1
|
Mu X, Zhou Y, Yu Y, Zhang M, Liu J. The roles of cancer stem cells and therapeutic implications in melanoma. Front Immunol 2024; 15:1486680. [PMID: 39611156 PMCID: PMC11602477 DOI: 10.3389/fimmu.2024.1486680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Melanoma is a highly malignant skin tumor characterized by high metastasis and poor prognosis. Recent studies have highlighted the pivotal role of melanoma stem cells (MSCs)-a subpopulation of cancer stem cells (CSCs)-in driving tumor growth, metastasis, therapeutic resistance, and recurrence. Similar to CSCs in other cancers, MSCs possess unique characteristics, including specific surface markers, dysregulated signaling pathways, and the ability to thrive within complex tumor microenvironment (TME). This review explored the current landscape of MSC research, discussing the identification of MSC-specific surface markers, the role of key signaling pathways such as Wnt/β-catenin, Notch, and Hedgehog (Hh), and how interactions within the TME, including hypoxia and immune cells, contribute to MSC-mediated drug resistance and metastatic behavior. Furthermore, we also investigated the latest therapeutic strategies targeting MSCs, such as small-molecule inhibitors, immune-based approaches, and novel vaccine developments, with an emphasis on their potential to overcome melanoma progression and improve clinical outcomes. This review aims to provide valuable insights into the complex roles of MSCs in melanoma biology and offers perspectives for future research and therapeutic advances against this challenging disease.
Collapse
Affiliation(s)
- Xiaoli Mu
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yixin Zhou
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongxin Yu
- The Department of Plastic and Reconstructive Surgery, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingyi Zhang
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiyan Liu
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Jasim SA, Farber IM, Noraldeen SAM, Bansal P, Alsaab HO, Abdullaev B, Alkhafaji AT, Alawadi AH, Hamzah HF, Mohammed BA. Incorporation of immunotherapies and nanomedicine to better normalize angiogenesis-based cancer treatment. Microvasc Res 2024; 154:104691. [PMID: 38703993 DOI: 10.1016/j.mvr.2024.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Neoadjuvant targeting of tumor angiogenesis has been developed and approved for the treatment of malignant tumors. However, vascular disruption leads to tumor hypoxia, which exacerbates the treatment process and causes drug resistance. In addition, successful delivery of therapeutic agents and efficacy of radiotherapy require normal vascular networks and sufficient oxygen, which complete tumor vasculopathy hinders their efficacy. In view of this controversy, an optimal dose of FDA-approved anti-angiogenic agents and combination with other therapies, such as immunotherapy and the use of nanocarrier-mediated targeted therapy, could improve therapeutic regimens, reduce the need for administration of high doses of chemotherapeutic agents and subsequently reduce side effects. Here, we review the mechanism of anti-angiogenic agents, highlight the challenges of existing therapies, and present how the combination of immunotherapies and nanomedicine could improve angiogenesis-based tumor treatment.
Collapse
Affiliation(s)
| | - Irina M Farber
- Department of children's diseases of the F. Filatov clinical institute of children's health, I. M. Sechenov First Moscow State Medical University of Health of Russian Federation (Sechenov University), Moscow, Russia
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Bekhzod Abdullaev
- Research Department of Biotechnology, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Uzbekistan; Department of Oncology, School of Medicine, Central Asian University, Milliy Bog Street 264, Tashkent 111221, Uzbekistan..
| | | | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Qadisiyyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | |
Collapse
|
3
|
Abbà C, Croce S, Valsecchi C, Lenta E, Campanelli R, Codazzi AC, Brazzelli V, Carolei A, Catarsi P, Acquafredda G, Apicella A, Caliogna L, Berni M, Mannarino S, Avanzini MA, Rosti V, Massa M. Circulating Mesenchymal Stromal Cells in Patients with Infantile Hemangioma: Evaluation of Their Functional Capacity and Gene Expression Profile. Cells 2024; 13:254. [PMID: 38334645 PMCID: PMC10854919 DOI: 10.3390/cells13030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
We previously published that in patients with infantile hemangioma (IH) at the onset (T0) colony forming unit-fibroblasts (CFU-Fs) are present in in vitro cultures from PB. Herein, we characterize these CFU-Fs and investigate their potential role in IH pathogenesis, before and after propranolol therapy. The CFU-F phenotype (by flow cytometry), their differentiation capacity and ability to support angiogenesis (by in vitro cultures) and their gene expression (by RT-PCR) were evaluated. We found that CFU-Fs are actual circulating MSCs (cMSCs). In patients at T0, cMSCs had reduced adipogenic potential, supported the formation of tube-like structures in vitro and showed either inflammatory (IL1β and ESM1) or angiogenic (F3) gene expression higher than that of cMSCs from CTRLs. In patients receiving one-year propranolol therapy, the cMSC differentiation in adipocytes improved, while their support in in vitro tube-like formation was lost; no difference was found between patient and CTRL cMSC gene expressions. In conclusion, in patients with IH at T0 the cMSC reduced adipogenic potential, their support in angiogenic activity and the inflammatory/angiogenic gene expression may fuel the tumor growth. One-year propranolol therapy modifies this picture, suggesting cMSCs as one of the drug targets.
Collapse
Affiliation(s)
- Carlotta Abbà
- General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Stefania Croce
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Haematology Oncology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (S.C.); (C.V.); (E.L.); (G.A.); (M.A.A.)
| | - Chiara Valsecchi
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Haematology Oncology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (S.C.); (C.V.); (E.L.); (G.A.); (M.A.A.)
| | - Elisa Lenta
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Haematology Oncology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (S.C.); (C.V.); (E.L.); (G.A.); (M.A.A.)
| | - Rita Campanelli
- Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (R.C.); (A.C.); (P.C.); (V.R.)
| | - Alessia C. Codazzi
- Pediatric Cardiology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.C.C.); (A.A.)
| | - Valeria Brazzelli
- Institute of Dermatology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Adriana Carolei
- Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (R.C.); (A.C.); (P.C.); (V.R.)
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (R.C.); (A.C.); (P.C.); (V.R.)
| | - Gloria Acquafredda
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Haematology Oncology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (S.C.); (C.V.); (E.L.); (G.A.); (M.A.A.)
| | - Antonia Apicella
- Pediatric Cardiology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.C.C.); (A.A.)
| | - Laura Caliogna
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.B.)
| | - Micaela Berni
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.B.)
| | - Savina Mannarino
- Pediatric Cardiology Unit, V. Buzzi Children’s Hospital, 20154 Milan, Italy;
| | - Maria A. Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Haematology Oncology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (S.C.); (C.V.); (E.L.); (G.A.); (M.A.A.)
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (R.C.); (A.C.); (P.C.); (V.R.)
| | - Margherita Massa
- General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| |
Collapse
|
4
|
Cras A, Larghero J, Rossi E, Blandinières A, Gaussem P, Smadja DM. Nestin is a New Partner in Endothelial Colony Forming Cell Angiogenic Potential. Stem Cell Rev Rep 2023; 19:2541-2550. [PMID: 37452965 DOI: 10.1007/s12015-023-10587-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Nestin, an intermediate filament protein expressed by progenitor cells, is associated with tissue regeneration. Although nestin expression has been reported in poorly differentiated and newly formed blood vessels, its role in endothelial cells remains unclear. In this study, we investigated the involvement of nestin in the angiogenic properties of endothelial colony-forming cells (ECFCs) derived from human umbilical cord blood. Our results demonstrate that ECFCs express high levels of nestin, and that its inhibition by small interfering RNAs decreased ECFC proliferation, migration in response to SDF-1 and VEGF-A, tubulogenesis, and adhesion on collagen. These effects are associated with modulation of focal adhesion kinase phosphorylation. Furthermore, nestin silencing resulted in reduced revascularization in a mouse hindlimb ischemia model. In conclusion, these findings provide evidence that nestin more than being a structural protein, is an active player in ECFC angiogenic properties.
Collapse
Affiliation(s)
- Audrey Cras
- Université de Paris Cité, INSERM, Innovative Therapies in Hemostasis, F-75006, Paris, France
- Cell therapy unit, AP-HP, Saint Louis Hospital, F-75010, Paris, France
| | - Jérôme Larghero
- Cell therapy unit, AP-HP, Saint Louis Hospital, F-75010, Paris, France
- Université de Paris Cité, INSERM, U976, CIC-BT, F-75010, Paris, France
| | - Elisa Rossi
- Université de Paris Cité, INSERM, Innovative Therapies in Hemostasis, F-75006, Paris, France
| | - Adeline Blandinières
- Université de Paris Cité, INSERM, Innovative Therapies in Hemostasis, F-75006, Paris, France
- Hematology department, AP-HP, Georges Pompidou European Hospital, F-75015, Paris, France
| | - Pascale Gaussem
- Université de Paris Cité, INSERM, Innovative Therapies in Hemostasis, F-75006, Paris, France
- Hematology department, AP-HP, Georges Pompidou European Hospital, F-75015, Paris, France
| | - David M Smadja
- Université de Paris Cité, INSERM, Innovative Therapies in Hemostasis, F-75006, Paris, France.
- Hematology department, AP-HP, Georges Pompidou European Hospital, F-75015, Paris, France.
- Inserm Innovative Therapies in Haemostasis, 56 rue Leblanc, F-75015, Paris, France.
| |
Collapse
|
5
|
Dianat-Moghadam H, Nedaeinia R, Keshavarz M, Azizi M, Kazemi M, Salehi R. Immunotherapies targeting tumor vasculature: challenges and opportunities. Front Immunol 2023; 14:1226360. [PMID: 37727791 PMCID: PMC10506263 DOI: 10.3389/fimmu.2023.1226360] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Angiogenesis is a hallmark of cancer biology, and neoadjuvant therapies targeting either tumor vasculature or VEGF signaling have been developed to treat solid malignant tumors. However, these therapies induce complete vascular depletion leading to hypoxic niche, drug resistance, and tumor recurrence rate or leading to impaired delivery of chemo drugs and immune cell infiltration at the tumor site. Achieving a balance between oxygenation and tumor growth inhibition requires determining vascular normalization after treatment with a low dose of antiangiogenic agents. However, monotherapy within the approved antiangiogenic agents' benefits only some tumors and their efficacy improvement could be achieved using immunotherapy and emerging nanocarriers as a clinical tool to optimize subsequent therapeutic regimens and reduce the need for a high dosage of chemo agents. More importantly, combined immunotherapies and nano-based delivery systems can prolong the normalization window while providing the advantages to address the current treatment challenges within antiangiogenic agents. This review summarizes the approved therapies targeting tumor angiogenesis, highlights the challenges and limitations of current therapies, and discusses how vascular normalization, immunotherapies, and nanomedicine could introduce the theranostic potentials to improve tumor management in future clinical settings.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Aba PE, Ihedioha JI, Asuzu IU. A review of the mechanisms of anti-cancer activities of some medicinal plants-biochemical perspectives. J Basic Clin Physiol Pharmacol 2023; 34:419-428. [PMID: 34936737 DOI: 10.1515/jbcpp-2021-0257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Cancer is a disease resulting in unbridled growth of cells due to dysregulation in the balance of cell populations. Various management procedures in handling cases of cancer are not without their adverse side effects on the normal cells. Medicinal plants/herbs have been in use in the management of various ailments, including cancer, for a long time. Medicinal plants have been credited with wide safety margins, cost effectiveness, availability and diverse activities. This study reviewed various mechanisms of anti-cancer activities of some medicinal plants from a biochemical perspective. The mechanisms of anti-cancer activities of plant compounds addressed in this article include induction of apoptosis, anti-angiogenic effects, anti-metastasis, inhibition of cell cycle, inhibition of DNA destruction and effects on key enzymes, cytotoxic and anti-oxidant effects. The anti-cancer activities of some of the plants involve more than one mechanism.
