1
|
Zhou RT, Luo XJ, Zhang XXR, Wu JF, Ni YR. The potential of miR-29 in modulating tumor angiogenesis: a comprehensive review. Discov Oncol 2025; 16:474. [PMID: 40189720 PMCID: PMC11973036 DOI: 10.1007/s12672-025-02246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs that play a crucial role in the post-transcriptional regulation of gene expression. They are associated with various biological processes related to tumors. Among the numerous miRNAs, miR-29 has garnered attention for its role in regulating tumor angiogenesis. In numerous human tumors, miR-29 has been demonstrated to negatively correlate with the capacity for angiogenesis and the degree of malignancy, as well as with the expression levels of pro-angiogenic factors such as vascular endothelial growth factor vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and matrix metalloproteinase (MMP)-2. Multiple studies, utilizing techniques like dual-luciferase reporter assays, have confirmed that miR-29 directly targets the 3'-untranslated region (UTR) of mRNAs for VEGF, PDGF, and MMP-2. Extensive investigations involving tumor cell lines and animal models have shown that the overexpression of miR-29, achieved through miRNA transfection or the introduction of miRNA mimics, effectively inhibits angiogenesis by upregulating these pro-angiogenic factors. Conversely, downregulation of miR-29 using specific inhibitors promotes angiogenesis. While small molecule inhibitors and antibodies targeting VEGF constitute a primary strategy in anti-angiogenesis therapies, miR-29's ability to target multiple pro-angiogenic molecules positions it as a promising candidate for future therapeutic interventions, especially with ongoing advancements in nucleic acid drug design and delivery systems.
Collapse
Affiliation(s)
- Rui-Ting Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- Department of Gastroenterology, The First College of Clinical Medical Science and Yichang Central People's Hospital, China Three Gorges University, Yichang, 443003, China
- Division of Gastroenterology and Hepatology, Renmin Hospital, Wuhan University, Wuhan, 430060, China
| | - Xiao-Jie Luo
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 443002, Yichang, China
| | - Xiao-Xin-Ran Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 443002, Yichang, China
| | - Jiang-Feng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 443002, Yichang, China.
| | - Yi-Ran Ni
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Daxue Road 8#, Yichang, 443002, Hubei, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 443002, Yichang, China.
| |
Collapse
|
2
|
Ždralević M, Radović A, Raonić J, Popovic N, Klisic A, Vučković L. Advances in microRNAs as Emerging Biomarkers for Colorectal Cancer Early Detection and Diagnosis. Int J Mol Sci 2024; 25:11060. [PMID: 39456841 PMCID: PMC11507567 DOI: 10.3390/ijms252011060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Colorectal cancer (CRC) remains the second most common cause of cancer-related mortality worldwide, necessitating advancements in early detection and innovative treatment strategies. MicroRNAs (miRNAs), small non-coding RNAs involved in gene regulation, have emerged as crucial players in the pathogenesis of CRC. This review synthesizes the latest findings on miRNA deregulated in precancerous lesions and in CRC. By examining the deregulation patterns of miRNAs across different stages of CRC development, this review highlights their potential as diagnostic tools. We specifically analyse the roles and diagnostic relevance of four miRNAs-miR-15b, miR-21, miR-31, and miR-146a-that consistently exhibit altered expression in CRC. The current knowledge of their role in key oncogenic pathways, drug resistance, and clinical relevance is discussed. Despite challenges posed by the heterogeneity of the research findings on miRNA deregulation and their role in CRC, integrating miRNA diagnostics into current screening methods holds promise for enhancing personalized medicine approaches. This review emphasizes the transformative potential of miRNAs in CRC diagnosis, paving the way for improved patient outcomes and novel therapeutic paradigms.
Collapse
Affiliation(s)
- Maša Ždralević
- Institute for Advanced Studies, University of Montenegro, Cetinjska 2, 81000 Podgorica, Montenegro
| | - Andrijana Radović
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
| | - Janja Raonić
- Center for Pathology, Clinical Center of Montenegro, Ljubljanska bb, 81000 Podgorica, Montenegro;
| | - Natasa Popovic
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
| | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
- Center for Laboratory Diagnostics, Primary Health Care Center, 81000 Podgorica, Montenegro
| | - Ljiljana Vučković
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
- Center for Pathology, Clinical Center of Montenegro, Ljubljanska bb, 81000 Podgorica, Montenegro;
| |
Collapse
|
3
|
Khan IA, Singh N, Gunjan D, Nayak B, Dash NR, Pal S, Lohani N, Yadav R, Gupta S, Saraya A. Serum miR-215-5p, miR-192-5p and miR-378a-5p as novel diagnostic biomarkers for periampullary adenocarcinoma. Pathol Res Pract 2024; 260:155417. [PMID: 38944893 DOI: 10.1016/j.prp.2024.155417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are present in human serum in a stable form. Circulating miRNAs are increasingly recognized as promising biomarkers for early cancer detection. The aim of this study was to identify serum miRNAs as biomarkers for periampullary adenocarcinoma (PAC). PATIENTS AND METHODS 68 patients with PAC and 50 healthy controls (HCs) subjects were recruited in this study. The expression levels of 11 selected miRNAs were determined in serum samples using the SYBR-green quantitative reverse transcription polymerase chain reaction (qRT-PCR) method. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic potential of serum miRNAs. RESULTS The expression levels of three miRNAs (miR-215-5p, miR-192-5p, and miR-378a-5p) were significantly upregulated in the serum samples derived from the PAC patients compared with those from the HC (p < 0.001). The ROC analysis showed that all three significantly altered miRNAs (miR-215-5p, miR-192-5p, and miR-378a-5p) could potentially discriminate patients with PAC from HC with AUC value of 0.771 (95% CI: 0.684-0.843), 0.877 (95% CI: 0.799-0.927) and 0.768 (95% CI: 0.674-0.853) respectively. Further comparisons showed that these three serum miRNAs (miR-215-5p, miR-192-5p, and miR-378a-5p) can strongly discriminate early-stage PAC patients from HC with an AUC value of 0.802 (95% CI: 0.719-0.886), 0.870 (95% CI: 0.793-0.974) and 0.793 (95% CI: 0.706-0.880) respectively, may aid in early detection of PAC. CONCLUSIONS Taken together, our findings demonstrated that these three serum miRNAs (miR-215-5p, miR-192-5p, and miR-378a-5p) may serve as noninvasive biomarkers for the early detection of PAC.
Collapse
Affiliation(s)
- Imteyaz Ahmad Khan
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Nidhi Singh
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Gunjan
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Nihar Ranjan Dash
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Sujoy Pal
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Neelam Lohani
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Surabhi Gupta
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
4
|
Xu J, Pan L, Wu D, Yao L, Jiang W, Min J, Xu S, Deng Z. Comparison of the diagnostic value of various microRNAs in blood for colorectal cancer: a systematic review and network meta-analysis. BMC Cancer 2024; 24:770. [PMID: 38926893 PMCID: PMC11209970 DOI: 10.1186/s12885-024-12528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Despite the existence of numerous studies investigating the diagnostic potential of blood microRNAs for colorectal cancer, the microRNAs under consideration vary widely, and comparative analysis of their diagnostic value is lacking. Consequently, this systematic review aims to identify the most effective microRNA blood tumor markers to enhance clinical decision-making in colorectal cancer screening. METHOD A comprehensive search of databases, including PubMed, Embase, Web of Science, Scopus, and Cochrane, was conducted to identify case‒control or cohort studies that examined the diagnostic value of peripheral blood microRNAs in colorectal cancer. Studies were included if they provided sensitivity and specificity data, were published in English and were available between January 1, 2000, and February 10, 2023. The Critical Appraisal Skills Programme (CASP) checklist was employed for quality assessment. A Bayesian network meta-analysis was performed to estimate combined risk ratios (RRs) and 95% confidence intervals (CIs), with results presented via rankograms. This study is registered with the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY), 202,380,092. RESULTS From an initial pool of 2254 records, 79 met the inclusion criteria, encompassing a total of 90 microRNAs. The seven most frequently studied microRNAs (43 records) were selected for inclusion, all of which demonstrated moderate to high quality. miR-23, miR-92, and miR-21 exhibited the highest sensitivity and accuracy, outperforming traditional tumor markers CA19-9 and CEA in terms of RR values and 95% CI for both sensitivity and accuracy. With the exception of miR-17, no significant difference was observed between each microRNA and CA19-9 and CEA in terms of specificity. CONCLUSIONS Among the most extensively researched blood microRNAs, miR-23, miR-92, and miR-21 demonstrated superior diagnostic value for colorectal cancer due to their exceptional sensitivity and accuracy. This systematic review and network meta-analysis may serve as a valuable reference for the clinical selection of microRNAs as tumor biomarkers.
Collapse
Affiliation(s)
- Jianhao Xu
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
- Immunopathology Innovation Team, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Lanfen Pan
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
- Immunopathology Innovation Team, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Dan Wu
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
- Immunopathology Innovation Team, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Liqian Yao
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Wenqian Jiang
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Jiarui Min
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Song Xu
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China.
- Immunopathology Innovation Team, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China.
| | - Zhiyong Deng
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China.
- Immunopathology Innovation Team, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China.
| |
Collapse
|
5
|
Oh CK, Cho YS. Pathogenesis and biomarkers of colorectal cancer by epigenetic alteration. Intest Res 2024; 22:131-151. [PMID: 38295766 PMCID: PMC11079515 DOI: 10.5217/ir.2023.00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/29/2023] [Indexed: 05/12/2024] Open
Abstract
Colorectal cancer (CRC) ranks third in cancer incidence and stands as the second leading cause of cancer-related deaths globally. CRC tumorigenesis results from a cumulative set of genetic and epigenetic alterations, disrupting cancer-regulatory processes like cell proliferation, metabolism, angiogenesis, cell death, invasion, and metastasis. Key epigenetic modifications observed in cancers encompass abnormal DNA methylation, atypical histone modifications, and irregularities in noncoding RNAs, such as microRNAs and long noncoding RNAs. The advancement in genomic technologies has positioned these genetic and epigenetic shifts as potential clinical biomarkers for CRC patients. This review concisely covers the fundamental principles of CRC-associated epigenetic changes, and examines in detail their emerging role as biomarkers for early detection, prognosis, and treatment response prediction.
