1
|
VandeVrede L, Schindler SE. Clinical use of biomarkers in the era of Alzheimer's disease treatments. Alzheimers Dement 2025; 21:e14201. [PMID: 39740074 PMCID: PMC11775455 DOI: 10.1002/alz.14201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/22/2024] [Indexed: 01/02/2025]
Abstract
With the advent of treatments that specifically target Alzheimer's disease brain pathology, biomarker tests will become an increasingly important part of the routine clinical evaluation of cognitive impairment and guide clinical decision making. Clinicians must ensure they are using accurate and well-validated biomarker tests and select the most appropriate testing modality for each patient based on individual and practical considerations. The interpretation of test results may be complex and depends on the pre-test probability and test-specific factors. Biomarker results must be presented and discussed with patients in a process that is sensitive to the major implications of the results and is carefully connected to diagnosis, prognosis, and management. Advances in treatments for Alzheimer's disease will likely require non-dementia specialists to use biomarkers, necessitating major educational efforts. In the new era of Alzheimer's disease treatments, biomarkers are essential tools that will be integrated into all aspects of dementia diagnosis and care.
Collapse
Affiliation(s)
- Lawren VandeVrede
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Suzanne E. Schindler
- Department of Neurology and the Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
2
|
Huang B, Sawicki S, Habiger C, Mattis PJ, Gordon ML, Franceschi AM, Giliberto L. Memories and mimics: unveiling the potential of FDG-PET in guiding therapeutic approaches for neurodegenerative cognitive disorders. Front Neurol 2024; 15:1428036. [PMID: 39628892 PMCID: PMC11612009 DOI: 10.3389/fneur.2024.1428036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/22/2024] [Indexed: 12/06/2024] Open
Abstract
Fluorodeoxyglucose F18 (FDG) positron emission tomography (PET) imaging can help clinicians pursue the differential diagnosis of various neurodegenerative diseases. It has become an invaluable diagnostic tool in routine clinical practice in conjunction with computed tomography (CT) imaging, magnetic resonance imaging (MRI), and biomarker studies. We present a single-institution case series and systematic literature review, showing how FDG-PET imaging has helped physicians diagnose neurodegenerative diseases and their mimickers and how patient care was amended. A single institution analysis and comprehensive literature search were completed following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. These medical subjects' headings (MeSH) terms were used: "FDG-PET" AND "dementia" OR "Alzheimer's" OR "neurodegeneration" OR "frontotemporal dementia" OR "atypical parkinsonian syndrome" OR "primary progressive aphasia" OR "lewy body dementia." The inclusion criteria included studies with uncertain diagnoses of neurocognitive disease resolved with FDG-PET, PET/MRI, or PET/CT hybrid imaging. A literature search resulted in 3,976 articles. After considering inclusion and exclusion criteria, 14 case reports and 1 case series were selected, representing 19 patients. The average age of patients was 70.8 years (range: 54-83 years). Five of the 19 patients were females. Dementia with Lewy bodies (DLB) had the highest propensity for being misidentified as another neurodegenerative disease, followed by Alzheimer's disease (AD) and frontotemporal dementia (FTD). Without accurate molecular imaging, neurodegenerative diseases may be missed or misdiagnosed. Our single-institution case series and literature review demonstrate how FDG-PET brain imaging can be used to correct and clarify preexisting clinical diagnoses of neurodegenerative disease.
