1
|
Alashram AR. Acute intermittent hypoxia in spinal cord injury gait rehabilitation: a systematic review of randomized trials. Neurol Sci 2025; 46:2027-2039. [PMID: 39836239 DOI: 10.1007/s10072-025-08012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Gait impairments are one of the popular consequences of spinal cord injury (SCI). Acute intermittent hypoxia (AIH) is an innovative treatment that has recently been used to enhance motor function in patients with neurological conditions. This review aims to examine the effects of AIH on gait post-SCI, verify who most likely would benefit from the treatment, and recognize the best treatment protocol, if possible. METHODS The search was conducted in "PubMed, MEDLINE, The Cochrane Library, Scopus, PEDro, and Web of Science" databases from inception to October 2024. This review included randomized trials involving individuals with SCI who received AIH, alone or in combination with other interventions, compared with active or passive comparators, and evaluated at least one outcome related to gait ability. The quality of the included studies was measured using the "Physiotherapy Evidence Database (PEDro)". RESULTS Nine studies met the eligibility criteria. In total, 158 individuals with SCI (mean age 44.45 years; 86% male) were involved in this analysis. The included studies' PEDro scores ranged from 5 to 10, with a median of 8. The main findings showed that AIH improves gait speed, walking endurance, dynamic balance, and plantar flexor strength in individuals with SCI. CONCLUSION AIH is a safe intervention for individuals with SCI. This review underscores the potential benefits of AIH for improving gait abilities in SCI with motor-incomplete injuries (ASIA grades C and D) at cervical, thoracic, and lumbar levels. Further studies are recommended to verify our findings.
Collapse
Affiliation(s)
- Anas R Alashram
- Department of Physiotherapy, Middle East University, Airport Road, Amman, 11831, Jordan.
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy.
| |
Collapse
|
2
|
Siebert JR, Kennedy K, Osterhout DJ. Neurons Are Not All the Same: Diversity in Neuronal Populations and Their Intrinsic Responses to Spinal Cord Injury. ASN Neuro 2025; 17:2440299. [PMID: 39819292 PMCID: PMC11877619 DOI: 10.1080/17590914.2024.2440299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Functional recovery following spinal cord injury will require the regeneration and repair of damaged neuronal pathways. It is well known that the tissue response to injury involves inflammation and the formation of a glial scar at the lesion site, which significantly impairs the capacity for neuronal regeneration and functional recovery. There are initial attempts by both supraspinal and intraspinal neurons to regenerate damaged axons, often influenced by the neighboring tissue pathology. Many experimental therapeutic strategies are targeted to further stimulate the initial axonal regrowth, with little consideration for the diversity of the affected neuronal populations. Notably, recent studies reveal that the neuronal response to injury is variable, based on multiple factors, including the location of the injury with respect to the neuronal cell bodies and the affected neuronal populations. New insights into regenerative mechanisms have shown that neurons are not homogenous but instead exhibit a wide array of diversity in their gene expression, physiology, and intrinsic responses to injury. Understanding this diverse intrinsic response is crucial, as complete functional recovery requires the successful coordinated regeneration and reorganization of various neuron pathways.
Collapse
Affiliation(s)
- Justin R. Siebert
- Physician Assistant Studies Program, Department of Health Care and Administration, Slippery Rock University of Pennsylvania, Slippery Rock, PA, USA
| | - Kiersten Kennedy
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Donna J. Osterhout
- Department of Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
3
|
McKenzie K, Veit N, Aalla S, Yang C, Giffhorn M, Lynott A, Buchler K, Kishta A, Barry A, Sandhu M, Moon Y, Rymer WZ, Jayaraman A. Combining Neuromodulation Strategies in Spinal Cord Injury Gait Rehabilitation: A Proof of Concept, Randomized, Crossover Trial. Arch Phys Med Rehabil 2024; 105:1930-1937. [PMID: 38969255 DOI: 10.1016/j.apmr.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVES To evaluate if acute intermittent hypoxia (AIH) coupled with transcutaneous spinal cord stimulation (tSCS) enhances task-specific training and leads to superior and more sustained gait improvements as compared with each of these strategies used in isolation in persons with chronic, incomplete spinal cord injury. DESIGN Proof of concept, randomized crossover trial. SETTING Outpatient, rehabilitation hospital. INTERVENTIONS Ten participants completed 3 intervention arms: (1) AIH, tSCS, and gait training (AIH + tSCS); (2) tSCS plus gait training (SHAM AIH + tSCS); and (3) gait training alone (SHAM + SHAM). Each arm consisted of 5 consecutive days of intervention with a minimum of a 4-week washout between arms. The order of arms was randomized. The study took place from December 3, 2020, to January 4, 2023. MAIN OUTCOME MEASURES 10-meter walk test at self-selected velocity (SSV) and fast velocity, 6-minute walk test, timed Up and Go (TUG) and secondary outcome measures included isometric ankle plantarflexion and dorsiflexion torque RESULTS: TUG improvements were 3.44 seconds (95% CI: 1.24-5.65) significantly greater in the AIH + tSCS arm than the SHAM AIH + tSCS arm at post-intervention (POST), and 3.31 seconds (95% CI: 1.03-5.58) greater than the SHAM + SHAM arm at 1-week follow up (1WK). SSV was 0.08 m/s (95% CI: 0.02-0.14) significantly greater following the AIH + tSCS arm than the SHAM AIH + tSCS at POST. Although not significant, the AIH + tSCS arm also demonstrated the greatest average improvements compared with the other 2 arms at POST and 1WK for the 6-minute walk test, fast velocity, and ankle plantarflexion torque. CONCLUSIONS This pilot study is the first to demonstrate that combining these 3 neuromodulation strategies leads to superior improvements in the TUG and SSV for individuals with chronic incomplete spinal cord injury and warrants further investigation.
Collapse
Affiliation(s)
| | - Nicole Veit
- Shirley Ryan AbilityLab, Chicago; Department of Biomedical Engineering, Northwestern University, Evanston
| | | | - Chen Yang
- Shirley Ryan AbilityLab, Chicago; Feinberg School of Medicine, Northwestern University, Chicago
| | | | | | | | | | | | - Milap Sandhu
- Shirley Ryan AbilityLab, Chicago; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago
| | - Yaejin Moon
- Shirley Ryan AbilityLab, Chicago; Feinberg School of Medicine, Northwestern University, Chicago
| | - William Zev Rymer
- Shirley Ryan AbilityLab, Chicago; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago
| | - Arun Jayaraman
- Shirley Ryan AbilityLab, Chicago; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago.
| |
Collapse
|
4
|
Gallo G. The Axonal Actin Filament Cytoskeleton: Structure, Function, and Relevance to Injury and Degeneration. Mol Neurobiol 2024; 61:5646-5664. [PMID: 38216856 DOI: 10.1007/s12035-023-03879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Early investigations of the neuronal actin filament cytoskeleton gave rise to the notion that, although growth cones exhibit high levels of actin filaments, the axon shaft exhibits low levels of actin filaments. With the development of new tools and imaging techniques, the axonal actin filament cytoskeleton has undergone a renaissance and is now an active field of research. This article reviews the current state of knowledge about the actin cytoskeleton of the axon shaft. The best understood forms of actin filament organization along axons are axonal actin patches and a submembranous system of rings that endow the axon with protrusive competency and structural integrity, respectively. Additional forms of actin filament organization along the axon have also been described and their roles are being elucidated. Extracellular signals regulate the axonal actin filament cytoskeleton and our understanding of the signaling mechanisms involved is being elaborated. Finally, recent years have seen advances in our perspective on how the axonal actin cytoskeleton is impacted by, and contributes to, axon injury and degeneration. The work to date has opened new venues and future research will undoubtedly continue to provide a richer understanding of the axonal actin filament cytoskeleton.
Collapse
Affiliation(s)
- Gianluca Gallo
- Department of Neural Sciences, Shriners Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 North Broad St, Philadelphia, PA, 19140, USA.
| |
Collapse
|
5
|
Hingorani S, Paniagua Soriano G, Sánchez Huertas C, Villalba Riquelme EM, López Mocholi E, Martínez Rojas B, Alastrué Agudo A, Dupraz S, Ferrer Montiel AV, Moreno Manzano V. Transplantation of dorsal root ganglia overexpressing the NaChBac sodium channel improves locomotion after complete SCI. Mol Ther 2024; 32:1739-1759. [PMID: 38556794 PMCID: PMC11184342 DOI: 10.1016/j.ymthe.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition currently lacking treatment. Severe SCI causes the loss of most supraspinal inputs and neuronal activity caudal to the injury, which, coupled with the limited endogenous capacity for spontaneous regeneration, can lead to complete functional loss even in anatomically incomplete lesions. We hypothesized that transplantation of mature dorsal root ganglia (DRGs) genetically modified to express the NaChBac sodium channel could serve as a therapeutic option for functionally complete SCI. We found that NaChBac expression increased the intrinsic excitability of DRG neurons and promoted cell survival and neurotrophic factor secretion in vitro. Transplantation of NaChBac-expressing dissociated DRGs improved voluntary locomotion 7 weeks after injury compared to control groups. Animals transplanted with NaChBac-expressing DRGs also possessed higher tubulin-positive neuronal fiber and myelin preservation, although serotonergic descending fibers remained unaffected. We observed early preservation of the corticospinal tract 14 days after injury and transplantation, which was lost 7 weeks after injury. Nevertheless, transplantation of NaChBac-expressing DRGs increased the neuronal excitatory input by an increased number of VGLUT2 contacts immediately caudal to the injury. Our work suggests that the transplantation of NaChBac-expressing dissociated DRGs can rescue significant motor function, retaining an excitatory neuronal relay activity immediately caudal to injury.
Collapse
Affiliation(s)
- Sonia Hingorani
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Guillem Paniagua Soriano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Carlos Sánchez Huertas
- Development and Assembly of Bilateral Neural Circuits Laboratory, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Miguel Hernández, Avenida Santiago Ramon y Cajal, s/n, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Eva María Villalba Riquelme
- Biochemistry and Molecular Biology Department, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche-IDiBE, Avenida de la Universidad, s/n, Edificio Torregaitán, 03202 Elche, Alicante, Spain
| | - Eric López Mocholi
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Beatriz Martínez Rojas
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Ana Alastrué Agudo
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Sebastián Dupraz
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Antonio Vicente Ferrer Montiel
- Biochemistry and Molecular Biology Department, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche-IDiBE, Avenida de la Universidad, s/n, Edificio Torregaitán, 03202 Elche, Alicante, Spain
| | - Victoria Moreno Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.
| |
Collapse
|
6
|
Cohen EJ, Righi G, Conti C, De Santis C, Sciarrone G, Del Popolo G. Quantification of hand functional recovery in spinal cord injury patients. J Spinal Cord Med 2024; 47:387-394. [PMID: 35500066 PMCID: PMC11044745 DOI: 10.1080/10790268.2022.2066384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
STUDY DESIGN A prospective cohort study. OBJECTIVES To examine the use of a circle-tracing task in quantifying hand functional recovery in cervical spinal cord injury patients. METHODS Ten cervical spinal cord injury (SCI) patients and 10 healthy age-matched controls performed a circle-tracing task, using a computerized tablet at the beginning of the study and after 4 weeks. Data relative to performance accuracy as well as pen pressure throughout the performances were collected, and clinical assessment for all patients was performed at the beginning and at the end of the study. RESULTS Significant differences were found in pen pressure profiles in the SCI patients between the initial assessment and after 4 weeks of assessment. SCI patients, when compared with controls, apply less pressure during the execution, though no significant differences were found for the other parameters. Examination of pen pressure profiles of both controls and SCI patients reveals that, in addition to the lower pressure registered, SCI patients present a more oscillating pressure profile which is direction-dependent. No significant correlations were found between clinical assessments and pen pressure, both within the initial assessment as well as after 4 weeks. CONCLUSIONS This study emphasizes the potential of simple computerized means for quantifying upper limb functions in SCI patients. These results of this study could be helpful for both highlighting specific functional deficits in patients as well tailoring specific interventions.
Collapse
Affiliation(s)
- Erez James Cohen
- Department of Experimental and Clinical Medicine, Physiological Sciences Section, University of Florence, Florence, Italy
| | - Gabriele Righi
- Spinal Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Claudia Conti
- Spinal Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Claudia De Santis
- Spinal Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Giorgia Sciarrone
- Spinal Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Giulio Del Popolo
- Spinal Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|
7
|
Malik RN, Samejima S, Shackleton C, Miller T, Pedrocchi ALG, Rabchevsky AG, Moritz CT, Darrow D, Field-Fote EC, Guanziroli E, Ambrosini E, Molteni F, Gad P, Mushahwar VK, Sachdeva R, Krassioukov AV. REPORT-SCS: minimum reporting standards for spinal cord stimulation studies in spinal cord injury. J Neural Eng 2024; 21:016019. [PMID: 38271712 DOI: 10.1088/1741-2552/ad2290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
Objective.Electrical spinal cord stimulation (SCS) has emerged as a promising therapy for recovery of motor and autonomic dysfunctions following spinal cord injury (SCI). Despite the rise in studies using SCS for SCI complications, there are no standard guidelines for reporting SCS parameters in research publications, making it challenging to compare, interpret or reproduce reported effects across experimental studies.Approach.To develop guidelines for minimum reporting standards for SCS parameters in pre-clinical and clinical SCI research, we gathered an international panel of expert clinicians and scientists. Using a Delphi approach, we developed guideline items and surveyed the panel on their level of agreement for each item.Main results.There was strong agreement on 26 of the 29 items identified for establishing minimum reporting standards for SCS studies. The guidelines encompass three major SCS categories: hardware, configuration and current parameters, and the intervention.Significance.Standardized reporting of stimulation parameters will ensure that SCS studies can be easily analyzed, replicated, and interpreted by the scientific community, thereby expanding the SCS knowledge base and fostering transparency in reporting.
