclin E were significantly downregulated in miR-194 inhibited cells, as compared with in control cells. No significant change was observed in the level of proliferation of cells co-transfected with miR-194 and antagomiR-194, compared with in the control cells. According to the hypothesis suggesting possible target genes of miR-194, the present study proposed that F-box/WD repeat-containing protein 7 (Fbxw-7) may be a direct target of miR-194, which was confirmed by a luciferase reporter assay. The present study suggested that miR-194 expression promoted the proliferation of breast cancer cells by targeting Fbxw-7, and may serve as a biomarker and a novel target for breast cancer therapy.
Collapse
Affiliation(s)
- Yaomin Chen
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Haiyan Wei
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yu Liu
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shusen Zheng
- Zhejiang University, School of Medicine, The First Affiliated Hospital, Ministry of Public Health, Key Laboratory Combined Multiorgan Transplant, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, P.R. China.,Zhejiang University, School of Medicine, The First Affiliated Hospital, The Department of Hepatobiliary Surgery, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
24
|
Ho CS, Noor SM, Nagoor NH. MiR-378 and MiR-1827 Regulate Tumor Invasion, Migration and Angiogenesis in Human Lung Adenocarcinoma by Targeting RBX1 and CRKL, Respectively. J Cancer 2018; 9:331-345. [PMID: 29344280 PMCID: PMC5771341 DOI: 10.7150/jca.18188] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) have been extensively studied over the decades and have been proposed as potential molecular targets for cancer treatment. Studies have shown that miR-378 participates in numerous biological processes in various cancers; whereas miR-1827 has only been reported in pediatric glioma. The mechanism of how miRNAs modulate lung cancer metastasis remains unclear. Our previous study demonstrated that miR-378 is up-regulated while miR-1827 is down-regulated in high invasive lung cancer sub-cell lines, and their biological functions have been described. Here, we report that miR-378 and miR-1827 modulate lung cancer cell invasion and migration via epithelial-mesenchymal transition (EMT). We also demonstrated that cells treated with miR-378 inhibitors or miR-1827 mimics had reduced number of metastases and ectopic vessels in the zebrafish embryo model. We then showed that miR-378 promoted invasion and miR-1827 suppressed migration by targeting RBX1 and CRKL, respectively. Restored protein expression in miRNA-overexpressed/ miRNA-suppressed cells attenuated the inhibitory/ inducing effect of the miRNA on lung cancer cells. Collectively, our findings highlight that miR-378 and miR-1827 could serve as novel therapeutic targets in lung cancer.
Collapse
Affiliation(s)
- Chai San Ho
- Institute of Biological Sciences, Division of Genetics and Molecular Biology, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noor Hasima Nagoor
- Institute of Biological Sciences, Division of Genetics and Molecular Biology, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Zhu X, Li D, Yu F, Jia C, Xie J, Ma Y, Fan S, Cai H, Luo Q, Lv Z, Fan L. miR-194 inhibits the proliferation, invasion, migration, and enhances the chemosensitivity of non-small cell lung cancer cells by targeting forkhead box A1 protein. Oncotarget 2017; 7:13139-52. [PMID: 26909612 PMCID: PMC4914347 DOI: 10.18632/oncotarget.7545] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/23/2016] [Indexed: 01/05/2023] Open
Abstract
Recent studies have implied that miRNAs may play a crucial role in tumor progression and may be involved in the modulation of some drug resistance in cancer cells. Earlier studies have demonstrated that miR-194 was involved in tumor metastasis and drug resistance in non-small cell lung cancer (NSCLC), whereas their expression and roles on NSCLC still need further elucidation. In the current study, we found that miR-194 is decreased in NSCLC samples compared with adjacent non-cancerous lung samples, and low expression of miR-194 predicts poor patient survival. Both in vitro and in vivo experiments showed that ectopic stable expression miR-194 suppressed proliferation, migration, invasion and metastasis and induced apoptosis in NSCLC cells and that this suppression could be reversed by reintroducing forkhead box A1 (FOXA1), a functional target of miR-194. In addition, miR-194 was downregulated in in cisplatin-resisted human NSCLC cell line-A549/DDP and overexpression of miR-194 increases cisplatin sensitivity. These findings suggested that miR-194 inhibits proliferation and metastasis and reverses cisplatin-resistance of NSCLC cells and may be useful as a new potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xuchao Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Dan Li
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Chengyou Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jing Xie