Collapse
Affiliation(s)
- Brendan Huang
- Department of Neurology, Northwell, New Hyde Park, NY, United States
| | - Sara Sawicki
- Department of Neurology, Northwell, New Hyde Park, NY, United States
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Carolyn Habiger
- Department of Neurology, Northwell, New Hyde Park, NY, United States
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Paul J. Mattis
- Department of Psychiatry, Northwell, New Hyde Park, NY, United States
| | - Marc L. Gordon
- Departments of Neurology and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Ana M. Franceschi
- Department of Radiology, Northwell, New Hyde Park, NY, United States
| | - Luca Giliberto
- Department of Neurology, Northwell, New Hyde Park, NY, United States
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
3
|
Schindler SE, Galasko D, Pereira AC, Rabinovici GD, Salloway S, Suárez-Calvet M, Khachaturian AS, Mielke MM, Udeh-Momoh C, Weiss J, Batrla R, Bozeat S, Dwyer JR, Holzapfel D, Jones DR, Murray JF, Partrick KA, Scholler E, Vradenburg G, Young D, Algeciras-Schimnich A, Aubrecht J, Braunstein JB, Hendrix J, Hu YH, Mattke S, Monane M, Reilly D, Somers E, Teunissen CE, Shobin E, Vanderstichele H, Weiner MW, Wilson D, Hansson O. Acceptable performance of blood biomarker tests of amyloid pathology - recommendations from the Global CEO Initiative on Alzheimer's Disease. Nat Rev Neurol 2024; 20:426-439. [PMID: 38866966 DOI: 10.1038/s41582-024-00977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Anti-amyloid treatments for early symptomatic Alzheimer disease have recently become clinically available in some countries, which has greatly increased the need for biomarker confirmation of amyloid pathology. Blood biomarker (BBM) tests for amyloid pathology are more acceptable, accessible and scalable than amyloid PET or cerebrospinal fluid (CSF) tests, but have highly variable levels of performance. The Global CEO Initiative on Alzheimer's Disease convened a BBM Workgroup to consider the minimum acceptable performance of BBM tests for clinical use. Amyloid PET status was identified as the reference standard. For use as a triaging test before subsequent confirmatory tests such as amyloid PET or CSF tests, the BBM Workgroup recommends that a BBM test has a sensitivity of ≥90% with a specificity of ≥85% in primary care and ≥75-85% in secondary care depending on the availability of follow-up testing. For use as a confirmatory test without follow-up tests, a BBM test should have performance equivalent to that of CSF tests - a sensitivity and specificity of ~90%. Importantly, the predictive values of all biomarker tests vary according to the pre-test probability of amyloid pathology and must be interpreted in the complete clinical context. Use of BBM tests that meet these performance standards could enable more people to receive an accurate and timely Alzheimer disease diagnosis and potentially benefit from new treatments.
Collapse
Affiliation(s)
- Suzanne E Schindler
- Department of Neurology, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, USA.
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Ana C Pereira
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Gil D Rabinovici
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Stephen Salloway
- Department of Neurology, Alpert Medical School, Brown University, Providence, RI, USA
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | | | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Chi Udeh-Momoh
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Joan Weiss
- US Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Workforce, Rockville, MD, USA
| | | | | | - John R Dwyer
- Global Alzheimer's Platform Foundation, Washington, DC, USA
| | - Drew Holzapfel
- The Global CEO Initiative on Alzheimer's Disease, Philadelphia, PA, USA
| | | | | | | | - Emily Scholler
- The Global CEO Initiative on Alzheimer's Disease, Philadelphia, PA, USA
| | - George Vradenburg
- Davos Alzheimer's Collaborative, Philadelphia, PA, USA
- UsAgainstAlzheimer's, Washington, DC, USA
| | | | | | | | | | | | | | - Soeren Mattke
- The USC Brain Health Observatory, University of Southern California, Los Angeles, CA, USA
| | | | | | | | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universitiet, Amsterdam, The Netherlands
| | | | | | - Michael W Weiner
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
4
|
Shang C, Sakurai K, Nihashi T, Arahata Y, Takeda A, Ishii K, Ishii K, Matsuda H, Ito K, Kato T, Toyama H, Nakamura A. Comparison of consistency in centiloid scale among different analytical methods in amyloid PET: the CapAIBL, VIZCalc, and Amyquant methods. Ann Nucl Med 2024; 38:460-467. [PMID: 38512444 PMCID: PMC11108942 DOI: 10.1007/s12149-024-01919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE The Centiloid (CL) scale is a standardized measure for quantifying amyloid deposition in amyloid positron emission tomography (PET) imaging. We aimed to assess the agreement among 3 CL calculation methods: CapAIBL, VIZCalc, and Amyquant. METHODS This study included 192 participants (mean age: 71.5 years, range: 50-87 years), comprising 55 with Alzheimer's disease, 65 with mild cognitive impairment, 13 with non-Alzheimer's dementia, and 59 cognitively normal participants. All the participants were assessed using the three CL calculation methods. Spearman's rank correlation, linear regression, Friedman tests, Wilcoxon signed-rank tests, and Bland-Altman analysis were employed to assess data correlations, linear associations, method differences, and systematic bias, respectively. RESULTS Strong correlations (rho = 0.99, p < .001) were observed among the CL values calculated using the three methods. Scatter plots and regression lines visually confirmed these strong correlations and met the validation criteria. Despite the robust correlations, a significant difference in CL value between CapAIBL and Amyquant was observed (36.1 ± 39.7 vs. 34.9 ± 39.4; p < .001). In contrast, no significant differences were found between CapAIBL and VIZCalc or between VIZCalc and Amyquant. The Bland-Altman analysis showed no observable systematic bias between the methods. CONCLUSIONS The study demonstrated strong agreement among the three methods for calculating CL values. Despite minor variations in the absolute values of the Centiloid scores obtained using these methods, the overall agreement suggests that they are interchangeable.