Collapse
Affiliation(s)
- Raza N Malik
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Soshi Samejima
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Claire Shackleton
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tiev Miller
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alessandra Laura Giulia Pedrocchi
- Nearlab, Department di Electronics, Information and Bioengineering, and We-Cobot Laboratory, Polo Territoriale di Lecco, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Alexander G Rabchevsky
- Spinal Cord & Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Chet T Moritz
- Departments of Electrical & Computer Engineering, Rehabilitation Medicine, and Physiology & Biophysics, and the Center for Neurotechnology, University of Washington, Seattle, WA, United States of America
| | - David Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
- Department of Neurosurgery, Hennepin County Medical Center, Minneapolis, MN, United States of America
| | - Edelle C Field-Fote
- Shepherd Center, Crawford Research Institute, Atlanta, Georgia, United States of America
- Emory University School of Medicine, Division of Physical Therapy, Atlanta, Georgia, United States of America
- Georgia Institute of Technology, School of Biological Sciences, Program in Applied Physiology, Atlanta, Georgia, United States of America
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Lecco, Italy
| | - Emilia Ambrosini
- Nearlab, Department di Electronics, Information and Bioengineering, and We-Cobot Laboratory, Polo Territoriale di Lecco, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Lecco, Italy
| | - Parag Gad
- SpineX Inc., Los Angeles, Los Angeles, CA, United States of America
| | - Vivian K Mushahwar
- Department of Medicine and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Spinal Cord Research Program, G.F. Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Balbinot G, Li G, Kalsi-Ryan S, Abel R, Maier D, Kalke YB, Weidner N, Rupp R, Schubert M, Curt A, Zariffa J. Segmental motor recovery after cervical spinal cord injury relates to density and integrity of corticospinal tract projections. Nat Commun 2023; 14:723. [PMID: 36759606 PMCID: PMC9911610 DOI: 10.1038/s41467-023-36390-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Cervical spinal cord injury (SCI) causes extensive impairments for individuals which may include dextrous hand function. Although prior work has focused on the recovery at the person-level, the factors determining the recovery of individual muscles are poorly understood. Here, we investigate the muscle-specific recovery after cervical spinal cord injury in a retrospective analysis of 748 individuals from the European Multicenter Study about Spinal Cord Injury (NCT01571531). We show associations between corticospinal tract (CST) sparing and upper extremity recovery in SCI, which improves the prediction of hand muscle strength recovery. Our findings suggest that assessment strategies for muscle-specific motor recovery in acute spinal cord injury are improved by accounting for CST sparing, and complement person-level predictions.
Collapse
Affiliation(s)
- Gustavo Balbinot
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada.
| | - Guijin Li
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Sukhvinder Kalsi-Ryan
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | | | | | | | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Rüdiger Rupp
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Schubert
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Jose Zariffa
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Walsh CM, Gull K, Dooley D. Motor rehabilitation as a therapeutic tool for spinal cord injury: New perspectives in immunomodulation. Cytokine Growth Factor Rev 2023; 69:80-89. [PMID: 36114092 DOI: 10.1016/j.cytogfr.2022.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/27/2022] [Indexed: 02/07/2023]
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition that significantly impacts motor, sensory and autonomic function in patients. Despite advances in therapeutic approaches, there is still no curative therapy currently available. Neuroinflammation is a persisting event of the secondary injury phase of SCI that affects functional recovery, and modulation of the inflammatory response towards a beneficial anti-inflammatory state can improve recovery in preclinical SCI models. In human SCI patients, rehabilitative exercise, or motor rehabilitation as we will refer to it from here on out, remains the cornerstone of treatment to increase functional capacity and prevent secondary health implications. Motor rehabilitation is known to have anti-inflammatory effects; however, current literature is lacking in the description of the effect of motor rehabilitation on inflammation in the context of SCI. Understanding the effect on different inflammatory markers after SCI should enable the optimization of motor rehabilitation as a therapeutic regime. This review extensively describes the effect of motor rehabilitation on selected inflammatory mediators in both preclinical and human SCI studies. Additionally, we summarize how the type, duration, and intensity of motor rehabilitation can affect the inflammatory response after SCI. In doing so, we introduce a new perspective on how motor rehabilitation can be optimized as an immunomodulatory therapy to improve patient outcome after SCI.
Collapse
Affiliation(s)
- Ciara M Walsh
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Khadija Gull
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
10
|
Moderate-Intensity Treadmill Exercise Promotes mTOR-Dependent Motor Cortical Neurotrophic Factor Expression and Functional Recovery in a Murine Model of Crush Spinal Cord Injury (SCI). Mol Neurobiol 2023; 60:960-978. [PMID: 36385234 DOI: 10.1007/s12035-022-03117-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
Treadmill exercise is widely considered an effective strategy for restoration of skilled motor function after spinal cord injury (SCI). However, the specific exercise intensity that optimizes recovery and the underlying mechanistic basis of this recovery remain unclear. To that end, we sought to investigate the effect of different treadmill exercise intensities on cortical mTOR activity, a key regulator of functional recovery following CNS trauma, in an animal model of C5 crush spinal cord injury (SCI). Following injury, animals were subjected to treadmill exercise for 4 consecutive weeks at three different intensities (low intensity [LEI]; moderate intensity [MEI]; and high intensity [HEI]). Motor function recovery was assessed by horizontal ladder test, cylinder rearing test, and electrophysiology, while neurotrophic factors and cortical mechanistic target of rapamycin (mTOR) pathway-related proteins were assessed by Western blotting. The activation of the cortical mTOR pathway and axonal sprouting was evaluated by immunofluorescence and the changes of plasticity in motor cortex neurons were assessed by Golgi staining. In keeping with previous studies, we found that 4 weeks of treadmill training resulted in improved skilled motor function, enhanced nerve conduction capability, increased neuroplasticity, and axonal sprouting. Importantly, we also demonstrated that when compared with the LEI group, MEI and HEI groups demonstrated elevated expression of brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), phosphorylated ribosomal S6 protein (p-S6), and protein kinase B (p-Akt), consistent with an intensity-dependent activation of the mTOR pathway and neurotrophic factor expression in the motor cortex. We also observed impaired exercise endurance and higher mortality during training in the HEI group than in the LEI and MEI groups. Collectively, our findings suggest that treadmill exercise following SCI is an effective means of promoting recovery and highlight the importance of the cortical mTOR pathway and neurotrophic factors as mediators of this effect. Importantly, our findings also demonstrate that excessive exercise can be detrimental, suggesting that moderation may be the optimal strategy. These findings provide an important foundation for further investigation of treadmill training as a modality for recovery following spinal cord injury and of the underlying mechanisms.
Collapse
|
11
|
Sun X, Huang LY, Pan HX, Li LJ, Wang L, Pei GQ, Wang Y, Zhang Q, Cheng HX, He CQ, Wei Q. Bone marrow mesenchymal stem cells and exercise restore motor function following spinal cord injury by activating PI3K/AKT/mTOR pathway. Neural Regen Res 2022; 18:1067-1075. [PMID: 36254995 PMCID: PMC9827790 DOI: 10.4103/1673-5374.355762] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although many therapeutic interventions have shown promise in treating spinal cord injury, focusing on a single aspect of repair cannot achieve successful and functional regeneration in patients following spinal cord injury . In this study, we applied a combinatorial approach for treating spinal cord injury involving neuroprotection and rehabilitation, exploiting cell transplantation and functional sensorimotor training to promote nerve regeneration and functional recovery. Here, we used a mouse model of thoracic contusive spinal cord injury to investigate whether the combination of bone marrow mesenchymal stem cell transplantation and exercise training has a synergistic effect on functional restoration. Locomotor function was evaluated by the Basso Mouse Scale, horizontal ladder test, and footprint analysis. Magnetic resonance imaging, histological examination, transmission electron microscopy observation, immunofluorescence staining, and western blotting were performed 8 weeks after spinal cord injury to further explore the potential mechanism behind the synergistic repair effect. In vivo, the combination of bone marrow mesenchymal stem cell transplantation and exercise showed a better therapeutic effect on motor function than the single treatments. Further investigations revealed that the combination of bone marrow mesenchymal stem cell transplantation and exercise markedly reduced fibrotic scar tissue, protected neurons, and promoted axon and myelin protection. Additionally, the synergistic effects of bone marrow mesenchymal stem cell transplantation and exercise on spinal cord injury recovery occurred via the PI3K/AKT/mTOR pathway. In vitro, experimental evidence from the PC12 cell line and primary cortical neuron culture also demonstrated that blocking of the PI3K/AKT/mTOR pathway would aggravate neuronal damage. Thus, bone marrow mesenchymal stem cell transplantation combined with exercise training can effectively restore motor function after spinal cord injury by activating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xin Sun
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Li-Yi Huang
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Hong-Xia Pan
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Li-Juan Li
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Lu Wang
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Gai-Qin Pei
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Yang Wang
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Qing Zhang
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Hong-Xin Cheng
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Cheng-Qi He
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China
| | - Quan Wei
- Rehabilitation Medical Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan Province, China,Correspondence to: Quan Wei, .
| |
Collapse
|
12
|
Franz S, Eck U, Schuld C, Heutehaus L, Wolf M, Wilder-Smith E, Schulte-Mattler W, Weber MA, Rupp R, Weidner N. Lower motoneuron dysfunction impacts spontaneous motor recovery in acute cervical spinal cord injury. J Neurotrauma 2022; 40:862-875. [PMID: 36006372 PMCID: PMC10162119 DOI: 10.1089/neu.2022.0181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Paresis after spinal cord injury is caused by damage to upper and lower motoneurons and may differentially impact neurological recovery. This prospective monocentric longitudinal observational study investigated the extent and severity of lower motoneuron dysfunction and its impact on upper extremity motor recovery after acute cervical spinal cord injury. Pathological spontaneous activity at rest and/or increased discharge rates of motor unit action potentials recorded by needle electromyography (EMG) were taken as parameters for lower motoneuron dysfunction and its relation to the extent of myelopathy in the first available spine MRI was determined. Motor recovery was assessed by standardized neurological examination within the first 4 weeks (acute stage) and up to 1 year (chronic stage) after injury. Eighty-five muscles of 17 individuals with cervical spinal cord injury (neurological level of injury from C1 to C7) and a median age of 54 (28-59) were examined. The results showed that muscles with signs of lower motoneuron dysfunction peaked at the lesion center (Χ²[2,n=85]=6.6, p=0.04) and that the severity of lower motoneuron dysfunction correlated with T2-weighted hyperintense MRI signal changes in routine spine MRI at the lesion site (spearman ρ=0.31, p=0.01). Muscles exhibiting signs of lower motoneuron dysfunction, as indicated by pathological spontaneous activity at rest and/or increased discharge rates of motor unit action potentials, were associated with more severe paresis in both the acute and chronic stages after spinal cord injury (spearman ρ acute=-0.22, p=0.04 and chronic=-0.31, p=0.004). Moreover, the severity of lower motoneuron dysfunction in the acute stage was also associated with a greater degree of paresis (spearman ρ acute=-0.24, p=0.03 and chronic=-0.35, p=0.001). While both muscles with and without signs of lower motoneuron dysfunction were capable of regaining strength over time, those without lower motoneuron dysfunctions had a higher potential to reach full strength. Muscles with signs of lower motoneuron dysfunction in the acute stage displayed increased amplitudes of motor unit action potentials with chronic-stage needle EMG, indicating reinnervation through peripheral collateral sprouting as compensatory mechanism (Χ²[1,n=72]=4.3, p=0.04). Thus, lower motoneuron dysfunction represents a relevant factor contributing to motor impairment and recovery in acute cervical spinal cord injury. Defined recovery mechanisms (peripheral reinnervation) may at least partially underlie spontaneous recovery in respective muscles. Therefore, assessment of lower motoneuron dysfunction could help refine prediction of motor recovery following spinal cord injury.