Collapse
Affiliation(s)
- Chang Kyo Oh
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Young-Seok Cho
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
6
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
7
|
Dalle Carbonare L, Minoia A, Braggio M, Bertacco J, Piritore FC, Zouari S, Vareschi A, Elia R, Vedovi E, Scumà C, Carlucci M, Bhandary L, Mottes M, Romanelli MG, Valenti MT. Modulation of miR-146b Expression during Aging and the Impact of Physical Activity on Its Expression and Chondrogenic Progenitors. Int J Mol Sci 2023; 24:13163. [PMID: 37685971 PMCID: PMC10488278 DOI: 10.3390/ijms241713163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The finding of molecules associated with aging is important for the prevention of chronic degenerative diseases and for longevity strategies. MicroRNAs (miRNAs) are post-transcriptional regulators involved in many biological processes and miR-146b-5p has been shown to be involved in different degenerative diseases. However, miR-146b-5p modulation has not been evaluated in mesenchymal stem cells (MSCs) commitment or during aging. Therefore, the modulation of miR-146b-5p in the commitment and differentiation of mesenchymal cells as well as during maturation and aging in zebrafish model were analyzed. In addition, circulating miR-146b-5p was evaluated in human subjects at different age ranges. Thus, the role of physical activity in the modulation of miR-146b-5p was also investigated. To achieve these aims, RT (real-time)-PCR, Western blot, cell transfections, and three-dimensional (3D) culture techniques were applied. Our findings show that miR-146b-5p expression drives MSCs to adipogenic differentiation and increases during zebrafish maturation and aging. In addition, miR-146b-5p expression is higher in females compared to males and it is associated with the aging in humans. Interestingly, we also observed that the physical activity of walking downregulates circulating miR-146b-5p levels in human females and increases the number of chondroprogenitors. In conclusion, miR-146b-5p can be considered an age-related marker and can represent a useful marker for identifying strategies, such as physical activity, aimed at counteracting the degenerative processes of aging.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Arianna Minoia
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Michele Braggio
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Jessica Bertacco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Francesca Cristiana Piritore
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Sharazed Zouari
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Anna Vareschi
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Rossella Elia
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.B.); (S.Z.); (A.V.); (R.E.)
| | - Ermes Vedovi
- Recovery and Functional Rehabilitation, Integrated University Hospital of Verona, 37100 Verona, Italy; (E.V.); (C.S.)
| | - Cristina Scumà
- Recovery and Functional Rehabilitation, Integrated University Hospital of Verona, 37100 Verona, Italy; (E.V.); (C.S.)
| | - Matilde Carlucci
- Health Directorate, Integrated University Hospital of Verona, 37100 Verona, Italy;
| | | | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (J.B.); (F.C.P.); (M.M.); (M.G.R.)
| |
Collapse
|
8
|
Pös O, Styk J, Buglyó G, Zeman M, Lukyova L, Bernatova K, Hrckova Turnova E, Rendek T, Csók Á, Repiska V, Nagy B, Szemes T. Cross-Kingdom Interaction of miRNAs and Gut Microbiota with Non-Invasive Diagnostic and Therapeutic Implications in Colorectal Cancer. Int J Mol Sci 2023; 24:10520. [PMID: 37445698 DOI: 10.3390/ijms241310520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Colorectal cancer (CRC) has one of the highest incidences among all types of malignant diseases, affecting millions of people worldwide. It shows slow progression, making it preventable. However, this is not the case due to shortcomings in its diagnostic and management procedure and a lack of effective non-invasive biomarkers for screening. Here, we discuss CRC-associated microRNAs (miRNAs) and gut microbial species with potential as CRC diagnostic and therapy biomarkers. We provide rich evidence of cross-kingdom miRNA-mediated interactions between the host and gut microbiome. miRNAs have emerged with the ability to shape the composition and dynamics of gut microbiota. Intestinal microbes can uptake miRNAs, which in turn influence microbial growth and provide the ability to regulate the abundance of various microbial species. In the context of CRC, targeting miRNAs could aid in manipulating the balance of the microbiota. Our findings suggest the need for correlation analysis between the composition of the gut microbiome and the miRNA expression profile.
Collapse
Affiliation(s)
- Ondrej Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Jakub Styk
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Michal Zeman
- Comenius University Science Park, 841 04 Bratislava, Slovakia
| | - Lydia Lukyova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| | - Kamila Bernatova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| | - Evelina Hrckova Turnova
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Slovgen Ltd., 841 04 Bratislava, Slovakia
| | - Tomas Rendek
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Ádám Csók
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Vanda Repiska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
- Medirex Group Academy, n.p.o., 949 05 Nitra, Slovakia
| | - Bálint Nagy
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| |
Collapse
|
9
|
Mosaad H, Ahmed MM, Elaidy MM, Elfarargy OM, Abdelwahab MM, Abdelnour HM. Down-regulated MiRNA 29-b as a diagnostic marker in colorectal cancer and its correlation with ETV4 and Cyclin D1 immunohistochemical expression. Cancer Biomark 2023; 37:179-189. [PMID: 37248886 DOI: 10.3233/cbm-220349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common malignant tumor of the gastrointestinal tract with unfavorable prognosis. Therefore, novel biomarkers that may be used for new diagnostic strategies and drug-targeting therapy should be developed. OBJECTIVES To investigate the expression of miR-29b in CRC and its association with ETV4 and cyclin D1 expression. Moreover, the current work aims to investigate the association between them and the clinicopathological features of CRC. METHODS The expression of miR-29b and ETV4 (by qRT-PCR) and ETV4 and cyclin D1 (immunohistochemistry) was investigated in 65 cases of colon cancer and surrounding healthy tissues. RESULTS MiR-29b down-regulated and ETV4 and Cyclin D1 up-regulated significantly in colon cancer tissues compared to normal nearby colonic tissues. In addition, significant associations between ETV4 and cyclin D1 expressions and progressive stage and lymph node (LN) metastasis (P< 0.001 for each) were found. Furthermore, there was a negative correlation between miR-29b gene expression and ETV4 gene expression (r=-0.298, P<0.016). CONCLUSION Down-regulation of miR-29b and over-expression of ETV4 and cyclin D1 may be utilized as early diagnostic marker for development of colon cancer. ETV4 and cyclin D1 correlate with poor prognostic indicators and considered as a possible target for therapy in colon cancer.
Collapse
Affiliation(s)
- Hala Mosaad
- Department of Biochemistry, Faculty of Medicine Zagazig University, Egypt
| | | | - Mostafa M Elaidy
- Department of General Surgery, Faculty of Medicine Zagazig University, Egypt
| | - Ola M Elfarargy
- Department of Medical Oncology, Faculty of Medicine Zagazig University, Egypt
| | | | - Hanim M Abdelnour
- Department of Biochemistry, Faculty of Medicine Zagazig University, Egypt
| |
Collapse
|
10
|
Investigating the Role of Circulating miRNAs as Biomarkers in Colorectal Cancer: An Epidemiological Systematic Review. Biomedicines 2022; 10:biomedicines10092224. [PMID: 36140324 PMCID: PMC9496335 DOI: 10.3390/biomedicines10092224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/20/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Primary and secondary preventions are key to reducing the global burden. MicroRNAs (miRNAs) are a group of small non-coding RNA molecules, which seem to have a role either as tumor suppressor genes or oncogenes and to be related to cancer risk factors, such as obesity and inflammation. We conducted a systematic review and meta-analysis to identify circulating miRNAs related to CRC diagnosis that could be selected as biomarkers in a meet-in-the-middle analysis. Forty-four studies were included in the systematic review and nine studies in the meta-analysis. The pooled sensitivity and specificity of miR-21 for CRC diagnosis were 77% (95% CI: 69–84) and 82% (95% CI: 70–90), respectively, with an AUC of 0.86 (95% CI: 0.82–0.88). Several miRNAs were found to be dysregulated, distinguishing patients with CRC from healthy controls. However, little consistency was present across the included studies, making it challenging to identify specific miRNAs, which were consistently validated. Understanding the mechanisms by which miRNAs become biologically embedded in cancer initiation and promotion may help better understand cancer pathways to develop more effective prevention strategies and therapy approaches.
Collapse
|
11
|
Mir-29b in Breast Cancer: A Promising Target for Therapeutic Approaches. Diagnostics (Basel) 2022; 12:diagnostics12092139. [PMID: 36140539 PMCID: PMC9497770 DOI: 10.3390/diagnostics12092139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
The miR-29 family comprises miR-29a, miR-29b, and miR-29c, and these molecules play crucial and partially overlapped functions in solid tumors, in which the different isoforms are variously de-regulated and mainly correlated with tumor suppression. miR-29b is the most expressed family member in cancer, in which it is involved in regulating gene expression at both transcriptional and post-transcriptional levels. This review focuses on the role of miR-29b in breast cancer, in which it plays a controversial role as tumor suppressor or onco-miRNA. Here we have highlighted the dual effect of miR-29b on breast tumor features, which depend on the prevailing function of this miRNA, on the mature miR-29b evaluated, and on the breast tumor characteristics. Remarkably, the analyzed miR-29b form emerged as a crucial element in the results obtained by various research groups, as the most abundant miR-29b-3p and the less expressed miR-29b1-5p seem to play distinct roles in breast tumors with different phenotypes. Of particular interest are the data showing that miR-29b1-5p counteracts cell proliferation and migration and reduces stemness in breast tumor cells with a triple negative phenotype. Even if further studies are required to define exactly the role of each miR-29b, our review highlights its possible implication in phenotype-specific management of breast tumors.
Collapse
|
12
|
Essa HYS, Kusaf G, Yuruker O, Kalkan R. Epigenetic Alteration in Colorectal Cancer: A Biomarker for Diagnostic and Therapeutic Application. Glob Med Genet 2022; 9:258-262. [PMID: 36188672 PMCID: PMC9522482 DOI: 10.1055/s-0042-1757404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Colorectal cancer (CRC) is the leading cause of cancer death worldwide. A crucial process that initiates and progresses CRC is various epigenetic and genetic changes occurring in colon epithelial cells. Recently, huge progress has been made to understand cancer epigenetics, especially regarding DNA methylation changes, histone modifications, dysregulation of miRNAs and noncoding RNAs. In the "epigenome" of colon cancer, abnormal methylation of genes that cause gene alterations or expression of miRNA has been reported in nearly all CRC; these findings can be encountered in the average CRC methylome. Epigenetic changes, known as driving events, are assumed to play a dominant part in CRC. Furthermore, as epigenetic changes in CRC become properly understood, these changes are being established as clinical biomarkers for therapeutic and diagnostic purposes. Progression in this area indicates that epigenetic changes will often be utilized in the future to prevent and treat CRC.
Collapse
Affiliation(s)
| | - Gunay Kusaf
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Ozel Yuruker
- Department of Medical Biology, Faculty of Medicine, Kyrenia University, Kyrenia, Cyprus
| | - Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Cyprus Health and Social Sciences University, Guzelyurt, Cyprus
| |
Collapse
|
13
|
Nguyen TTP, Suman KH, Nguyen TB, Nguyen HT, Do DN. The Role of miR-29s in Human Cancers—An Update. Biomedicines 2022; 10:biomedicines10092121. [PMID: 36140219 PMCID: PMC9495592 DOI: 10.3390/biomedicines10092121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that directly bind to the 3’ untranslated region (3’-UTR) of the target mRNAs to inhibit their expression. The miRNA-29s (miR-29s) are suggested to be either tumor suppressors or oncogenic miRNAs that are strongly dysregulated in various types of cancer. Their dysregulation alters the expression of their target genes, thereby exerting influence on different cellular pathways including cell proliferation, apoptosis, migration, and invasion, thereby contributing to carcinogenesis. In the present review, we aimed to provide an overview of the current knowledge on the miR-29s biological network and its functions in cancer, as well as its current and potential applications as a diagnostic and prognostic biomarker and/or a therapeutic target in major types of human cancer.
Collapse
Affiliation(s)
- Thuy T. P. Nguyen
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kamrul Hassan Suman
- Department of Fisheries, Ministry of Fisheries and Livestock, Dhaka 1205, Bangladesh
| | - Thong Ba Nguyen
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Ha Thi Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Vietnam
- Correspondence: (H.T.N.); (D.N.D.)