Collapse
Affiliation(s)
- Cong Shang
- Department of Radiology, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Takashi Nihashi
- Department of Radiology, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Yutaka Arahata
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Akinori Takeda
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kazunari Ishii
- Department of Radiology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Kenji Ishii
- Team for Neuroimaging Research, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
- Drug Discovery and Cyclotron Research Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
| | - Kengo Ito
- Department of Radiology, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Kato
- Department of Radiology, National Center for Geriatrics and Gerontology, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan.
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Japan.
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Akinori Nakamura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Biomarker Research, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
5
|
Kim S, Yoon D, Seong J, Jeong YJ, Kang DY, Park KW. Clinical and Neuroimaging Predictors of Alzheimer's Dementia Conversion in Patients with Mild Cognitive Impairment Using Amyloid Positron Emission Tomography by Quantitative Analysis over 2 Years. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:547. [PMID: 38791762 PMCID: PMC11121685 DOI: 10.3390/ijerph21050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024]
Abstract
Patients with mild cognitive impairment (MCI) have a relatively high risk of developing Alzheimer's dementia (AD), so early identification of the risk for AD conversion can lessen the socioeconomic burden. In this study, 18F-Florapronol, newly developed in Korea, was used for qualitative and quantitative analyses to assess amyloid positivity. We also investigated the clinical predictors of the progression from MCI to dementia over 2 years. From December 2019 to December 2022, 50 patients with MCI were recruited at a single center, and 34 patients were included finally. Based on visual analysis, 13 (38.2%) of 34 participants were amyloid-positive, and 12 (35.3%) were positive by quantitative analysis. Moreover, 6 of 34 participants (17.6%) converted to dementia after a 2-year follow-up (p = 0.173). Among the 15 participants who were positive for amyloid in the posterior cingulate region, 5 (33.3%) patients developed dementia (p = 0.066). The Clinical Dementia Rating-Sum of Boxes (CDR-SOB) at baseline was significantly associated with AD conversion in multivariate Cox regression analyses (p = 0.043). In conclusion, these results suggest that amyloid positivity in the posterior cingulate region and higher CDR-SOB scores at baseline can be useful predictors of AD conversion in patients with MCI.
Collapse
Affiliation(s)
- Seonjeong Kim
- Department of Neurology, Cognitive Disorders and Dementia Center, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (S.K.); (D.Y.); (J.S.)
| | - Daye Yoon
- Department of Neurology, Cognitive Disorders and Dementia Center, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (S.K.); (D.Y.); (J.S.)
| | - Junho Seong
- Department of Neurology, Cognitive Disorders and Dementia Center, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (S.K.); (D.Y.); (J.S.)
| | - Young Jin Jeong
- Department of Nuclear Medicine, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (Y.J.J.); (D.-Y.K.)
| | - Do-Young Kang
- Department of Nuclear Medicine, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (Y.J.J.); (D.-Y.K.)
| | - Kyung Won Park
- Department of Neurology, Cognitive Disorders and Dementia Center, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (S.K.); (D.Y.); (J.S.)