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yushui Ma
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Suyun Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Qiong Luo
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Lihong Fan
- Department of Respiration, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
26
|
Zhang Y, Guan DH, Bi RX, Xie J, Yang CH, Jiang YH. Prognostic value of microRNAs in gastric cancer: a meta-analysis. Oncotarget 2017; 8:55489-55510. [PMID: 28903436 PMCID: PMC5589675 DOI: 10.18632/oncotarget.18590] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Previous articles have reported that expression levels of microRNAs (miRNAs) are associated with survival time of patients with gastric cancer (GC). A systematic review and meta-analysis was performed to study the outcome of it. DESIGN Meta-analysis. METHODS English studies estimating expression levels of miRNAs with any of survival curves in GC were identified up till March 19, 2017 through performing online searches in PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews by two authors independently. The pooled hazard ratios (HR) with 95% confidence intervals (CI) were used to estimate the correlation between miRNA expression and overall survival (OS). RESULTS Sixty-nine relevant articles about 26 miRNAs with 6148 patients were ultimately included. GC patients with high expression of miR-20b (HR=2.38, 95%CI=1.16-4.87), 21 (HR=1.77, 95%CI=1.01-3.08), 106b (HR=1.84, 95%CI=1.15-2.94), 196a (HR=2.66, 95%CI=1.94-3.63), 196b (HR=1.67, 95%CI=1.38-2.02), 214 (HR=1.84, 95%CI=1.27-2.67) or low expression of miR-125a (HR=2.06, 95%CI=1.26-3.37), 137 (HR=3.21, 95%CI=1.68-6.13), 141 (HR=2.47, 95%CI=1.34-4.56), 145 (HR=1.62, 95%CI=1.07-2.46), 146a (HR=2.60, 95%CI=1.63-4.13), 206 (HR=2.85, 95%CI=1.73-4.70), 218 (HR=2.61, 95%CI=1.74-3.92), 451 (HR=1.73, 95%CI=1.19-2.52), 486-5p (HR=2.45, 95%CI=1.65-3.65), 506 (HR=2.07, 95%CI=1.33-3.23) have significantly poor OS (P<0.05). CONCLUSIONS In summary, miR-20b, 21, 106b, 125a, 137, 141, 145, 146a, 196a, 196b, 206, 214, 218, 451, 486-5p and 506 demonstrate significantly prognostic value. Among them, miR-20b, 125a, 137, 141, 146a, 196a, 206, 218, 486-5p and 506 are strong biomarkers of prognosis in GC.
Collapse
Affiliation(s)
- Yue Zhang
- 1 First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, People's Republic of China
| | - Dong-Hui Guan
- 2 Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| | - Rong-Xiu Bi
- 2 Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| | - Jin Xie
- 2 Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| | - Chuan-Hua Yang
- 3 Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| | - Yue-Hua Jiang
- 4 Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| |
Collapse
|
27
|
Zheng Q, Chen C, Guan H, Kang W, Yu C. Prognostic role of microRNAs in human gastrointestinal cancer: A systematic review and meta-analysis. Oncotarget 2017; 8:46611-46623. [PMID: 28402940 PMCID: PMC5542297 DOI: 10.18632/oncotarget.16679] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/09/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gastrointestinal cancers (GICs) mainly including esophageal, gastric and colorectal cancer, are the most common cause of cancer-related death and lead into high mortality worldwide. We performed this systematic review and meta-analysis to elucidate relationship between multiple microRNAs (miRs) expression and survival of GIC patients. METHODS We searched a wide range of database. Fixed-effects and random-effects models were used to calculate the pooled hazard ratio values of overall survival and disease free survival. In addition, funnel plots were used to qualitatively analyze the publication bias and verified by Begg's test while it seems asymmetry. RESULTS 60 studies involving a total of 6225 patients (1271 with esophageal cancer, 3467 with gastric cancer and 1517 with colorectal cancer) were included in our meta-analysis. The pooled hazard ratio values of overall survival related to different miRs expression in esophageal, gastric, colorectal and gastrointestinal cancer were 2.10 (1.78-2.49), 2.02 (1.83-2.23), 2.54 (2.14-3.02) and 2.15 (1.99-2.31), respectively. We have identified a total of 59 miRs including 23 significantly up-regulated expression miRs (miR-214, miR-17, miR-20a, miR-200c, miR-107, miR-27a, etc.) and 36 significantly down-regulated expression miRs (miR-433, let-7g, miR-125a-5p, miR-760, miR-206, miR-26a, miR-200b, miR-185, etc.) correlated with poor prognosis in GIC patients. Moreover, 35 of them revealed mechanisms. CONCLUSION Overall, specific miRs are significantly associated with the prognosis of GIC patients and potentially eligible for the prediction of patients survival. It also provides a potential value for clinical decision-making development and may serve as a promising miR-based target therapy waiting for further elucidation.