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Correspondence: (H.T.N.); (D.N.D.)
| |
Collapse
|
14
|
Zhao J, Ma X, Xu H. miR‑29b‑3p inhibits 22Rv1 prostate cancer cell proliferation through the YWHAE/BCL‑2 regulatory axis. Oncol Lett 2022; 24:289. [PMID: 35928803 PMCID: PMC9344263 DOI: 10.3892/ol.2022.13409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common malignant tumours in the world and seriously affects health of men. Studies have shown that microRNA (miR)-29b-3p and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE) play important roles in influencing the proliferation and apoptosis of PCa cells. However, the molecular mechanism of miR-29b-3p and YWHAE in the proliferation and apoptosis of PCa cells remains unclear. In the present study, bioinformatics as well as in vivo and in vitro experiments were used to predict and verify the targeting relationship between YWHAE and mir-29B-3p and investigate the potential roles of YWHAE and mir-29b-3p in the proliferation and apoptosis of 22RV1 cells. Using bioinformatics and a double luciferase system assay, it was confirmed that miR-29b-3p can target YWHAE 3′untranslated region and affect the expression of YWHAE, suggesting that miR-29b-3p may be a potential miRNA of YWHAE. Reverse transcription-quantitative PCR, Cell Counting Kit-8, Transwell and cell scratch assays showed that miR-29b-3p significantly inhibited the proliferation, invasion and migration of 22Rv1 cells (P<0.01). Rescue experiments demonstrated that YWHAE gene introduction reversed the inhibitory effect of miR-29b-3p on 22Rv1 cells. Western blotting revealed that the upregulation of miR-29b-3p inhibited YWHAE expression, resulting in a very significant decrease in the ratio of p-BAD/BAD and full-length caspase 3/cleaved caspase 3 (P<0.01) and an extremely significant increase in the ratio of BAX/BCL-2 (P<0.01). A tumourigenesis test in nude mice in vivo confirmed that the upregulation of miR-29b-3p inhibited tumour growth by targeting YWHAE. The present experiments confirmed that miR-29b-3p plays a tumour suppressor role in 22Rv1 PCa cells, and the YWHAE/BCL-2 regulatory axis plays a vital role in miR-29b-3p regulating the proliferation and apoptosis of 22Rv1 cells. These results may provide a theoretical basis for the diagnosis and targeted treatment of PCa.
Collapse
Affiliation(s)
- Jiafu Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Xiaoyan Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
15
|
van der Sijde F, Homs MYV, van Bekkum ML, van den Bosch TPP, Bosscha K, Besselink MG, Bonsing BA, de Groot JWB, Karsten TM, Groot Koerkamp B, Haberkorn BCM, Luelmo SAC, Mekenkamp LJM, Mustafa DAM, Wilmink JW, van Eijck CHJ, Vietsch EE, on behalf of the Dutch Pancreatic Cancer Group. Serum miR-373-3p and miR-194-5p Are Associated with Early Tumor Progression during FOLFIRINOX Treatment in Pancreatic Cancer Patients: A Prospective Multicenter Study. Int J Mol Sci 2021; 22:ijms222010902. [PMID: 34681562 PMCID: PMC8535910 DOI: 10.3390/ijms222010902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we explored the predictive value of serum microRNA (miRNA) expression for early tumor progression during FOLFIRINOX chemotherapy and its association with overall survival (OS) in patients with pancreatic ductal adenocarcinoma (PDAC). A total of 132 PDAC patients of all disease stages were included in this study, of whom 25% showed progressive disease during FOLFIRINOX according to the RECIST criteria. MiRNA expression was analyzed in serum collected before the start and after one cycle of chemotherapy. In the discovery cohort (n = 12), a 352-miRNA RT-qPCR panel was used. In the validation cohorts (total n = 120), miRNA expression was detected using individual RT-qPCR miRNA primers. Before the start of FOLFIRINOX, serum miR-373-3p expression was higher in patients with progressive disease compared to patients with disease control after FOLFIRINOX (Log2 fold difference (FD) 0.88, p = 0.006). MiR-194-5p expression after one cycle of FOLFIRINOX was lower in patients with progressive disease (Log2 FD -0.29, p = 0.044). Both miRNAs were predictors of early tumor progression in a multivariable model including disease stage and baseline CA19-9 level (miR-373-3p odds ratio (OR) 3.99, 95% CI 1.10-14.49; miR-194-5p OR 0.91, 95% CI 0.83-0.99). MiR-373-3p and miR-194-5p did not show an association with OS after adjustment for disease stage, baseline CA19-9, and chemotherapy response. In conclusion, high serum miR-373-3p before the start and low serum miR-194-5p after one cycle are associated with early tumor progression during FOLFIRINOX.
Collapse
Affiliation(s)
- Fleur van der Sijde
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (F.v.d.S.); (B.G.K.); (E.E.V.)
| | - Marjolein Y. V. Homs
- Department of Medical Oncology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Marlies L. van Bekkum
- Department of Medical Oncology, Reinier de Graaf Gasthuis, 2625 AD Delft, The Netherlands;
| | - Thierry P. P. van den Bosch
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Koop Bosscha
- Department of Surgery, Jeroen Bosch Hospital, 5223 GZ ‘s Hertogenbosch, The Netherlands;
| | - Marc G. Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Bert A. Bonsing
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Thomas M. Karsten
- Department of Surgery, Onze Lieve Vrouwe Gasthuis, 1061 AE Amsterdam, The Netherlands;
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (F.v.d.S.); (B.G.K.); (E.E.V.)
| | | | - Saskia A. C. Luelmo
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Leonie J. M. Mekenkamp
- Department of Medical Oncology, Medisch Spectrum Twente, 7512 KZ Enschede, The Netherlands;
| | - Dana A. M. Mustafa
- Tumor Immuno-Pathology Laboratory, Department of Pathology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Johanna W. Wilmink
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Casper H. J. van Eijck
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (F.v.d.S.); (B.G.K.); (E.E.V.)
- Correspondence: ; Tel.: +31-107-033-854
| | - Eveline E. Vietsch
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (F.v.d.S.); (B.G.K.); (E.E.V.)
| | | |
Collapse
|
16
|
Moazzendizaji S, Sevbitov A, Ezzatifar F, Jalili HR, Aalii M, Hemmatzadeh M, Aslani S, Gholizadeh Navashenaq J, Safari R, Hosseinzadeh R, Rahmany MR, Mohammadi H. microRNAs: Small molecules with a large impact on colorectal cancer. Biotechnol Appl Biochem 2021; 69:1893-1908. [PMID: 34550619 DOI: 10.1002/bab.2255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) accounts for one of the main cancer-related mortality and morbidity worldwide. The molecular mechanisms of CRC development have been broadly investigated and, over the last decade, it has become evident that aberrant transcription of microRNAs (miRNAs), a class of small, noncoding RNA molecules, has a significant role in the inception and promotion of CRC. In the involved tissues of CRC, the transcription profile of miRNAs is modulated, and their expression templates are related with prognosis, diagnosis, and treatment outcomes. Here, in the current review, we attempted to discuss the latest information regarding the aberrantly expressed miRNAs in CRC and the advantages of utilizing miRNAs as biomarkers for early diagnosis and prognosis of CRC as well as potential therapeutic application. The effect of miRNAs involved in various signaling pathways, primarily p53, EGFR, Wnt, and TGF-β pathways, was clarified.
Collapse
Affiliation(s)
- Sahand Moazzendizaji
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Andrey Sevbitov
- Head of Department of Propaedeutics of Dental Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Fatemeh Ezzatifar
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Jalili
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Morteza Aalii
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Roghaiyeh Safari
- Molecular and Cellular Epigenetics (GIGA), University of Liege, Sart-Tilman Liège, Belgium.,13. Molecular and Cellular Biology (TERRA), Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Ramin Hosseinzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rahmany
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
17
|
El Kadmiri N. Advances in Early Detection of Colorectal Cancer: A Focus on Non-invasive Biomarkers. Curr Drug Targets 2021; 22:1043-1053. [PMID: 33655856 DOI: 10.2174/1389450122666210303100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Currently, colonoscopy remains the gold standard diagnostic test for CRC detection. Nonetheless, this technique is invasive and expensive. Remarkable ongoing strategies are focusing on the development of affordable methods to diagnose CRC at earlier stages. The introduction of suitable noninvasive, sensitive and specified diagnostic tests for early CRC detection by employing biomarker analysis seems to be a fundamental need to reduce the numbers of unnecessary colonoscopies. In this review, we provide an overview of single- and multi-panel biomarkers (Genomic markers, transcriptome markers, proteomic markers, inflammatory markers, and microbiome markers) encompassing noninvasive tests in blood and stool for early CRC detection. METHODS A bibliographic search using PubMed/Medline, Web of Science, and EBSCOhost databases was performed to find relevant published studies over the last 6 years. Forty-three pertinent studies were included in this review. RESULTS The primary outcome highlights the sensitivity and specificity of single diagnostic biomarkers studied in blood or stool. The secondary outcome reveals the sensitivity and specificity of the biomarkers panel (combinations) in blood or stool. While some markers show better performance, others are not suitable for screening purposes. CONCLUSION There is a need to adjust experimental and analytical tests that can interfere with a robust result to replace or supplement those markers that are currently in use. Nevertheless, robust verification and validation with large clinical cohorts are needed for successful noninvasive tests that can fulfill the role of colonoscopy.
Collapse
Affiliation(s)
- Nadia El Kadmiri
- Molecular Engineering, Valorization and Environment Team, Polydisciplinary Faculty of Taroudant, IBN ZOHR University, Taroudannt, Morocco
| |
Collapse
|
18
|
Leng Y, Chen Z, Ding H, Zhao X, Qin L, Pan Y. Overexpression of microRNA-29b inhibits epithelial-mesenchymal transition and angiogenesis of colorectal cancer through the ETV4/ERK/EGFR axis. Cancer Cell Int 2021; 21:17. [PMID: 33407520 PMCID: PMC7789299 DOI: 10.1186/s12935-020-01700-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent studies have reported the involvement of microRNA-29 (miR-29) family members in human cancers through their ability to regulate cellular functions. The present study investigated biological function of miR-29b in colorectal cancer (CRC). METHODS CRC tissues and adjacent normal tissues were collected and the expression of ETV4 and miR-29b in the tissues were identified. The relationship between ETV4 and miR-29b or ETV4 expression and the EGFR promoter was identified using dual-luciferase reporter gene and CHIP assays. The proliferation, invasion, migration, and apoptosis of CRC HCT116 cells were assayed using MTT assay, Scratch test, Transwell assay, and flow cytometry, respectively. Also, expression of epithelial-mesenchymal transition (EMT) markers, angiogenic factors, and vasculogenic mimicry formation were evaluated using RT-qPCR and Western blot. RESULTS ETV4 was upregulated, while miR-29b expression was decreased in CRC tissues. ETV4 was identified as a target gene of miR-29b, which in turn inactivated the ERK signaling pathway by targeting ETV4 and inhibiting EGFR transcription. Transfection with miR-29b mimic, siRNA-ETV4, or ERK signaling pathway inhibitor U0126 increased expression of E-cadherin and TSP-1, and CRC cell apoptosis, yet reduced expression of ERK1/2, MMP-2, MMP-9, Vimentin, and VEGF, as well as inhibiting EMT, angiogenesis, and CRC cell migration and invasion. The EMT, angiogenesis and cancer progression induced by miR-29b inhibitor were reversed by siRNA-mediated ETV4 silencing. CONCLUSIONS miR-29b suppresses angiogenesis and EMT in CRC via the ETV4/ERK/EGFR axis.