| |
Collapse
|
6
|
Zhuang X, Cordes D, Bender AR, Nandy R, Oh EC, Kinney J, Caldwell JZ, Cummings J, Miller J. Classifying Alzheimer's Disease Neuropathology Using Clinical and MRI Measurements. J Alzheimers Dis 2024; 100:843-862. [PMID: 38943387 PMCID: PMC11307063 DOI: 10.3233/jad-231321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/01/2024]
Abstract
Background Computer-aided machine learning models are being actively developed with clinically available biomarkers to diagnose Alzheimer's disease (AD) in living persons. Despite considerable work with cross-sectional in vivo data, many models lack validation against postmortem AD neuropathological data. Objective Train machine learning models to classify the presence or absence of autopsy-confirmed severe AD neuropathology using clinically available features. Methods AD neuropathological status are assessed at postmortem for participants from the National Alzheimer's Coordinating Center (NACC). Clinically available features are utilized, including demographics, Apolipoprotein E(APOE) genotype, and cortical thicknesses derived from ante-mortem MRI scans encompassing AD meta regions of interest (meta-ROI). Both logistic regression and random forest models are trained to identify linearly and nonlinearly separable features between participants with the presence (N = 91, age-at-MRI = 73.6±9.24, 38 women) or absence (N = 53, age-at-MRI = 68.93±19.69, 24 women) of severe AD neuropathology. The trained models are further validated in an external data set against in vivo amyloid biomarkers derived from PET imaging (amyloid-positive: N = 71, age-at-MRI = 74.17±6.37, 26 women; amyloid-negative: N = 73, age-at-MRI = 71.59±6.80, 41 women). Results Our models achieve a cross-validation accuracy of 84.03% in classifying the presence or absence of severe AD neuropathology, and an external-validation accuracy of 70.14% in classifying in vivo amyloid positivity status. Conclusions Our models show that clinically accessible features, including APOE genotype and cortical thinning encompassing AD meta-ROIs, are able to classify both postmortem confirmed AD neuropathological status and in vivo amyloid status with reasonable accuracies. These results suggest the potential utility of AD meta-ROIs in determining AD neuropathological status in living persons.
Collapse
Affiliation(s)
- Xiaowei Zhuang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Interdisciplinary Neuroscience PhD Program, University of Nevada, Las Vegas, NV, USA
- Laboratory of Neurogenetics and Precision Medicine, University of Nevada, Las Vegas, NV, USA
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- University of Colorado Boulder, Boulder, CO, USA
| | - Andrew R. Bender
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Rajesh Nandy
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Edwin C. Oh
- Interdisciplinary Neuroscience PhD Program, University of Nevada, Las Vegas, NV, USA
- Laboratory of Neurogenetics and Precision Medicine, University of Nevada, Las Vegas, NV, USA
- Department of Internal Medicine, School of Medicine, University of Nevada, Las Vegas, NV, USA
| | - Jefferson Kinney
- Interdisciplinary Neuroscience PhD Program, University of Nevada, Las Vegas, NV, USA
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV, USA
| | | | - Jeffrey Cummings
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV, USA
| | - Justin Miller
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| |
Collapse
|
7
|
Cáceres C, Heusser B, Garnham A, Moczko E. The Major Hypotheses of Alzheimer's Disease: Related Nanotechnology-Based Approaches for Its Diagnosis and Treatment. Cells 2023; 12:2669. [PMID: 38067098 PMCID: PMC10705786 DOI: 10.3390/cells12232669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a well-known chronic neurodegenerative disorder that leads to the progressive death of brain cells, resulting in memory loss and the loss of other critical body functions. In March 2019, one of the major pharmaceutical companies and its partners announced that currently, there is no drug to cure AD, and all clinical trials of the new ones have been cancelled, leaving many people without hope. However, despite the clear message and startling reality, the research continued. Finally, in the last two years, the Food and Drug Administration (FDA) approved the first-ever medications to treat Alzheimer's, aducanumab and lecanemab. Despite researchers' support of this decision, there are serious concerns about their effectiveness and safety. The validation of aducanumab by the Centers for Medicare and Medicaid Services is still pending, and lecanemab was authorized without considering data from the phase III trials. Furthermore, numerous reports suggest that patients have died when undergoing extended treatment. While there is evidence that aducanumab and lecanemab may provide some relief to those suffering from AD, their impact remains a topic of ongoing research and debate within the medical community. The fact is that even though there are considerable efforts regarding pharmacological treatment, no definitive cure for AD has been found yet. Nevertheless, it is strongly believed that modern nanotechnology holds promising solutions and effective clinical strategies for the development of diagnostic tools and treatments for AD. This review summarizes the major hallmarks of AD, its etiological mechanisms, and challenges. It explores existing diagnostic and therapeutic methods and the potential of nanotechnology-based approaches for recognizing and monitoring patients at risk of irreversible neuronal degeneration. Overall, it provides a broad overview for those interested in the evolving areas of clinical neuroscience, AD, and related nanotechnology. With further research and development, nanotechnology-based approaches may offer new solutions and hope for millions of people affected by this devastating disease.