Collapse
Affiliation(s)
- Qiang Zheng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Changyu Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Traditional Medical University, Hefei, China
| | - Haiyang Guan
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Weibiao Kang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Changjun Yu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
28
|
Gong B, Yue Y, Wang R, Zhang Y, Jin Q, Zhou X. Overexpression of microRNA-194 suppresses the epithelial–mesenchymal transition in targeting stem cell transcription factor Sox3 in endometrial carcinoma stem cells. Tumour Biol 2017; 39:1010428317706217. [PMID: 28618953 DOI: 10.1177/1010428317706217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Baolan Gong
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Yue
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Renxiao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Quanfang Jin
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xi Zhou
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
29
|
Zhang J, Li S, Shang Z, Lin S, Gao P, Zhang Y, Hou S, Mo S, Cao W, Dong Z, Hu T, Chen P. Targeting the overexpressed ROC1 induces G2 cell cycle arrest and apoptosis in esophageal cancer cells. Oncotarget 2017; 8:29125-29137. [PMID: 28418860 PMCID: PMC5438718 DOI: 10.18632/oncotarget.16250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/20/2017] [Indexed: 01/17/2023] Open
Abstract
Recent reports showed that regulator of Cullins-1 (ROC1) play an important role in tumor progression in a tumor-specific manner. However, the role and mechanism of ROC1 in esophageal cancer remains elusive. Here we demonstrated that ROC1 was overexpressed in esophageal squamous cell carcinomas, which was positive associated with poor prognosis of esophageal cancer patients. ROC1 knockdown significantly inhibited the growth of esophageal cancer cells in vitro and in vivo. Mechanistically, ROC1 silencing induced G2 cell cycle arrest and triggered apoptosis by accumulating the pro-apoptotic protein NOXA. Consistently, the downregulation of NOXA expression via siRNA substantially attenuated apoptosis induced by ROC1 silencing. These findings suggest that ROC1 is an appealing drug target for esophageal cancer.
Collapse
Affiliation(s)
- Jingyang Zhang
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Shuo Li
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Zhaoyang Shang
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Shan Lin
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Peng Gao
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Yi Zhang
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Shuaiheng Hou
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Saijun Mo
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Wenbo Cao
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Ziming Dong
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Tao Hu
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Ping Chen
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| |
Collapse
|
30
|
Zhang F, Lu YX, Chen Q, Zou HM, Zhang JM, Hu YH, Li XM, Zhang WJ, Zhang W, Lin C, Li XN. Identification of NCK1 as a novel downstream effector of STAT3 in colorectal cancer metastasis and angiogenesis. Cell Signal 2017; 36:67-78. [PMID: 28455144 DOI: 10.1016/j.cellsig.2017.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is known to activate targets associated with invasion, proliferation, and angiogenesis in a wide variety of cancers. The adaptor protein NCK1 is involved in cytoskeletal movement and was identified as a STAT3-associated target in human tumors. However, the underlying molecular mechanism associated with colorectal cancer (CRC) metastasis is not yet completely understood. In this study, we report a novel STAT3 to NCK1 signaling pathway in colorectal cancer (CRC). We investigated the expression of NCK1 and its potential clinical and biological significance in CRC. NCK1 was noticeably up-regulated in human CRC tissues. NCK1 was also significantly associated with serosal invasion, lymph metastasis, and tumor-node-metastasis classification but was inversely correlated with differentiation. Gain-of-function and loss-of-function studies have shown that ectopic expression of NCK1 enhanced metastasis and angiogenesis in CRC cells. By gene expression analyses, we revealed a high co-overexpression of STAT3 and NCK1 in CRC tissues. Ectopic overexpression of STAT3 in CRC cells induced the expression of NCK1, whereas STAT3 knockdown decreased the expression of NCK1. Promoter activation and binding analyses demonstrated that STAT3 promoted the expression of NCK1 via direct action on the NCK1 promoter. The knock down of NCK1 partially reduced the CRC cell metastasis and angiogenesis promoted by STAT3. Additionally, by co-immunoprecipitation assays, we verified that NCK1 interacted with PAK1, which resulted in the activation of the PAK1/ERK pathway. STAT3 induced the transcription of NCK1 and triggered a PAK1/ERK cascade in CRC. These findings suggest a novel STAT3 to NCK1 to PAK1/ERK signaling mechanism that is potentially critical for CRC metastasis and angiogenesis.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Yan-Xia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Qing Chen
- Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Hui-Mei Zou
- School of Nursing, University of South China, Hengyang 421001, China.