Collapse
Affiliation(s)
- Patrick E Aba
- Department of Veterinary Physiology and Pharmacology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - John I Ihedioha
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Isaac U Asuzu
- Department of Veterinary Physiology and Pharmacology, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
7
|
Barachini S, Ghelardoni S, Madonna R. Vascular Progenitor Cells: From Cancer to Tissue Repair. J Clin Med 2023; 12:jcm12062399. [PMID: 36983398 PMCID: PMC10059009 DOI: 10.3390/jcm12062399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Vascular progenitor cells are activated to repair and form a neointima following vascular damage such as hypertension, atherosclerosis, diabetes, trauma, hypoxia, primary cancerous lesions and metastases as well as catheter interventions. They play a key role not only in the resolution of the vascular lesion but also in the adult neovascularization and angiogenesis sprouting (i.e., the growth of new capillaries from pre-existing ones), often associated with carcinogenesis, favoring the formation of metastases, survival and progression of tumors. In this review, we discuss the biology, cellular plasticity and pathophysiology of different vascular progenitor cells, including their origins (sources), stimuli and activated pathways that induce differentiation, isolation and characterization. We focus on their role in tumor-induced vascular injury and discuss their implications in promoting tumor angiogenesis during cancer proliferation and migration.
Collapse
Affiliation(s)
- Serena Barachini
- Laboratory for Cell Therapy, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Sandra Ghelardoni
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56126 Pisa, Italy
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
8
|
Ross M, Kargl CK, Ferguson R, Gavin TP, Hellsten Y. Exercise-induced skeletal muscle angiogenesis: impact of age, sex, angiocrines and cellular mediators. Eur J Appl Physiol 2023:10.1007/s00421-022-05128-6. [PMID: 36715739 DOI: 10.1007/s00421-022-05128-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/25/2022] [Indexed: 01/31/2023]
Abstract
Exercise-induced skeletal muscle angiogenesis is a well-known physiological adaptation that occurs in humans in response to exercise training and can lead to endurance performance benefits, as well as improvements in cardiovascular and skeletal tissue health. An increase in capillary density in skeletal muscle improves diffusive oxygen exchange and waste extraction, and thus greater fatigue resistance, which has application to athletes but also to the general population. Exercise-induced angiogenesis can significantly contribute to improvements in cardiovascular and metabolic health, such as the increase in muscle glucose uptake, important for the prevention of diabetes. Recently, our understanding of the mechanisms by which angiogenesis occurs with exercise has grown substantially. This review will detail the biochemical, cellular and biomechanical signals for exercise-induced skeletal muscle angiogenesis, including recent work on extracellular vesicles and circulating angiogenic cells. In addition, the influence of age, sex, exercise intensity/duration, as well as recent observations with the use of blood flow restricted exercise, will also be discussed in detail. This review will provide academics and practitioners with mechanistic and applied evidence for optimising training interventions to promote physical performance through manipulating capillarisation in skeletal muscle.
Collapse
Affiliation(s)
- Mark Ross
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, Scotland, UK.
| | - Christopher K Kargl
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, USA.,Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, USA
| | - Richard Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Timothy P Gavin
- Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, USA
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Role of Endothelial Progenitor Cells in Frailty. Int J Mol Sci 2023; 24:ijms24032139. [PMID: 36768461 PMCID: PMC9916666 DOI: 10.3390/ijms24032139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Frailty is a clinical condition closely related to aging which is characterized by a multidimensional decline in biological reserves, a failure of physiological mechanisms and vulnerability to minor stressors. Chronic inflammation, the impairment of endothelial function, age-related endocrine system modifications and immunosenescence are important mechanisms in the pathophysiology of frailty. Endothelial progenitor cells (EPCs) are considered important contributors of the endothelium homeostasis and turn-over. In the elderly, EPCs are impaired in terms of function, number and survival. In addition, the modification of EPCs' level and function has been widely demonstrated in atherosclerosis, hypertension and diabetes mellitus, which are the most common age-related diseases. The purpose of this review is to illustrate the role of EPCs in frailty. Initially, we describe the endothelial dysfunction in frailty, the response of EPCs to the endothelial dysfunction associated with frailty and, finally, interventions which may restore the EPCs expression and function in frail people.
Collapse
|
10
|
Transient Receptor Potential (TRP) Channels in Tumor Vascularization. Int J Mol Sci 2022; 23:ijms232214253. [PMID: 36430727 PMCID: PMC9692925 DOI: 10.3390/ijms232214253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Tumor diseases are unfortunately quick spreading, even though numerous studies are under way to improve early diagnosis and targeted treatments that take into account both the different characteristics associated with the various tumor types and the conditions of individual patients. In recent years, studies have focused on the role of ion channels in tumor development, as these proteins are involved in several cellular processes relevant to neoplastic transformation. Among all ion channels, many studies have focused on the superfamily of Transient Receptor Potential (TRP) channels, which are non-selective cation channels mediating extracellular Ca2+ influx. In this review, we examined the role of different endothelial TRP channel isoforms in tumor vessel formation, a process that is essential in tumor growth and metastasis.
Collapse
|
11
|
Dynamics of endothelial progenitor cells in patients with advanced hepatocellular carcinoma. Dig Liver Dis 2022; 54:911-917. [PMID: 34876355 DOI: 10.1016/j.dld.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Circulating endothelial progenitor cells (EPC) predict tumor vascularization and disease progression, but limited information is available on their dynamics in hepatocellular carcinoma (HCC) undergoing systemic treatment. METHODS We prospectively analyzed different populations of EPC in 16 patients with advanced HCC receiving sorafenib. Patients were studied before therapy (T0, n = 16) and after two (T2, n = 12) and eight weeks (T8, n = 8), using high-performance flow-cytometry. The tumor response at T8 was categorized as progressive disease (PD) or clinical benefit (CB, all other responses). RESULTS At T0, higher levels of CD34+CD133+KDR+ and CD34+KDR+ were observed in patients with alpha-fetoprotein ≥400 ng/ml or non-viral liver disease, whereas CD34+CD133+KDR+ cells were virtually absent in patients with vascular invasion. CD34+KDR+ and CD34+CD133+KDR+ were directly correlated with platelet count. Frequencies of all populations of EPC declined in patients receiving sorafenib. Levels of CD34+CD133+ were higher at T0 in patients with CB compared to patients with PD. In patients belonging to the CB group CD34+KDR+ cells at T0 were directly correlated to platelet count. CONCLUSION In patients with advanced HCC, EPC are directly correlated with platelet count, suggesting a common activation of selected bone marrow pathways. Levels of a CD34+KDR+ are higher at baseline in patients responding to sorafenib.
Collapse
|
12
|
Muñoz R, Girotti A, Hileeto D, Arias FJ. Metronomic Anti-Cancer Therapy: A Multimodal Therapy Governed by the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13215414. [PMID: 34771577 PMCID: PMC8582362 DOI: 10.3390/cancers13215414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Metronomic chemotherapy with different mechanisms of action against cancer cells and their microenvironment represents an exceptional holistic cancer treatment. Each type of tumor has its own characteristics, including each individual tumor in each patient. Understanding the complexity of the dynamic interactions that take place between tumor and stromal cells and the microenvironment in tumor progression and metastases, as well as the response of the host and the tumor itself to anticancer therapy, will allow therapeutic actions with long-lasting effects to be implemented using metronomic regimens. This study aims to highlight the complexity of cellular interactions in the tumor microenvironment and summarize some of the preclinical and clinical results that explain the multimodality of metronomic therapy, which, together with its low toxicity, supports an inhibitory effect on the primary tumor and metastases. We also highlight the possible use of nano-therapeutic agents as good partners for metronomic chemotherapy. Abstract The concept of cancer as a systemic disease, and the therapeutic implications of this, has gained special relevance. This concept encompasses the interactions between tumor and stromal cells and their microenvironment in the complex setting of primary tumors and metastases. These factors determine cellular co-evolution in time and space, contribute to tumor progression, and could counteract therapeutic effects. Additionally, cancer therapies can induce cellular and molecular responses in the tumor and host that allow them to escape therapy and promote tumor progression. In this study, we describe the vascular network, tumor-infiltrated immune cells, and cancer-associated fibroblasts as sources of heterogeneity and plasticity in the tumor microenvironment, and their influence on cancer progression. We also discuss tumor and host responses to the chemotherapy regimen, at the maximum tolerated dose, mainly targeting cancer cells, and a multimodal metronomic chemotherapy approach targeting both cancer cells and their microenvironment. In a combination therapy context, metronomic chemotherapy exhibits antimetastatic efficacy with low toxicity but is not exempt from resistance mechanisms. As such, a better understanding of the interactions between the components of the tumor microenvironment could improve the selection of drug combinations and schedules, as well as the use of nano-therapeutic agents against certain malignancies.
Collapse
Affiliation(s)
- Raquel Muñoz
- Department of Biochemistry, Physiology and Molecular Biology, University of Valladolid, Paseo de Belén, 47011 Valladolid, Spain
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
- Correspondence:
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| | - Denise Hileeto
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 361, Canada;
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| |
Collapse
|
13
|
Redrado M, Benedi A, Marzo I, García‐Otín AL, Fernández‐Moreira V, Concepción Gimeno M. Multifunctional Heterometallic Ir III -Au I Probes as Promising Anticancer and Antiangiogenic Agents. Chemistry 2021; 27:9885-9897. [PMID: 33860585 PMCID: PMC8361937 DOI: 10.1002/chem.202100707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/18/2022]
Abstract
A new class of emissive cyclometallated IrIII -AuI complexes with a bis(diphenylphosphino) methanide bridging ligand was successfully synthesised from the diphosphino complex [Ir(N^C)2 (dppm)]+ (1). The different gold ancillary ligand, a triphenylphosphine (2), a chloride (3) or a thiocytosine (4) did not reveal any significant effect on the photophysical properties, which are mainly due to metal-to-ligand charge-transfer (3 MLCT) transitions based on IrIII . However, the AuI fragment, along with the ancillary ligand, seemed crucial for the bioactivity in A549 lung carcinoma cells versus endothelial cells. Both cell types display variable sensitivities to the complexes (IC50 =0.6-3.5 μM). The apoptotic pathway is activated in all cases, and paraptotic cell death seems to take place at initial stages in A549 cells. Species 2-4 showed at least dual lysosomal and mitochondrial biodistribution in A549 cells, with an initial lysosomal localisation and a possible trafficking process between both organelles with time. The bimetallic IrIII -AuI complexes disrupted the mitochondrial transmembrane potential in A549 cells and increased reactive oxygen species (ROS) generation and thioredoxin reductase (TrxR) inhibition in comparison with that displayed by the monometallic complex 1. Angiogenic activity assays performed in endothelial cells revealed the promising antimetastatic potential of 1, 2 and 4.