Collapse
Affiliation(s)
- Yin Leng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, No. 601, Huangpu Avenue, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Zhixian Chen
- Department of Oncology, Fuda Cancer Hospital, Jinan University, Guangzhou, 510665, People's Republic of China
| | - Hui Ding
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, No. 601, Huangpu Avenue, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Xiaoxu Zhao
- Medical Department, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People's Republic of China
| | - Li Qin
- Department of Histology and Embryology, Medical School of Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yunlong Pan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, No. 601, Huangpu Avenue, Guangzhou, 510632, Guangdong, People's Republic of China.
| |
Collapse
|
19
|
Paciorek P, Żuberek M, Grzelak A. Rola miRNA w rozwoju wybranych nowotworów – potencjalne zastosowanie w diagnostyce*. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.6578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streszczenie
MikroRNA (miRNA) są małymi cząsteczkami kwasu rybonukleinowego, które mimo że nie podlegają procesowi translacji, pełnią ważną funkcję regulacyjną w komórkach eukariotycznych. Ich fizjologiczną funkcją jest utrzymywanie homeostazy komórek. Zaburzona ekspresja miRNA może spowodować rozwój wielu chorób, w tym chorób nowotworowych. Działanie miRNA polega na hamowaniu tworzenia się białek, w tym białek o właściwościach onkogennych i antyonkogennych. Mutacje w miejscach kodowania miRNA mogą prowadzić do nadmiernego lub zmniejszonego wytwarzania wspomnianych białek. Odkrycie miRNA i poznanie ich roli w komórce otworzyło nowe możliwości dla diagnostyki chorób nowotworowych. Zmiany poziomu odpowiednich miRNA, w krwiobiegu lub innych płynach ustrojowych, mogą być markerem diagnostycznym chorób. Diagnostyka onkologiczna mogłaby przebiegać na podstawie badań profilu miRNA pacjenta i porównania go z opracowanymi wcześniej profilami zmian miRNA powiązanymi z występowaniem danego rodzaju choroby nowotworowej. Informacja o zmianach profilu miRNA podstawowych w regulacji ekspresji genów związanych z procesami nowotworzenia, mogłaby się przyczynić do opracowania terapii eksperymentalnych opartych na przywróceniu pierwotnego poziomu miRNA w komórkach, a tym samym, na przywróceniu prawidłowej regulacji ekspresji genów. Coraz nowsze metody wyciszania i włączania ekspresji miRNA mogą w przyszłości zaowocować skutecznymi rozwiązaniami terapeutycznymi.
Collapse
Affiliation(s)
- Patrycja Paciorek
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| | - Mariusz Żuberek
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| | - Agnieszka Grzelak
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| |
Collapse
|
20
|
Huang X, Zhu X, Yu Y, Zhu W, Jin L, Zhang X, Li S, Zou P, Xie C, Cui R. Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett 2020; 501:66-82. [PMID: 33385486 DOI: 10.1016/j.canlet.2020.12.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and leading cause of cancer related deaths worldwide. Despite recent advancements in surgical and molecular targeted therapies that improved the therapeutic efficacy in CRC, the 5 years survival rate of CRC patients still remains frustratingly poor. Accumulated evidences indicate that microRNAs (miRNAs) play a crucial role in the progression and metastasis of CRC. Dysregulated miRNAs are closely associated with cancerous phenotypes (e.g. enhanced proliferative and invasive ability, evasion of apoptosis, cell cycle aberration, and promotion of angiogenesis) by regulating their target genes. In this review, we provide an updated overview of tumor suppressive and oncogenic miRNAs, circulatory miRNAs, and the possible causes of dysregulated miRNAs in CRC. In addition, we discuss the important functions of miRNAs in drug resistance of CRC.
Collapse
Affiliation(s)
- Xiangjie Huang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinping Zhu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yun Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wangyu Zhu
- Affiliated Zhoushan Hospital, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China
| | - Xiaodong Zhang
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shaotang Li
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Zou
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China
| | - Congying Xie
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
21
|
Mao A, Tang J, Tang D, Wang F, Liao S, Yuan H, Tian C, Sun C, Si J, Zhang H, Xia X. MicroRNA-29b-3p enhances radiosensitivity through modulating WISP1-mediated mitochondrial apoptosis in prostate cancer cells. J Cancer 2020; 11:6356-6364. [PMID: 33033519 PMCID: PMC7532503 DOI: 10.7150/jca.48216] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy is frequently applied for clinically localized prostate cancer while its efficacy could be significantly hindered by radioresistance. MicroRNAs (miRNAs) are important regulators in mediating cellular responses to ionizing radiation (IR), and strongly associate with radiosensitivity in many cancers. In this study, enhancement of radiosensitivity by miR-29b-3p was demonstrated in prostate cancer cell line LNCaP in vitro. Results showed that miR-29b-3p expression was significantly upregulated in response to IR from both X-rays and carbon ion irradiations. Knockdown of miR-29b-3p resulted in radioresistance while overexpression of miR-29b-3p led to increased radiosensitivity (showing reduced cell viability, suppressed cell proliferation and decreased colony formation). In addition, miR-29b-3p was found to directly target Wnt1-inducible-signaling protein 1 (WISP1). Inhibition of WISP1 facilitated the mitochondrial apoptosis pathway through suppressing Bcl-XL expression while activating caspase-3 and poly (ADP-ribose) polymerase (PARP). The results indicated that miR-29b-3p was a radiosensitizing miRNAs and could enhance radiosensitivity of LNCaP cells by targeting WISP1. These findings suggested a novel treatment to overcome radioresistance in prostate cancer patients, especially those with higher levels of the WISP1 expression.
Collapse
Affiliation(s)
- Aihong Mao
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jinzhou Tang
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Deping Tang
- School of Chemical & Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Fang Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shiqi Liao
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Hongxia Yuan
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Caiping Tian
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaojun Xia
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, China.,Gansu Provincial Cancer Hospital, Lanzhou, China
| |
Collapse
|
22
|
MicroRNA-29a functions as a tumor suppressor through targeting STAT3 in laryngeal squamous cell carcinoma. Exp Mol Pathol 2020; 116:104521. [PMID: 32858006 DOI: 10.1016/j.yexmp.2020.104521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/28/2020] [Accepted: 08/20/2020] [Indexed: 01/23/2023]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a common head and neck cancer with high mortality in developing countries. A comprehensive understanding of the molecular mechanisms of tumor progression in laryngeal cancer is needed for new treatment strategies. MicroRNA-29a has been emerged as a critical miRNA in various cancers, and shown to regulate multiple oncogenic processes. In this study, we investigated the tumor suppressive role of miRNA-29a in laryngeal squamous cell carcinoma. We performed cell-based functional analysis after overexpression of miR-29a in AMC-HN-8 and HEP2 cells in vitro. It turned out that ectopic expression of miR-29a significantly inhibited cell proliferation, invasion, and migration in two LSCC cell lines (AMC-HN-8 and Hep2) in vitro. Further downstream target analysis by western blotting and luciferease reporter assay showed that overexpression of miR-29a significantly downregulated expression of STAT3, and STAT3 is a putative direct target of miR-29a in LSCC. In addition, the tumor suppressive function of miR-29a can be abrogated by forced expression of STAT3. Taken together, our data suggest that miR-29a functions as a tumor suppressor through targeting STAT3 in laryngeal squamous cell carcinoma.
Collapse
|
23
|
Sereno M, Videira M, Wilhelm I, Krizbai IA, Brito MA. miRNAs in Health and Disease: A Focus on the Breast Cancer Metastatic Cascade towards the Brain. Cells 2020; 9:E1790. [PMID: 32731349 PMCID: PMC7463742 DOI: 10.3390/cells9081790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that mainly act by binding to target genes to regulate their expression. Due to the multitude of genes regulated by miRNAs they have been subject of extensive research in the past few years. This state-of-the-art review summarizes the current knowledge about miRNAs and illustrates their role as powerful regulators of physiological processes. Moreover, it highlights their aberrant expression in disease, including specific cancer types and the differential hosting-metastases preferences that influence several steps of tumorigenesis. Considering the incidence of breast cancer and that the metastatic disease is presently the major cause of death in women, emphasis is put in the role of miRNAs in breast cancer and in the regulation of the different steps of the metastatic cascade. Furthermore, we depict their involvement in the cascade of events underlying breast cancer brain metastasis formation and development. Collectively, this review shall contribute to a better understanding of the uniqueness of the biologic roles of miRNAs in these processes, to the awareness of miRNAs as new and reliable biomarkers and/or of therapeutic targets, which can change the landscape of a poor prognosis and low survival rates condition of advanced breast cancer patients.
Collapse
Affiliation(s)
- Marta Sereno
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
| | - Mafalda Videira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
- Department of Galenic Pharmacy and Pharmaceutical Technology, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary, Temesvári krt. 62, 6726 Szeged, Hungary; (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania, Str. Liviu Rebreanu 86, 310414 Arad, Romania
| | - István A. Krizbai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary, Temesvári krt. 62, 6726 Szeged, Hungary; (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania, Str. Liviu Rebreanu 86, 310414 Arad, Romania
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
- Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
24
|
Mishan MA, Tabari MAK, Parnian J, Fallahi J, Mahrooz A, Bagheri A. Functional mechanisms of miR-192 family in cancer. Genes Chromosomes Cancer 2020; 59:722-735. [PMID: 32706406 DOI: 10.1002/gcc.22889] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
By growing research on the mechanisms and functions of microRNAs (miRNAs, miRs), the role of these noncoding RNAs gained more attention in healthcare. Due to the remarkable regulatory role of miRNAs, any dysregulation in their expression causes cellular functional impairment. In recent years, it has become increasingly apparent that these small molecules contribute to development, cell differentiation, proliferation, apoptosis, and tumor growth. In many studies, the miR-192 family has been suggested as a potential prognostic and diagnostic biomarker and even as a possible therapeutic target for several cancers. However, the mechanistic effects of the miR-192 family on cancer cells are still controversial. Here, we have reviewed each family member of the miR-192 including miR-192, miR-194, and miR-215, and discussed their mechanistic roles in various cancers.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Parnian
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Jafar Fallahi
- Molecular Medicine Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkarim Mahrooz
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
25
|
Yang Y, Meng WJ, Wang ZQ. MicroRNAs in Colon and Rectal Cancer - Novel Biomarkers from Diagnosis to Therapy. Endocr Metab Immune Disord Drug Targets 2020; 20:1211-1226. [PMID: 32370729 DOI: 10.2174/1871530320666200506075219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers and a significant cause of tumor- related deaths worldwide. Traditional biomarkers, such as CEA and CA199, are not sensitive enough to provide useful information for early diagnosis and treatment and are rather used to track the clinical progression of the disease. There is growing evidence that microRNAs (miRNA) are potentially superior to traditional biomarkers as promising non-invasive biomarkers for the timely diagnosis and prediction of prognosis or treatment response in the management of CRC. In this review, the latest studies on the dysregulation of miRNAs expression in CRC and the potential for miRNAs to serve as biomarkers were collected. Given the limitations of miRNA, as discussed in this paper, its clinical applications as a diagnostic biomarker should be limited to use in combination with other biomarkers. Further research is necessary to elucidate the clinical applications of miRNA in therapy for CRC.