Collapse
Affiliation(s)
| | | | | | - Ewa Moczko
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar 2562307, Chile; (C.C.)
| |
Collapse
|
8
|
Mirkin S, Albensi BC. Should artificial intelligence be used in conjunction with Neuroimaging in the diagnosis of Alzheimer's disease? Front Aging Neurosci 2023; 15:1094233. [PMID: 37187577 PMCID: PMC10177660 DOI: 10.3389/fnagi.2023.1094233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder that affects memory, thinking, behavior, and other cognitive functions. Although there is no cure, detecting AD early is important for the development of a therapeutic plan and a care plan that may preserve cognitive function and prevent irreversible damage. Neuroimaging, such as magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET), has served as a critical tool in establishing diagnostic indicators of AD during the preclinical stage. However, as neuroimaging technology quickly advances, there is a challenge in analyzing and interpreting vast amounts of brain imaging data. Given these limitations, there is great interest in using artificial Intelligence (AI) to assist in this process. AI introduces limitless possibilities in the future diagnosis of AD, yet there is still resistance from the healthcare community to incorporate AI in the clinical setting. The goal of this review is to answer the question of whether AI should be used in conjunction with neuroimaging in the diagnosis of AD. To answer the question, the possible benefits and disadvantages of AI are discussed. The main advantages of AI are its potential to improve diagnostic accuracy, improve the efficiency in analyzing radiographic data, reduce physician burnout, and advance precision medicine. The disadvantages include generalization and data shortage, lack of in vivo gold standard, skepticism in the medical community, potential for physician bias, and concerns over patient information, privacy, and safety. Although the challenges present fundamental concerns and must be addressed when the time comes, it would be unethical not to use AI if it can improve patient health and outcome.
Collapse
Affiliation(s)
- Sophia Mirkin
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Benedict C. Albensi
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- St. Boniface Hospital Research, Winnipeg, MB, Canada
- University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
9
|
Du Y, Su Y. 19F Solid-state NMR characterization of pharmaceutical solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 120:101796. [PMID: 35688018 DOI: 10.1016/j.ssnmr.2022.101796] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Solid-state NMR has been increasingly recognized as a high-resolution and versatile spectroscopic tool to characterize drug substances and products. However, the analysis of pharmaceutical materials is often carried out at natural isotopic abundance and a relatively low drug loading in multi-component systems and therefore suffers from challenges of low sensitivity. The fact that fluorinated therapeutics are well represented in pipeline drugs and commercial products offers an excellent opportunity to utilize fluorine as a molecular probe for pharmaceutical analysis. We aim to review recent advancements of 19F magic angle spinning NMR methods in modern drug research and development. Applications to polymorph screening at the micromolar level, structural elucidation, and investigation of molecular interactions at the Ångström to submicron resolution in drug delivery, stability, and quality will be discussed.
Collapse
Affiliation(s)
- Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, United States; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, IN, 47907, United States; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
10
|
Sirkis DW, Bonham LW, Johnson TP, La Joie R, Yokoyama JS. Dissecting the clinical heterogeneity of early-onset Alzheimer's disease. Mol Psychiatry 2022; 27:2674-2688. [PMID: 35393555 PMCID: PMC9156414 DOI: 10.1038/s41380-022-01531-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
Abstract
Early-onset Alzheimer's disease (EOAD) is a rare but particularly devastating form of AD. Though notable for its high degree of clinical heterogeneity, EOAD is defined by the same neuropathological hallmarks underlying the more common, late-onset form of AD. In this review, we describe the various clinical syndromes associated with EOAD, including the typical amnestic phenotype as well as atypical variants affecting visuospatial, language, executive, behavioral, and motor functions. We go on to highlight advances in fluid biomarker research and describe how molecular, structural, and functional neuroimaging can be used not only to improve EOAD diagnostic acumen but also enhance our understanding of fundamental pathobiological changes occurring years (and even decades) before the onset of symptoms. In addition, we discuss genetic variation underlying EOAD, including pathogenic variants responsible for the well-known mendelian forms of EOAD as well as variants that may increase risk for the much more common forms of EOAD that are either considered to be sporadic or lack a clear autosomal-dominant inheritance pattern. Intriguingly, specific pathogenic variants in PRNP and MAPT-genes which are more commonly associated with other neurodegenerative diseases-may provide unexpectedly important insights into the formation of AD tau pathology. Genetic analysis of the atypical clinical syndromes associated with EOAD will continue to be challenging given their rarity, but integration of fluid biomarker data, multimodal imaging, and various 'omics techniques and their application to the study of large, multicenter cohorts will enable future discoveries of fundamental mechanisms underlying the development of EOAD and its varied clinical presentations.