Collapse
Affiliation(s)
- Marta Redrado
- Departamento de Química InorgánicaInstituto de Síntesis Química y Catálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| | - Andrea Benedi
- Departamento de Bioquímica y Biología CelularUniversidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Isabel Marzo
- Departamento de Bioquímica y Biología CelularUniversidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Angel L. García‐Otín
- Unidad de Investigación TraslacionalHospital Universitario Miguel ServetInstituto Aragonés de Ciencias de la Salud (IACS)/Instituto de Investigación Sanitaria Aragón50009ZaragozaSpain
| | - Vanesa Fernández‐Moreira
- Departamento de Química InorgánicaInstituto de Síntesis Química y Catálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| | - M. Concepción Gimeno
- Departamento de Química InorgánicaInstituto de Síntesis Química y Catálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza50009ZaragozaSpain
| |
Collapse
|
14
|
Armani G, Pozzi E, Pagani A, Porta C, Rizzo M, Cicognini D, Rovati B, Moccia F, Pedrazzoli P, Ferraris E. The heterogeneity of cancer endothelium: The relevance of angiogenesis and endothelial progenitor cells in cancer microenvironment. Microvasc Res 2021; 138:104189. [PMID: 34062191 DOI: 10.1016/j.mvr.2021.104189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023]
Abstract
Tumor-associated vessels constitution is the result of angiogenesis, the hallmark of cancer essential for tumor to develop in dimension and to spread throughout the organism. Tumor endothelium is configured as an active functioning organ capable of determine interaction with the immune response and all the other components of the variegate cancer microenvironment, determining reciprocal influence. Angiogenesis is here analyzed in its molecular and cellular mechanisms, multiple mediators and principal players, represented by Endothelial Cells. It is discussed the striking heterogeneity of cancer endothelium, due to morphological and molecular aberrations that it often presents and its multiple origin. Among the cells that participate to the composition of tumor vasculature, Endothelial Progenitor Cells represent an important source for physical sustain and paracrine signaling in the process of angiogenesis. Treatment options are reviewed, with particular focus on novel therapeutic strategies for overcoming tumor resistance to anti-angiogenic agents.
Collapse
Affiliation(s)
- Giovanna Armani
- Division of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Italy..
| | - Emma Pozzi
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna Pagani
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Camillo Porta
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Mimma Rizzo
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Daniela Cicognini
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Bianca Rovati
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Moccia
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paolo Pedrazzoli
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Ferraris
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
15
|
Cun Y, Diao B, Zhang Z, Wang G, Yu J, Ma L, Rao Z. Role of the stromal cell derived factor-1 in the biological functions of endothelial progenitor cells and its underlying mechanisms. Exp Ther Med 2020; 21:39. [PMID: 33273969 PMCID: PMC7706408 DOI: 10.3892/etm.2020.9471] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Stromal cell derived factor-1 (SDF-1) is a chemokine that plays a critical role in the homing of stem and progenitor cells, including endothelial progenitor cells (EPCs). However, little research has been undertaken to evaluate the roles of SDF-1 in the biological functions of EPCs and related signaling pathways. The present study aimed to investigate the biological functions of EPCs in response to SDF-1, as well as the underlying mechanisms. The effects of SDF-1 treatment on EPC proliferation, migration and tube formation were assessed by performing MTS, Transwell and in vitro tube formation assays, respectively. The phosphorylation status of Akt and ERK was evaluated by western blotting. The present results indicated that SDF-1 treatment enhanced EPC proliferation, migration and tube formation compared with the control group. Furthermore, SDF-1-induced EPC proliferation was significantly reduced following treatment with a C-X-C Motif Chemokine Receptor 4 antagonist (AMD3100), a PI3K inhibitor (LY294002) and the mitogen-activated protein kinase kinase inhibitor (MEK; PD98059). SDF-1-induced migration and angiogenesis were significantly suppressed by the PI3K inhibitor, but not the MEK inhibitor. Moreover, SDF-1 significantly increased the protein expression levels of phosphorylated (p)-Akt and p-ERK; however, SDF-1-induced effects on protein expression were suppressed by AMD3100, LY294002 and PD98059. Thus, SDF-1-induced EPC proliferation was mediated by activation of the Akt and ERK signaling pathways, whereas SDF-1-mediated EPC migration and tube formation only involved activation of the Akt signaling pathway.
Collapse
Affiliation(s)
- Yanping Cun
- Department of Oncology, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Bo Diao
- Department of Clinical Experiment, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Zhimin Zhang
- Department of Oncology, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Gang Wang
- Department of Clinical Experiment, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Jing Yu
- Department of Clinical Experiment, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Lianting Ma
- Department of Neurosurgery, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Zhiguo Rao
- Department of Oncology, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
16
|
Negri S, Faris P, Rosti V, Antognazza MR, Lodola F, Moccia F. Endothelial TRPV1 as an Emerging Molecular Target to Promote Therapeutic Angiogenesis. Cells 2020; 9:cells9061341. [PMID: 32471282 PMCID: PMC7349285 DOI: 10.3390/cells9061341] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Therapeutic angiogenesis represents an emerging strategy to treat ischemic diseases by stimulating blood vessel growth to rescue local blood perfusion. Therefore, injured microvasculature may be repaired by stimulating resident endothelial cells or circulating endothelial colony forming cells (ECFCs) or by autologous cell-based therapy. Endothelial Ca2+ signals represent a crucial player in angiogenesis and vasculogenesis; indeed, several angiogenic stimuli induce neovessel formation through an increase in intracellular Ca2+ concentration. Several members of the Transient Receptor Potential (TRP) channel superfamily are expressed and mediate Ca2+-dependent functions in vascular endothelial cells and in ECFCs, the only known truly endothelial precursor. TRP Vanilloid 1 (TRPV1), a polymodal cation channel, is emerging as an important player in endothelial cell migration, proliferation, and tubulogenesis, through the integration of several chemical stimuli. Herein, we first summarize TRPV1 structure and gating mechanisms. Next, we illustrate the physiological roles of TRPV1 in vascular endothelium, focusing our attention on how endothelial TRPV1 promotes angiogenesis. In particular, we describe a recent strategy to stimulate TRPV1-mediated pro-angiogenic activity in ECFCs, in the presence of a photosensitive conjugated polymer. Taken together, these observations suggest that TRPV1 represents a useful target in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; (M.R.A.); (F.L.)
| | - Francesco Lodola
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy; (M.R.A.); (F.L.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (S.N.); (P.F.)
- Correspondence:
| |
Collapse
|
17
|
Huizer K, Sacchetti A, Swagemakers S, van der Spek PJ, Dik W, Mustafa DA, Kros JM. Circulating angiogenic cells in glioblastoma: toward defining crucial functional differences in CAC-induced neoplastic versus reactive neovascularization. Neurooncol Adv 2020; 2:vdaa040. [PMID: 32642695 PMCID: PMC7276933 DOI: 10.1093/noajnl/vdaa040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background In order to identify suitable therapeutic targets for glioma anti-angiogenic therapy, the process of neovascularization mediated by circulating angiogenic cells (CACs) needs to be scrutinized. Methods In the present study, we compared the expression of neovascularization-related genes by 3 circulating CAC subsets (hematopoietic progenitor cells [HPCs], CD34+, and KDR+ cells; internal controls: peripheral blood mononuclear cells and circulating endothelial cells) of treatment-naïve patients with glioblastoma (GBM) to those of patients undergoing reactive neovascularization (myocardial infarction (MI). CACs from umbilical cord (representing developmental neovascularization) and healthy subjects served as controls. Fluorescent-activated cell sorting was used to isolate CACs, RT-PCR to determine the expression levels of a panel of 48 neovascularization-related genes, and Luminex assays to measure plasma levels of 21 CAC-related circulating molecules. Results We found essential differences in gene expression between GBM and MI CACs. GBM CACs had a higher expression of proangiogenic factors (especially, KITL, CXCL12, and JAG1), growth factor and chemotactic receptors (IGF1R, TGFBR2, CXCR4, and CCR2), adhesion receptor monomers (ITGA5 and ITGA6), and matricellular factor POSTN. In addition, we found major differences in the levels of neovascularization-related plasma factors. A strong positive correlation between plasma MMP9 levels and expression of CXCR4 in the CAC subset of HPCs was found in GBM patients. Conclusions Our findings indicate that CAC-mediated neovascularization in GBM is characterized by more efficient CAC homing to target tissue and a more potent proangiogenic response than in physiologic tissue repair in MI. Our findings can aid in selecting targets for therapeutic strategies acting against GBM-specific CACs.
Collapse
Affiliation(s)
- Karin Huizer
- Laboratory for Tumor Immuno-Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andrea Sacchetti
- Laboratory for Tumor Immuno-Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sigrid Swagemakers
- Department of Pathology and Clinical Bio-Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bio-Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim Dik
- Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dana A Mustafa
- Laboratory for Tumor Immuno-Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johan M Kros
- Laboratory for Tumor Immuno-Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Jia J, Ma B, Wang S, Feng L. Therapeutic Potential of Endothelial Colony Forming Cells Derived from Human Umbilical Cord Blood. Curr Stem Cell Res Ther 2020; 14:460-465. [PMID: 30767752 DOI: 10.2174/1574888x14666190214162453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/06/2019] [Accepted: 01/24/2019] [Indexed: 02/08/2023]
Abstract
Endothelial progenitor cells (EPCs) are implicated in multiple biologic processes such as vascular homeostasis, neovascularization and tissue regeneration, and tumor angiogenesis. A subtype of EPCs is referred to as endothelial colony-forming cells (ECFCs), which display robust clonal proliferative potential and can form durable and functional blood vessels in animal models. In this review, we provide a brief overview of EPCs' characteristics, classification and origins, a summary of the progress in preclinical studies with regard to the therapeutic potential of human umbilical cord blood derived ECFCs (CB-ECFCs) for ischemia repair, tissue engineering and tumor, and highlight the necessity to select high proliferative CB-ECFCs and to optimize their recovery and expansion conditions.
Collapse
Affiliation(s)
- Jing Jia
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| | - Baitao Ma
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R., China
| | - Shaoshuai Wang
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| | - Ling Feng
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| |
Collapse
|
19
|
Negri S, Faris P, Berra-Romani R, Guerra G, Moccia F. Endothelial Transient Receptor Potential Channels and Vascular Remodeling: Extracellular Ca 2 + Entry for Angiogenesis, Arteriogenesis and Vasculogenesis. Front Physiol 2020; 10:1618. [PMID: 32038296 PMCID: PMC6985578 DOI: 10.3389/fphys.2019.01618] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Vasculogenesis, angiogenesis and arteriogenesis represent three crucial mechanisms involved in the formation and maintenance of the vascular network in embryonal and post-natal life. It has long been known that endothelial Ca2+ signals are key players in vascular remodeling; indeed, multiple pro-angiogenic factors, including vascular endothelial growth factor, regulate endothelial cell fate through an increase in intracellular Ca2+ concentration. Transient Receptor Potential (TRP) channel consist in a superfamily of non-selective cation channels that are widely expressed within vascular endothelial cells. In addition, TRP channels are present in the two main endothelial progenitor cell (EPC) populations, i.e., myeloid angiogenic cells (MACs) and endothelial colony forming cells (ECFCs). TRP channels are polymodal channels that can assemble in homo- and heteromeric complexes and may be sensitive to both pro-angiogenic cues and subtle changes in local microenvironment. These features render TRP channels the most versatile Ca2+ entry pathway in vascular endothelial cells and in EPCs. Herein, we describe how endothelial TRP channels stimulate vascular remodeling by promoting angiogenesis, arteriogenesis and vasculogenesis through the integration of multiple environmental, e.g., extracellular growth factors and chemokines, and intracellular, e.g., reactive oxygen species, a decrease in Mg2+ levels, or hypercholesterolemia, stimuli. In addition, we illustrate how endothelial TRP channels induce neovascularization in response to synthetic agonists and small molecule drugs. We focus the attention on TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPV1, TRPV4, TRPM2, TRPM4, TRPM7, TRPA1, that were shown to be involved in angiogenesis, arteriogenesis and vasculogenesis. Finally, we discuss the role of endothelial TRP channels in aberrant tumor vascularization by focusing on TRPC1, TRPC3, TRPV2, TRPV4, TRPM8, and TRPA1. These observations suggest that endothelial TRP channels represent potential therapeutic targets in multiple disorders featured by abnormal vascularization, including cancer, ischemic disorders, retinal degeneration and neurodegeneration.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Germano Guerra
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Calcium Signaling in Endothelial Colony Forming Cells in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:1013-1030. [PMID: 31646543 DOI: 10.1007/978-3-030-12457-1_40] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial colony forming cells (ECFCs) represent the only known truly endothelial precursors. ECFCs are released in peripheral circulation to restore the vascular networks dismantled by an ischemic insult or to sustain the early phases of the angiogenic switch in solid tumors. A growing number of studies demonstrated that intracellular Ca2+ signaling plays a crucial role in driving ECFC proliferation, migration, homing and neovessel formation. For instance, vascular endothelial growth factor (VEGF) triggers intracellular Ca2+ oscillations and stimulates angiogenesis in healthy ECFCs, whereas stromal derived factor-1α promotes ECFC migration through a biphasic Ca2+ signal. The Ca2+ toolkit endowed to circulating ECFCs is extremely plastic and shows striking differences depending on the physiological background of the donor. For instance, inositol-1,4,5-trisphosphate-induced Ca2+ release from the endoplasmic reticulum is downregulated in tumor-derived ECFCs, while agonists-induced store-operated Ca2+ entry is up-regulated in renal cellular carcinoma and is unaltered in breast cancer and reduced in infantile hemangioma. This remodeling of the Ca2+ toolkit prevents VEGF-induced pro-angiogenic Ca2+ oscillations in tumor-derived ECFCs. An emerging theme of research is the dysregulation of the Ca2+ toolkit in primary myelofibrosis-derived ECFCs, as this myeloproliferative disorder may depend on a driver mutation in the calreticulin gene. In this chapter, I provide a comprehensive, but succinct, description on the architecture and role of the intracellular Ca2+ signaling toolkit in ECFCs derived from umbilical cord blood and from peripheral blood of healthy donors, cancer patients and subjects affected by primary myelofibrosis.