| | - Jian-Ming Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yu-Han Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiao-Min Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wen-Juan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wei Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Chun Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xue-Nong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
31
|
Mi J, Zou Y, Lin X, Lu J, Liu X, Zhao H, Ye X, Hu H, Jiang B, Han B, Shao C, Gong Y. Dysregulation of the miR-194-CUL4B negative feedback loop drives tumorigenesis in non-small-cell lung carcinoma. Mol Oncol 2017; 11:305-319. [PMID: 28164432 PMCID: PMC5527444 DOI: 10.1002/1878-0261.12038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022] Open
Abstract
Cullin 4B (CUL4B), a scaffold protein that assembles CRL4B ubiquitin ligase complexes, is overexpressed in many types of cancers and represses many tumor suppressors through epigenetic mechanisms. However, the mechanisms by which CUL4B is upregulated remain to be elucidated. Here, we show that CUL4B is upregulated in non‐small‐cell lung carcinoma (NSCLC) tissues and is critically required for cell proliferation and migration in vitro and for xenograft tumor formation in vivo. We found that microRNA‐194 (miR‐194) and CUL4B protein were inversely correlated in cancer specimens and demonstrated that miR‐194 could downregulate CUL4B by directly targeting its 3′‐UTR. We also showed that CUL4B could be negatively regulated by p53 in a miR‐194‐dependent manner. miR‐194 was further shown to attenuate the malignant phenotype of lung cancer cells by downregulating CUL4B. Interestingly, CRL4B also epigenetically represses miR‐194 by catalyzing monoubiquitination at H2AK119 and by coordinating with PRC2 to promote trimethylation at H3K27 at the gene clusters encoding miR‐194. RBX1, another component in CRL4B complex, is also targeted by miR‐194 in NSCLC cells. Our results thus establish a double‐negative feedback loop between miR‐194 and CRL4B, dysregulation of which contributes to tumorigenesis. The function of miR‐194 as a negative regulator of CUL4B has therapeutic implications in lung cancer.
Collapse
Affiliation(s)
- Jun Mi
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University School of Stomatology, Jinan, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Xiaohua Lin
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Juanjuan Lu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Xiaochen Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Hui Zhao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Xiang Ye
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Bo Han
- Department of Pathology, Shandong University School of Basic Medical Sciences, Jinan, China.,Department of Pathology, Shandong University Qilu Hospital, Jinan, China
| | - Changshun Shao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China.,Department of Genetics/Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Basic Medical Sciences, Jinan, China
| |
Collapse
|
32
|
Zhang X, Wei C, Li J, Liu J, Qu J. MicroRNA-194 represses glioma cell epithelial‑to‑mesenchymal transition by targeting Bmi1. Oncol Rep 2017; 37:1593-1600. [PMID: 28098896 DOI: 10.3892/or.2017.5376] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/03/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNA-194 (miR-194) is frequently dysregulated in many types of cancer. However, the function of miR-194 in glioma remains unknown. In the present study, we aimed to investigate the biological functions of miR-194 in glioma and the potential molecular mechanism of miR-194 involved in glioma progression. We found that miR-194 expression was significantly reduced in glioma specimens and cell lines, as detected by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. The overexpression of miR-194 inhibited while the suppression