Collapse
Affiliation(s)
- Ying Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen-Jian Meng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zi-Qiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Kunigenas L, Stankevicius V, Dulskas A, Budginaite E, Alzbutas G, Stratilatovas E, Cordes N, Suziedelis K. 3D Cell Culture-Based Global miRNA Expression Analysis Reveals miR-142-5p as a Theranostic Biomarker of Rectal Cancer Following Neoadjuvant Long-Course Treatment. Biomolecules 2020; 10:E613. [PMID: 32316138 PMCID: PMC7226077 DOI: 10.3390/biom10040613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 01/21/2023] Open
Abstract
Altered expression of miRNAs in tumor tissue encourages the translation of this specific molecular pattern into clinical practice. However, the establishment of a selective biomarker signature for many tumor types remains an inextricable challenge. For this purpose, a preclinical experimental design, which could maintain a fast and sensitive discovery of potential biomarkers, is in demand. The present study suggests that the approach of 3D cell cultures as a preclinical cancer model that is characterized to mimic a natural tumor environment maintained in solid tumors could successfully be employed for the biomarker discovery and validation. Subsequently, in this study, we investigated an environment-dependent miRNA expression changes in colorectal adenocarcinoma DLD1 and HT29 cell lines using next-generation sequencing (NGS) technology. We detected a subset of 16 miRNAs differentially expressed in both cell lines cultivated in multicellular spheroids compared to expression levels in cells grown in 2D. Furthermore, results of in silico miRNA target analysis showed that miRNAs, which were differentially expressed in both cell lines grown in MCS, are involved in the regulation of molecular mechanisms implicated in cell adhesion, cell-ECM interaction, and gap junction pathways. In addition, integrins and platelet-derived growth factor receptors were determined to be the most significant target genes of deregulated miRNAs, which was concordant with the environment-dependent gene expression changes validated by RT-qPCR. Our results revealed that 3D microenvironment-dependent deregulation of miRNA expression in CRC cells potentially triggers essential molecular mechanisms predominantly including the regulation of cell adhesion, cell-cell, and cell-ECM interactions important in CRC initiation and development. Finally, we demonstrated increased levels of selected miR-142-5p in rectum tumor tissue samples after neoadjuvant long course treatment compared to miR-142-5p expression levels in tumor biopsy samples collected before the therapy. Remarkably, the elevation of miR-142-5p expression remained in tumor samples compared to adjacent normal rectum tissue as well. Therefore, the current study provides valuable insights into the molecular miRNA machinery of CRC and proposes a potential miRNA signature for the assessment of CRC in further clinical research.
Collapse
Affiliation(s)
- Linas Kunigenas
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-08412 Vilnius, Lithuania
| | - Vaidotas Stankevicius
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
- Life Sciences Center, Institute of Biotechnology, Vilnius University, LT-08412 Vilnius, Lithuania
| | - Audrius Dulskas
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-08406 Vilnius, Lithuania
- University of Applied Sciences, Faculty of Health Care, LT-08303 Vilnius, Lithuania
| | - Elzbieta Budginaite
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
| | - Gediminas Alzbutas
- Thermo Fisher Scientific, LT-02241 Vilnius, Lithuania;
- Institute of Informatics, Faculty of Mathematics and Informatics, Vilnius University, LT-08303 Vilnius, Lithuania
| | - Eugenijus Stratilatovas
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-08406 Vilnius, Lithuania
| | - Nils Cordes
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, Technische Universität, D–01307 Dresden, Germany;
- Helmholtz–Zentrum Dresden–Rossendorf, Institute of Radiooncology–OncoRay, D–01328 Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, D–69192 Heidelberg, Germany
- German Cancer Research Center (DKFZ), D–69192 Heidelberg, Germany
| | - Kestutis Suziedelis
- National Cancer Institute, LT-08660 Vilnius, Lithuania; (L.K.); (A.D.); (E.B.); (E.S.)
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-08412 Vilnius, Lithuania
| |
Collapse
|
27
|
Sereno M, Haskó J, Molnár K, Medina SJ, Reisz Z, Malhó R, Videira M, Tiszlavicz L, Booth SA, Wilhelm I, Krizbai IA, Brito MA. Downregulation of circulating miR 802-5p and miR 194-5p and upregulation of brain MEF2C along breast cancer brain metastasization. Mol Oncol 2020; 14:520-538. [PMID: 31930767 PMCID: PMC7053247 DOI: 10.1002/1878-0261.12632] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/31/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer brain metastases (BCBMs) have been underinvestigated despite their high incidence and poor outcome. MicroRNAs (miRNAs), and particularly circulating miRNAs, regulate multiple cellular functions, and their deregulation has been reported in different types of cancer and metastasis. However, their signature in plasma along brain metastasis development and their relevant targets remain undetermined. Here, we used a mouse model of BCBM and next‐generation sequencing (NGS) to establish the alterations in circulating miRNAs during brain metastasis formation and development. We further performed bioinformatics analysis to identify their targets with relevance in the metastatic process. We additionally analyzed human resected brain metastasis samples of breast cancer patients for target expression validation. Breast cancer cells were injected in the carotid artery of mice to preferentially induce metastasis in the brain, and samples were collected at different timepoints (5 h, 3, 7, and 10 days) to follow metastasis development in the brain and in peripheral organs. Metastases were detected from 7 days onwards, mainly in the brain. NGS revealed a deregulation of circulating miRNA profile during BCBM progression, rising from 18% at 3 days to 30% at 10 days following malignant cells’ injection. Work was focused on those altered prior to metastasis detection, among which were miR‐802‐5p and miR‐194‐5p, whose downregulation was validated by qPCR. Using targetscan and diana tools, the transcription factor myocyte enhancer factor 2C (MEF2C) was identified as a target for both miRNAs, and its expression was increasingly observed in malignant cells along brain metastasis development. Its upregulation was also observed in peritumoral astrocytes pointing to a role of MEF2C in the crosstalk between tumor cells and astrocytes. MEF2C expression was also observed in human BCBM, validating the observation in mouse. Collectively, downregulation of circulating miR‐802‐5p and miR‐194‐5p appears as a precocious event in BCBM and MEF2C emerges as a new player in brain metastasis development.
Collapse
Affiliation(s)
- Marta Sereno
- Faculdade de Farmácia, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Portugal
| | - János Haskó
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Sarah J Medina
- Prion Diseases Section, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Zita Reisz
- Department of Pathology, University of Szeged, Hungary
| | - Rui Malhó
- Faculdade de Ciências, BioISI, Instituto de Biossistemas e Ciências Integrativas, Universidade de Lisboa, Portugal
| | - Mafalda Videira
- Faculdade de Farmácia, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Portugal.,Department of Galenic Pharmacy and Pharmaceutical Technology, Faculdade de Farmácia, Universidade de Lisboa, Portugal
| | | | - Stephanie A Booth
- Prion Diseases Section, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Romania
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Romania
| | - Maria Alexandra Brito
- Faculdade de Farmácia, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculdade de Farmmácia, Universidade de Lisboa, Portugal
| |
Collapse
|
28
|
Jiang Y, He J, Li Y, Guo Y, Tao H. The Diagnostic Value of MicroRNAs as a Biomarker for Hepatocellular Carcinoma: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5179048. [PMID: 31871941 PMCID: PMC6907051 DOI: 10.1155/2019/5179048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/15/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recently, the role of microRNAs (miRNAs) in diagnosing cancer has been attracted increasing attention. However, few miRNAs have been applied in clinical practice. The purpose of this study was to evaluate the diagnostic efficacy of miRNAs for hepatocellular carcinoma (HCC) at early stages clinically. METHODS A literature search was carried out using PubMed, Web of Science, and EMBASE databases. We explored the diagnostic value of miRNAs in distinguishing HCC from healthy individuals. The quality assessment was performed in Review Manager 5.3 software. The overall sensitivity and specificity and 95% confidence intervals (CIs) were obtained with random-effects models through Stata 14.0 software. And heterogeneity was assessed using Q test and I 2 statistics. Meta-regression and subgroup analyses were conducted based on the sample, nation, quality of studies, and miRNA profiling. The publication bias was evaluated through Deeks' funnel plot. RESULTS A total of 34 studies, involving in 2747 HCC patients and 2053 healthy individuals, met the inclusion criteria in the 33 included literature studies. In the summary receiver operating characteristic (sROC) curve, AUC was 0.92 (95% CI, 0.90-0.94), with 0.84 (95% CI, 0.79-0.88) sensitivity and 0.87 (95% CI, 0.83-0.90) specificity. There was no publication bias (P=0.48). CONCLUSION miRNAs in vivo can be acted as a potential diagnostic biomarker for HCC, which can facilitate the early diagnosis of HCC in clinical practice.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Clinical Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jimin He
- Department of Neurosurgery, Suining Central Hospital, Suining, China
| | - Yiqin Li
- Department of Clinical Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yongcan Guo
- Clinical Laboratory of Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hualin Tao
- Department of Clinical Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
29
|
Wan TMH, Iyer DN, Ng L. Roles of microRNAs as non-invasive biomarker and therapeutic target in colorectal cancer. Histol Histopathol 2019; 35:225-237. [PMID: 31617575 DOI: 10.14670/hh-18-171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs are endogenous, short non-coding RNA molecules that function as critical regulators of various biological processes. There is a strong functional evidence linking the involvement of dysregulated miRNAs to the occurrence, development and progression of colorectal cancer. Studies indicate that while overexpression of oncomiRs, and repression of tumor suppressor miRNAs tends to drive the overall tumorigenic process, the global picture of aberrant miRNA expression in colorectal cancer can classify the disease into multiple molecular phenotypes. Moreover, the expression pattern of miRNAs in colorectal cancer make them viable disease determinants as well as potential therapeutic targets. Through this review, we will summarize the importance of miRNAs in the etiology and progression of colorectal cancer. Specifically, we will explore the key role played by these RNA molecules as likely therapeutic avenues and the strategies presently available to target them. Finally, we will investigate the role of miRNAs as potential non-invasive diagnostic and prognostic biomarkers in colorectal cancer.
Collapse
Affiliation(s)
- Timothy Ming-Hun Wan
- Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong
| | | | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong.
| |
Collapse
|
30
|
Peng Q, Feng Z, Shen Y, Zhu J, Zou L, Shen Y, Zhu Y. Integrated analyses of microRNA-29 family and the related combination biomarkers demonstrate their widespread influence on risk, recurrence, metastasis and survival outcome in colorectal cancer. Cancer Cell Int 2019; 19:181. [PMID: 31346316 PMCID: PMC6633652 DOI: 10.1186/s12935-019-0907-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
Background Emerging evidence has revealed miR-29 family as promising biomarkers for colorectal cancer (CRC), but their biomarker potential and molecular mechanisms remain poorly understood. Methods We performed a comprehensive meta-analysis to evaluate the biomarker performance of individual miR-29 and the related miRNA combination biomarkers. Meanwhile, we conducted an integrative bioinformatics analysis to unfold the underlying biological function of miR-29 and their relationship with CRC. Results Using miR-29 expression to diagnose CRC produced 0.82 area under the curve, 70% sensitivity and 81% specificity while the combination biomarkers based on miR-29 enhanced the diagnostic power with an AUC of 0.86, a sensitivity of 78% and a specificity of 91%. For the prognosis evaluation, patients with higher expression of miR-29 had better survival outcome (pooled HR 0.78; 95% CI 0.56–1.07). In addition, miR-29 has also been identified as potential biomarker for predicting recurrence and metastasis in CRC. Then the genes regulated by the miR-29 family were retrieved and found closely associated with the molecular pathogenesis of CRC according to the gene ontology and pathway analysis. Furthermore, hub nodes and significant modules were identified from the protein–protein interaction network constructed with miR-29 family targets, which were also confirmed highly involved in the establishment and development of CRC. Conclusions Current evidences suggest miR-29 family may become promising biomarkers for risk, recurrence, metastasis and survival outcome of CRC. Meanwhile our data highlight the potential clinical use of miRNA combination biomarkers. Nevertheless, further prospective studies are warranted before the application of the useful biomarkers in the clinical.