Collapse
|
21
|
Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 2019; 77:1745-1770. [PMID: 31690961 PMCID: PMC7190605 DOI: 10.1007/s00018-019-03351-7] [Citation(s) in RCA: 1137] [Impact Index Per Article: 189.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Tumor vascularization occurs through several distinct biological processes, which not only vary between tumor type and anatomic location, but also occur simultaneously within the same cancer tissue. These processes are orchestrated by a range of secreted factors and signaling pathways and can involve participation of non-endothelial cells, such as progenitors or cancer stem cells. Anti-angiogenic therapies using either antibodies or tyrosine kinase inhibitors have been approved to treat several types of cancer. However, the benefit of treatment has so far been modest, some patients not responding at all and others acquiring resistance. It is becoming increasingly clear that blocking tumors from accessing the circulation is not an easy task to accomplish. Tumor vessel functionality and gene expression often differ vastly when comparing different cancer subtypes, and vessel phenotype can be markedly heterogeneous within a single tumor. Here, we summarize the current understanding of cellular and molecular mechanisms involved in tumor angiogenesis and discuss challenges and opportunities associated with vascular targeting.
Collapse
Affiliation(s)
- Roberta Lugano
- The Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Mohanraj Ramachandran
- The Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Anna Dimberg
- The Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden.
| |
Collapse
|
22
|
Endothelial Ca 2+ Signaling, Angiogenesis and Vasculogenesis: just What It Takes to Make a Blood Vessel. Int J Mol Sci 2019; 20:ijms20163962. [PMID: 31416282 PMCID: PMC6721072 DOI: 10.3390/ijms20163962] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
It has long been known that endothelial Ca2+ signals drive angiogenesis by recruiting multiple Ca2+-sensitive decoders in response to pro-angiogenic cues, such as vascular endothelial growth factor, basic fibroblast growth factor, stromal derived factor-1α and angiopoietins. Recently, it was shown that intracellular Ca2+ signaling also drives vasculogenesis by stimulation proliferation, tube formation and neovessel formation in endothelial progenitor cells. Herein, we survey how growth factors, chemokines and angiogenic modulators use endothelial Ca2+ signaling to regulate angiogenesis and vasculogenesis. The endothelial Ca2+ response to pro-angiogenic cues may adopt different waveforms, ranging from Ca2+ transients or biphasic Ca2+ signals to repetitive Ca2+ oscillations, and is mainly driven by endogenous Ca2+ release through inositol-1,4,5-trisphosphate receptors and by store-operated Ca2+ entry through Orai1 channels. Lysosomal Ca2+ release through nicotinic acid adenine dinucleotide phosphate-gated two-pore channels is, however, emerging as a crucial pro-angiogenic pathway, which sustains intracellular Ca2+ mobilization. Understanding how endothelial Ca2+ signaling regulates angiogenesis and vasculogenesis could shed light on alternative strategies to induce therapeutic angiogenesis or interfere with the aberrant vascularization featuring cancer and intraocular disorders.
Collapse
|
23
|
Calogero A, Sagnelli C, Carlomagno N, Tammaro V, Candida M, Vernillo A, Peluso G, Minieri G, Santangelo M, Dodaro CA. Familial Polyposis Coli: The Management of Desmoid Tumor Bleeding. Open Med (Wars) 2019; 14:572-576. [PMID: 31410368 PMCID: PMC6689203 DOI: 10.1515/med-2019-0064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There is currently no standard treatment for desmoid tumors (DTs) associated with familial polyposis coli (FAP). Familial adenomatous polyposis in DT patients is sometimes a life-threatening condition. METHODS We enrolled all consecutive patients with FAP treated at Unit of General Surgery and Transplant, University of Naples Federico II and evaluated the incidence of DTs on FAP between 1996 and 2016. RESULTS We observed 45 consecutive patients with FAP; of these 5 were DT-FAP-associated. All 5 cases with FAP were young women, age 25 to 65 years, previously treated by colectomy. Of these, 4 patients presented a parietal localization and had been treated with a wide surgical exeresis; one patient had an intra-abdominal, mesenteric tumor that was unresectable at laparotomy. We performed CT-guided drainage, ureteral stenting, medical therapy (sulindac+tamoxifene), and chemotherapy (dacarba-zine+doxorubicine).All patients were alive and underwent follow-ups for 5 years post-surgery; only 1 patient with parietal localization showed a local relapse after 2 years. CONCLUSIONS We propose a modulated approach to the single patient with FAP, with surgery as treatment of choice for parietal localization disease and integrating different kinds of therapies (surgery alone or associated with RT, CT) for the intra-abdominal tumor.
Collapse
Affiliation(s)
- Armando Calogero
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Nicola Carlomagno
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| | - Vincenzo Tammaro
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| | - Maria Candida
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| | - Antonio Vernillo
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| | - Gaia Peluso
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| | - Gianluca Minieri
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| | - Michele Santangelo
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| | - Concetta Anna Dodaro
- General Surgery and Transplant Unit, Department of Advanced Biomedical Sciences, University of Naples Federico II, via S. Pansini, 80131 Naples, Italy
| |
Collapse
|
24
|
Scarpellino G, Genova T, Munaron L. Purinergic P2X7 Receptor: A Cation Channel Sensitive to Tumor Microenvironment. Recent Pat Anticancer Drug Discov 2019; 14:32-38. [DOI: 10.2174/1574892814666190116122256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Background: Purinergic signalling is involved in several physiological and pathophysiological processes. P2X7 Receptor (P2X7R) is a calcium-permeable ion channel that is gaining interest as a potential therapeutic target for the treatment of different diseases including inflammation, pain, psychiatric disorders and cancer. P2X7R is ubiquitously expressed and sensitive to high ATP levels, usually found in tumor microenvironment. P2X7R regulates several cell functions, from migration to cell death, but its selective contribution to tumor progression remains controversial.Objective:Current review was conducted to check involvement of P2X7R use in cancer treatment.Methods:We review the most recent patents focused on the use of P2X7R in the treatment of cancer.Results:P2X7R is an intriguing purinergic receptor that plays different roles in tumor progression.Conclusion:Powerful strategies able to selectively interfere with its expression and function should reveal helpful in the development of new anti-cancer therapies.
Collapse
Affiliation(s)
- Giorgia Scarpellino
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
25
|
Choo SY, Yoon SH, Lee DJ, Lee SH, Li K, Koo IH, Lee W, Bae SC, Lee YM. Runx3 inhibits endothelial progenitor cell differentiation and function via suppression of HIF-1α activity. Int J Oncol 2019; 54:1327-1336. [PMID: 30968151 DOI: 10.3892/ijo.2019.4713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/30/2018] [Indexed: 11/05/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are bone marrow (BM)‑derived progenitor cells that can differentiate into mature endothelial cells, contributing to vasculogenesis in the blood vessel formation process. Runt‑related transcription factor 3 (RUNX3) belongs to the Runt domain family and is required for the differentiation of specific immune cells and neurons. The tumor suppressive role of RUNX3, via the induction of apoptosis and cell cycle arrest in a variety of cancers, and its deletion or frequent silencing by epigenetic mechanisms have been studied extensively; however, its role in the differentiation of EPCs is yet to be investigated. Therefore, in the present study, adult BM‑derived hematopoietic stem cells (HSCs) were isolated from Runx3 heterozygous (Rx3+/‑) or wild‑type (WT) mice. The differentiation of EPCs from the BM‑derived HSCs of Rx3+/‑ mice was found to be significantly increased compared with those of the WT mice, as determined by the number of small or large colony‑forming units. The migration and tube formation abilities of Rx3+/‑ EPCs were also observed to be significantly increased compared with those of WT EPCs. Furthermore, the number of circulating EPCs, defined as CD34+/vascular endothelial growth factor receptor 2 (VEGFR2)+ cells, was also significantly increased in Rx3+/‑ mice. Hypoxia‑inducible factor (HIF)‑1α was upregulated in Rx3+/‑ EPCs compared with WT EPCs, even under normoxic conditions. Furthermore, in a hindlimb ischemic mouse models, the recovery of blood flow was observed to be highly stimulated in Rx3+/‑ mice compared with WT mice. Also, in a Lewis lung carcinoma cell allograft model, the tumor size in Rx3+/‑ mice was significantly larger than that in WT mice, and the EPC cell population (CD34+/VEGFR2+ cells) recruited to the tumor was greater in the Rx3+/‑ mice compared with the WT mice. In conclusion, the present study revealed that Runx3 inhibits vasculogenesis via the inhibition of EPC differentiation and functions via the suppression of HIF‑1α activity.
Collapse
Affiliation(s)
- So-Yun Choo
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo-Hyun Yoon
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Jin Lee
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sun Hee Lee
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kang Li
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In Hye Koo
- National Basic Research Laboratory of Vascular Homeostasis Regulation, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Wooin Lee
- National Basic Research Laboratory of Vascular Homeostasis Regulation, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute of Tumor Research, Chungbuk National University, Chungju 28644, Republic of Korea
| | - You Mie Lee
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
26
|
Endolysosomal Ca 2+ Signalling and Cancer Hallmarks: Two-Pore Channels on the Move, TRPML1 Lags Behind! Cancers (Basel) 2018; 11:cancers11010027. [PMID: 30591696 PMCID: PMC6356888 DOI: 10.3390/cancers11010027] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
The acidic vesicles of the endolysosomal (EL) system are emerging as an intracellular Ca2+ store implicated in the regulation of multiple cellular functions. The EL Ca2+ store releases Ca2+ through a variety of Ca2+-permeable channels, including Transient Receptor Potential (TRP) Mucolipin 1-3 (TRPML1-3) and two-pore channels 1-2 (TPC1-2), whereas EL Ca2+ refilling is sustained by the proton gradient across the EL membrane and/or by the endoplasmic reticulum (ER). EL Ca2+ signals may be either spatially restricted to control vesicle trafficking, autophagy and membrane repair or may be amplified into a global Ca2+ signal through the Ca2+-dependent recruitment of ER-embedded channels. Emerging evidence suggested that nicotinic acid adenine dinucleotide phosphate (NAADP)-gated TPCs sustain multiple cancer hallmarks, such as migration, invasiveness and angiogenesis. Herein, we first survey the EL Ca2+ refilling and release mechanisms and then focus on the oncogenic role of EL Ca2+ signaling. While the evidence in favor of TRPML1 involvement in neoplastic transformation is yet to be clearly provided, TPCs are emerging as an alternative target for anticancer therapies.