Collapse
Affiliation(s)
- Steffen Franz
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
- Address correspondence to: Steffen Franz, MD, Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstraße 200 a, 69118 Heidelberg, Germany
| | - Ute Eck
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Schuld
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Laura Heutehaus
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Wolf
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Einar Wilder-Smith
- Department of Neurology, Kantonsspital Lucerne, Lucerne, Switzerland
- Department of Neurology, Inselspital Bern, University of Bern, Bern, Switzerland
| | | | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Rüdiger Rupp
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
13
|
Novel Noninvasive Spinal Neuromodulation Strategy Facilitates Recovery of Stepping after Motor Complete Paraplegia. J Clin Med 2022; 11:jcm11133670. [PMID: 35806954 PMCID: PMC9267673 DOI: 10.3390/jcm11133670] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
It has been suggested that neuroplasticity-promoting neuromodulation can restore sensory-motor pathways after spinal cord injury (SCI), reactivating the dormant locomotor neuronal circuitry. We introduce a neuro-rehabilitative approach that leverages locomotor training with multi-segmental spinal cord transcutaneous electrical stimulation (scTS). We hypothesized that scTS neuromodulates spinal networks, complementing the neuroplastic effects of locomotor training, result in a functional progression toward recovery of locomotion. We conducted a case-study to test this approach on a 27-year-old male classified as AIS A with chronic SCI. The training regimen included task-driven non-weight-bearing training (1 month) followed by weight-bearing training (2 months). Training was paired with multi-level continuous and phase-dependent scTS targeting function-specific motor pools. Results suggest a convergence of cross-lesional networks, improving kinematics during voluntary non-weight-bearing locomotor-like stepping. After weight-bearing training, coordination during stepping improved, suggesting an important role of afferent feedback in further improvement of voluntary control and reorganization of the sensory-motor brain-spinal connectome.
Collapse
|
14
|
Benedetti B, Weidenhammer A, Reisinger M, Couillard-Despres S. Spinal Cord Injury and Loss of Cortical Inhibition. Int J Mol Sci 2022; 23:5622. [PMID: 35628434 PMCID: PMC9144195 DOI: 10.3390/ijms23105622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
After spinal cord injury (SCI), the destruction of spinal parenchyma causes permanent deficits in motor functions, which correlates with the severity and location of the lesion. Despite being disconnected from their targets, most cortical motor neurons survive the acute phase of SCI, and these neurons can therefore be a resource for functional recovery, provided that they are properly reconnected and retuned to a physiological state. However, inappropriate re-integration of cortical neurons or aberrant activity of corticospinal networks may worsen the long-term outcomes of SCI. In this review, we revisit recent studies addressing the relation between cortical disinhibition and functional recovery after SCI. Evidence suggests that cortical disinhibition can be either beneficial or detrimental in a context-dependent manner. A careful examination of clinical data helps to resolve apparent paradoxes and explain the heterogeneity of treatment outcomes. Additionally, evidence gained from SCI animal models indicates probable mechanisms mediating cortical disinhibition. Understanding the mechanisms and dynamics of cortical disinhibition is a prerequisite to improve current interventions through targeted pharmacological and/or rehabilitative interventions following SCI.
Collapse
Affiliation(s)
- Bruno Benedetti
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria; (B.B.); (A.W.); (M.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Annika Weidenhammer
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria; (B.B.); (A.W.); (M.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), 5020 Salzburg, Austria
| | - Maximilian Reisinger
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria; (B.B.); (A.W.); (M.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), 5020 Salzburg, Austria
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria; (B.B.); (A.W.); (M.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
15
|
Buprenorphine, a partial opioid agonist, prevents modulation of H-reflex induced by pulsed electromagnetic stimulation in spinal cord injured rats. Neurosci Lett 2022; 777:136583. [DOI: 10.1016/j.neulet.2022.136583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/24/2022]
|
16
|
Ketschek A, Holland SM, Gallo G. SARM1 Suppresses Axon Branching Through Attenuation of Axonal Cytoskeletal Dynamics. Front Mol Neurosci 2022; 15:726962. [PMID: 35264929 PMCID: PMC8899016 DOI: 10.3389/fnmol.2022.726962] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/20/2022] [Indexed: 12/18/2022] Open
Abstract
Axon branching is a fundamental aspect of neuronal morphogenesis, neuronal circuit formation, and response of the nervous system to injury. Sterile alpha and TIR motif containing 1 (SARM1) was initially identified as promoting Wallerian degeneration of axons. We now report a novel function of SARM1 in postnatal sensory neurons; the suppression of axon branching. Axon collateral branches develop from axonal filopodia precursors through the coordination of the actin and microtubule cytoskeleton. In vitro analysis revealed that cultured P0-2 dorsal root ganglion sensory neurons from a SARM1 knockout (KO) mouse exhibit increased numbers of collateral branches and axonal filopodia relative to wild-type neurons. In SARM1 KO mice, cutaneous sensory endings exhibit increased branching in the skin in vivo with normal density of innervation. Transient axonal actin patches serve as cytoskeletal platforms from which axonal filopodia emerge. Live imaging analysis of axonal actin dynamics showed that SARM1 KO neurons exhibit increased rates of axonal actin patch formation and increased probability that individual patches will give rise to a filopodium before dissipating. SARM1 KO axons contain elevated levels of drebrin and cortactin, two actin regulatory proteins that are positive regulators of actin patches, filopodia formation, and branching. Live imaging of microtubule plus tip dynamics revealed an increase in the rate of formation and velocity of polymerizing tips along the axons of SARM1 KO neurons. Stationary mitochondria define sites along the axon where branches may arise, and the axons of SARM1 KO sensory neurons exhibit an increase in stationary mitochondria. These data reveal SARM1 to be a negative regulator of axonal cytoskeletal dynamics and collateral branching.
Collapse
Affiliation(s)
- Andrea Ketschek
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sabrina M. Holland
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Gianluca Gallo
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
17
|
Vose AK, Welch JF, Nair J, Dale EA, Fox EJ, Muir GD, Trumbower RD, Mitchell GS. Therapeutic acute intermittent hypoxia: A translational roadmap for spinal cord injury and neuromuscular disease. Exp Neurol 2022; 347:113891. [PMID: 34637802 PMCID: PMC8820239 DOI: 10.1016/j.expneurol.2021.113891] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023]
Abstract
We review progress towards greater mechanistic understanding and clinical translation of a strategy to improve respiratory and non-respiratory motor function in people with neuromuscular disorders, therapeutic acute intermittent hypoxia (tAIH). In 2016 and 2020, workshops to create and update a "road map to clinical translation" were held to help guide future research and development of tAIH to restore movement in people living with chronic, incomplete spinal cord injuries. After briefly discussing the pioneering, non-targeted basic research inspiring this novel therapeutic approach, we then summarize workshop recommendations, emphasizing critical knowledge gaps, priorities for future research effort, and steps needed to accelerate progress as we evaluate the potential of tAIH for routine clinical use. Highlighted areas include: 1) greater mechanistic understanding, particularly in non-respiratory motor systems; 2) optimization of tAIH protocols to maximize benefits; 3) identification of combinatorial treatments that amplify plasticity or remove plasticity constraints, including task-specific training; 4) identification of biomarkers for individuals most/least likely to benefit from tAIH; 5) assessment of long-term tAIH safety; and 6) development of a simple, safe and effective device to administer tAIH in clinical and home settings. Finally, we update ongoing clinical trials and recent investigations of tAIH in SCI and other clinical disorders that compromise motor function, including ALS, multiple sclerosis, and stroke.
Collapse
Affiliation(s)
- Alicia K Vose
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Brooks Rehabilitation, Jacksonville, FL 32216, USA
| | - Joseph F Welch
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Brooks Rehabilitation, Jacksonville, FL 32216, USA
| | - Jayakrishnan Nair
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Erica A Dale
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Emily J Fox
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Brooks Rehabilitation, Jacksonville, FL 32216, USA
| | - Gillian D Muir
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Randy D Trumbower
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
18
|
Clinical application of stem cell therapy in neurogenic bladder: a systematic review and meta-analysis. Int Urogynecol J 2021; 33:2081-2097. [PMID: 34767058 DOI: 10.1007/s00192-021-04986-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 01/26/2023]
Abstract
INTRODUCTION AND HYPOTHESIS This review aims to investigate the effect of stem cell (SC) therapy on the management of neurogenic bladder (NGB) in four neurological diseases, including spinal cord injury (SCI), Parkinson's disease (PD), multiple sclerosis (MS), and stroke, in the clinical setting. METHODS An electronic database search was conducted in the Cochrane Library, EMBASE, Proquest, Clinicaltrial.gov , WHO, Google Scholar, MEDLINE via PubMed, Ovid, Web of Science, Scopus, ongoing trial registers, and conference proceedings in June 2019 and updated by hand searching on 1 February 2021. All randomized controlled trials (RCTs), quasi RCTs, phase I/II clinical trials, case-control, retrospective cohorts, and comprehensive case series that evaluated the regenerative potential of SCs on the management of NGB were included. Cochrane appraisal risk of bias checklist and the standardized critical appraisal instrument from the JBI Meta-Analysis of Statistics, Assessment, and Review Instrument (JBI-MAStARI) were used to appraise the studies. RESULTS Twenty-six studies among 1282 relevant publications met our inclusion criteria. Only SC therapy was applied for SCI or MS patients. Phase I/II clinical trials (without control arm) were the most conducted studies, and only four were RCTs. Four studies with 153 participants were included in the meta-analysis. The main route of transplantation was via lumbar puncture. There were no serious adverse events. Only nine studies in SCI and one in MS have used urodynamics, and the others have reported improvement based on patient satisfaction. SC therapy did not significantly improve residual urine volume, detrusor pressure, and maximum bladder capacity. Also, the quality of these publications was low or unclear. CONCLUSION Although most clinical trials provide evidence of the safety and effectiveness of MSCs on the management of NGB, the meta-analysis results did not show a significant improvement; however, the interpretation of study results is difficult because of the lack of placebo controls.
Collapse
|
19
|
David G, Pfyffer D, Vallotton K, Pfender N, Thompson A, Weiskopf N, Mohammadi S, Curt A, Freund P. Longitudinal changes of spinal cord grey and white matter following spinal cord injury. J Neurol Neurosurg Psychiatry 2021; 92:1222-1230. [PMID: 34341143 PMCID: PMC8522459 DOI: 10.1136/jnnp-2021-326337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Traumatic and non-traumatic spinal cord injury produce neurodegeneration across the entire neuraxis. However, the spatiotemporal dynamics of spinal cord grey and white matter neurodegeneration above and below the injury is understudied. METHODS We acquired longitudinal data from 13 traumatic and 3 non-traumatic spinal cord injury patients (8-8 cervical and thoracic cord injuries) within 1.5 years after injury and 10 healthy controls over the same period. The protocol encompassed structural and diffusion-weighted MRI rostral (C2/C3) and caudal (lumbar enlargement) to the injury level to track tissue-specific neurodegeneration. Regression models assessed group differences in the temporal evolution of tissue-specific changes and associations with clinical outcomes. RESULTS At 2 months post-injury, white matter area was decreased by 8.5% and grey matter by 15.9% in the lumbar enlargement, while at C2/C3 only white matter was decreased (-9.7%). Patients had decreased cervical fractional anisotropy (FA: -11.3%) and increased radial diffusivity (+20.5%) in the dorsal column, while FA was lower in the lateral (-10.3%) and ventral columns (-9.7%) of the lumbar enlargement. White matter decreased by 0.34% and 0.35% per month at C2/C3 and lumbar enlargement, respectively, and grey matter decreased at C2/C3 by 0.70% per month. CONCLUSIONS This study describes the spatiotemporal dynamics of tissue-specific spinal cord neurodegeneration above and below a spinal cord injury. While above the injury, grey matter atrophy lagged initially behind white matter neurodegeneration, in the lumbar enlargement these processes progressed in parallel. Tracking trajectories of tissue-specific neurodegeneration provides valuable assessment tools for monitoring recovery and treatment effects.
Collapse
Affiliation(s)
- Gergely David
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Dario Pfyffer
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Kevin Vallotton
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Nikolai Pfender
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Alan Thompson
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Siawoosh Mohammadi
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland .,Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
| |
Collapse
|
20
|
Köhli P, Otto E, Jahn D, Reisener MJ, Appelt J, Rahmani A, Taheri N, Keller J, Pumberger M, Tsitsilonis S. Future Perspectives in Spinal Cord Repair: Brain as Saviour? TSCI with Concurrent TBI: Pathophysiological Interaction and Impact on MSC Treatment. Cells 2021; 10:2955. [PMID: 34831179 PMCID: PMC8616497 DOI: 10.3390/cells10112955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Traumatic spinal cord injury (TSCI), commonly caused by high energy trauma in young active patients, is frequently accompanied by traumatic brain injury (TBI). Although combined trauma results in inferior clinical outcomes and a higher mortality rate, the understanding of the pathophysiological interaction of co-occurring TSCI and TBI remains limited. This review provides a detailed overview of the local and systemic alterations due to TSCI and TBI, which severely affect the autonomic and sensory nervous system, immune response, the blood-brain and spinal cord barrier, local perfusion, endocrine homeostasis, posttraumatic metabolism, and circadian rhythm. Because currently developed mesenchymal stem cell (MSC)-based therapeutic strategies for TSCI provide only mild benefit, this review raises awareness of the impact of TSCI-TBI interaction on TSCI pathophysiology and MSC treatment. Therefore, we propose that unravelling the underlying pathophysiology of TSCI with concomitant TBI will reveal promising pharmacological targets and therapeutic strategies for regenerative therapies, further improving MSC therapy.