of miR-194 promoted cell migration, invasion and epithelial mesenchymal transition (EMT) in glioma cells. Bioinformatics analysis showed that the B cell-specific moloney murine leukemia virus insertion site 1 (Bmi1) was a direct target of miR-194, which was validated by dual-luciferase reporter assay, RT-qPCR and western blot analysis. The restoration of Bmi1 expression significantly abrogated the suppressive effect of miR-194 on glioma cell EMT. Taken together, the present study suggests that miR-194 inhibits glioma cell EMT by targeting Bmi1 providing novel insights into understanding the pathogenesis of glioma. The restoration of miR-194 may be a potential therapeutic strategy for glioma treatment.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chunyan Wei
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiali Liu
- Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jianqiang Qu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
33
|
Peng Y, Zhang X, Ma Q, Yan R, Qin Y, Zhao Y, Cheng Y, Yang M, Wang Q, Feng X, Huang Y, Huang W, Zhao Z, Wang L, Wei Y, He Z, Fan X, Li S, Jin Z, Meltzer SJ. MiRNA-194 activates the Wnt/β-catenin signaling pathway in gastric cancer by targeting the negative Wnt regulator, SUFU. Cancer Lett 2017; 385:117-127. [DOI: 10.1016/j.canlet.2016.10.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 12/31/2022]
|
34
|
Fang Y, Zhang L, Li Z, Li Y, Huang C, Lu X. MicroRNAs in DNA Damage Response, Carcinogenesis, and Chemoresistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:1-49. [DOI: 10.1016/bs.ircmb.2017.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Das R, Gregory PA, Fernandes RC, Denis I, Wang Q, Townley SL, Zhao SG, Hanson AR, Pickering MA, Armstrong HK, Lokman NA, Ebrahimie E, Davicioni E, Jenkins RB, Karnes RJ, Ross AE, Den RB, Klein EA, Chi KN, Ramshaw HS, Williams ED, Zoubeidi A, Goodall GJ, Feng FY, Butler LM, Tilley WD, Selth LA. MicroRNA-194 Promotes Prostate Cancer Metastasis by Inhibiting SOCS2. Cancer Res 2016; 77:1021-1034. [PMID: 28011622 DOI: 10.1158/0008-5472.can-16-2529] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/18/2016] [Accepted: 12/05/2016] [Indexed: 11/16/2022]
Abstract
Serum levels of miR-194 have been reported to predict prostate cancer recurrence after surgery, but its functional contributions to this disease have not been studied. Herein, it is demonstrated that miR-194 is a driver of prostate cancer metastasis. Prostate tissue levels of miR-194 were associated with disease aggressiveness and poor outcome. Ectopic delivery of miR-194 stimulated migration, invasion, and epithelial-mesenchymal transition in human prostate cancer cell lines, and stable overexpression of miR-194 enhanced metastasis of intravenous and intraprostatic tumor xenografts. Conversely, inhibition of miR-194 activity suppressed the invasive capacity of prostate cancer cell lines in vitro and in vivo Mechanistic investigations identified the ubiquitin ligase suppressor of cytokine signaling 2 (SOCS2) as a direct, biologically relevant target of miR-194 in prostate cancer. Low levels of SOCS2 correlated strongly with disease recurrence and metastasis in clinical specimens. SOCS2 downregulation recapitulated miR-194-driven metastatic phenotypes, whereas overexpression of a nontargetable SOCS2 reduced miR-194-stimulated invasion. Targeting of SOCS2 by miR-194 resulted in derepression of the oncogenic kinases FLT3 and JAK2, leading to enhanced ERK and STAT3 signaling. Pharmacologic inhibition of ERK and JAK/STAT pathways reversed miR-194-driven phenotypes. The GATA2 transcription factor was identified as an upstream regulator of miR-194, consistent with a strong concordance between GATA2 and miR-194 levels in clinical specimens. Overall, these results offer new insights into the molecular mechanisms of metastatic progression in prostate cancer. Cancer Res; 77(4); 1021-34. ©2016 AACR.