Collapse
Affiliation(s)
- Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Luke W Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Taylor P Johnson
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
11
|
Shir D, Day GS. Deciphering the contributions of neuroinflammation to neurodegeneration: lessons from antibody-mediated encephalitis and coronavirus disease 2019. Curr Opin Neurol 2022; 35:212-219. [PMID: 35102125 PMCID: PMC8896289 DOI: 10.1097/wco.0000000000001033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
PURPOSE OF REVIEW Does neuroinflammation promote neurodegeneration? Does neurodegeneration promote neuroinflammation? Or, is the answer to both questions, yes? These questions have proven challenging to answer in patients with typical age-related neurodegenerative diseases in whom the onset of neuroinflammation and neurodegeneration are largely unknown. Patients recovering from diseases associated with abrupt-onset neuroinflammation, including rare forms of antibody-mediated encephalitis (AME) and common complications of novel coronavirus disease 2019 (COVID-19), provide a unique opportunity to untangle the relationship between neuroinflammation and neurodegeneration. This review explores the lessons learned from patients with AME and COVID-19. RECENT FINDINGS Persistent cognitive impairment is increasingly recognized in patients recovering from AME or COVID-19, yet the drivers of impairment remain largely unknown. Clinical observations, neuroimaging and biofluid biomarkers, and pathological studies imply a link between the severity of acute neuroinflammation, subsequent neurodegeneration, and disease-associated morbidity. SUMMARY Data from patients with AME and COVID-19 inform key hypotheses that may be evaluated through future studies incorporating longitudinal biomarkers of neuroinflammation and neurodegeneration in larger numbers of recovering patients. The results of these studies may inform the contributors to cognitive impairment in patients with AME and COVID-19, with potential diagnostic and therapeutic applications in patients with age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Dror Shir
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
12
|
Sengupta U, Kayed R. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog Neurobiol 2022; 214:102270. [DOI: 10.1016/j.pneurobio.2022.102270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/28/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022]
|
13
|
Liss JL, Seleri Assunção S, Cummings J, Atri A, Geldmacher DS, Candela SF, Devanand DP, Fillit HM, Susman J, Mintzer J, Bittner T, Brunton SA, Kerwin DR, Jackson WC, Small GW, Grossberg GT, Clevenger CK, Cotter V, Stefanacci R, Wise‐Brown A, Sabbagh MN. Practical recommendations for timely, accurate diagnosis of symptomatic Alzheimer's disease (MCI and dementia) in primary care: a review and synthesis. J Intern Med 2021; 290:310-334. [PMID: 33458891 PMCID: PMC8359937 DOI: 10.1111/joim.13244] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/10/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
The critical role of primary care clinicians (PCCs) in Alzheimer's disease (AD) prevention, diagnosis and management must evolve as new treatment paradigms and disease-modifying therapies (DMTs) emerge. Our understanding of AD has grown substantially: no longer conceptualized as a late-in-life syndrome of cognitive and functional impairments, we now recognize that AD pathology builds silently for decades before cognitive impairment is detectable. Clinically, AD first manifests subtly as mild cognitive impairment (MCI) due to AD before progressing to dementia. Emerging optimism for improved outcomes in AD stems from a focus on preventive interventions in midlife and timely, biomarker-confirmed diagnosis at early signs of cognitive deficits (i.e. MCI due to AD and mild AD dementia). A timely AD diagnosis is particularly important for optimizing patient care and enabling the appropriate use of anticipated DMTs. An accelerating challenge for PCCs and AD specialists will be to respond to innovations in diagnostics and therapy for AD in a system that is not currently well positioned to do so. To overcome these challenges, PCCs and AD specialists must collaborate closely to navigate and optimize dynamically evolving AD care in the face of new opportunities. In the spirit of this collaboration, we summarize here some prominent and influential models that inform our current understanding of AD. We also advocate for timely and accurate (i.e. biomarker-defined) diagnosis of early AD. In doing so, we consider evolving issues related to prevention, detecting emerging cognitive impairment and the role of biomarkers in the clinic.