Collapse
Affiliation(s)
- Paul Köhli
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ellen Otto
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Denise Jahn
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marie-Jacqueline Reisener
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
| | - Jessika Appelt
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Adibeh Rahmani
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nima Taheri
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
| | - Johannes Keller
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
- University Hospital Hamburg-Eppendorf, Department of Trauma Surgery and Orthopaedics, Martinistraße 52, 20246 Hamburg, Germany
| | - Matthias Pumberger
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Serafeim Tsitsilonis
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| |
Collapse
|
21
|
Castanov V, Berger MJ, Ritsma B, Trier J, Hendry JM. Optimizing the timing of peripheral nerve transfers for functional re-animation in cervical spinal cord injury: a conceptual framework. J Neurotrauma 2021; 38:3365-3375. [PMID: 34715742 DOI: 10.1089/neu.2021.0247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Loss of upper extremity function following spinal cord injury (SCI) can have devastating consequences on quality of life. Peripheral nerve transfer surgery aims to restore motor control of upper extremities following cervical SCI and is poised to revolutionize surgical management in this population. The surgery involves dividing an expendable donor nerve above the level of the spinal lesion and coapting it to a recipient nerve arising from the lesional or infralesional segment of the injured cord. In order to maximize outcomes in this complex patient population, refinements in surgical technique need to be integrated with principles of spinal cord medicine and basic science. Deciding on the ideal timing of nerve transfer surgery is one aspect of care that is critical to maximizing recovery and has received very little attention to date in the literature. This complex topic is reviewed, with a focus on expectations for spontaneous recovery within upper motor neuron components of the injury, balanced against the need for expeditious reinnervation for lower motor neuron elements of the injury. The discussion also considers the case of a patient with C6 motor complete SCI where myotomes without electrodiagnostic evidence of denervation spontaneously improved by 6 months post-injury, thereby adjusting the surgical plan. The relevant concepts are integrated into a clinical algorithm with recommendations that consider maximal opportunity for spontaneous clinical improvement post-injury while avoiding excessive delays that may adversely affect patient outcomes.
Collapse
Affiliation(s)
- Valera Castanov
- Queen's University, 4257, School of Medicine, Kingston, Ontario, Canada;
| | - Michael James Berger
- The University of British Columbia, 8166, Division of Physical Medicine and Rehabilitation, Vancouver, British Columbia, Canada.,The University of British Columbia, 8166, International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada;
| | - Benjamin Ritsma
- Queen's University, 4257, Department of Physical Medicine and Rehabilitation, Kingston, Ontario, Canada.,Providence Care Hospital, 4256, Kingston, Ontario, Canada;
| | - Jessica Trier
- Queen's University, 4257, Department of Physical Medicine and Rehabilitation, Kingston, Ontario, Canada.,Providence Care Hospital, 4256, Kingston, Ontario, Canada;
| | - J Michael Hendry
- Queen's University, 4257, School of Medicine, Kingston, Ontario, Canada.,Queen's University, 4257, Division of Plastic Surgery, Department of Surgery, Kingston, Ontario, Canada.,Kingston Health Sciences Centre, 71459, Kingston, Ontario, Canada;
| |
Collapse
|
22
|
Begenisic T, Pavese C, Aiachini B, Nardone A, Rossi D. Dynamics of biomarkers across the stages of traumatic spinal cord injury - implications for neural plasticity and repair. Restor Neurol Neurosci 2021; 39:339-366. [PMID: 34657853 DOI: 10.3233/rnn-211169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is a complex medical condition causing significant physical disability and psychological distress. While the adult spinal cord is characterized by poor regenerative potential, some recovery of neurological function is still possible through activation of neural plasticity mechanisms. We still have limited knowledge about the activation of these mechanisms in the different stages after human SCI. OBJECTIVE In this review, we discuss the potential role of biomarkers of SCI as indicators of the plasticity mechanisms at work during the different phases of SCI. METHODS An extensive review of literature related to SCI pathophysiology, neural plasticity and humoral biomarkers was conducted by consulting the PubMed database. Research and review articles from SCI animal models and SCI clinical trials published in English until January 2021 were reviewed. The selection of candidates for humoral biomarkers of plasticity after SCI was based on the following criteria: 1) strong evidence supporting involvement in neural plasticity (mandatory); 2) evidence supporting altered expression after SCI (optional). RESULTS Based on selected findings, we identified two main groups of potential humoral biomarkers of neural plasticity after SCI: 1) neurotrophic factors including: Brain derived neurotrophic factor (BDNF), Nerve growth factor (NGF), Neurotrofin-3 (NT-3), and Insulin-like growth factor 1 (IGF-1); 2) other factors including: Tumor necrosis factor-alpha (TNF-α), Matrix Metalloproteinases (MMPs), and MicroRNAs (miRNAs). Plasticity changes associated with these biomarkers often can be both adaptive (promoting functional improvement) and maladaptive. This dual role seems to be influenced by their concentrations and time-window during SCI. CONCLUSIONS Further studies of dynamics of biomarkers across the stages of SCI are necessary to elucidate the way in which they reflect the remodeling of neural pathways. A better knowledge about the mechanisms underlying plasticity could guide the selection of more appropriate therapeutic strategies to enhance positive spinal network reorganization.
Collapse
Affiliation(s)
- Tatjana Begenisic
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Chiara Pavese
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Beatrice Aiachini
- Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Antonio Nardone
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| |
Collapse
|
23
|
Cao Y, Shi Y, Xiao Z, Chen X, Chen B, Yang B, Shu M, Yin Y, Wu S, Yin W, Fu X, Tan J, Zhou Q, Wu Z, Jiang X, Dai J. Contralateral Axon Sprouting but Not Ipsilateral Regeneration Is Responsible for Spontaneous Locomotor Recovery Post Spinal Cord Hemisection. Front Cell Neurosci 2021; 15:730348. [PMID: 34512270 PMCID: PMC8426601 DOI: 10.3389/fncel.2021.730348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) usually results in permanent functional impairment and is considered a worldwide medical problem. However, both motor and sensory functions can spontaneously recover to varying extents in humans and animals with incomplete SCI. This study observed a significant spontaneous hindlimb locomotor recovery in Sprague-Dawley rats at four weeks after post-right-side spinal cord hemisection at thoracic 8 (T8). To verify whether the above spontaneous recovery derives from the ipsilateral axonal or neuronal regeneration to reconnect the lesion site, we resected either the scar tissue or right side T7 spinal cord at five weeks post-T8 hemisected injury. The results showed that the spontaneously achieved right hindlimb locomotor function had little change after resection. Furthermore, when T7 left hemisection was performed five weeks after the initial injury, the spontaneously achieved right hindlimb locomotor function was dramatically abolished. A similar result could also be observed when T7 transection was performed after the initial hemisection. The results indicated that it might be the contralateral axonal remolding rather than the ipsilateral axonal or neuronal regeneration beyond the lesion site responsible for the spontaneous hindlimb locomotor recovery. The immunostaining analyses and corticospinal tracts (CSTs) tracing results confirmed this hypothesis. We detected no substantial neuronal and CST regeneration throughout the lesion site; however, significantly more CST fibers were observed to sprout from the contralateral side at the lumbar 4 (L4) spinal cord in the hemisection model rats than in intact ones. In conclusion, this study verified that contralateral CST sprouting, but not ipsilateral CST or neuronal regeneration, is primarily responsible for the spontaneous locomotor recovery in hemisection SCI rats.
Collapse
Affiliation(s)
- Yudong Cao
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Ya Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xi Chen
- Shigatse Branch, Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Muya Shu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shuyu Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Wen Yin
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Xianyong Fu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Quanwei Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Zhaoping Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Therapeutic repetitive Transcranial Magnetic stimulation (rTMS) for neurological dysfunction in Degenerative cervical Myelopathy: An unexplored opportunity? Findings from a systematic review. J Clin Neurosci 2021; 90:76-81. [PMID: 34275584 DOI: 10.1016/j.jocn.2021.05.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023]
Abstract
Degenerative Cervical Myelopathy (DCM) is one of the commonest causes of non-traumatic Spinal Cord Injury (SCI) leading to significant neurological impairments and reduced health-related quality of life. Guidelines recommend surgical intervention to halt disease progression in moderate-to-severe cases, and whilst many do experience neurological recovery, this is incomplete leading to lifelong disability. A James Lind Alliance (JLA) research priority setting partnership for DCM highlighted novel therapies and rehabilitation as top 10 research priority in DCM. Neurological recovery following decompressive surgery in DCM has been attributed neuroplasticity, and therapies influencing neuroplasticity are of interest. Electrical neuromodulation interventions such as repetitive Transcranial Magnetic Stimulation (rTMS), are being increasingly explored in related fields such as spinal cord injury to improve recovery and symptoms. The aim of this systematic review was to determine the role and efficacy of rTMS as a therapeutic tool in managing neurological dysfunction in DCM. We searched the databases of Medline, EMBASE, CINAHIL and Cochrane Central Register of Controlled Trials (CENTRAL). No studies were identified that had investigated the therapeutic use of rTMS in DCM. A significant number of studies had explored TMS based neurophysiological assessments indicating its role as a screening and prognostication tool in DCM. Post-operative rehabilitation interventions including TMS and non-operative management of DCM is a field which requires further investigation, as required in the AO Spine JLA DCM research priorities. rTMS is a safe neuromodulatory intervention and may have a role in enhancing recovery in DCM. Further research in these fields are required.
Collapse
|
25
|
Rigot SK, Boninger ML, Ding D, McKernan G, Field-Fote EC, Hoffman J, Hibbs R, Worobey LA. Toward Improving the Prediction of Functional Ambulation After Spinal Cord Injury Though the Inclusion of Limb Accelerations During Sleep and Personal Factors. Arch Phys Med Rehabil 2021; 103:676-687.e6. [PMID: 33839107 DOI: 10.1016/j.apmr.2021.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/21/2021] [Accepted: 02/07/2021] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To determine if functional measures of ambulation can be accurately classified using clinical measures; demographics; personal, psychosocial, and environmental factors; and limb accelerations (LAs) obtained during sleep among individuals with chronic, motor incomplete spinal cord injury (SCI) in an effort to guide future, longitudinal predictions models. DESIGN Cross-sectional, 1-5 days of data collection. SETTING Community-based data collection. PARTICIPANTS Adults with chronic (>1 year), motor incomplete SCI (N=27). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Ambulatory ability based on the 10-m walk test (10MWT) or 6-minute walk test (6MWT) categorized as nonambulatory, household ambulator (0.01-0.44 m/s, 1-204 m), or community ambulator (>0.44 m/s, >204 m). A random forest model classified ambulatory ability using input features including clinical measures of strength, sensation, and spasticity; demographics; personal, psychosocial, and environmental factors including pain, environmental factors, health, social support, self-efficacy, resilience, and sleep quality; and LAs measured during sleep. Machine learning methods were used explicitly to avoid overfitting and minimize the possibility of biased results. RESULTS The combination of LA, clinical, and demographic features resulted in the highest classification accuracies for both functional ambulation outcomes (10MWT=70.4%, 6MWT=81.5%). Adding LAs, personal, psychosocial, and environmental factors, or both increased the accuracy of classification compared with the clinical/demographic features alone. Clinical measures of strength and sensation (especially knee flexion strength), LA measures of movement smoothness, and presence of pain and comorbidities were among the most important features selected for the models. CONCLUSIONS The addition of LA and personal, psychosocial, and environmental features increased functional ambulation classification accuracy in a population with incomplete SCI for whom improved prognosis for mobility outcomes is needed. These findings provide support for future longitudinal studies that use LA; personal, psychosocial, and environmental factors; and advanced analyses to improve clinical prediction rules for functional mobility outcomes.
Collapse
Affiliation(s)
- Stephanie K Rigot
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA; Human Engineering Research Laboratories, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA; Human Engineering Research Laboratories, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA; Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, PA; Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
| | - Dan Ding
- Human Engineering Research Laboratories, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA; Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, PA
| | - Gina McKernan
- Human Engineering Research Laboratories, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA; Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
| | - Edelle C Field-Fote
- Crawford Research Institute, Shepherd Center, Atlanta, GA; Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; Program in Applied Physiology, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Jeanne Hoffman
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA
| | - Rachel Hibbs
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA; Physical Therapy, University of Pittsburgh, Pittsburgh, PA
| | - Lynn A Worobey
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA; Human Engineering Research Laboratories, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA; Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA; Physical Therapy, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
26
|
CXCL12 promotes spinal nerve regeneration and functional recovery after spinal cord injury. Neuroreport 2021; 32:450-457. [PMID: 33657074 DOI: 10.1097/wnr.0000000000001613] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spinal cord injury (SCI) leads to permanent loss of motor and sensory function due to the complex mechanisms of the external microenvironment and internal neurobiochemistry that restrict neuronal plasticity and axonal regeneration. Chemokine CXCL12 was verified in regulating the development of central nervous system (CNS) and repairing of CNS disease. In the present study, CXCL12 was downregulated in the spinal cord after SCI. SCI also induced gliosis and loss of synapse. Intrathecal treatment of CXCL12 promoted the functional recovery of SCI by inducing the formation of neuronal connections and suppressing glia scar. To confirm whether CXCL12 promoted synapse formation and functional neuronal connections, the primary cortical neurons were treated with CXCL12 peptide, the synapse was examined using Immunofluorescence staining and the function of synapse was tested using a whole-cell patch clamp. The results indicated that CXCL12 peptide promoted axonal elongation, branche formation, dendrite generation and synaptogenesis. The electrophysiological results showed that CXCL12 peptide increased functional connections among neurons. Taken together, the present study illustrated an underlying mechanism of the development of SCI and indicated a potential approach to facilitate functional recovery of spinal cord after SCI.