Collapse
|
27
|
Darvishi B, Majidzadeh-A K, Ghadirian R, Mosayebzadeh M, Farahmand L. Recruited bone marrow derived cells, local stromal cells and IL-17 at the front line of resistance development to anti-VEGF targeted therapies. Life Sci 2018; 217:34-40. [PMID: 30472294 DOI: 10.1016/j.lfs.2018.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Abstract
Although anti-angiogenic agents targeting VEGF have shown affordable beneficial outcomes in several human cancer types, in most pre-clinical and clinical studies, these effects are transient and followed by rapid relapse and tumor regrowth. Recently, it has been suggested that recruited bone marrow derived cells (BMDCs) to the tumor-microenvironment together with stromal cells play an important role in development of resistance to anti-VEGF therapies. Additionally, acquired resistance to anti-VEGF therapies has shown to be mediated partly through overexpression of different pro-angiogenic cytokines and growth factors including G-CSF, IL-6, IL-8, VEGF and FGF by these cells. Alongside, IL-17, a pro-inflammatory cytokine, mostly secreted by infiltrated CD4+ T helper cells, has shown to mediate resistance to anti-VEGF therapies, through recruiting BMDCs and modulating stromal cells activities including endothelial cells, tumor associated macrophages and cancer associated fibroblasts. Here, we examined the role of BMDCs, tumor stromal cells, IL-17 and their negotiation in development of resistance to anti-VEGF targeted therapies.
Collapse
Affiliation(s)
- Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Tasnim Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reihane Ghadirian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Marjan Mosayebzadeh
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
28
|
Poletto V, Rosti V, Biggiogera M, Guerra G, Moccia F, Porta C. The role of endothelial colony forming cells in kidney cancer's pathogenesis, and in resistance to anti-VEGFR agents and mTOR inhibitors: A speculative review. Crit Rev Oncol Hematol 2018; 132:89-99. [PMID: 30447930 DOI: 10.1016/j.critrevonc.2018.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/07/2018] [Accepted: 09/08/2018] [Indexed: 12/22/2022] Open
Abstract
Renal cell carcinoma (RCC) is highly dependent on angiogenesis, due to the overactivation of the VHL/HIF/VEGF/VEGFRs axis; this justifies the marked sensitivity of this neoplasm to antiangiogenic agents which, however, ultimately fail to control tumor growth. RCC also frequently shows alterations in the mTOR signaling pathway, and mTOR inhibitors have shown a similar pattern of initial activity/late failure as pure antiangiogenic agents. Understanding mechanisms of resistance to these agents would be key to improve the outcome of our patients. Circulating endothelial cells are a family of mainly bone marrow-derived progenitors, which have been postulated to be responsible of the reactivation of angiogenesis in different tumors. In this review, we shall discuss the complex nature and function of these cells, the evidence pro and contra their contribution to tumor vascularization, especially as far as RCC is concerned, and their possible role in determining resistance to presently available treatments.
Collapse
Affiliation(s)
- Valentina Poletto
- Center for the Study of Myelofibrosis, Research and Experimental Biotechnology Laboratory Area, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Research and Experimental Biotechnology Laboratory Area, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy.
| | - Francesco Moccia
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via Forlanini 6, 27100, Pavia, Italy.
| | - Camillo Porta
- Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy; present address: Department of Internal Medicine, University of Pavia, and Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, via S. Maugeri 10, 27100 Pavia, Italy.
| |
Collapse
|
29
|
Zuccolo E, Laforenza U, Ferulli F, Pellavio G, Scarpellino G, Tanzi M, Turin I, Faris P, Lucariello A, Maestri M, Kheder DA, Guerra G, Pedrazzoli P, Montagna D, Moccia F. Stim and Orai mediate constitutive Ca 2+ entry and control endoplasmic reticulum Ca 2+ refilling in primary cultures of colorectal carcinoma cells. Oncotarget 2018; 9:31098-31119. [PMID: 30123430 PMCID: PMC6089563 DOI: 10.18632/oncotarget.25785] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/23/2018] [Indexed: 12/18/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) provides a major Ca2+ entry route in cancer cells. SOCE is mediated by the assembly of Stim and Orai proteins at endoplasmic reticulum (ER)-plasma membrane junctions upon depletion of the ER Ca2+ store. Additionally, Stim and Orai proteins underpin constitutive Ca2+ entry in a growing number of cancer cell types due to the partial depletion of their ER Ca2+ reservoir. Herein, we investigated for the first time the structure and function of SOCE in primary cultures of colorectal carcinoma (CRC) established from primary tumor (pCRC) and metastatic lesions (mCRC) of human subjects. Stim1-2 and Orai1-3 transcripts were equally expressed in pCRC and mCRC cells, although Stim1 and Orai3 proteins were up-regulated in mCRC cells. The Mn2+-quenching technique revealed that constitutive Ca2+ entry was significantly enhanced in pCRC cells and was inhibited by the pharmacological and genetic blockade of Stim1, Stim2, Orai1 and Orai3. The larger resting Ca2+ influx in pCRC was associated to their lower ER Ca2+ content as compared to mCRC cells. Pharmacological and genetic blockade of Stim1, Stim2, Orai1 and Orai3 prevented ER-dependent Ca2+ release, thereby suggesting that constitutive SOCE maintains ER Ca2+ levels. Nevertheless, pharmacological and genetic blockade of Stim1, Stim2, Orai1 and Orai3 did not affect CRC cell proliferation and migration. These data provide the first evidence that Stim and Orai proteins mediate constitutive Ca2+ entry and replenish ER with Ca2+ in primary cultures of CRC cells. However, SOCE is not a promising target to design alternative therapies for CRC.
Collapse
Affiliation(s)
- Estella Zuccolo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | | | - Federica Ferulli
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Matteo Tanzi
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ilaria Turin
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pawan Faris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Department of Biology, College of Science, Salahaddin University, Erbil, Kurdistan-Region of Iraq, Iraq
| | - Angela Lucariello
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Marcello Maestri
- Unit of General Surgery, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dlzar Ali Kheder
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Department of Biology, University of Zakho, Zakho, Kurdistan-Region of Iraq, Iraq
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Paolo Pedrazzoli
- Medical Oncology, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniela Montagna
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
30
|
Zuazo-Gaztelu I, Casanovas O. Unraveling the Role of Angiogenesis in Cancer Ecosystems. Front Oncol 2018; 8:248. [PMID: 30013950 PMCID: PMC6036108 DOI: 10.3389/fonc.2018.00248] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Activation of the tumor and stromal cell-driven angiogenic program is one of the first requirements in the tumor ecosystem for growth and dissemination. The understanding of the dynamic angiogenic tumor ecosystem has rapidly evolved over the last decades. Beginning with the canonical sprouting angiogenesis, followed by vasculogenesis and intussusception, and finishing with vasculogenic mimicry, the need for different neovascularization mechanisms is further explored. In addition, an overview of the orchestration of angiogenesis within the tumor ecosystem cellular and molecular components is provided. Clinical evidence has demonstrated the effectiveness of traditional vessel-directed antiangiogenics, stressing on the important role of angiogenesis in tumor establishment, dissemination, and growth. Particular focus is placed on the interaction between tumor cells and their surrounding ecosystem, which is now regarded as a promising target for the development of new antiangiogenics.
Collapse
Affiliation(s)
- Iratxe Zuazo-Gaztelu
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| | - Oriol Casanovas
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| |
Collapse
|
31
|
Ma S, Pradeep S, Hu W, Zhang D, Coleman R, Sood A. The role of tumor microenvironment in resistance to anti-angiogenic therapy. F1000Res 2018; 7:326. [PMID: 29560266 PMCID: PMC5854986 DOI: 10.12688/f1000research.11771.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
Anti-angiogenic therapy has been demonstrated to increase progression-free survival in patients with many different solid cancers. Unfortunately, the benefit in overall survival is modest and the rapid emergence of drug resistance is a significant clinical problem. Over the last decade, several mechanisms have been identified to decipher the emergence of resistance. There is a multitude of changes within the tumor microenvironment (TME) in response to anti-angiogenic therapy that offers new therapeutic opportunities. In this review, we compile results from contemporary studies related to adaptive changes in the TME in the development of resistance to anti-angiogenic therapy. These include preclinical models of emerging resistance, dynamic changes in hypoxia signaling and stromal cells during treatment, and novel strategies to overcome resistance by targeting the TME.
Collapse
Affiliation(s)
- Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Reproductive Medicine Research Center, Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong province, China
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dikai Zhang
- Reproductive Medicine Research Center, Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong province, China
| | - Robert Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
32
|
Endothelial Ca 2+ Signaling and the Resistance to Anticancer Treatments: Partners in Crime. Int J Mol Sci 2018; 19:ijms19010217. [PMID: 29324706 PMCID: PMC5796166 DOI: 10.3390/ijms19010217] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 02/06/2023] Open
Abstract
Intracellular Ca2+ signaling drives angiogenesis and vasculogenesis by stimulating proliferation, migration, and tube formation in both vascular endothelial cells and endothelial colony forming cells (ECFCs), which represent the only endothelial precursor truly belonging to the endothelial phenotype. In addition, local Ca2+ signals at the endoplasmic reticulum (ER)-mitochondria interface regulate endothelial cell fate by stimulating survival or apoptosis depending on the extent of the mitochondrial Ca2+ increase. The present article aims at describing how remodeling of the endothelial Ca2+ toolkit contributes to establish intrinsic or acquired resistance to standard anti-cancer therapies. The endothelial Ca2+ toolkit undergoes a major alteration in tumor endothelial cells and tumor-associated ECFCs. These include changes in TRPV4 expression and increase in the expression of P2X7 receptors, Piezo2, Stim1, Orai1, TRPC1, TRPC5, Connexin 40 and dysregulation of the ER Ca2+ handling machinery. Additionally, remodeling of the endothelial Ca2+ toolkit could involve nicotinic acetylcholine receptors, gasotransmitters-gated channels, two-pore channels and Na⁺/H⁺ exchanger. Targeting the endothelial Ca2+ toolkit could represent an alternative adjuvant therapy to circumvent patients' resistance to current anti-cancer treatments.