Collapse
Affiliation(s)
- Qiliang Peng
- 1Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu 215004 China.,2Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Zhengyang Feng
- 3Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Shen
- 4Department of Radiation Oncology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou Science & Technology Town Hospital, Suzhou, China
| | - Jiahao Zhu
- Tongda College of Nanjing University of Post and Telecommunications, Yangzhou, China
| | - Li Zou
- 1Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu 215004 China.,2Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Yuntian Shen
- 1Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu 215004 China.,2Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Yaqun Zhu
- 1Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, Jiangsu 215004 China.,2Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| |
Collapse
|
31
|
Rapado-González Ó, Álvarez-Castro A, López-López R, Iglesias-Canle J, Suárez-Cunqueiro MM, Muinelo-Romay L. Circulating microRNAs as Promising Biomarkers in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11070898. [PMID: 31252648 PMCID: PMC6679000 DOI: 10.3390/cancers11070898] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related deaths worldwide. Despite numerous advances in therapeutic approaches, this cancer has a poor prognosis when it is diagnosed at late stages. Therefore, the scientific effort is nowadays directed towards the development of new non-invasive and dynamic biomarkers to improve the survival expectancy of CRC patients. In this sense, deregulated expression of many miRNAs has been shown to play an important role for CRC carcinogenesis and dissemination. Noticeably, an increasing number of studies highlight that circulating miRNAs, including those traveling inside exosomes or those released by tumor cells into circulation, constitute a promising tool for early detection, prognosis and therapy selection of CRC. Therefore, in this review we focus on the clinical potential of blood circulating miRNAs as emerging biomarkers with high value to improve the clinical management of CRC patients, providing a deep and complete perspective of the realities and challenges to translate these biomarkers to the clinical context.
Collapse
Affiliation(s)
- Óscar Rapado-González
- Department of Surgery and Medical Surgical Specialties, Medicine and Dentistry School, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ana Álvarez-Castro
- Medical Digestive Service, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - Rafael López-López
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Translational Medical Oncology (Oncomet), Health Research Foundation Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - José Iglesias-Canle
- Medical Digestive Service, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - María Mercedes Suárez-Cunqueiro
- Department of Surgery and Medical Surgical Specialties, Medicine and Dentistry School, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Oral Sciences Research Group, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain.
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain.
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| |
Collapse
|
32
|
Zhang T, Xue X, Peng H. Therapeutic Delivery of miR-29b Enhances Radiosensitivity in Cervical Cancer. Mol Ther 2019; 27:1183-1194. [PMID: 31029553 PMCID: PMC6554684 DOI: 10.1016/j.ymthe.2019.03.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
Radioresistant cervical cancer is likely to give rise to local recurrence, distant metastatic relapse, and decreased survival rates. Recent studies revealed microRNA mediated regulation of tumor aggressiveness and metastasis; however, whether specific microRNAs regulate tumor radioresistance and can be exploited as radiosensitizing agents remains unclear. Here, we find that miR-29b could promote radiosensitivity in radioresistant subpopulations of cervical cancer cells. Notably, therapeutic delivery of miR-29b mimics via R11-SSPEI nanoparticle, whose specificity has been proved by our previous studies, can sensitize the tumor to radiation in a xenograft model. Mechanistically, we reveal a novel function of miR-29b in regulating intracellular reactive oxygen species signaling and explore a potential application for its use in combination with therapies known to increase oxidative stress such as radiation. Moreover, miR-29b inhibits DNA damage repair by targeting phosphate and tension homology deleted on chromsome ten (PTEN), and overexpression of PTEN could partially rescue miR-29b-mediated homologous recombination (HR)-DNA damage repair and increase radiosensitivity. These findings identify miR-29b as a radiosensitizing microRNA and reveal a new therapeutic strategy for radioresistant tumors.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Gynecology, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Xiang Xue
- Department of Gynecology, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China.
| | - Huixia Peng
- Department of Gynecology, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Circulating Noncoding RNAs Have a Promising Future Acting as Novel Biomarkers for Colorectal Cancer. DISEASE MARKERS 2019; 2019:2587109. [PMID: 31275444 PMCID: PMC6589288 DOI: 10.1155/2019/2587109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/23/2019] [Accepted: 05/21/2019] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors worldwide, causing a large number of cancer-related deaths each year. Patients are usually diagnosed at advanced and incurable stages due to the lack of suitable screening methods for early detection. Noncoding RNAs (ncRNAs), including small and long noncoding RNAs (lncRNA), are known to have significant regulatory functions, and accumulating evidence suggests that circulating ncRNAs have potential applications as noninvasive biomarkers for diagnosing CRC, evaluating its prognosis, or predicting chemosensitivity in the general population. In this review, we summarize the origins of circulating ncRNAs and provide details of single and multiple circulating ncRNAs that might have roles as diagnostic and prognostic biomarkers in CRC. We end by discussing circulating ncRNAs that may distinguish patients with resistance to chemotherapy.
Collapse
|
34
|
Parvaee P, Sarmadian H, Khansarinejad B, Amini M, Mondanizadeh M. Plasma Level of MicroRNAs, MiR-107, MiR-194 and MiR-210 as Potential Biomarkers for Diagnosis Intestinal-Type Gastric
Cancer in Human. Asian Pac J Cancer Prev 2019; 20:1421-1426. [PMID: 31127902 PMCID: PMC6857871 DOI: 10.31557/apjcp.2019.20.5.1421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Timely and sensitive diagnosis of gastric cancer is crucial for efficient treatment and survival of the patients. microRNAs have been considered as diagnostic biomarkers in different type of cancers including gastric cancer. In the present study, the expression profile of four microRNAs, miR-103, miR-107, miR-194 and miR-210 were evaluated in patients with intestinal-type of gastric cancer (IGC) in order to assess their diagnosis utility as noninvasive biomarkers. Methods: A total number of 100 plasma samples from patients with gastric cancer and healthy controls were obtained and total RNA was extracted using a commercial monophasic solution of phenol and guanidium thiocyanate. Reverse transcription (RT) reactions were performed by specific stem-loop RT primers and M-MuLV RT-enzyme. The expression patterns of microRNAs were assessed using reverse transcription quantitative real-time PCR (RT-qPCR) method and the expression of SNORD47 RNA was used as the reference for normalization. Results: The results indicate that the plasma levels of miR-107, miR-194, and miR-210 were significantly lower in patients. Receiver operating characteristic (ROC) curve analysis showed that the patients could be distinguished from healthy individuals at the cutoff levels of 0.504, 0.266, and 0.394 of miR-107, miR-194, and miR-210, respectively. On the other hand, the expression levels of these miRNAs were not significantly different in different clinicopathological stages of the disease. Conclusion: These findings suggest that the plasma levels of miR-107, miR-194 and miR-210 were downregulated in patients with ICG and propose these molecules as potential non-invasive biomarkers for detection of IGC.
Collapse
Affiliation(s)
- Pegah Parvaee
- Department of Biotechnology and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Hossein Sarmadian
- Infectious Diseases Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Behzad Khansarinejad
- Department of Microbiology and Immunology, Arak University of Medical Sciences, Arak, Iran.,Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Mahmood Amini
- Department of Surgery, Arak University of Medical Sciences, Arak, Iran
| | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran. ,Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
35
|
Alizadeh M, Safarzadeh A, Beyranvand F, Ahmadpour F, Hajiasgharzadeh K, Baghbanzadeh A, Baradaran B. The potential role of miR‐29 in health and cancer diagnosis, prognosis, and therapy. J Cell Physiol 2019; 234:19280-19297. [DOI: 10.1002/jcp.28607] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Mohsen Alizadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Safarzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Fatemeh Beyranvand
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Lorestan University of Medical Sciences Khorramabad Iran
| | - Fatemeh Ahmadpour
- Department of Biochemistry, Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Baradaran
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
36
|
Abbaszadegan MR, Moghbeli M. Genetic and molecular origins of colorectal Cancer among the Iranians: an update. Diagn Pathol 2018; 13:97. [PMID: 30579343 PMCID: PMC6303916 DOI: 10.1186/s13000-018-0774-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one the leading causes of cancer related deaths among Iranians. Despite the various progresses in new therapeutic methods, it has still a low rate of survival. This high ratio of mortality is mainly related to the late diagnosis, in which the patients refer for treatment in advanced stages of tumor. MAIN BODY: colorectal cancer progression is largely associated with molecular and genetic bases. Although Iran has a high ratio of CRC mortality, there is not an efficient genetic panel for detection and prognosis. Therefore, it is critical to introduce new diagnostic markers with ability to detect in early stages. CONCLUSION Present review summarizes all of the genetic and epigenetic factors which are reported in CRC until now among the Iranian patients to pave the way of incorporation of new ethnic specific markers into the clinical practice and development of new targeted therapeutic methods.
Collapse
Affiliation(s)
| | - Meysam Moghbeli
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Hibner G, Kimsa-Furdzik M, Francuz T. Relevance of MicroRNAs as Potential Diagnostic and Prognostic Markers in Colorectal Cancer. Int J Mol Sci 2018; 19:ijms19102944. [PMID: 30262723 PMCID: PMC6213499 DOI: 10.3390/ijms19102944] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is currently the third and the second most common cancer in men and in women, respectively. Every year, more than one million new CRC cases and more than half a million deaths are reported worldwide. The majority of new cases occur in developed countries. Current screening methods have significant limitations. Therefore, a lot of scientific effort is put into the development of new diagnostic biomarkers of CRC. Currently used prognostic markers are also limited in assessing the effectiveness of CRC therapy. MicroRNAs (miRNAs) are a promising subject of research especially since single miRNA can recognize a variety of different mRNA transcripts. MiRNAs have important roles in epigenetic regulation of basic cellular processes, such as proliferation, apoptosis, differentiation, and migration, and may serve as potential oncogenes or tumor suppressors during cancer development. Indeed, in a large variety of human tumors, including CRC, significant distortions in miRNA expression profiles have been observed. Thus, the use of miRNAs as diagnostic and prognostic biomarkers in cancer, particularly in CRC, appears to be an inevitable consequence of the advancement in oncology and gastroenterology. Here, we review the literature to discuss the potential usefulness of selected miRNAs as diagnostic and prognostic biomarkers in CRC.
Collapse
Affiliation(s)
- Grzegorz Hibner
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia in Katowice, St. Medyków 18, 40-752 Katowice, Poland.
| | - Małgorzata Kimsa-Furdzik
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia in Katowice, St. Medyków 18, 40-752 Katowice, Poland.
| | - Tomasz Francuz
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia in Katowice, St. Medyków 18, 40-752 Katowice, Poland.
| |
Collapse
|
38
|
Yang S, Sun Z, Zhou Q, Wang W, Wang G, Song J, Li Z, Zhang Z, Chang Y, Xia K, Liu J, Yuan W. MicroRNAs, long noncoding RNAs, and circular RNAs: potential tumor biomarkers and targets for colorectal cancer. Cancer Manag Res 2018; 10:2249-2257. [PMID: 30100756 PMCID: PMC6065600 DOI: 10.2147/cmar.s166308] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Noncoding RNAs (ncRNAs) can be divided into microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), pRNAs, and tRNAs. Traditionally, miRNAs exert their biological function mainly through the inhibition of translation via the induction of target RNA transcript degradation. lncRNAs and circRNAs were once considered to have no potential to code proteins. Here, we will review the current knowledge on ncRNAs in relation to their origins, characteristics, and functions. We will also review how ncRNAs work as competitive endogenous RNA, gene transcription and expression regulators, and RNA-binding protein sponges in colorectal cancer (CRC). Notably, except for the abovementioned mechanisms, recent advances revealed that lncRNAs can also act as the precursor of miRNAs, and a small portion of lncRNAs and circRNAs was verified to have the potential to code proteins, providing new evidence for the significance of ncRNAs in CRC tumorigenesis and development.