Collapse
|
27
|
Arnold BM, Toosi BM, Caine S, Mitchell GS, Muir GD. Prolonged acute intermittent hypoxia improves forelimb reach-to-grasp function in a rat model of chronic cervical spinal cord injury. Exp Neurol 2021; 340:113672. [PMID: 33652030 DOI: 10.1016/j.expneurol.2021.113672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/13/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
Repetitive acute intermittent hypoxia (AIH - brief, episodes of low inspired oxygen) elicits spinal motor plasticity, resulting in sustained improvements of respiratory and non-respiratory motor function in both animal models and humans with chronic spinal cord injury (SCI). We previously demonstrated that 7 days of AIH combined with task-specific training improves performance on a skilled locomotor task for at least 3 weeks post-treatment in rats with incomplete SCI. Here we investigated the effect of repetitive AIH administered for 12 wks on a forelimb reach-to-grasp task in a rat model of chronic, incomplete cervical SCI. In a replicated, sham-controlled, randomized and blinded study, male Spraque-Dawley rats were subject to partial hemisection at the 3rd cervical spinal segment, and exposed to daily AIH (10, 5 min episodes of 11% inspired O2; 5 min intervals of 21% O2) or sham normoxia (continuous 21% O2) for 7 days beginning 8 weeks post-injury. Treatments were then reduced to 4 daily treatments per week, and continued for 11 weeks. Performance on 2 pre-conditioned motor tasks, single pellet reaching and horizontal ladder walking, was recorded each week for up to 12 weeks after initiating treatment; performance on spontaneous adhesive removal was also tested. SCI significantly impaired reach-to-grasp task performance 8 weeks post-injury (pre-treatment). Daily AIH improved reaching success by the first week of treatment versus sham controls, and this difference was maintained at 12 weeks (p < 0.0001). Daily AIH did not affect step asymmetry or stride length during ladder walking or adhesive removal time. Thus, prolonged AIH combined with task-specific training improved forelimb reach-to-grasp function in rats with a chronic cervical hemisection, but not off-target motor tasks. This study further supports the idea that daily AIH improves limb function when combined with task-specific training.
Collapse
Affiliation(s)
- Breanna M Arnold
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.
| | - Behzad M Toosi
- Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.
| | - Sally Caine
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, United States of America.
| | - Gillian D Muir
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.
| |
Collapse
|
28
|
Kramer AA, Olson GM, Chakraborty A, Blackmore MG. Promotion of corticospinal tract growth by KLF6 requires an injury stimulus and occurs within four weeks of treatment. Exp Neurol 2021; 339:113644. [PMID: 33592210 DOI: 10.1016/j.expneurol.2021.113644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/23/2021] [Accepted: 02/12/2021] [Indexed: 12/01/2022]
Abstract
Axons in the corticospinal tract (CST) display a limited capacity for compensatory sprouting after partial spinal injuries, potentially limiting functional recovery. Forced expression of a developmentally expressed transcription factor, Krüppel-like factor 6 (KLF6), enhances axon sprouting by adult CST neurons. Here, using a pyramidotomy model of injury in adult mice, we confirm KLF6's pro-sprouting properties in spared corticospinal tract neurons and show that this effect depends on an injury stimulus. In addition, we probed the time course of KLF6-triggered sprouting of CST axons and demonstrate a significant enhancement of growth within four weeks of treatment. Finally, we tested whether KLF6-induced sprouting was accompanied by improvements in forelimb function, either singly or when combined with intensive rehabilitation. We found that regardless of rehabilitative training, and despite robust cross-midline sprouting by corticospinal tract axons, treatment with KLF6 produced no significant improvement in forelimb function on either a modified ladder-crossing task or a pellet-retrieval task. These data clarify important details of KLF6's pro-growth properties and indicate that additional interventions or further optimization will be needed to translate this improvement in axon growth into functional gains.
Collapse
Affiliation(s)
- Audra A Kramer
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | - Greta M Olson
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | - Advaita Chakraborty
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | - Murray G Blackmore
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA.
| |
Collapse
|
29
|
Sobreira M, Almeida MP, Gomes A, Lucas M, Oliveira A, Marques A. Minimal Clinically Important Differences for Measures of Pain, Lung Function, Fatigue, and Functionality in Spinal Cord Injury. Phys Ther 2021; 101:6039321. [PMID: 33336700 DOI: 10.1093/ptj/pzaa210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/26/2020] [Accepted: 10/29/2020] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The objective of this study was to determine the minimal clinically important differences (MCIDs) for the numerical pain rating scale (NPRS), peak cough flow (PCF), peak expiratory flow (PEF), fatigue severity scale (FSS), and London chest activities of daily living scale (LCADL) in patients with spinal cord injuries (SCIs) after rehabilitation. METHODS Inpatients with SCI from 2 rehabilitation centers participating in a daily rehabilitation program were recruited. The NPRS, PCF, PEF, FSS, and LCADL were collected at baseline and discharge. The global rating of change scale was performed at discharge. MCIDs were calculated using anchor (linear regression, mean change, and receiver operating characteristic curves) and distribution-based methods (0.5 times the baseline SD, standard error of measurement, 1.96 times standard error of measurement, and minimal detectable change) and pooled using arithmetic weighted mean. RESULTS Sixty inpatients with SCI (36 males; 54.5 [15.9] years) participated. On average their rehabilitation program lasted 7.3 (1.7) weeks. Pooled MCID estimates were 1.6 points for the NPRS, 69.8 L/min for the PCF, 77.4 L/min for the PEF, 1.1 points for the FSS, and 1.4 points for the LCADL. CONCLUSION Established MCIDs for NPRS, PCF, PEF, FSS, and LCADL will help health professionals to interpret results and guide rehabilitation interventions in patients with SCI. IMPACT Health professionals and researchers may now use -1.6 points for the NPRS, 69.8 L/min for the PCF, 77.4 L/min for the PEF, 1.1 points for the FSS, and 1.4 points for the LCADL to interpret if changes in pain, cough intensity, expiratory flow, fatigue and activities of daily living after rehabilitation of patients with SCI have been clinically relevant.
Collapse
Affiliation(s)
- Margarida Sobreira
- Medicine and Rehabilitation Centre of Alcoitão, Santa Casa da Misericórdia de Lisboa, Lisbon, Portugal
| | - Miguel P Almeida
- Rehabilitation Centre of the North, Centro Hospitalar de Vila Nova de Gaia-Espinho, Porto, Portugal.,Institute of Biomedicine, Lab3R-Respiratory Research and Rehabilitation Laboratory, School of Health Sciences, University of Aveiro, Aveiro, Portugal
| | - Ana Gomes
- Rehabilitation Centre of the North, Centro Hospitalar de Vila Nova de Gaia-Espinho, Porto, Portugal
| | - Marlene Lucas
- Medicine and Rehabilitation Centre of Alcoitão, Santa Casa da Misericórdia de Lisboa, Lisbon, Portugal
| | - Ana Oliveira
- Institute of Biomedicine, Lab3R-Respiratory Research and Rehabilitation Laboratory, School of Health Sciences, University of Aveiro, Aveiro, Portugal.,School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada.,West Park Healthcare Centre, Toronto, Ontario, Canada
| | - Alda Marques
- Lab3R-Respiratory Research and Rehabilitation Laboratory, School of Health Sciences, University of Aveiro, Campus Universitário de Santiago, Agras do Crasto, Building 30, 3810-193, Aveiro, Portugal
| |
Collapse
|
30
|
Rodriguez-Jimenez FJ, Vilches A, Perez-Arago MA, Clemente E, Roman R, Leal J, Castro AA, Fustero S, Moreno-Manzano V, Jendelova P, Stojkovic M, Erceg S. Activation of Neurogenesis in Multipotent Stem Cells Cultured In Vitro and in the Spinal Cord Tissue After Severe Injury by Inhibition of Glycogen Synthase Kinase-3. Neurotherapeutics 2021; 18:515-533. [PMID: 33000422 PMCID: PMC8116371 DOI: 10.1007/s13311-020-00928-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 12/24/2022] Open
Abstract
The inhibition of glycogen synthase kinase-3 (GSK-3) can induce neurogenesis, and the associated activation of Wnt/β-catenin signaling via GSK-3 inhibition may represent a means to promote motor function recovery following spinal cord injury (SCI) via increased astrocyte migration, reduced astrocyte apoptosis, and enhanced axonal growth. Herein, we assessed the effects of GSK-3 inhibition in vitro on the neurogenesis of ependymal stem/progenitor cells (epSPCs) resident in the mouse spinal cord and of human embryonic stem cell-derived neural progenitors (hESC-NPs) and human-induced pluripotent stem cell-derived neural progenitors (hiPSC-NPs) and in vivo on spinal cord tissue regeneration and motor activity after SCI. We report that the treatment of epSPCs and human pluripotent stem cell-derived neural progenitors (hPSC-NPs) with the GSK-3 inhibitor Ro3303544 activates β-catenin signaling and increases the expression of the bIII-tubulin neuronal marker; furthermore, the differentiation of Ro3303544-treated cells prompted an increase in the number of terminally differentiated neurons. Administration of a water-soluble, bioavailable form of this GSK-3 inhibitor (Ro3303544-Cl) in a severe SCI mouse model revealed the increased expression of bIII-tubulin in the injury epicenter. Treatment with Ro3303544-Cl increased survival of mature neuron types from the propriospinal tract (vGlut1, Parv) and raphe tract (5-HT), protein kinase C gamma-positive neurons, and GABAergic interneurons (GAD65/67) above the injury epicenter. Moreover, we observed higher numbers of newly born BrdU/DCX-positive neurons in Ro3303544-Cl-treated animal tissues, a reduced area delimited by astrocyte scar borders, and improved motor function. Based on this study, we believe that treating animals with epSPCs or hPSC-NPs in combination with Ro3303544-Cl deserves further investigation towards the development of a possible therapeutic strategy for SCI.
Collapse
Affiliation(s)
| | - Angel Vilches
- Stem Cell Therapies in Neurodegenerative Diseases Lab, Research Center "Principe Felipe", C/ Eduardo Primo Yufera 3, Valencia, Spain
| | - Maria Amparo Perez-Arago
- National Stem Cell Bank-Valencia Node, Biomolecular Resources Platform PRB3, ISCIII, Research Center "Principe Felipe", C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Eleonora Clemente
- Stem Cell Therapies in Neurodegenerative Diseases Lab, Research Center "Principe Felipe", C/ Eduardo Primo Yufera 3, Valencia, Spain
| | - Raquel Roman
- Organic Molecules Lab, Research Center "Principe Felipe", C/ Eduardo Primo Yufera 3, 46012, Valencia, Spain
- Department of Organic Chemistry, University of Valencia, 46100, Burjassot, Spain
| | - Juliette Leal
- Stem Cell Therapies in Neurodegenerative Diseases Lab, Research Center "Principe Felipe", C/ Eduardo Primo Yufera 3, Valencia, Spain
| | - Ana Artero Castro
- Stem Cell Therapies in Neurodegenerative Diseases Lab, Research Center "Principe Felipe", C/ Eduardo Primo Yufera 3, Valencia, Spain
| | - Santos Fustero
- Organic Molecules Lab, Research Center "Principe Felipe", C/ Eduardo Primo Yufera 3, 46012, Valencia, Spain
- Department of Organic Chemistry, University of Valencia, 46100, Burjassot, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Lab, Research Center "Principe Felipe", C/ Eduardo Primo Yufera 3, 46012, Valencia, Spain
| | - Pavla Jendelova
- Institute of Experimental Medicine, Department of Neuroregeneration, Czech Academy of Sciences, Prague, Czech Republic
| | - Miodrag Stojkovic
- Department of Human Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Slaven Erceg
- Stem Cell Therapies in Neurodegenerative Diseases Lab, Research Center "Principe Felipe", C/ Eduardo Primo Yufera 3, Valencia, Spain.