Collapse
|
33
|
Zuccolo E, Di Buduo C, Lodola F, Orecchioni S, Scarpellino G, Kheder DA, Poletto V, Guerra G, Bertolini F, Balduini A, Rosti V, Moccia F. Stromal Cell-Derived Factor-1α Promotes Endothelial Colony-Forming Cell Migration Through the Ca2+-Dependent Activation of the Extracellular Signal-Regulated Kinase 1/2 and Phosphoinositide 3-Kinase/AKT Pathways. Stem Cells Dev 2018; 27:23-34. [DOI: 10.1089/scd.2017.0114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Christian Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology, and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, Pavia, Italy
| | - Francesco Lodola
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology–Oncology, European Institute of Oncology, Milan, Italy
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Dlzar Ali Kheder
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
- Department of Biology, Faculty of Science, University of Zakho, Zakho, Kurdistan-Region of Iraq
| | - Valentina Poletto
- Laboratory of Biochemistry, Biotechnology, and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Francesco Bertolini
- Laboratory of Hematology–Oncology, European Institute of Oncology, Milan, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology, and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Vittorio Rosti
- Laboratory of Biochemistry, Biotechnology, and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| |
Collapse
|
34
|
Rocca A, Tafuri D, Paccone M, Giuliani A, Zamboli AGI, Surfaro G, Paccone A, Compagna R, Amato M, Serra R, Amato B. Cell Based Therapeutic Approach in Vascular Surgery: Application and Review. Open Med (Wars) 2017; 12:308-322. [PMID: 29071303 PMCID: PMC5651406 DOI: 10.1515/med-2017-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023] Open
Abstract
Multipotent stem cells - such as mesenchymal stem/stromal cells and stem cells derived from different sources like vascular wall are intensely studied to try to rapidly translate their discovered features from bench to bedside. Vascular wall resident stem cells recruitment, differentiation, survival, proliferation, growth factor production, and signaling pathways transduced were analyzed. We studied biological properties of vascular resident stem cells and explored the relationship from several factors as Matrix Metalloproteinases (MMPs) and regulations of biological, translational and clinical features of these cells. In this review we described a translational and clinical approach to Adult Vascular Wall Resident Multipotent Vascular Stem Cells (VW-SCs) and reported their involvement in alternative clinical approach as cells based therapy in vascular disease like arterial aneurysms or peripheral arterial obstructive disease.
Collapse
Affiliation(s)
- Aldo Rocca
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, ItalyVia Sergio Pansini, 80131Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Marianna Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Antonio Giuliani
- A.O.R.N. A. Cardarelli Hepatobiliary and Liver Transplatation Center, Naples, Italy
| | | | - Giuseppe Surfaro
- Antonio Cardarelli Hospital, General Surgery Unit, Campobasso, Italy
| | - Andrea Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Rita Compagna
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Maurizo Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Bruno Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
35
|
Moccia F, Lucariello A, Guerra G. TRPC3-mediated Ca 2+ signals as a promising strategy to boost therapeutic angiogenesis in failing hearts: The role of autologous endothelial colony forming cells. J Cell Physiol 2017; 233:3901-3917. [PMID: 28816358 DOI: 10.1002/jcp.26152] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Abstract
Endothelial progenitor cells (EPCs) are a sub-population of bone marrow-derived mononuclear cells that are released in circulation to restore damaged endothelium during its physiological turnover or rescue blood perfusion after an ischemic insult. Additionally, they may be mobilized from perivascular niches located within larger arteries' wall in response to hypoxic conditions. For this reason, EPCs have been regarded as an effective tool to promote revascularization and functional recovery of ischemic hearts, but clinical application failed to exploit the full potential of patients-derived cells. Indeed, the frequency and biological activity of EPCs are compromised in aging individuals or in subjects suffering from severe cardiovascular risk factors. Rejuvenating the reparative phenotype of autologous EPCs through a gene transfer approach has, therefore, been put forward as an alternative approach to enhance their therapeutic potential in cardiovascular patients. An increase in intracellular Ca2+ concentration constitutes a pivotal signal for the activation of the so-called endothelial colony forming cells (ECFCs), the only known truly endothelial EPC subset. Studies from our group showed that the Ca2+ toolkit differs between peripheral blood- and umbilical cord blood (UCB)-derived ECFCs. In the present article, we first discuss how VEGF uses repetitive Ca2+ spikes to regulate angiogenesis in ECFCs and outline how VEGF-induced intracellular Ca2+ oscillations differ between the two ECFC subtypes. We then hypothesize about the possibility to rejuvenate the biological activity of autologous ECFCs by transfecting the cell with the Ca2+ -permeable channel Transient Receptor Potential Canonical 3, which selectively drives the Ca2+ response to VEGF in UCB-derived ECFCs.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Angela Lucariello
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, Universy of Campania "L. Vanvitelli", Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
36
|
Lodola F, Laforenza U, Cattaneo F, Ruffinatti FA, Poletto V, Massa M, Tancredi R, Zuccolo E, Khdar DA, Riccardi A, Biggiogera M, Rosti V, Guerra G, Moccia F. VEGF-induced intracellular Ca 2+ oscillations are down-regulated and do not stimulate angiogenesis in breast cancer-derived endothelial colony forming cells. Oncotarget 2017; 8:95223-95246. [PMID: 29221123 PMCID: PMC5707017 DOI: 10.18632/oncotarget.20255] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023] Open
Abstract
Endothelial colony forming cells (ECFCs) represent a population of truly endothelial precursors that promote the angiogenic switch in solid tumors, such as breast cancer (BC). The intracellular Ca2+ toolkit, which drives the pro-angiogenic response to VEGF, is remodelled in tumor-associated ECFCs such that they are seemingly insensitive to this growth factor. This feature could underlie the relative failure of anti-VEGF therapies in cancer patients. Herein, we investigated whether and how VEGF uses Ca2+ signalling to control angiogenesis in BC-derived ECFCs (BC-ECFCs). Although VEGFR-2 was normally expressed, VEGF failed to induce proliferation and in vitro tubulogenesis in BC-ECFCs. Likewise, VEGF did not trigger robust Ca2+ oscillations in these cells. Similar to normal cells, VEGF-induced intracellular Ca2+ oscillations were triggered by inositol-1,4,5-trisphosphate-dependent Ca2+ release from the endoplasmic reticulum (ER) and maintained by store-operated Ca2+ entry (SOCE). However, InsP3-dependent Ca2+ release was significantly lower in BC-ECFCs due to the down-regulation of ER Ca2+ levels, while there was no remarkable difference in the amplitude, pharmacological profile and molecular composition of SOCE. Thus, the attenuation of the pro-angiogenic Ca2+ response to VEGF was seemingly due to the reduction in ER Ca2+ concentration, which prevents VEGF from triggering robust intracellular Ca2+ oscillations. However, the pharmacological inhibition of SOCE prevented BC-ECFC proliferation and in vitro tubulogenesis. These findings demonstrate for the first time that BC-ECFCs are insensitive to VEGF, which might explain at cellular and molecular levels the failure of anti-VEGF therapies in BC patients, and hint at SOCE as a novel molecular target for this disease.
Collapse
Affiliation(s)
- Francesco Lodola
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy.,Current address: Italian Institute of Technology, Center for Nano Science and Technology, Milano 20133, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | | | - Valentina Poletto
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Margherita Massa
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Richard Tancredi
- Medical Oncology Unit, Foundation IRCCS Salvatore Maugeri, Pavia 27100, Italy
| | - Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Dlzar Alì Khdar
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Alberto Riccardi
- Medical Oncology Unit, Foundation IRCCS Salvatore Maugeri, Pavia 27100, Italy.,Department of Internal Medicine, University of Pavia, Pavia 27100, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Vittorio Rosti
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Foundation IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia 27100, Italy
| |
Collapse
|
37
|
Increased Frequency and Vasculogenic Potential of Endothelial Colony-Forming Cells in Patients with Kaposi’s Sarcoma. J Invest Dermatol 2017; 137:1533-1540. [DOI: 10.1016/j.jid.2017.02.979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 11/23/2022]
|
38
|
Inhibition of CYP4A by a novel flavonoid FLA-16 prolongs survival and normalizes tumor vasculature in glioma. Cancer Lett 2017; 402:131-141. [PMID: 28602979 DOI: 10.1016/j.canlet.2017.05.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
Glioblastomas rapidly become refractory to anti-VEGF therapies. We previously showed that cytochrome P450 (CYP) 4A-derived 20-hydroxyeicosatetraenoic acid (20-HETE) promotes angiogenesis. Here, we tested whether a novel flavonoid (FLA-16) prolongs survival and normalizes tumor vasculature in glioma through CYP4A inhibition. FLA-16 improved survival, reduced tumor burden, and normalized vasculature, accompanied with the decreased secretion of 20-HETE, VEGF and TGF-β in tumor-associated macrophages (TAMs) and endothelial progenitor cells (EPCs) in C6 and U87 gliomas. FLA-16 attenuated vascular abnormalization induced by co-implantation of GL261 glioma cells with CYP4A10high macrophages or EPCs. Mechanistically, the conditional medium from TAMs and EPCs treated with FLA-16 enhanced the migration of pericyte cells, and decreased the proliferation and migration of endothelial cells, which were reversed by CYP4A overexpression or exogenous addition of 20-HETE, VEGF and TGF-β. Furthermore, FLA-16 prevented crosstalk between TAMs and EPCs during angiogenesis. These results suggest that CYP4A inhibition by FLA-16 prolongs survival and normalizes vasculature in glioma through decreasing production of TAMs and EPCs-derived VEGF and TGF-β. This may represent a potential therapeutic strategy to overcome resistance to anti-VEGF treatment by effects on vessels and immune cells.
Collapse
|
39
|
Moccia F, Fotia V, Tancredi R, Della Porta MG, Rosti V, Bonetti E, Poletto V, Marchini S, Beltrame L, Gallizzi G, Da Prada GA, Pedrazzoli P, Riccardi A, Porta C, Zambelli A, D'Incalci M. Breast and renal cancer—Derived endothelial colony forming cells share a common gene signature. Eur J Cancer 2017; 77:155-164. [DOI: 10.1016/j.ejca.2017.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/22/2016] [Accepted: 01/23/2017] [Indexed: 12/25/2022]
|
40
|
He MQ, He MQ, Wang JF, Zhu BL, Sun N, Zhou XH, Yao RX. Vascular Endothelial Growth Factor and Cluster of Differentiation 34 for Assessment of Perioperative Bleeding Risk in Gastric Cancer Patients. Chin Med J (Engl) 2017; 129:1950-4. [PMID: 27503021 PMCID: PMC4989427 DOI: 10.4103/0366-6999.187842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Angiogenesis is the formation of new blood vessels to supply nutrients to tumors. Vascular endothelial growth factor (VEGF) and cluster of differentiation 34 (CD34) are important signaling proteins involved in angiogenesis. Many studies have demonstrated that VEGF and CD34 are related to tumor progression. This study focused on the relationship between VEGF, CD34, and perioperative hemorrhage in patients with gastric cancer. Methods: To observe the relationship between VEGF and CD34, we tracked 112 patients with advanced gastric cancer for 5 years to assess factors related to hemorrhage, using immunohistochemistry. The results were subjected to statistical analysis using a 2 × 2 contingency table, logistic regression, and receiver operating characteristic (ROC) test. Results: The concentrations of VEGF and CD34 were critically correlated with perioperative hemorrhage and neural invasion in patients with gastric cancer (P < 0.05). Expression of VEGF and CD34 was related (P < 0.05, χ2 = 6.834). VEGF and CD34 co-expression strongly increased the risk of preoperative bleeding (area under the ROC curve >0.7, P < 0.05). Conclusions: Expression of VEGF and CD34 was critically correlated with perioperative hemorrhage in gastric cancer patients. Co-expression of VEGF and CD34 could be an effective indicator for evaluating the risk of perioperative bleeding in gastric cancer patients.