Collapse
Affiliation(s)
- Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China.,Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan 450002, People's Republic of China
| | - Guixian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Junmin Song
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Zhen Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Zhiyong Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Yuan Chang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Kunkun Xia
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, ;
| |
Collapse
|
39
|
Nikolaou S, Qiu S, Fiorentino F, Rasheed S, Tekkis P, Kontovounisios C. Systematic review of blood diagnostic markers in colorectal cancer. Tech Coloproctol 2018; 22:481-498. [PMID: 30022330 PMCID: PMC6097737 DOI: 10.1007/s10151-018-1820-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 12/21/2022]
Abstract
The purpose of this systematic review was to compare the diagnostic ability of blood markers for colorectal cancer (CRC). A systematic review of the literature for diagnostic blood markers for primary human colorectal cancer over the last 5 years was performed. The primary outcome was to assess the diagnostic ability of these markers in diagnosing colorectal cancer. The secondary outcome was to see whether the marker was compared to other markers. The tertiary outcome was to assess diagnostic ability in early versus late CRC, including stage IV disease. We identified 51 studies (29 prospective, 14 retrospective, and 8 meta-analyses). The markers were divided in broadly four groups: nucleic acids (RNA/DNA/messenger RNA/microRNAs), cytokines, antibodies, and proteins. The most promising circulating markers identified among the nucleid acids were NEAT_v2 non-coding RNA, SDC2 methylated DNA, and SEPT9 methylated DNA. The most promising cytokine to detect CRC was interleukin 8, and the most promising circulating proteins were CA11-19 glycoprotein and DC-SIGN/DC-SIGNR. Sensitivities of these markers for detecting primary colorectal carcinoma ranged from 70 to 98% and specificities from 84 to 98.7%. The best studied blood marker was SEPT9 methylated DNA, which showed great variability with sensitivities ranging from 48.2 to 95.6% and specificities from 80 to 98.9%, making its clinical applicability challenging. If combined with fecal immunochemical test (FIT), the sensitivity improved from 78 to 94% in detecting CRC. Methylated SEPT9, methylated SDC2, and -SIGN/DC-SIGNR protein had better sensitivity and specificity than CEA or CA 19-9. With the exception of SEPT9 which is currently being implemented as a screening test for CRC all other markers lacked reproducibility and standardization and were studied in relatively small population samples.
Collapse
Affiliation(s)
- Stella Nikolaou
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, London, UK.
- Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.
- Department of Surgery and Cancer, Imperial College, Royal Marsden Hospital, Fulham Road and Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK.
| | - Shengyang Qiu
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, London, UK
- Department of Surgery and Cancer, Imperial College, Royal Marsden Hospital, Fulham Road and Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Francesca Fiorentino
- Department of Surgery and Cancer, Imperial College, Royal Marsden Hospital, Fulham Road and Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Shahnawaz Rasheed
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, London, UK
- Department of Colorectal Surgery, Royal Marsden Hospital, London, UK
- Department of Surgery and Cancer, Imperial College, Royal Marsden Hospital, Fulham Road and Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Paris Tekkis
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, London, UK
- Department of Colorectal Surgery, Royal Marsden Hospital, London, UK
- Department of Surgery and Cancer, Imperial College, Royal Marsden Hospital, Fulham Road and Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Christos Kontovounisios
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, London, UK
- Department of Colorectal Surgery, Royal Marsden Hospital, London, UK
- Department of Surgery and Cancer, Imperial College, Royal Marsden Hospital, Fulham Road and Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| |
Collapse
|
40
|
Toiyama Y, Okugawa Y, Fleshman J, Richard Boland C, Goel A. MicroRNAs as potential liquid biopsy biomarkers in colorectal cancer: A systematic review. Biochim Biophys Acta Rev Cancer 2018; 1870:274-282. [PMID: 29852194 DOI: 10.1016/j.bbcan.2018.05.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/12/2018] [Accepted: 05/26/2018] [Indexed: 02/06/2023]
Abstract
Emerging evidence has demonstrated the feasibility of circulating miRNAs as robust non-invasive biomarkers for the diagnosis in colorectal cancer. The use of circulating miRNAs for the early detection of colorectal cancer (CRC) is of particular interest as it can offer a potential complementary approach to screening colonoscopy. However, the development of circulating miRNAs as "liquid biopsy" biomarkers for development into clinical screening tests has been hampered by several issues. In this article, we summarize the status of this field for the clinical utilization of miRNA biomarkers as liquid biopsies in colorectal cancer (CRC) and discuss their applications as screening tests for patients with colorectal adenoma (CRA) and CRC. Herein, we undertook a systematic search for citations in PubMed and the Cochrane Database from January 1, 2002 through December 31, 2017 as electronic sources for this study. All published studies were screened with no restriction on language, date, or country. We used database-specific combinations of the following index terms and text words, including: microRNA, colorectal cancer, serum, plasma, and exosomes. Based upon these searches, we summarize the progress and salient features of the current state of knowledge of miRNA diagnostic biomarkers in CRC, and focuses on the articles that attempt to optimize ideal methodologies to further advance their as liquid biopsies for clinical use. We conclude that the field of noncoding RNAs, particularly for the clinical use of miRNAs as liquid biopsy assays is maturing rapidly, and it is highly promising that these genomic signatures will likely be developed into clinically-viable tests for the early detection and clinical management of patients with colorectal cancer in the not so distant future.
Collapse
Affiliation(s)
- Yuji Toiyama
- Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA; Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Japan
| | - Yoshinaga Okugawa
- Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA; Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Japan
| | - James Fleshman
- Department of Surgery, Baylor University Medical Center, Dallas, TX, USA
| | - C Richard Boland
- Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Ajay Goel
- Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.
| |
Collapse
|
41
|
Gao S, Zhao ZY, Wu R, Zhang Y, Zhang ZY. Prognostic value of microRNAs in colorectal cancer: a meta-analysis. Cancer Manag Res 2018; 10:907-929. [PMID: 29750053 PMCID: PMC5935085 DOI: 10.2147/cmar.s157493] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Numerous studies have shown that miRNA levels are closely related to the survival time of patients with colon, rectal, or colorectal cancer (CRC). However, the outcomes of different investigations have been inconsistent. Accordingly, a meta-analysis was conducted to study associations among the three types of cancers. Materials and methods Studies published in English that estimated the expression levels of miRNAs with survival curves in CRC were identified until May 20, 2017 by online searches in PubMed, Embase, Web of Science, and the Cochrane Library by two independent authors. Pooled HRs with 95% CIs were used to estimate the correlation between miRNA expression and overall survival. Results A total of 63 relevant articles regarding 13 different miRNAs, with 10,254 patients were ultimately included. CRC patients with high expression of blood miR141 (HR 2.52, 95% CI 1.68-3.77), tissue miR21 (HR 1.31, 95% CI 1.12-1.53), miR181a (HR 1.52, 95% CI 1.26-1.83), or miR224 (HR 2.12, 95% CI 1.04-4.34), or low expression of tissue miR126 (HR 1.55, 95% CI 1.24-1.93) had significantly poor overall survival (P<0.05). Conclusion In general, blood miR141 and tissue miR21, miR181a, miR224, and miR126 had significant prognostic value. Among these, blood miR141 and tissue miR224 were strong biomarkers of prognosis for CRC.
Collapse
Affiliation(s)
- Song Gao
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| | - Zhi-Ying Zhao
- School of Computer Science and Engineering, Northeastern University, Shenyang
| | - Rong Wu
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| | - Yue Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen-Yong Zhang
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| |
Collapse
|
42
|
Identification of a circulating microRNA signature to distinguish recurrence in breast cancer patients. Oncotarget 2018; 7:55231-55248. [PMID: 27409424 PMCID: PMC5342414 DOI: 10.18632/oncotarget.10485] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/12/2016] [Indexed: 01/04/2023] Open
Abstract
There is an urgent need for novel noninvasive prognostic biomarkers for monitoring the recurrence of breast cancer. The purpose of this study is to identify circulating microRNAs that can predict breast cancer recurrence. We conducted a microRNA profiling experiment in serum samples from 48 breast cancer patients using Exiqon miRCURY microRNA RT-PCR panels. Significantly differentiated miRNAs for recurrence in the discovery profiling were further validated in an independent set of sera from 20 patients with breast cancer recurrences and 22 patients without recurrences. We identified seven miRNAs that were differentially expressed between breast cancer patients with and without recurrences, including four miRNAs upregulated (miR-21-5p, miR-375, miR-205-5p, and miR-194-5p) and three miRNAs downregulated (miR-382-5p, miR-376c-3p, and miR-411-5p) for recurrent patients. Using penalized logistic regression, we built a 7-miRNA signature for breast cancer recurrence, which had an excellent discriminating capacity (concordance index=0.914). This signature was significantly associated with recurrence after adjusting for known prognostic factors, and it was applicable to both hormone-receptor positive (concordance index=0.890) and triple-negative breast cancers (concordance index=0.942). We also found the 7-miRNA signature were reliably measured across different runs of PCR experiments (intra-class correlation coefficient=0.780) and the signature was significantly higher in breast cancer patients with recurrence than healthy controls (p=1.1×10−5). In conclusion, circulating miRNAs are promising biomarkers and the signature may be developed into a minimally invasive multi-marker blood test for continuously monitoring the recurrence of breast cancer. It should be further validated for different subtypes of breast cancers in longitudinal studies.
Collapse
|
43
|
Shirafkan N, Mansoori B, Mohammadi A, Shomali N, Ghasbi M, Baradaran B. MicroRNAs as novel biomarkers for colorectal cancer: New outlooks. Biomed Pharmacother 2018; 97:1319-1330. [DOI: 10.1016/j.biopha.2017.11.046] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022] Open
|
44
|
Kai K, Dittmar RL, Sen S. Secretory microRNAs as biomarkers of cancer. Semin Cell Dev Biol 2017; 78:22-36. [PMID: 29258963 DOI: 10.1016/j.semcdb.2017.12.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression predominantly by inhibiting transcription and/or promoting degradation of target mRNAs also in addition to being involved in non-canonical mechanisms regulating transcription, translation and cell signaling processes. Extracellular secretory miRNAs, either in complex with specific proteins or encapsulated in microvesicles called exosomes, are transported between cells as means of intercellular communication. Secretory miRNAs in circulation remain functional after delivery to recipient cells, regulating target genes and their corresponding signaling pathways. Cancer cell secreted miRNA-mediated intercellular communication affects physiological processes associated with the disease, such as, angiogenesis, metabolic reprogramming, immune modulation, metastasis, and chemo-resistance. Given the stability of miRNAs in body fluids and their well-documented roles in deregulating cancer-relevant genetic pathways, there is considerable interest in developing secretory miRNAs as liquid biopsy biomarkers for detection, diagnosis and prognostication of cancer. In this review, we discuss salient features of miRNA biogenesis, secretion and function in cancer as well as the current state of secretory miRNA isolation and profiling methods. Furthermore, we discuss the challenges and opportunities of secretory miRNA biomarker assay development, which need to be addressed for clinical applications.
Collapse
Affiliation(s)
- Kazuharu Kai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Rachel L Dittmar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States; Program in Human and Molecular Genetics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, United States
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States; Program in Human and Molecular Genetics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, United States.
| |
Collapse
|
45
|
Chang HY, Ye SP, Pan SL, Kuo TT, Liu BC, Chen YL, Huang TC. Overexpression of miR-194 Reverses HMGA2-driven Signatures in Colorectal Cancer. Theranostics 2017; 7:3889-3900. [PMID: 29109785 PMCID: PMC5667412 DOI: 10.7150/thno.20041] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide with increasing incidence and mortality in developed countries. Oncogenes and microRNAs regulate key signaling pathways in CRC and are known to be deregulated. Oncogenic transcriptional regulator high-mobility group AT-hook 2 (HMGA2) participates in the transformation of several cancers including CRC and exhibits strong correlation with poor prognosis and distal metastasis. Evidence of HMGA2 and its co-regulated miRs contributing to tumor progression remains to be clarified. METHODS We performed gene-set enrichment analysis on the expression profiles of 70 CRC patients and revealed HMGA2 correlated genes that are targeted by several miRs including miR-194. To eliminate the oncogenic effects in HMGA2-driven CRC, we re-expressed miR-194 and found that miR-194 functions as a tumor suppressor by reducing cell proliferation and tumor growth in vitro and in vivo. RESULTS As a direct upstream inhibitory regulator of miR-194, overexpression of HMGA2 reduced miR-194 expression and biological activity, whereas re-expressing miR-194 in cells with high levels of HMGA2 impaired the effects of HMGA2, compromising cell survival, the epithelial-mesenchymal transition process, and drug resistance. CONCLUSION Our findings demonstrate that novel molecular correlations can be discovered by revisiting transcriptome profiles. We uncover that miR-194 is as important as HMGA2, and both coordinately regulate the oncogenesis of CRC with inverted behaviors, revealing alternative molecular therapeutics for CRC patients with high HMGA2 expression.