- National Stem Cell Bank-Valencia Node, Biomolecular Resources Platform PRB3, ISCIII, Research Center "Principe Felipe", C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
- Institute of Experimental Medicine, Department of Neuroregeneration, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
31
|
Pfyffer D, Vallotton K, Curt A, Freund P. Tissue bridges predict neuropathic pain emergence after spinal cord injury. J Neurol Neurosurg Psychiatry 2020; 91:1111-1117. [PMID: 32788257 PMCID: PMC7509517 DOI: 10.1136/jnnp-2020-323150] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/26/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To assess associations between preserved spinal cord tissue quantified by the width of ventral and dorsal tissue bridges and neuropathic pain development after spinal cord injury. METHODS This retrospective longitudinal study includes 44 patients (35 men; mean (SD) age, 50.05 (18.88) years) with subacute (ie, 1 month) spinal cord injury (25 patients with neuropathic pain, 19 pain-free patients) and neuroimaging data who had a follow-up clinical assessment at 12 months. Widths of tissue bridges were calculated from midsagittal T2-weighted images and compared across groups. Regression analyses were used to identify relationships between these neuroimaging measures and previously assessed pain intensity and pin-prick score. RESULTS Pin-prick score of the 25 patients with neuropathic pain increased from 1 to 12 months (Δmean=10.08, 95% CI 2.66 to 17.50, p=0.010), while it stayed similar in pain-free patients (Δmean=2.74, 95% CI -7.36 to 12.84, p=0.576). They also had larger ventral tissue bridges (Δmedian=0.80, 95% CI 0.20 to 1.71, p=0.008) at 1 month when compared with pain-free patients. Conditional inference tree analysis revealed that ventral tissue bridges' width (≤2.1 or >2.1 mm) at 1 month is the strongest predictor for 12 months neuropathic pain intensity (1.90±2.26 and 3.83±1.19, p=0.042) and 12 months pin-prick score (63.84±28.26 and 92.67±19.43, p=0.025). INTERPRETATION Larger width of ventral tissue bridges-a proxy for spinothalamic tract function-at 1 month post-spinal cord injury is associated with the emergence and maintenance of neuropathic pain and increased pin-prick sensation. Spared ventral tissue bridges could serve as neuroimaging biomarkers of neuropathic pain and might be used for prediction and monitoring of pain outcomes and stratification of patients in interventional trials.
Collapse
Affiliation(s)
- Dario Pfyffer
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Kevin Vallotton
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland .,Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, London, United Kingdom.,Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
32
|
Abstract
Genital sensation (GS) is an essential component of male sexual function. Genital sensory disturbance (GSD) caused by spinal cord injury (SCI) has a severe impact on the patients' sexual function but has garnered little research focus. Under normal conditions, GS encompasses the erection, ejaculation, sexual arousal, and orgasm courses associated with physiological and psychological responses in male sexual activity. However, in SCI patients, the deficiency of GS makes the tactile stimulation of the penis unable to cause sexual arousal, disturbs the normal processes of erection and ejaculation, and decreases sexual desire and satisfaction. To provide an overview of the contemporary conception and management of male GS after SCI, we review the innervation and sexual function of male GS in this article, discuss the effects of GSD following SCI, and summarize the current diagnosis and treatment of GSD in male SCI patients.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bing Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
33
|
Naidu A, Peters DM, Tan AQ, Barth S, Crane A, Link A, Balakrishnan S, Hayes HB, Slocum C, Zafonte RD, Trumbower RD. Daily acute intermittent hypoxia to improve walking function in persons with subacute spinal cord injury: a randomized clinical trial study protocol. BMC Neurol 2020; 20:273. [PMID: 32641012 PMCID: PMC7341658 DOI: 10.1186/s12883-020-01851-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Restoring community walking remains a highly valued goal for persons recovering from traumatic incomplete spinal cord injury (SCI). Recently, studies report that brief episodes of low-oxygen breathing (acute intermittent hypoxia, AIH) may serve as an effective plasticity-inducing primer that enhances the effects of walking therapy in persons with chronic (> 1 year) SCI. More persistent walking recovery may occur following repetitive (weeks) AIH treatment involving persons with more acute SCI, but this possibility remains unknown. Here we present our clinical trial protocol, designed to examine the distinct influences of repetitive AIH, with and without walking practice, on walking recovery in persons with sub-acute SCI (< 12 months) SCI. Our overarching hypothesis is that daily exposure (10 sessions, 2 weeks) to AIH will enhance walking recovery in ambulatory and non-ambulatory persons with subacute (< 12 months) SCI, presumably by harnessing endogenous mechanisms of plasticity that occur soon after injury. METHODS To test our hypothesis, we are conducting a randomized, placebo-controlled clinical trial on 85 study participants who we stratify into two groups according to walking ability; those unable to walk (non-ambulatory group) and those able to walk (ambulatory group). The non-ambulatory group receives either daily AIH (15, 90s episodes at 10.0% O2 with 60s intervals at 20.9% O2) or daily SHAM (15, 90s episodes at 20.9% O2 with 60s intervals at 20.9% O2) intervention. The ambulatory group receives either 60-min walking practice (WALK), daily AIH + WALK, or daily SHAM+WALK intervention. Our primary outcome measures assess overground walking speed (10-Meter Walk Test), endurance (6-Minute Walk Test), and balance (Timed Up & Go Test). For safety, we also measure levels of pain, spasticity, systemic hypertension, and autonomic dysreflexia. We record outcome measures at baseline, days 5 and 10, and follow-ups at 1 week, 1 month, 6 months, and 12 months post-treatment. DISCUSSION The goal of this clinical trial is to reveal the extent to which daily AIH, alone or in combination with task-specific walking practice, safely promotes persistent recovery of walking in persons with traumatic, subacute SCI. Outcomes from this study may provide new insight into ways to enhance walking recovery in persons with SCI. TRIAL REGISTRATION ClinicalTrials.gov, NCT02632422 . Registered 16 December 2015.
Collapse
Affiliation(s)
- Avantika Naidu
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, 1575 Cambridge Street, Boston, MA, 02138, USA
- Spaulding Research Institute, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Denise M Peters
- Department of Rehabilitation & Movement Science, University of Vermont, Burlington, VT, USA
| | - Andrew Q Tan
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, 1575 Cambridge Street, Boston, MA, 02138, USA
- Spaulding Research Institute, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Stella Barth
- Spaulding Research Institute, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Andrea Crane
- Spaulding Research Institute, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Angela Link
- Spaulding Research Institute, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Swapna Balakrishnan
- Spaulding Research Institute, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Heather B Hayes
- Department of Rehabilitation Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Chloe Slocum
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, 1575 Cambridge Street, Boston, MA, 02138, USA
- Spaulding Research Institute, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Ross D Zafonte
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, 1575 Cambridge Street, Boston, MA, 02138, USA
- Spaulding Research Institute, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Randy D Trumbower
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, 1575 Cambridge Street, Boston, MA, 02138, USA.
- Spaulding Research Institute, Spaulding Rehabilitation Hospital, Charlestown, MA, USA.
- Program in Neuroscience, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
34
|
Darrow MJ, Torres M, Sosa MJ, Danaphongse TT, Haider Z, Rennaker RL, Kilgard MP, Hays SA. Vagus Nerve Stimulation Paired With Rehabilitative Training Enhances Motor Recovery After Bilateral Spinal Cord Injury to Cervical Forelimb Motor Pools. Neurorehabil Neural Repair 2020; 34:200-209. [PMID: 31969052 DOI: 10.1177/1545968319895480] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Closed-loop vagus nerve stimulation (VNS) paired with rehabilitative training has emerged as a strategy to enhance recovery after neurological injury. Previous studies demonstrate that brief bursts of closed-loop VNS paired with rehabilitative training substantially improve recovery of forelimb motor function in models of unilateral and bilateral contusive spinal cord injury (SCI) at spinal level C5/6. While these findings provide initial evidence of the utility of VNS for SCI, the injury model used in these studies spares the majority of alpha motor neurons originating in C7-T1 that innervate distal forelimb muscles. Because the clinical manifestation of SCI in many patients involves damage at these levels, it is important to define whether damage to the distal forelimb motor neuron pools limits VNS-dependent recovery. In this study, we assessed recovery of forelimb function in rats that received a bilateral incomplete contusive SCI at C7/8 and underwent extensive rehabilitative training with or without paired VNS. The study design, including planned sample size, assessments, and statistical comparisons, was preregistered prior to beginning data collection ( https://osf.io/ysvgf/ ). VNS paired with rehabilitative training significantly improved recovery of volitional forelimb strength compared to equivalent rehabilitative training without VNS. Additionally, VNS-dependent enhancement of recovery generalized to 2 similar, but untrained, forelimb tasks. These findings indicate that damage to alpha motor neurons does not prevent VNS-dependent enhancement of recovery and provides additional evidence to support the evaluation of closed-loop VNS paired with rehabilitation in patients with incomplete cervical SCI.
Collapse
Affiliation(s)
| | | | - Maria J Sosa
- The University of Texas at Dallas, Richardson, TX, USA
| | | | - Zainab Haider
- The University of Texas at Dallas, Richardson, TX, USA
| | | | | | - Seth A Hays
- The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
35
|
Dumlao PIE, Grozman S. Neurological recovery after surgical intervention of a complete spinal cord injury secondary to a chronic untreated odontoid neck fracture: a lesson in patient prognostication. BMJ Case Rep 2020; 13:13/1/e233077. [PMID: 31937631 DOI: 10.1136/bcr-2019-233077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Odontoid fractures are injuries that can either be benign or devastatingly progress to quadriplegia and significant morbidity and mortality. Management is not clear cut for patients who already present late and with severe neurological deficits. We present a case of a type 2 odontoid fracture with associated complete spinal cord injury (American Spinal Injury Association A) initially untreated for 3 months but was subsequently managed with posterior decompression, instrumentation and occipitocervical fusion. The patient fully recovered all deficits and is independent of activities of daily living.
Collapse
Affiliation(s)
| | - Samuel Grozman
- Orthopedics, University of the Philippines Manila, Ermita, Manila, Metro Manila, Philippines
| |
Collapse
|
36
|
Armijo-Weingart L, Ketschek A, Sainath R, Pacheco A, Smith GM, Gallo G. Neurotrophins induce fission of mitochondria along embryonic sensory axons. eLife 2019; 8:e49494. [PMID: 31789589 PMCID: PMC6887118 DOI: 10.7554/elife.49494] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/26/2019] [Indexed: 12/30/2022] Open
Abstract
Neurotrophins are growth factors that have a multitude of roles in the nervous system. We report that neurotrophins induce the fission of mitochondria along embryonic chick sensory axons driven by combined PI3K and Mek-Erk signaling. Following an initial burst of fission, a new steady state of neurotrophin-dependent mitochondria length is established. Mek-Erk controls the activity of the fission mediator Drp1 GTPase, while PI3K may contribute to the actin-dependent aspect of fission. Drp1-mediated fission is required for nerve growth factor (NGF)-induced collateral branching in vitro and expression of dominant negative Drp1 impairs the branching of axons in the developing spinal cord in vivo. Fission is also required for NGF-induced mitochondria-dependent intra-axonal translation of the actin regulatory protein cortactin, a previously determined component of NGF-induced branching. Collectively, these observations unveil a novel biological function of neurotrophins; the regulation of mitochondrial fission and steady state mitochondrial length and density in axons.
Collapse
Affiliation(s)
- Lorena Armijo-Weingart
- Department of Anatomy and Cell Biology, Shriner Hospitals Pediatric Research CenterTemple University Lewis Katz School of MedicinePhiladelphiaUnited States
| | - Andrea Ketschek
- Department of Anatomy and Cell Biology, Shriner Hospitals Pediatric Research CenterTemple University Lewis Katz School of MedicinePhiladelphiaUnited States
| | - Rajiv Sainath
- Department of Anatomy and Cell Biology, Shriner Hospitals Pediatric Research CenterTemple University Lewis Katz School of MedicinePhiladelphiaUnited States
| | - Almudena Pacheco
- Department of Anatomy and Cell Biology, Shriner Hospitals Pediatric Research CenterTemple University Lewis Katz School of MedicinePhiladelphiaUnited States
| | - George M Smith
- Department of Neuroscience, Shriner Hospitals Pediatric Research CenterTemple University Lewis Katz School of MedicinePhiladelphiaUnited States
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriner Hospitals Pediatric Research CenterTemple University Lewis Katz School of MedicinePhiladelphiaUnited States
| |
Collapse
|
37
|
Duffell LD, Paddison S, Alahmary AF, Donaldson N, Burridge J. The effects of FES cycling combined with virtual reality racing biofeedback on voluntary function after incomplete SCI: a pilot study. J Neuroeng Rehabil 2019; 16:149. [PMID: 31771600 PMCID: PMC6880599 DOI: 10.1186/s12984-019-0619-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022] Open
Abstract
Background Functional Electrical Stimulation (FES) cycling can benefit health and may lead to neuroplastic changes following incomplete spinal cord injury (SCI). Our theory is that greater neurological recovery occurs when electrical stimulation of peripheral nerves is combined with voluntary effort. In this pilot study, we investigated the effects of a one-month training programme using a novel device, the iCycle, in which voluntary effort is encouraged by virtual reality biofeedback during FES cycling. Methods Eleven participants (C1-T12) with incomplete SCI (5 sub-acute; 6 chronic) were recruited and completed 12-sessions of iCycle training. Function was assessed before and after training using the bilateral International Standards for Neurological Classification of SCI (ISNC-SCI) motor score, Oxford power grading, Modified Ashworth Score, Spinal Cord Independence Measure, the Walking Index for Spinal Cord Injury and 10 m-walk test. Power output (PO) was measured during all training sessions. Results Two of the 6 participants with chronic injuries, and 4 of the 5 participants with sub-acute injuries, showed improvements in ISNC-SCI motor score > 8 points. Median (IQR) improvements were 3.5 (6.8) points for participants with a chronic SCI, and 8.0 (6.0) points for those with sub-acute SCI. Improvements were unrelated to other measured variables (age, time since injury, baseline ISNC-SCI motor score, baseline voluntary PO, time spent training and stimulation amplitude; p > 0.05 for all variables). Five out of 11 participants showed moderate improvements in voluntary cycling PO, which did not correlate with changes in ISNC-SCI motor score. Improvement in PO during cycling was positively correlated with baseline voluntary PO (R2 = 0.50; p < 0.05), but was unrelated to all other variables (p > 0.05). The iCycle was not suitable for participants who were too weak to generate a detectable voluntary torque or whose effort resulted in a negative torque. Conclusions Improved ISNC-SCI motor scores in chronic participants may be attributable to the iCycle training. In sub-acute participants, early spontaneous recovery and changes due to iCycle training could not be distinguished. The iCycle is an innovative progression from existing FES cycling systems, and positive results should be verified in an adequately powered controlled trial. Trial registration ClinicalTrials.gov, NCT03834324. Registered 06 February 2019 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03834324. Protocol V03, dated 06.08.2015.