Collapse
Affiliation(s)
- Mu-Qing He
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mu-Qun He
- Department of Medical Oncology, Fujian Provincial Tumor Hospital, Fuzhou, Fujian 350014, China
| | - Jian-Feng Wang
- Department of Medical Oncology, Fujian Provincial Tumor Hospital, Fuzhou, Fujian 350014, China
| | - Bao-Ling Zhu
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ni Sun
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiao-Hai Zhou
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Rong-Xin Yao
- Department of Hematology and Medical Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
41
|
Aprea G, De Rosa D, Milone M, Rocca A, Bianco T, Massa G, Compagna R, Johnson LB, Sanguinetti A, Polistena A, Avenia N, Amato B. Laparoscopic distal pancreatectomy in elderly patients: is it safe? Aging Clin Exp Res 2017; 29:41-45. [PMID: 27878555 DOI: 10.1007/s40520-016-0677-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/03/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Laparoscopic distal pancreatectomy (LDP) appears to be safe and effective as open distal pancreatectomy (ODP) for benign or borderline malignant lesion. However, studies comparing LDP with ODP in elderly patients are limited. The purpose of this study is to compare the clinical outcomes of these two several approaches in elderly patients. METHODS A retrospective analysis was carried out by comparing laparoscopic (n = 7) and open (n = 15) distal pancreatectomy in elderly patients performed at the University of Naples "Federico II" and University of Perugia between January 2012 and December 2015. Demographic data, operative and postoperative outcomes were analyzed. RESULTS Demographic and tumor characteristics of laparoscopic and ODP were similar. There were also no significant differences in operating room time. Patients undergoing LDP had lower blood loss, first flatus time, diet start time and postoperative hospital stay. There were no significant differences in complication rates or 90-day mortality. DISCUSSION LDP is safe and feasible as ODP in selected elderly patients.
Collapse
Affiliation(s)
- Giovanni Aprea
- Division of General Surgery, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, via S. Pansini, 5, 80131, Naples, Italy
| | - Davide De Rosa
- Division of General Surgery, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, via S. Pansini, 5, 80131, Naples, Italy
| | - Marco Milone
- Division of General Surgery, Department of Surgical Sciences and Nephrology, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Aldo Rocca
- Division of General Surgery, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, via S. Pansini, 5, 80131, Naples, Italy.
| | - Tommaso Bianco
- Division of General Surgery, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, via S. Pansini, 5, 80131, Naples, Italy
| | - Guido Massa
- Division of General Surgery, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, via S. Pansini, 5, 80131, Naples, Italy
| | - Rita Compagna
- Division of General Surgery, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, via S. Pansini, 5, 80131, Naples, Italy
| | - Louis Banka Johnson
- Division of Colorectal Surgery, Department of Clinical Sciences, Pelvic Floor Centre, Malmö University Hospital, Lund University, Lund, Sweden
| | - Alessandro Sanguinetti
- General Surgery and Surgical Specialties Unit, Medical School, S. Maria University Hospital, University of Perugia, Terni, Italy
| | - Andrea Polistena
- General Surgery and Surgical Specialties Unit, Medical School, S. Maria University Hospital, University of Perugia, Terni, Italy
| | - Nicola Avenia
- General Surgery and Surgical Specialties Unit, Medical School, S. Maria University Hospital, University of Perugia, Terni, Italy
| | - Bruno Amato
- Division of General Surgery, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, via S. Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
42
|
Ceccarelli G, Andolfi E, Biancafarina A, Rocca A, Amato M, Milone M, Scricciolo M, Frezza B, Miranda E, De Prizio M, Fontani A. Robot-assisted surgery in elderly and very elderly population: our experience in oncologic and general surgery with literature review. Aging Clin Exp Res 2017; 29:55-63. [PMID: 27905087 DOI: 10.1007/s40520-016-0676-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/03/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Although there is no agreement on a definition of elderly, commonly an age cutoff of ≥65 or 75 years is used. Nowadays most of malignancies requiring surgical treatment are diagnosed in old population. Comorbidities and frailty represent well-known problems during and after surgery in elderly patients. Minimally invasive surgery offers earlier postoperative mobilization, less blood loss, lower morbidity as well as reduction in hospital stay and as such represents an interesting and validated option for elderly population. Robot-assisted surgery is a recent improvement of conventional minimally invasive surgery. AIMS We provided a complete review of old and very old patients undergoing robot-assisted surgery for oncologic and general surgery interventions. PATIENTS AND METHODS A retrospective review of all patients undergoing robot-assisted surgery in our General Surgery Unit from September 2012 to June 2016 was conducted. Analysis was performed for the entire cohort and in particular for three of the most performed surgeries (gastric resections, right colectomy, and liver resections) classifying patients into three age groups: ≤64, 65-79, and ≥80. Data from these three different age groups were compared and examined in respect of different outcomes: ASA score, comorbidities, oncologic outcomes, conversion rate, estimated blood loss, hospital stay, geriatric events, mortality, etc. RESULTS Using our in-patient robotic surgery database, we retrospectively examined 363 patients, who underwent robot-assisted surgery for different diseases (402 different robotic procedures): colorectal surgery, upper GI, HPB, etc.; the oncologic procedures were 81%. Male were 56%. The mean age was 65.63 years (18-89). Patients aged ≥65 years represented 61% and ≥80 years 13%. Overall conversion rate was of 6%, most in the group 65-79 years (59% of all conversions). The more frequent diseases treated were colorectal surgery 43%, followed by hepatobilopancreatic surgery 23.4%, upper gastro-intestinal 23.2%, and others 10.4%. DISCUSSION Robot-assisted surgery is a safe and effective technique in aging patient population too. There was no increased risk of death or morbidity compared to younger patients in the three groups examined. A higher conversion rate was observed in our experience for patients aged 65-79. Prolonged operative time and in any cases steep positions (Trendelenburg) have not represented a problem for the majority of patients. CONCLUSIONS In any case, considering the high direct costs, minimally invasive robot-assisted surgery should be performed on a case-by-case basis, tailored to each patient with their specific histories and comorbidities.
Collapse
Affiliation(s)
- Graziano Ceccarelli
- Department of Surgery, Division of General Surgery, Hospital of Arezzo, Arezzo, Italy
| | - Enrico Andolfi
- Department of Surgery, Division of General Surgery, Hospital of Arezzo, Arezzo, Italy
| | - Alessia Biancafarina
- Department of Surgery, Division of General Surgery, Hospital of Arezzo, Arezzo, Italy
| | - Aldo Rocca
- Department of Surgery, Division of General Surgery, Hospital of Arezzo, Arezzo, Italy.
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Sergio Pansini, 80131, Naples, Italy.
| | - Maurizio Amato
- Department of Surgical Specialities and Nephrology, University of Naples "Federico II", Naples, Italy
| | - Marco Milone
- Department of Surgical Specialities and Nephrology, University of Naples "Federico II", Naples, Italy
| | - Marta Scricciolo
- Department of Surgery, Division of General Surgery, Hospital of Arezzo, Arezzo, Italy
| | - Barbara Frezza
- Department of Surgery, Division of General Surgery, Hospital of Arezzo, Arezzo, Italy
| | - Egidio Miranda
- Department of Surgery, Division of General Surgery, Hospital of Arezzo, Arezzo, Italy
| | - Marco De Prizio
- Department of Surgery, Division of General Surgery, Hospital of Arezzo, Arezzo, Italy
| | - Andrea Fontani
- Department of Surgery, Division of General Surgery, Hospital of Arezzo, Arezzo, Italy
| |
Collapse
|
43
|
Mazzella A, Santagata M, Cecere A, La Mart E, Fiorelli A, Tartaro G, Tafuri D, Testa D, Grella E, Perrotta F, Bianco A, Mazzarella G, Santini M. Descending necrotizing mediastinitis in the elderly patients. Open Med (Wars) 2016; 11:449-460. [PMID: 28352835 PMCID: PMC5329867 DOI: 10.1515/med-2016-0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022] Open
Abstract
Descending Necrotizing Mediastinitis (DNM) is a polymicrobic, dangerous and often fatal process, arising from head or neck infections and spreading along the deep fascial cervical planes, descending into the mediastinum. It can rapidly progress to sepsis and can frequently lead to death. It has a high mortality rate, up to 40% in the different series, as described in the literature. Surgical and therapeutic management has been discussed for long time especially in an elderly patient population. The literature has been reviewed in order to evaluate different pathogenesis and evolution and to recognise a correct therapeutic management.
Collapse
Affiliation(s)
| | - Mario Santagata
- Maxillo-Facial Surgery Unit, Second University of Naples, Italy
| | - Atirge Cecere
- Maxillo-Facial Surgery Unit, Second University of Naples, Italy
| | - Ettore La Mart
- Maxillo-Facial Surgery Unit, Second University of Naples, Italy
| | | | | | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Domenico Testa
- Department of Anesthesiologic, Surgical and Emergency Sciences, Otolaryngology, Head and Neck Surgery Unit, Second University of Naples, Naples, Italy
| | - Edoardo Grella
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Italy
| | - Fabio Perrotta
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Italy
| | - Andrea Bianco
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Piazza Miraglia, 2, 80138 Naples, Italy
| | - Gennaro Mazzarella
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Italy
| | - Mario Santini
- Thoracic Surgery Unit, Second University of Naples, Italy
| |
Collapse
|
44
|
Salvi R, Meoli I, Cennamo A, Perrotta F, Saverio Cerqua F, Montesano R, Curcio C, Lassandro F, Stefanelli F, Grella E, Tafuri D, Mazzarella G, Bianco A. Preoperative high-intensity training in frail old patients undergoing pulmonary resection for NSCLC. Open Med (Wars) 2016; 11:443-448. [PMID: 28352834 PMCID: PMC5329866 DOI: 10.1515/med-2016-0079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/06/2016] [Indexed: 01/11/2023] Open
Abstract
Thoracic surgery remains the better therapeutic option for non-small cell lung cancer patients that are diagnosed in early stage disease. Preoperative lung function assessment includes respiratory function tests (RFT) and cardio-pulmonary exercise testing (CPET). Vo2 peak, FEV1 and DLCO as well as recognition of performance status, presence of co-morbidities, frailty indexes, and age predict the potential impact of surgical resection on patient health status and survival risk. In this study we have retrospectively assessed the benefit of a high-intensity preoperative pulmonary rehabilitation program (PRP) in 14 patients with underlying lung function impairment prior to surgery. Amongst these, three patients candidate to surgical resection exhibited severe functional impairment associated with high score of frailty according CHS and SOF index, resulting in a substantial mortality risk. Our observations indicate that PRP appear to reduce the mortality and morbidity risk in frail patients with concurrent lung function impairment undergoing thoracic surgery. PRP produced improvement of VO2 peak degree and pulmonary function resulting in reduced postoperative complications in high-risk patients from our cases. Our results indicate that a preoperative training program may improve postoperative clinical outcomes in fraillung cancer patients with impaired lung function prior to surgical resection.