Collapse
Affiliation(s)
| | - S. Seleri Assunção
- US Medical Affairs – Neuroscience, Genentech, A Member of the Roche GroupSouth San FranciscoCAUSA
| | - J. Cummings
- Chambers‐Grundy Center for Transformative NeuroscienceDepartment of Brain HealthSchool of Integrated Health SciencesUniversity of NevadaLas VegasNVUSA
- Lou Ruvo Center for Brain Health – Cleveland Clinic NevadaLas VegasNVUSA
| | - A. Atri
- Banner Sun Health Research InstituteSun CityAZUSA
- Center for Brain/Mind MedicineDepartment of NeurologyBrigham and Women’s HospitalBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - D. S. Geldmacher
- Department of NeurologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - S. F. Candela
- Health & Wellness Partners, LLCUpper Saddle RiverNJUSA
| | - D. P. Devanand
- Division of Geriatric PsychiatryNew York State Psychiatric Institute and Columbia University Irving Medical CenterNew YorkNYUSA
| | - H. M. Fillit
- Departments of Geriatric Medicine, Medicine, and NeuroscienceIcahn School of Medicine and Mt. SinaiNew YorkNYUSA
- Alzheimer’s Drug Discovery FoundationNew YorkNYUSA
| | - J. Susman
- Department of Family and Community MedicineNortheast Ohio Medical UniversityRootstownOHUSA
| | - J. Mintzer
- Roper St Francis HealthcareCharlestonSCUSA
- Ralph H. Johnson VA Medical CenterCharlestonSCUSA
| | | | - S. A. Brunton
- Department of Family MedicineTouro UniversityVallejoCAUSA
| | - D. R. Kerwin
- Kerwin Medical CenterDallasTXUSA
- Department of Neurology and NeurotherapeuticsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - W. C. Jackson
- Departments of Family Medicine and PsychiatryUniversity of Tennessee College of MedicineMemphisTNUSA
| | - G. W. Small
- Division of Geriatric PsychiatryUCLA Longevity CenterSemel Institute for Neuroscience & Human BehaviorUniversity of California – Los AngelesLos AngelesCAUSA
| | - G. T. Grossberg
- Division of Geriatric PsychiatrySt Louis University School of MedicineSt LouisMOUSA
| | - C. K. Clevenger
- Department of NeurologyNell Hodgson Woodruff School of NursingEmory UniversityAtlantaGAUSA
| | - V. Cotter
- Johns Hopkins School of NursingBaltimoreMDUSA
| | - R. Stefanacci
- Jefferson College of Population HealthThomas Jefferson UniversityPhiladelphiaPAUSA
| | - A. Wise‐Brown
- US Medical Affairs – Neuroscience, Genentech, A Member of the Roche GroupSouth San FranciscoCAUSA
| | - M. N. Sabbagh
- Lou Ruvo Center for Brain Health – Cleveland Clinic NevadaLas VegasNVUSA
| |
Collapse
|
14
|
Neurotoxic Soluble Amyloid Oligomers Drive Alzheimer's Pathogenesis and Represent a Clinically Validated Target for Slowing Disease Progression. Int J Mol Sci 2021; 22:ijms22126355. [PMID: 34198582 PMCID: PMC8231952 DOI: 10.3390/ijms22126355] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
A large body of clinical and nonclinical evidence supports the role of neurotoxic soluble beta amyloid (amyloid, Aβ) oligomers as upstream pathogenic drivers of Alzheimer's disease (AD). Recent late-stage trials in AD that have evaluated agents targeting distinct species of Aβ provide compelling evidence that inhibition of Aβ oligomer toxicity represents an effective approach to slow or stop disease progression: (1) only agents that target soluble Aβ oligomers show clinical efficacy in AD patients; (2) clearance of amyloid plaque does not correlate with clinical improvements; (3) agents that predominantly target amyloid monomers or plaque failed to show clinical effects; and (4) in positive trials, efficacy is greater in carriers of the ε4 allele of apolipoprotein E (APOE4), who are known to have higher brain concentrations of Aβ oligomers. These trials also show that inhibiting Aβ neurotoxicity leads to a reduction in tau pathology, suggesting a pathogenic sequence of events where amyloid toxicity drives an increase in tau formation and deposition. The late-stage agents with positive clinical or biomarker data include four antibodies that engage Aβ oligomers (aducanumab, lecanemab, gantenerumab, and donanemab) and ALZ-801, an oral agent that fully blocks the formation of Aβ oligomers at the clinical dose.