Collapse
|
46
|
Grimaldi A, Zarone MR, Irace C, Zappavigna S, Lombardi A, Kawasaki H, Caraglia M, Misso G. Non-coding RNAs as a new dawn in tumor diagnosis. Semin Cell Dev Biol 2017; 78:37-50. [PMID: 28765094 DOI: 10.1016/j.semcdb.2017.07.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/12/2022]
Abstract
The current knowledge about non-coding RNAs (ncRNAs) as important regulators of gene expression in both physiological and pathological conditions, has been the main engine for the design of innovative platforms to finalize the pharmacological application of ncRNAs as either therapeutic tools or as molecular biomarkers in cancer. Biochemical alterations of cancer cells are, in fact, largely supported by ncRNA disregulation in the tumor site, which, in turn, reflects the cancer-associated specific modification of circulating ncRNA expression pattern. The aim of this review is to describe the state of the art of pre-clinical and clinical studies that analyze the involvement of miRNAs and lncRNAs in cancer-related processes, such as proliferation, invasion and metastases, giving emphasis to their functional role. A central node of our work has been also the examination of advantages and criticisms correlated with the clinical use of ncRNAs, taking into account the pressing need to refine the profiling methods aimed at identify novel diagnostic and prognostic markers and the request to optimize the delivery of such nucleic acids for a therapeutic use in an imminent future.
Collapse
Affiliation(s)
- Anna Grimaldi
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Mayra Rachele Zarone
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Carlo Irace
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Silvia Zappavigna
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Lombardi
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Hiromichi Kawasaki
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy; Wakunaga Pharmaceutical Co. LTD, 4-5-36 Miyahara, Yodogawa-ku, Osaka 532-0003 Japan
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Gabriella Misso
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
47
|
Pan C, Yan X, Li H, Huang L, Yin M, Yang Y, Gao R, Hong L, Ma Y, Shi C, Qin H, Zhang P. Systematic literature review and clinical validation of circulating microRNAs as diagnostic biomarkers for colorectal cancer. Oncotarget 2017; 8:68317-68328. [PMID: 28978119 PMCID: PMC5620259 DOI: 10.18632/oncotarget.19344] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/20/2017] [Indexed: 12/16/2022] Open
Abstract
Because patients with colorectal cancer (CRC) are usually diagnosed at an advanced stage and current serum tumor markers have limited diagnostic efficacy, there is an urgent need to identify reliable diagnostic biomarkers. To better define the diagnostic potential of microRNAs (miRNAs) for CRC, we performed a comprehensive evaluation of reported circulating CRC miRNA markers. After a systematic literature review, we selected 30 candidate miRNAs and used quantitative real-time polymerase chain reaction to examine their expression in a training cohort of 120 plasma samples (CRC vs healthy controls (HC) = 60:60). Expression data was confirmed in a validation cohort of 160 plasma samples (CRC vs HC = 80:80). We ultimately identified 5 dysregulated circulating miRNAs (miR-15b, miR-17, miR-21, miR-26b, and miR-145), of which miR-21 and miR-26b proved to have the best diagnostic performance in the training and validation cohorts, respectively. Based on these results, we propose a novel blood-based diagnostic model, integrating 5 CRC-related miRNAs and serum carcinoembryonic antigen (CEA), which provides better diagnostic performance than the combined 5 miRNAs, CEA alone, or any single miRNA. We propose that the novel CRC diagnostic model presented here will be useful for overcoming the limitations faced by current non-invasive diagnostic strategies.
Collapse
Affiliation(s)
- Cheng Pan
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China.,Medical Department, Soochow University, Jiangsu 215123, China
| | - Xuebing Yan
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Hao Li
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Linsheng Huang
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Mingming Yin
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Yongzhi Yang
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Renyuan Gao
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Leiming Hong
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China.,Department of General Surgery, Weihai Municipal Hospital, Shandong 264200, China
| | - Yanlei Ma
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Chenzhang Shi
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Huanlong Qin
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Peng Zhang
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| |
Collapse
|
48
|
Singh MP, Rai S, Suyal S, Singh SK, Singh NK, Agarwal A, Srivastava S. Genetic and epigenetic markers in colorectal cancer screening: recent advances. Expert Rev Mol Diagn 2017; 17:665-685. [PMID: 28562109 DOI: 10.1080/14737159.2017.1337511] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is a heterogenous disease which develops from benign intraepithelial lesions known as adenomas to malignant carcinomas. Acquired alterations in Wnt signaling, TGFβ, MAPK pathway genes and clonal propagation of altered cells are responsible for this transformation. Detection of adenomas or early stage cancer in asymptomatic patients and better prognostic and predictive markers is important for improving the clinical management of CRC. Area covered: In this review, the authors have evaluated the potential of genetic and epigenetic alterations as markers for early detection, prognosis and therapeutic predictive potential in the context of CRC. We have discussed molecular heterogeneity present in CRC and its correlation to prognosis and response to therapy. Expert commentary: Molecular marker based CRC screening methods still fail to gain trust of clinicians. Invasive screening methods, molecular heterogeneity, chemoresistance and low quality test samples are some key challenges which need to be addressed in the present context. New sequencing technologies and integrated omics data analysis of individual or population cohort results in GWAS. MPE studies following a GWAS could be future line of research to establish accurate correlations between CRC and its risk factors. This strategy would identify most reliable biomarkers for CRC screening and management.
Collapse
Affiliation(s)
- Manish Pratap Singh
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Sandhya Rai
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Shradha Suyal
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Sunil Kumar Singh
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Nand Kumar Singh
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| | - Akash Agarwal
- b Department of Surgical Oncology , Dr. Ram Manohar Lohia Institute of Medical Sciences (DRMLIMS) , Lucknow , India
| | - Sameer Srivastava
- a Department of Biotechnology , Motilal Nehru National Institute of Technology (MNNIT) Allahabad , India
| |
Collapse
|
49
|
Xu Z, Xi T, Han Y, Guo X, Liu F, Jiang M, Wan D, Xue X, He S, Ren R, Li W, Zhi Q. Circulating miR-1826 in plasma correlates with circulating tumor cells and is a prognostic marker in colorectal cancer. Tumour Biol 2017; 39:1010428317705333. [PMID: 28468583 DOI: 10.1177/1010428317705333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Our previous study showed that miR-1826 was a newly identified oncogenic non-coding RNA in colorectal cancer. But the potential relationship between miR-1826 and tumor metastasis has not been fully elucidated. The purpose of this study was to evaluate the clinical significance of circulating miR-1826 and its possible associations with circulating tumor cells in colorectal cancer. Our results first found that serum miR-1826 was significantly upregulated in colorectal cancer patients, compared with that in healthy volunteers ( p = 0.003). Similar results were also found in colorectal cancer with distant metastasis ( p = 0.001) and advanced colorectal cancer ( p < 0.001) patients, respectively. Clinicopathological analysis implied that circulating miR-1826 was positively associated with pT stage ( p = 0.026), lymphatic metastasis ( p = 0.034), distant metastasis ( p = 0.012), and tumor-node-metastasis stage ( p = 0.020). Besides, our univariate and multivariate analyses demonstrated that high serum miR-1826 expression could act as a prognostic and independent factor for overall survival of colorectal cancer patients ( p < 0.05), which led to a poorer 5-year overall survival rate ( p = 0.025). The area under the curve value of circulating miR-1826 was up to 0.848 ± 0.043, which strongly suggested serum miR-1826 as an effective diagnostic biomarker in colorectal cancer patients ( p < 0.001). Our subsequent experiments demonstrated that patients with high level of circulating tumor cells showed a higher level of miR-1826 expression, compared with the circulating tumor cell-negative patients ( p = 0.011). Similar results also showed that the amount of circulating tumor cells in high miR-1826 group was significantly higher than that in low miR-1826 group ( p = 0.001). Furthermore, the relationship between serum miR-1826 and circulating tumor cells was analyzed using SPSS software and a significant logarithmic relationship was found, which meant that circulating miR-1826 closely correlated with the amount of circulating tumor cells in colorectal cancer patient serum ( r = 0.283, p < 0.01). Our findings strongly suggested that serum miR-1826 could serve as an effective and non-invasive biomarker for diagnosis and prognosis of colorectal cancer. Circulating miR-1826 may be an important target in colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhihua Xu
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianyi Xi
- 2 Department of General Surgery, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, China
| | - Ye Han
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaobo Guo
- 3 Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Fei Liu
- 4 Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Jiang
- 5 Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Daiwei Wan
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaofeng Xue
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Songbing He
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Ren
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Li
- 5 Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiaoming Zhi
- 1 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
50
|
Blood-based microRNAs as biomarkers for the diagnosis of colorectal cancer: a systematic review and meta-analysis. Br J Cancer 2017; 116:762-774. [PMID: 28152545 PMCID: PMC5355921 DOI: 10.1038/bjc.2017.12] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Background: Colorectal cancer (CRC) is common and associated with significant mortality. Current screening methods for CRC lack patient compliance. microRNAs (miRNAs), identified in body fluids, are negative regulators of gene expression and are dysregulated in many cancers, including CRC. This paper summarises studies identifying blood-based miRNAs dysregulated in CRC compared with healthy controls in an attempt to evaluate their use as a screening tool for the diagnosis of CRC. Methods: A search of electronic databases (PubMed and EMBASE) and grey literature was performed between January 2002 and April 2016. Studies reporting plasma or serum miRNAs in the diagnosis of CRC compared with healthy controls were selected. Patient demographics, type of patient sample (serum or plasma), method of miRNA detection, type of normalisation, and the number of significantly dysregulated miRNAs identified were recorded. Statistical evaluation of dysregulated miRNAs using sensitivity, specificity, and area under the curve (AUC) was performed. Results: Thirty-four studies investigating plasma or serum miRNAs in the diagnosis of CRC were included. A total of 31 miRNAs were found to be either upregulated (n=17) or downregulated (n=14) in CRC cases as compared with controls. Fourteen studies identified panels of ⩾2 dysregulated miRNAs. The highest AUC, 0.943, was identified using a panel of 4 miRNAs with 83.3% sensitivity and 93.1% specificity. Meta-analysis of studies identifying a single dysregulated miRNA in CRC cases compared with controls was performed. Overall sensitivity and specificity of 28 individual miRNAs in the diagnosis of CRC were 76% (95% CI 72%–80%) and 76% (95% CI 72%–80%), respectively, indicating good discriminative ability of miRNAs as biomarkers for CRC. These data did not change with sensitivity analyses. Conclusions: Blood-based miRNAs distinguish patients with CRC from healthy controls with high sensitivity and specificity comparable to other common and invasive currently used screening methods for CRC. In future, miRNAs may be used as a relatively non-invasive blood-based marker for detection of CRC.
Collapse
|