Collapse
Affiliation(s)
- Rosario Salvi
- Unit of Thoracic Surgery, A.O. Dei Colli - Monaldi Hospital, Naples, Italy
| | - Ilernando Meoli
- Unit of Pneumology, A.O. Dei Colli - Monaldi Hospital, Naples, Italy
| | - Antonio Cennamo
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples, A.O. Dei Colli - Monaldi Hospital, Via Leonardo Bianchi, 80131, Naples, Italy
| | - Fabio Perrotta
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples, A.O. Dei Colli - Monaldi Hospital, Via Leonardo Bianchi, 80131, Naples, Italy
| | - Francesco Saverio Cerqua
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples, A.O. Dei Colli - Monaldi Hospital, Via Leonardo Bianchi, 80131, Naples, Italy
| | - Raffaele Montesano
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples, A.O. Dei Colli - Monaldi Hospital, Via Leonardo Bianchi, 80131, Naples, Italy
| | - Carlo Curcio
- Unit of Thoracic Surgery, A.O. Dei Colli - Monaldi Hospital, Naples, Italy
| | | | | | - Edoardo Grella
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples, A.O. Dei Colli - Monaldi Hospital, Via Leonardo Bianchi, 80131, Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Gennaro Mazzarella
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples, A.O. Dei Colli - Monaldi Hospital, Via Leonardo Bianchi, 80131, Naples, Italy
| | - Andrea Bianco
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Piazza Miraglia, 2, 80138 Naples, Italy Phone:+390815665228, , E-mail:
| |
Collapse
|
45
|
Micheu MM, Rosca AM, Deleanu OC. Stem/progenitor cells and obstructive sleep apnea syndrome - new insights for clinical applications. World J Stem Cells 2016; 8:332-341. [PMID: 27822340 PMCID: PMC5080640 DOI: 10.4252/wjsc.v8.i10.332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/25/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a widespread disorder, characterized by recurrent upper airway obstruction during sleep, mostly as a result of complete or partial pharyngeal obstruction. Due to the occurrence of frequent and regular hypoxic events, patients with OSAS are at increased risk of cardiovascular disease, stroke, metabolic disorders, occupational errors, motor vehicle accidents and even death. Thus, OSAS has severe consequences and represents a significant economic burden. However, some of the consequences, as well as their costs can be reduced with appropriate detection and treatment. In this context, the recent advances that were made in stem cell biology knowledge and stem cell - based technologies hold a great promise for various medical conditions, including respiratory diseases. However, the investigation of the role of stem cells in OSAS is still recent and rather limited, requiring further studies, both in animal models and humans. The goal of this review is to summarize the current state of knowledge regarding both lung resident as well as circulating stem/progenitor cells and discuss existing controversies in the field in order to identify future research directions for clinical applications in OSAS. Also, the paper highlights the requisite for inter-institutional, multi-disciplinary research collaborations in order to achieve breakthrough results in the field.
Collapse
Affiliation(s)
- Miruna Mihaela Micheu
- Miruna Mihaela Micheu, Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Ana-Maria Rosca
- Miruna Mihaela Micheu, Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Oana-Claudia Deleanu
- Miruna Mihaela Micheu, Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
46
|
Zuccolo E, Dragoni S, Poletto V, Catarsi P, Guido D, Rappa A, Reforgiato M, Lodola F, Lim D, Rosti V, Guerra G, Moccia F. Arachidonic acid-evoked Ca 2+ signals promote nitric oxide release and proliferation in human endothelial colony forming cells. Vascul Pharmacol 2016; 87:159-171. [PMID: 27634591 DOI: 10.1016/j.vph.2016.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/10/2016] [Accepted: 09/10/2016] [Indexed: 02/04/2023]
Abstract
Arachidonic acid (AA) stimulates endothelial cell (EC) proliferation through an increase in intracellular Ca2+ concentration ([Ca2+]i), that, in turn, promotes nitric oxide (NO) release. AA-evoked Ca2+ signals are mainly mediated by Transient Receptor Potential Vanilloid 4 (TRPV4) channels. Circulating endothelial colony forming cells (ECFCs) represent the only established precursors of ECs. In the present study, we, therefore, sought to elucidate whether AA promotes human ECFC (hECFC) proliferation through an increase in [Ca2+]i and the following activation of the endothelial NO synthase (eNOS). AA induced a dose-dependent [Ca2+]i raise that was mimicked by its non-metabolizable analogue eicosatetraynoic acid. AA-evoked Ca2+ signals required both intracellular Ca2+ release and external Ca2+ inflow. AA-induced Ca2+ release was mediated by inositol-1,4,5-trisphosphate receptors from the endoplasmic reticulum and by two pore channel 1 from the acidic stores of the endolysosomal system. AA-evoked Ca2+ entry was, in turn, mediated by TRPV4, while it did not involve store-operated Ca2+ entry. Moreover, AA caused an increase in NO levels which was blocked by preventing the concomitant increase in [Ca2+]i and by inhibiting eNOS activity with NG-nitro-l-arginine methyl ester (l-NAME). Finally, AA per se did not stimulate hECFC growth, but potentiated growth factors-induced hECFC proliferation in a Ca2+- and NO-dependent manner. Therefore, AA-evoked Ca2+ signals emerge as an additional target to prevent cancer vascularisation, which may be sustained by ECFC recruitment.
Collapse
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Silvia Dragoni
- Department of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, United Kingdom
| | - Valentina Poletto
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Daniele Guido
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alessandra Rappa
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Marta Reforgiato
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Francesco Lodola
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Francesco Moccia
- Department of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, United Kingdom.
| |
Collapse
|
47
|
Guarino C, Mazzarella G, De Rosa N, Cesaro C, La Cerra G, Grella E, Perrotta F, Curcio C, Guerra G, Bianco A. Pre-surgical bronchoscopic treatment for typical endobronchial carcinoids. Int J Surg 2016; 33 Suppl 1:S30-5. [DOI: 10.1016/j.ijsu.2016.05.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
48
|
Perrotta F, Cerqua FS, Cammarata A, Izzo A, Bergaminelli C, Curcio C, Guarino C, Grella E, Forzano I, Cennamo A, Tafuri D, Rocca A, Bianco A, Mazzarella G. Integrated therapeutic approach to giant solitary fibrous tumor of the pleura: report of a case and review of the literature. Open Med (Wars) 2016; 11:220-225. [PMID: 28352798 PMCID: PMC5329829 DOI: 10.1515/med-2016-0042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/07/2015] [Indexed: 11/23/2022] Open
Abstract
The fibrous tumors of the pleura are rare primary tumors, accounting for 5% of malignant pleural neoplasms, which generally originate from sub-mesothelial mesenchymal tissue of the visceral pleura. These tumours generally exhibit clinical benign behavior although 12% of solitary fibrous tumors can be malignant and have worse outcomes. These tumors are considered “giant” when the lesion > 15 cm. Surgical treatment is the best choice for both benign and malignant neoplasms. We retrospectively analyzed the main case series of giant fibrous tumors of the pleura. In addition we report our experience of a 76-year-old woman treated by pre-surgical embolization involving implantation of vascular plugs. Surgery was successfully carried out without complications; imaging and functional assessment 6 months post intervention demonstrated both the absence of recurrence and improvement of lung function parameters.
Collapse
Affiliation(s)
- Fabio Perrotta
- Department of Cardiotho-racic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| | - Francesco Saverio Cerqua
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| | - Antonino Cammarata
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| | - Alessandro Izzo
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| | | | - Carlo Curcio
- A.O. dei Colli - Hosp. Monaldi - Thoracic Surgery Unit, Naples, Italy
| | - Carmine Guarino
- A.O. dei Colli - Hosp. Monaldi - Bronchology Unit, Naples, Italy
| | - Edoardo Grella
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| | - Imma Forzano
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| | - Antonio Cennamo
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Aldo Rocca
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Andrea Bianco
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| | - Gennaro Mazzarella
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples/Hosp. Monaldi, Naples, Italy
| |
Collapse
|
49
|
Testa D, Motta S, Marcuccio G, Paccone M, Rocca A, Ilardi G, Tafuri D, Mesolella M, Motta G. Our experience in the treatment of Malignant Fibrous Hystiocytoma of the larynx: clinical diagnosis, therapeutic approach and review of literature. Open Med (Wars) 2016; 11:208-214. [PMID: 28352796 PMCID: PMC5329827 DOI: 10.1515/med-2016-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/20/2016] [Indexed: 11/15/2022] Open
Abstract
Hereditary spherocytosis (HS) and Chronic myelocytic leukemia (CML) are both life threatening hemotologic diseases. They are rarely seen to occur simultaneously in one individual patient. Here we demonstrate a case of HS associated with CML in this study. The patient is a young female, diagnosed with HS in 2005, and was given partial embolization of the splenic artery. She got significant remission after the procedure. In 2008, she was found abnormal in blood routine test, after bone marrow routine, chromosome and fusion gene tests, she was diagnosed with CML (chronic phase). She did not receive regular treatment until 3 months prior, and is currently being treated with Dasatimib. She achieved hematological remission, but had no significant improvement in chromosome and fusion gene figures. Due to her severe condition of hemolysis, a splenectomy or an allogeneic hematopoietic stem cell transplantation is considered.
Collapse
Affiliation(s)
- Domenico Testa
- Department of Anesthe-siologic, Surgical and Emergency Sciences; Otolaryngology, Head and Neck Surgery Unit; Second University of Naples, Italy
| | - Sergio Motta
- University of Naples Federico II, Department of Otorhi-nolaryngology, Naples, Italy
| | - Giuseppina Marcuccio
- Department of Anesthesio-logic, Surgical and Emergency Sciences; Otolaryngology, Head and Neck Surgery Unit; Second University of Naples, Italy
| | - Marianna Paccone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Aldo Rocca
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Gennaro Ilardi
- University of Naples Federico II, Pathology Unit, Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Massimo Mesolella
- Department of Neuroscience Reproductive and Dentistry Sciences, Otholaryngology Unit; University of Naples "Federico II", Naples, Italy
| | - Gaetano Motta
- Department of Anesthesio-logic, Surgical and Emergency Sciences; Otolaryngology, Head and Neck Surgery Unit; Second University of Naples, Italy
| |
Collapse
|
50
|
Mesolella M, Ricciardiello F, Tafuri D, Varriale R, Testa D. Delayed recurrent nerve paralysis following post-traumatic aortic pseudoaneurysm. Open Med (Wars) 2016; 11:215-219. [PMID: 28352797 PMCID: PMC5329828 DOI: 10.1515/med-2016-0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/07/2016] [Indexed: 11/15/2022] Open
Abstract
Blunt trauma to the neck or to the chest are increasingly observed in the emergency clinical practice. They usually follow motor vehicle accidents or may be work or sports related. A wide pattern of clinical presentation can be potentially encountered. We report the uncommon case of a patient who was referred to our observation presenting with hoarseness and disphagia. Twenty days before he had sustained a car accident with trauma to the chest, neck and the mandible. Laryngoscopy showed a left recurrent laryngeal nerve palsy. Further otolaryngo-logical examination showed no other abnormality. At CT and MR imaging a post-traumatic aortic pseudoaneurysm was revealed. The aortic pseudoaneurysm was consequently repaired by implantation of an endovascular stent graft under local anesthesia. The patient was discharged 10 days later. At 30-days follow-up laryngoscopy the left vocal cord palsy was completely resolved. Hoarseness associated with a dilated left atrium in a patient with mitral valve stenosis was initially described by Ortner more than a century ago. Since then several non malignant, cardiovascular, intrathoracic disease that results in embarrassment from recurrent laryngeal nerve palsy usually by stretching, pulling or compression; thus, the correlations of these pathologies was termed as cardiovocal syndrome or Ortner's syndrome. The reported case illustrates that life-threatening cardiovascular comorbidities can cause hoarseness and that an impaired recurrent laryngeal nerve might be correctable.
Collapse
Affiliation(s)
- Massimo Mesolella
- Department of Neuros-cience Reproductive and Dentistry Sciences, Otholaryngology Unit; University of Naples "Federico II", Naples - Italy. Via G. Filangieri 36, 80121 Napoli, Italy
| | - Filippo Ricciardiello
- Department of Neuroscience Reproductive and Dentistry Sciences, Otholaryngology Unit; University of Naples "Federico II", Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Roberto Varriale
- Department of Anesthesiologic, Surgical and Emergency Sciences; Otolaryngology, Head and Neck Surgery Unit; Second University of Naples, Italy
| | - Domenico Testa
- Department of Anesthesiologic, Surgical and Emergency Sciences; Otolaryngology, Head and Neck Surgery Unit; Second University of Naples, Italy
| |
Collapse
|