Collapse
Affiliation(s)
- Rajdeep Das
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.,Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Rayzel C Fernandes
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.,Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Iza Denis
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.,Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Qingqing Wang
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.,Breast Cancer Genetics Group, Centre for Personalised Cancer Medicine, School of Medicine, The University of Adelaide, SA 5005, Australia
| | - Scott L Townley
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Adrienne R Hanson
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Marie A Pickering
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Heather K Armstrong
- Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Noor A Lokman
- Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Esmaeil Ebrahimie
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Elai Davicioni
- GenomeDx Biosciences Inc., Vancouver, British Columbia, Canada
| | - Robert B Jenkins
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Ashley E Ross
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland
| | - Robert B Den
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kim N Chi
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Hayley S Ramshaw
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre Queensland, Translational Research Institute, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Australia
| | - Amina Zoubeidi
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia.,School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Felix Y Feng
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Lisa M Butler
- Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia.,Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, South Australia, Australia. .,Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, South Australia, Australia
| |
Collapse
|
36
|
Kong Q, Chen XS, Tian T, Xia XY, Xu P. MicroRNA-194 suppresses prostate cancer migration and invasion by downregulating human nuclear distribution protein. Oncol Rep 2016; 37:803-812. [PMID: 27959429 DOI: 10.3892/or.2016.5305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/07/2016] [Indexed: 11/06/2022] Open
Abstract
Human NudC nuclear distribution protein (hNUDC) is differentially expressed between normal and cancer cells. Based on its marked altered expression and its roles in modulating cell division, cytokineses and migration, a detailed understanding of the mechanisms regulating hNUDC expression in cancer cells is critical. In this study, we identified miR-194 as a downstream target of hNUDC and linked its expression to reduced metastatic capacity and tumorigenicity of prostate cancer (PCa) cells. Using miRNA target prediction programs, hNUDC mRNA was found to contain a potential binding site for miR-194 within its 3'UTR. A Reporter assay confirmed that post-transcriptional regulation of hNUDC was dependent on the miR-194 binding site. Forced expression of miR-194 in PCa cell lines, PC-3 and DU-145, led to a decrease in the mRNA and protein levels of hNUDC. Overexpression of miR-194 in these cells inhibited cell migration and invasion, and induced multinucleated cells. Our data showed that hNUDC knockdown by siRNA significantly reduced the migration and invasion in the PC-3 and DU-145 cells, phenocopying the results of miR-194 overexpression. Furthermore, lentivirus-mediated stable expression of miR-194 in PCa cells reduced the ability of colony formation as detected by a soft agar assay and exhibited significantly less tumorigenic ability in vivo. Our results suggest a novel role for miR-194 in effectively controlling cell metastatic processes in PCa cells via the regulation of hNUDC expression.
Collapse
Affiliation(s)
- Qi Kong
- The Key Laboratory of Gene Engineering of the Chinese Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Xu-Shen Chen
- The Key Laboratory of Gene Engineering of the Chinese Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Tian Tian
- The Key Laboratory of Gene Engineering of the Chinese Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Xiang-You Xia
- The Key Laboratory of Gene Engineering of the Chinese Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Peilin Xu
- The Key Laboratory of Gene Engineering of the Chinese Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| |
Collapse
|
37
|
Guo B, Hui Q, Zhang Y, Chang P, Tao K. miR-194 is a negative regulator of GEF-H1 pathway in melanoma. Oncol Rep 2016; 36:2412-20. [PMID: 27573550 DOI: 10.3892/or.2016.5020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/01/2016] [Indexed: 11/05/2022] Open
Abstract
The incidence and associated mortality of melanoma continues to increase worldwide. At present, there is no curative therapy for advanced stage of melanoma. It is necessary to find new indicators of prognosis and therapeutic targets. Increasing evidence shows that miRNA can provide potential candidate biomarkers for melanoma and therapeutic targets. GEF-H1, a regulator of RhoA, as oncogenic driver in melanoma, promotes the growth and invasion of melanoma. miR-194 is a tumor-suppressor gene in multiple tumors, such as bladder and non-small cell lung cancer, and clear cell renal cell carcinoma. In the present study, we demonstrated that GEF-H1 serves as target of miR-194. Overexpression of miR-194 downregulates the GEF-H1/RhoA pathway, inhibits melanoma cancer cell proliferation and metastasis. Furthermore, miR-194 expression is negatively associated with tumor-node-metastasis (TNM) stages. Briefly, our findings provided new theoretical basis for melanoma treatment.