Collapse
Affiliation(s)
- Lynsey D Duffell
- Department of Medical Physics & Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK.
| | - Sue Paddison
- London Spinal Cord Injury Centre, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Ahmad F Alahmary
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Nick Donaldson
- Department of Medical Physics & Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK
| | - Jane Burridge
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
38
|
Hutson TH, Di Giovanni S. The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration. Nat Rev Neurol 2019; 15:732-745. [DOI: 10.1038/s41582-019-0280-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
|
39
|
Musselman KE, Verrier MC, Flett H, Nadeau S, Yang JF, Farahani F, Alavinia SM, Omidvar M, Wiest MJ, Craven BC. Development of Walking indicators to advance the quality of spinal cord injury rehabilitation: SCI-High Project. J Spinal Cord Med 2019; 42:119-129. [PMID: 31573443 PMCID: PMC6783800 DOI: 10.1080/10790268.2019.1647385] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective: To describe the development of structure, process and outcome indicators that will advance the quality of walking rehabilitation for Canadians with spinal cord injury or disease (SCI/D) by 2020. Method: A framework for the evaluation of the quality of walking rehabilitation was developed by experts in walking after SCI/D. A systematic literature review identified factors influencing walking outcomes and potential walking indicators. A Driver diagram analysis summarized the factors affecting walking outcomes and subsequently informed the selection of structure and process indicators. Psychometric properties and clinical utility of potential walking indicators were considered during the selection of outcome indicators. Results: The structure indicator is the number of physical therapists using evidence-based walking interventions per number of ambulatory individuals with SCI/D. The process indicator is the number of received hours of walking interventions during inpatient rehabilitation per number of ambulatory individuals with SCI/D. The intermediary outcome indicator, which is collected at discharge from inpatient rehabilitation, is either the modified Timed Up and Go or the 10-Meter Walk Test, the choice of measure is dictated by the stage of walking recovery, as defined by the Standing and Walking Assessment Tool. The final outcome indicator, collected at 18 months post-discharge, is the Spinal Cord Independence Measure III-Mobility subscale. Conclusion: The selected indicators align with current clinical practice in Canada. The indicators will direct the timing and enhance the volume of walking therapy delivered, to ultimately increase the proportion of patients who achieve their walking potential by 18 months post-rehabilitation.
Collapse
Affiliation(s)
- Kristin E. Musselman
- KITE, Toronto Rehab – University Health Network, Toronto, Ontario, Canada,Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Molly C. Verrier
- KITE, Toronto Rehab – University Health Network, Toronto, Ontario, Canada,Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Heather Flett
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada,Brain and Spinal Cord Rehabilitation Program, Toronto Rehabilitation Institute – University Health Network, Toronto, Ontario, Canada
| | - Sylvie Nadeau
- School of Rehabilitation, University of Montreal and Centre for Interdisciplinary Research in Rehabilitation (CRIR), CIUSSS Centre-Sud-de-l'Île-de-Montréal, Montreal, Quebec, Canada
| | - Jaynie F. Yang
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Farnoosh Farahani
- KITE, Toronto Rehab – University Health Network, Toronto, Ontario, Canada
| | - S. Mohammad Alavinia
- KITE, Toronto Rehab – University Health Network, Toronto, Ontario, Canada,Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Toronto, Toronto, Canada
| | - Maryam Omidvar
- KITE, Toronto Rehab – University Health Network, Toronto, Ontario, Canada
| | - Matheus J. Wiest
- KITE, Toronto Rehab – University Health Network, Toronto, Ontario, Canada
| | - B. Catharine Craven
- KITE, Toronto Rehab – University Health Network, Toronto, Ontario, Canada,Brain and Spinal Cord Rehabilitation Program, Toronto Rehabilitation Institute – University Health Network, Toronto, Ontario, Canada,Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Toronto, Toronto, Canada,Correspondence to: B. Catharine Craven, FRCPC, KITE – Toronto Rehab – University Health Network, 206-H 520 Sutherland Drive, Toronto, ON M4G3V9, Canada.
| |
Collapse
|
40
|
Jung JH, Lee HJ, Cho DY, Lim JE, Lee BS, Kwon SH, Kim HY, Lee SJ. Effects of Combined Upper Limb Robotic Therapy in Patients With Tetraplegic Spinal Cord Injury. Ann Rehabil Med 2019; 43:445-457. [PMID: 31499598 PMCID: PMC6734021 DOI: 10.5535/arm.2019.43.4.445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/21/2019] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To confirm the effects of combined upper limb robotic therapy (RT) as compared to conventional occupational therapy (OT) in tetraplegic spinal cord injury (SCI) patients and to suggest the optimized treatment guidelines of combined upper limb RT. METHODS After subject recruitment and screening for eligibility, the baseline evaluation for outcome measures were performed. We evaluated the Graded and Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP), the American Spinal Injury Association upper extremity motor score, grip and pinch strength, and the Spinal Cord Independence Measurement III (SCIM-III). In this study, the pre-tested participants were divided randomly into the RT and OT group. The utilized interventions included combined upper limb RT using ArmeoPower and Amadeo (RT group), or conventional OT (OT group) in addition to daily inpatient rehabilitation program. The participants underwent 40 minutes×3 sessions×5 weeks of interventions. RESULTS A total of 30 tetraplegic SCI patients completed entire study program. After 5 weeks of intervention, both groups demonstrated increases in GRASSP-strength and SCIM-III. The manual muscle test scores of elbow flexion, elbow extension, 2-5th metacarpophalangeal extension, and SCIM-III subscores of bathing-upper, dressing-upper, and grooming as well as the GRASSP-qualitative prehension score were noted to have been significantly increased in the RT group as evaluated. The OT group showed improvements in the GRASSP-quantitative prehension score and some items in grip and pinch strength. There was no significant difference between the two groups in almost all measurements except for the SCIM-III bathing-upper subscore. CONCLUSION Combined upper limb RT demonstrated beneficial effects on the upper limb motor function in patients with tetraplegic SCI, which were comparable with conventional OT.
Collapse
Affiliation(s)
- Joo Hwan Jung
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Hye Jin Lee
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Duk Youn Cho
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Seoul, Korea
| | - Jung-Eun Lim
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Seoul, Korea
| | - Bum Suk Lee
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Seoul, Korea
| | - Seung Hyun Kwon
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Hae Young Kim
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Su Jeong Lee
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| |
Collapse
|
41
|
Li S, Zhong N, Xu W, Yang X, Wei H, Xiao J. The impact of surgical timing on neurological outcomes and survival in patients with complete paralysis caused by spinal tumours. Bone Joint J 2019; 101-B:872-879. [PMID: 31256678 DOI: 10.1302/0301-620x.101b7.bjj-2018-1173.r1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aims The aim of this study was to explore the prognostic factors for postoperative neurological recovery and survival in patients with complete paralysis due to neoplastic epidural spinal cord compression. Patients and Methods The medical records of 135 patients with complete paralysis due to neoplastic cord compression were retrospectively reviewed. Potential factors including the timing of surgery, muscular tone, and tumour characteristics were analyzed in relation to neurological recovery using logistical regression analysis. The association between neurological recovery and survival was analyzed using a Cox model. A nomogram was formulated to predict recovery. Results A total of 52 patients (38.5%) achieved American Spinal Injury Association Impairment Scale (AIS) D or E recovery postoperatively. The timing of surgery (p = 0.003) was found to be significant in univariate analysis. In multivariate analysis, surgery within one week was associated with better neurological recovery than surgery within three weeks (p = 0.002), with a trend towards being associated with a better neurological recovery than surgery within one to two weeks (p = 0.597) and two to three weeks (p = 0.055). Age (p = 0.039) and muscle tone (p = 0.018) were also significant predictors. In Cox regression analysis, good neurological recovery (p = 0.004), benign tumours (p = 0.039), and primary tumours (p = 0.005) were associated with longer survival. Calibration graphs showed that the nomogram did well with an ideal model. The bootstrap-corrected C-index for neurological recovery was 0.72. Conclusion In patients with complete paralysis due to neoplastic spinal cord compression, whose treatment is delayed for more than 48 hours from the onset of symptoms, surgery within one week is still beneficial. Surgery undertaken at this time may still offer neurological recovery and longer survival. The identification of the association between these factors and neurological recovery may help guide treatment for these patients. Cite this article: Bone Joint J 2019;101-B:872–879.
Collapse
Affiliation(s)
- S. Li
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - N. Zhong
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - W. Xu
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - X. Yang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - H. Wei
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - J. Xiao
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
42
|
Kim Y, Park KW, Oh J, Kim J, Yoon YW. Alterations in protein expression patterns of spinal peroxisome proliferator-activated receptors after spinal cord injury. Neurol Res 2019; 41:883-892. [DOI: 10.1080/01616412.2019.1629081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Youngkyung Kim
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Won Park
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeonghwa Oh
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Junesun Kim
- BK21 PLUS Program, Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Young Wook Yoon
- Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
43
|
Yip PK, Chapman GE, Sillito RR, Ip THR, Akhigbe G, Becker SC, Price AW, Michael-Titus AT, Armstrong JD, Tremoleda JL. Studies on long term behavioural changes in group-housed rat models of brain and spinal cord injury using an automated home cage recording system. J Neurosci Methods 2019; 321:49-63. [PMID: 30991030 DOI: 10.1016/j.jneumeth.2019.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Neurotrauma patients face major neurological sequelae. The failure in the preclinical-to-clinical translation of candidate therapies could be due to poor evaluation of rodent behaviours after neurotrauma. NEW METHOD A home cage automated system was used to study the long term behaviour of individual rats with traumatic brain injury (TBI), spinal cord injury (SCI) and non-CNS injured controls, whilst group-housed in their home cages. Naïve rats were used as baseline controls. Automated locomotor activity and body temperature recordings were carried out 24 h /day for 3 days/week during 12 weeks post-injury. Behavioural patterns, including aggression, rearing, grooming, feeding and drinking were analysed from automated video recordings during week 1, 6 and 12. RESULTS SCI animals showed a lower locomotor activity compared to TBI or control animals during light and dark phases. TBI animals showed a higher aggression during the dark phase in the first week post-injury compared to SCI or control animals. Individual grooming and rearing were reduced in SCI animals compared to TBI and control animals in the first week post-injury during the dark phase. No differences in drinking or feeding were detected between groups. Locomotor activity did not differ between naïve male and female rats, but body temperature differ between light and dark phases for both. STANDARD METHODS Injury severity was compared to standard SCI and TBI behaviour scores (BBB and mNSS, respectively) and histological analysis. CONCLUSIONS This study demonstrates the practical benefits of using a non-intrusive automated home cage recording system to observe long term individual behaviour of group-housed SCI and TBI rats.