Collapse
Affiliation(s)
- Bingyu Guo
- Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenhe, Shenyang, Liaoning 110016, P.R. China
| | - Qiang Hui
- Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenhe, Shenyang, Liaoning 110016, P.R. China
| | - Yu Zhang
- Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenhe, Shenyang, Liaoning 110016, P.R. China
| | - Peng Chang
- Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenhe, Shenyang, Liaoning 110016, P.R. China
| | - Kai Tao
- Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenhe, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
38
|
Abstract
Tumor suppresser gene TP53 is one of the most frequently deleted
or mutated genes in gastrointestinal cancers. As a transcription factor, p53
regulates a number of important protein coding genes to control cell cycle, cell
death, DNA damage/repair, stemness, differentiation and other key cellular
functions. In addition, p53 is also able to activate the expression of a number
of small non-coding microRNAs (miRNAs) through direct binding to the promoter
region of these miRNAs. Many miRNAs have been identified to be potential tumor
suppressors by regulating key effecter target mRNAs. Our understanding of the
regulatory network of p53 has recently expanded to include long non-coding RNAs
(lncRNAs). Like miRNA, lncRNAs have been found to play important roles in cancer
biology. With our increased understanding of the important functions of these
non-coding RNAs and their relationship with p53, we are gaining exciting new
insights into the biology and function of cells in response to various growth
environment changes. In this review we summarize the current understanding of
the ever expanding involvement of non-coding RNAs in the p53 regulatory network
and its implications for our understanding of gastrointestinal cancer.
Collapse
Affiliation(s)
- Andrew Fesler
- Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, USA
| | - Ning Zhang
- Department of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingfang Ju
- Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, USA
| |
Collapse
|
39
|
Zhang M, Zhuang Q, Cui L. MiR-194 inhibits cell proliferation and invasion via repression of RAP2B in bladder cancer. Biomed Pharmacother 2016; 80:268-275. [PMID: 27133066 DOI: 10.1016/j.biopha.2016.03.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 01/16/2023] Open
Abstract
Bladder cancer is the 7th most common cancer type in the world, and microRNAs (miRNAs) play important roles in cancer progression. In the present study, we investigated the roles and molecular mechanisms of miR-194 in bladder cancer. The results demonstrated that the expression level of miR-194 is significantly down-regulated in bladder cancer cell lines and clinical tissues. Overexpression of miR-194 inhibited cell proliferation and invasion in J82 and T24 cells. Further mechanistic study showed that overexpression of miR1-94 induced G0/G1 phase arrest as well as apoptosis in J82 and T24 cells. In addition, by using bioinformatics tool (Targetscan), RAP2B is found to be a target of miR-194, and miR-194 down-regulates the expression level of RAP2B via directly targeting its 3'UTR. Knockdown of RAP2B also inhibited cell proliferation and invasion in J28 cells. More importantly, restoration of RAP2B activity rescued the inhibitory effects of miR-194 on cell proliferation and invasion in J82 cells. Further analysis of bladder cancer clinical samples showed that miR-194 is inversely correlated with RAP2B. Collectively, our study may implicate that miR-194 plays an important role in the regulation of bladder cancer progression. In summary, our study may implicate that miR-194 acts as a tumor suppressor and plays an important role in the regulation of bladder cancer progression.
Collapse
Affiliation(s)
- Mingran Zhang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Jiangsu Province, China.
| | - Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Jiangsu Province, China.
| | - Li Cui
- Department of Urology, The Third Affiliated Hospital of Soochow University, Jiangsu Province, China.
| |
Collapse
|
40
|
ZHOU LIRONG, DI QINGGUO, SUN BAOHUA, WANG XIAOSHENG, LI MIN, SHI JIAN. MicroRNA-194 restrains the cell progression of non-small cell lung cancer by targeting human nuclear distribution protein C. Oncol Rep 2016; 35:3435-44. [DOI: 10.3892/or.2016.4708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/07/2016] [Indexed: 11/06/2022] Open
|
41
|
α-Melanocyte-stimulating hormone prevents glutamate excitotoxicity in developing chicken retina via MC4R-mediated down-regulation of microRNA-194. Sci Rep 2015; 5:15812. [PMID: 26507936 PMCID: PMC4623527 DOI: 10.1038/srep15812] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/30/2015] [Indexed: 11/29/2022] Open
Abstract
Glutamate excitotoxicity is a common pathology to blinding ischemic retinopathies, such as diabetic retinopathy, glaucoma, and central retinal vein or artery occlusion. The development of an effective interventional modality to glutamate excitotoxicity is hence important to preventing blindness. Herein we showed that α-melanocyte-stimulating hormone (α-MSH) time-dependently protected against glutamate-induced cell death and tissue damage in an improved embryonic chicken retinal explant culture system. α-MSH down-regulated microRNA-194 (miR-194) expression during the glutamate excitotoxicity in the retinal explants. Furthermore, pharmacological antagonists to melanocortin 4 receptor (MC4R) and lentivirus-mediated overexpression of pre-miR-194 abrogated the suppressing effects of α-MSH on glutamate-induced activities of caspase 3 or 7, the ultimate enzymes for glutamate-induced cell death. These results suggest that the protective effects of α-MSH may be due to the MC4R mediated-down-regulation of miR-194 during the glutamate-induced excitotoxicity. Finally, α-MSH attenuated cell death and recovered visual functions in glutamate-stimulated post-hatch chick retinas. These results demonstrate the previously undescribed protective effects of α-MSH against glutamate-induced excitotoxic cell death in the cone-dominated retina both in vitro and in vivo, and indicate a novel molecular mechanism linking MC4R-mediated signaling to miR-194.
Collapse
|
42
|
Chen P, Yao GD. The role of cullin proteins in gastric cancer. Tumour Biol 2015; 37:29-37. [PMID: 26472722 DOI: 10.1007/s13277-015-4154-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/23/2015] [Indexed: 01/09/2023] Open
Abstract
The cullin proteins are a family of scaffolding proteins that associate with RING proteins and ubiquitin E3 ligases and mediate substrate-receptor bindings. Thus, cullin proteins regulate the specificity of ubiquitin targeting in the regulation of proteins involved in various cellular processes, including proliferation, differentiation, and apoptosis. There are seven cullin proteins that have been identified in eukaryotes: CUL1, CUL2, CUL3, CUL4A, CUL4B, CUL5, and CUL7/p53-associated parkin-like cytoplasmic protein. All of these proteins contain a conserved cullin homology domain that binds to RING box proteins. Cullin-RING ubiquitin ligase complexes are activated upon post-translational modification by neural precursor cell-expressed, developmentally downregulated protein 8. The aberrant expression of several cullin proteins has been implicated in many cancers though the significance in gastric cancer has been less well investigated. This review provides the first systematic discussion of the associations between all members of the cullin protein family and gastric cancer. Functional and regulatory mechanisms of cullin proteins in gastric carcinoma progression are also summarized along with a discussion concerning future research areas. Accumulating evidence suggests a critical role of cullin proteins in tumorigenesis, and a better understanding of the function of these individual cullin proteins and their targets will help identify potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Peng Chen
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Tong-Dao-Bei Street, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Guo-Dong Yao
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Tong-Dao-Bei Street, Hohhot, Inner Mongolia, 010050, People's Republic of China.
| |
Collapse
|
43
|
Huang YK, Yu JC. Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: An update and review. World J Gastroenterol 2015; 21:9863-9886. [PMID: 26379393 PMCID: PMC4566381 DOI: 10.3748/wjg.v21.i34.9863] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/15/2015] [Accepted: 07/18/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common cancer and the third leading cause of cancer mortality worldwide. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the most popular non-coding RNAs in cancer research. To date, the roles of miRNAs and lncRNAs have been extensively studied in GC, suggesting that miRNAs and lncRNAs represent a vital component of tumor biology. Furthermore, circulating miRNAs and lncRNAs are found to be dysregulated in patients with GC compared with healthy individuals. Circulating miRNAs and lncRNAs may function as promising biomarkers to improve the early detection of GC. Multiple possibilities for miRNA secretion have been elucidated, including active secretion by microvesicles, exosomes, apoptotic bodies, high-density lipoproteins and protein complexes as well as passive leakage from cells. However, the mechanism underlying lncRNA secretion and the functions of circulating miRNAs and lncRNAs have not been fully illuminated. Concurrently, to standardize results of global investigations of circulating miRNAs and lncRNAs biomarker studies, several recommendations for pre-analytic considerations are put forward. In this review, we summarize the known circulating miRNAs and lncRNAs for GC diagnosis. The possible mechanism of miRNA and lncRNA secretion as well as methodologies for identification of circulating miRNAs and lncRNAs are also discussed. The topics covered here highlight new insights into GC diagnosis and screening.
Collapse
|