Collapse
Affiliation(s)
- Ping K Yip
- Centre for Neuroscience, Surgery and Trauma, Centre for Trauma Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - George E Chapman
- Centre for Neuroscience, Surgery and Trauma, Centre for Trauma Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - T H Richard Ip
- Centre for Neuroscience, Surgery and Trauma, Centre for Trauma Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Georgia Akhigbe
- Centre for Neuroscience, Surgery and Trauma, Centre for Trauma Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Stephanie C Becker
- Centre for Neuroscience, Surgery and Trauma, Centre for Trauma Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Anthony W Price
- Biological Services, Queen Mary University of London, London, United Kingdom
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Centre for Trauma Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - J Douglas Armstrong
- Actual Analytics Ltd, Edinburgh, United Kingdom; School of Informatics, Institute for Adaptive and Neural Computation. University of Edinburgh, Edinburgh, United Kingdom
| | - Jordi L Tremoleda
- Centre for Neuroscience, Surgery and Trauma, Centre for Trauma Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Biological Services, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
44
|
Onushko T, Mahtani GB, Brazg G, Hornby TG, Schmit BD. Exercise-Induced Alterations in Sympathetic-Somatomotor Coupling in Incomplete Spinal Cord Injury. J Neurotrauma 2019; 36:2688-2697. [PMID: 30696387 DOI: 10.1089/neu.2018.5719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to understand how high- and low-intensity locomotor training (LT) affects sympathetic-somatomotor (SS) coupling in people with incomplete spinal cord injury (SCI). Proper coupling between sympathetic and somatomotor systems allows controlled regulation of cardiovascular responses to exercise. In people with SCI, altered connectivity between descending pathways and spinal segments impairs sympathetic and somatomotor coordination, which may have deleterious effects during exercise and limit rehabilitation outcomes. We postulated that high-intensity LT, which repeatedly engages SS systems, would alter SS coupling. Thirteen individuals (50 ± 7.2 years) with motor incomplete spinal cord injuries (American Spinal Injury Association Impairment Scale C or D; injury level >T6) participated in a locomotor treadmill training program. Patients were randomized into either a high-intensity (high-LT; 70-85% of maximum predicted heart rate; n = 6) group or a low-intensity (low-LT; 50-65% of maximum predicted heart rate; n = 7) group and completed up to 20 LT training sessions over 4-6 weeks, 3-5 days/week. Before and after taining, we tested SS coupling by eliciting reflexive sympathetic activity through a cold stimulation, noxious stimulation, and a mental math task while we measured tendon reflexes, blood pressure, and heart rate. Participants who completed high- versus low-LT exhibited significant decreases in reflex torques during triggered sympathetic activity (cold: -83 vs. 13%, p < 0.01; pain: -65 vs. 54%, p < 0.05; mental math: -43 vs. 41%; p < 0.05). Mean arterial pressure responses to sympathetic stimuli were slightly higher following high- versus low-LT (cold: 30 vs. -1.5%; pain: 6 vs. -12%; mental math: 5 vs. 7%), although differences were not statistically significant. These results suggest that high-LT may be advantageous to low-LT to improve SS coupling in people with incomplete SCI.
Collapse
Affiliation(s)
- Tanya Onushko
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | - Gordhan B Mahtani
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | | | - T George Hornby
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
45
|
Albaum E, Quinn E, Sedaghatkish S, Singh P, Watkins A, Musselman K, Williams J. Accuracy of the Actigraph wGT3x-BT for step counting during inpatient spinal cord rehabilitation. Spinal Cord 2019; 57:571-578. [DOI: 10.1038/s41393-019-0254-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/02/2019] [Accepted: 01/18/2019] [Indexed: 11/09/2022]
|
46
|
Sun J, Harrington MA. The Alteration of Intrinsic Excitability and Synaptic Transmission in Lumbar Spinal Motor Neurons and Interneurons of Severe Spinal Muscular Atrophy Mice. Front Cell Neurosci 2019; 13:15. [PMID: 30792629 PMCID: PMC6374350 DOI: 10.3389/fncel.2019.00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/16/2019] [Indexed: 01/22/2023] Open
Abstract
Spinal muscular atrophy (SMA) is the leading genetic cause of death in infants. Studies with mouse models have demonstrated increased excitability and loss of afferent proprioceptive synapses on motor neurons (MNs). To further understand functional changes in the motor neural network occurring in SMA, we studied the intrinsic excitability and synaptic transmission of both MNs and interneurons (INs) from ventral horn in the lumbar spinal cord in the survival motor neuron (SMN)Δ7 mouse model. We found significant differences in the membrane properties of MNs in SMA mice compared to littermate controls, including hyperpolarized resting membrane potential, increased input resistance and decreased membrane capacitance. Action potential (AP) properties in MNs from SMA mice were also different from controls, including decreased rheobase current, increased amplitude and an increased afterdepolarization (ADP) potential. The relationship between AP firing frequency and injected current was reduced in MNs, as was the threshold current, while the percentage of MNs showing long-lasting potentiation (LLP) in the intrinsic excitability was higher in SMA mice. INs showed a high rate of spontaneous firing, and those from SMA mice fired at higher frequency. INs from SMA mice showed little difference in their input-output relationship, threshold current, and plasticity in intrinsic excitability. The changes observed in both passive membrane and AP properties suggest greater overall excitability in both MNs and INs in SMA mice, with MNs showing more differences. There were also changes of synaptic currents in SMA mice. The average charge transfer per post-synaptic current of spontaneous excitatory and inhibitory synaptic currents (sEPSCs/sIPSCs) were lower in SMA MNs, while in INs sIPSC frequency was higher. Strikingly in light of the known loss of excitatory synapses on MNs, there was no difference in sEPSC frequency in MNs from SMA mice compared to controls. For miniature synaptic currents, mEPSC frequency was higher in SMA MNs, while for SMA INs, both mEPSC and mIPSC frequencies were higher. In SMA-affected mice we observed alterations of intrinsic and synaptic properties in both MNs and INs in the spinal motor network that may contribute to the pathophysiology, or alternatively, may be a compensatory response to preserve network function.
Collapse
Affiliation(s)
- Jianli Sun
- Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, United States.,Department of Biological Science, Delaware State University, Dover, DE, United States
| | - Melissa A Harrington
- Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, United States.,Department of Biological Science, Delaware State University, Dover, DE, United States
| |
Collapse
|
47
|
Hassannejad Z, Yousefifard M, Azizi Y, Zadegan SA, Sajadi K, Sharif-Alhoseini M, Shakouri-Motlagh A, Mokhatab M, Rezvan M, Shokraneh F, Hosseini M, Vaccaro AR, Harrop JS, Rahimi-Movaghar V. Axonal degeneration and demyelination following traumatic spinal cord injury: A systematic review and meta-analysis. J Chem Neuroanat 2019; 97:9-22. [PMID: 30726717 DOI: 10.1016/j.jchemneu.2019.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/22/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
The pathophysiology of spinal cord injury (SCI) related processes of axonal degeneration and demyelination are poorly understood. The present systematic review and meta-analysis were performed such to establish quantitative results of animal studies regarding the role of injury severity, SCI models and level of injury on the pathophysiology of axon and myelin sheath degeneration. 39 related articles were included in the analysis. The compiled data showed that the total number of axons, number of myelinated axons, myelin sheath thickness, axonal conduction velocity, and internode length steadily decreased as time elapsed from the injury (Pfor trend<0.0001). The rate of axonal retrograde degeneration was affected by SCI model and severity of the injury. Axonal degeneration was higher in injuries of the thoracic region. The SCI model and the site of the injury also affected axonal retrograde degeneration. The number of myelinated axons in the caudal region of the injury was significantly higher than the lesion site and the rostral region. The findings of the present meta-analysis show that the pathophysiology of axons and myelin sheath differ in various phases of SCI and are affected by multiple factors related to the injury.
Collapse
Affiliation(s)
- Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Abdollah Zadegan
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiavash Sajadi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Sharif-Alhoseini
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Shakouri-Motlagh
- Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010, Australia
| | - Mona Mokhatab
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Motahareh Rezvan
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Shokraneh
- Cochrane Schizophrenia Group, Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexander R Vaccaro
- Department of Orthopedics and Neurosurgery, Rothman Institute, Thomas Jefferson University Philadelphia, USA
| | - James S Harrop
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Brain and Spinal Injuries Research Center (BASIR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Clinical efficacy of upper limb robotic therapy in people with tetraplegia: a pilot randomized controlled trial. Spinal Cord 2018; 57:49-57. [DOI: 10.1038/s41393-018-0190-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/10/2018] [Accepted: 07/23/2018] [Indexed: 11/08/2022]
|
49
|
Unger J, Jervis Rademeyer H, Furlan JC, Pujol C, Dawe J, Musselman KE. Personalized adapted locomotor training for an individual with sequelae of West Nile virus infection: a mixed-method case report. Physiother Theory Pract 2018; 36:844-854. [PMID: 30136877 DOI: 10.1080/09593985.2018.1510450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND West Nile virus (WNV) can have severe consequences, including encephalitis and paralysis. Purpose: To describe the benefits of intensive locomotor training (LT) for an individual with a previous WNV infection resulting in chronic paraplegia. Case Description: The patient, who became a wheelchair user following standard rehabilitation, began LT 3 years post infection. Her goals included standing and walking with an assistive device and transferring independently. The intervention consisted of bodyweight-supported treadmill training and overground training, which involved walking, balancing, strengthening, and transferring activities. Outcomes: Following 5 months of LT, the patient ambulated independently with a walker at a speed = 0.34m/s. She walked 110.1 metres in 6 minutes and increased her Berg Balance Scale score by 17 points. These improvements were either maintained or further increased 3 months post LT. The patient's perspectives on LT were collected through a semi-structured interview. A conventional content analysis, which uses data to drive themes, revealed three themes: (1) recalibrating goals, (2) outcomes (i.e. physical and psychological benefits, such as a sense of accomplishment), and (3) challenges of LT and effective coping strategies. Conclusions: The patient demonstrated improved balance and walking abilities. Intensive LT was feasible and effective for this individual with chronic paraplegia due to WNV infection.
Collapse
Affiliation(s)
- Janelle Unger
- Lyndhurst Centre, Toronto Rehabilitation Institute-University Health Network , Toronto, ON, Canada.,Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto , Toronto, ON, Canada
| | - Hope Jervis Rademeyer
- Lyndhurst Centre, Toronto Rehabilitation Institute-University Health Network , Toronto, ON, Canada.,School of Physical Therapy, College of Medicine, University of Saskatchewan , Saskatoon, SK, Canada
| | - Julio C Furlan
- Lyndhurst Centre, Toronto Rehabilitation Institute-University Health Network , Toronto, ON, Canada.,Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto , Toronto, ON, Canada
| | - Clara Pujol
- Lyndhurst Centre, Toronto Rehabilitation Institute-University Health Network , Toronto, ON, Canada
| | - Jaclyn Dawe
- Lyndhurst Centre, Toronto Rehabilitation Institute-University Health Network , Toronto, ON, Canada.,Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto , Toronto, ON, Canada
| | - Kristin E Musselman
- Lyndhurst Centre, Toronto Rehabilitation Institute-University Health Network , Toronto, ON, Canada.,Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto , Toronto, ON, Canada.,School of Physical Therapy, College of Medicine, University of Saskatchewan , Saskatoon, SK, Canada.,Department of Physical Therapy, Faculty of Medicine, University of Toronto , Toronto, ON, Canada
| |
Collapse
|
50
|
Loy K, Schmalz A, Hoche T, Jacobi A, Kreutzfeldt M, Merkler D, Bareyre FM. Enhanced Voluntary Exercise Improves Functional Recovery following Spinal Cord Injury by Impacting the Local Neuroglial Injury Response and Supporting the Rewiring of Supraspinal Circuits. J Neurotrauma 2018; 35:2904-2915. [PMID: 29943672 DOI: 10.1089/neu.2017.5544] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Recent reports suggest that rehabilitation measures that increase physical activity of patients can improve functional outcome after incomplete spinal cord injuries (iSCI). To investigate the structural basis of exercise-induced recovery, we examined local and remote consequences of voluntary wheel training in spinal cord injured female mice. In particular, we explored how enhanced voluntary exercise influences the neuronal and glial response at the lesion site as well as the rewiring of supraspinal tracts after iSCI. We chose voluntary exercise initiated by providing mice with free access to running wheels over "forced overuse" paradigms because the latter, at least in some cases, can lead to worsening of functional outcomes after SCI. Our results show that mice extensively use their running wheels not only before but also after injury reaching their pre-lesion exercise levels within five days after injury. Enhanced voluntary exercise improved their overall and skilled motor function after injury. In addition, exercising mice started to recover earlier and reached better sustained performance levels. These improvements in motor performance are accompanied by early changes of axonal and glial response at the lesion site and persistent enhancements of the rewiring of supraspinal connections that resulted in a strengthening of both indirect and direct inputs to lumbar motoneurons.
Collapse
Affiliation(s)
- Kristina Loy
- 1 Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,2 Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,3 Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universitaet Munich, Planegg-Martinsried, Germany
| | - Anja Schmalz
- 1 Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,2 Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Tobias Hoche
- 1 Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,2 Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Anne Jacobi
- 1 Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,2 Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Mario Kreutzfeldt
- 4 Departement of Pathology et Immunology, CMU, University of Geneva, Rue Michel-Servet, Geneva, Switzerland
| | - Doron Merkler
- 4 Departement of Pathology et Immunology, CMU, University of Geneva, Rue Michel-Servet, Geneva, Switzerland
| | - Florence M Bareyre
- 1 Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,2 Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,5 Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|