Collapse
|
15
|
Wang X, Huang W, Su L, Xing Y, Jessen F, Sun Y, Shu N, Han Y. Neuroimaging advances regarding subjective cognitive decline in preclinical Alzheimer's disease. Mol Neurodegener 2020; 15:55. [PMID: 32962744 PMCID: PMC7507636 DOI: 10.1186/s13024-020-00395-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Subjective cognitive decline (SCD) is regarded as the first clinical manifestation in the Alzheimer’s disease (AD) continuum. Investigating populations with SCD is important for understanding the early pathological mechanisms of AD and identifying SCD-related biomarkers, which are critical for the early detection of AD. With the advent of advanced neuroimaging techniques, such as positron emission tomography (PET) and magnetic resonance imaging (MRI), accumulating evidence has revealed structural and functional brain alterations related to the symptoms of SCD. In this review, we summarize the main imaging features and key findings regarding SCD related to AD, from local and regional data to connectivity-based imaging measures, with the aim of delineating a multimodal imaging signature of SCD due to AD. Additionally, the interaction of SCD with other risk factors for dementia due to AD, such as age and the Apolipoprotein E (ApoE) ɛ4 status, has also been described. Finally, the possible explanations for the inconsistent and heterogeneous neuroimaging findings observed in individuals with SCD are discussed, along with future directions. Overall, the literature reveals a preferential vulnerability of AD signature regions in SCD in the context of AD, supporting the notion that individuals with SCD share a similar pattern of brain alterations with patients with mild cognitive impairment (MCI) and dementia due to AD. We conclude that these neuroimaging techniques, particularly multimodal neuroimaging techniques, have great potential for identifying the underlying pathological alterations associated with SCD. More longitudinal studies with larger sample sizes combined with more advanced imaging modeling approaches such as artificial intelligence are still warranted to establish their clinical utility.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Li Su
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Sino-Britain Centre for Cognition and Ageing Research, Southwest University, Chongqing, China
| | - Yue Xing
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, 50937, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Yu Sun
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China. .,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China. .,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China. .,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China. .,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China. .,National Clinical Research Center for Geriatric Disorders, Beijing, China.
| |
Collapse
|
16
|
Focused ultrasound for opening blood-brain barrier and drug delivery monitored with positron emission tomography. J Control Release 2020; 324:303-316. [DOI: 10.1016/j.jconrel.2020.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
|
17
|
Yeo SK, Shepelytskyi Y, Grynko V, Albert MS. Molecular Imaging of Fluorinated Probes for Tau Protein and Amyloid-β Detection. Molecules 2020; 25:molecules25153413. [PMID: 32731418 PMCID: PMC7435578 DOI: 10.3390/molecules25153413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia and results in progressive neurodegeneration. The incidence rate of AD is increasing, creating a major public health issue. AD is characterized by neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein and senile plaques composed of amyloid-β (Aβ). Currently, a definitive diagnosis of AD is accomplished post-mortem. Thus, the use of molecular probes that are able to selectively bind to NFTs or Aβ can be valuable tools for the accurate and early diagnosis of AD. The aim of this review is to summarize and highlight fluorinated molecular probes that can be used for molecular imaging to detect either NFTs or Aβ. Specifically, fluorinated molecular probes used in conjunction with 19F MRI, PET, and fluorescence imaging will be explored.
Collapse
Affiliation(s)
- Sarah K. Yeo
- Biology Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Yurii Shepelytskyi
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (Y.S.); (V.G.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Vira Grynko
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (Y.S.); (V.G.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Mitchell S. Albert
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
- Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
- Correspondence: ; Tel.: +1-807-355-9191
| |
Collapse
|
18
|
Kaplow J, Vandijck M, Gray J, Kanekiyo M, Huyck E, Traynham CJ, Esquivel R, Fagan AM, Luthman J. Concordance of Lumipulse cerebrospinal fluid t-tau/Aβ42 ratio with amyloid PET status. Alzheimers Dement 2020; 16:144-152. [PMID: 31914216 PMCID: PMC7061432 DOI: 10.1002/alz.12000] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) biomarkers can identify individuals with Alzheimer's disease (AD) pathology (eg, amyloid plaques, neurofibrillary tangles), but defined analyte cut-points using high-throughput automated assays are necessary for general clinical use. METHODS CSF amyloid β42 peptide (Aβ42), t-tau, and t-tau/Aβ42 were quantified by the Lumipulse platform in two test cohorts (A/B: Eisai BAN2401-201/MISSION AD E2609-301/302, n = 138; C: Knight Alzheimer's Disease Research Center (ADRC), n = 198), and receiver operating characteristic (ROC) curve analyses defined cut-points corresponding best to amyloid determinations using positron emission tomography (PET) imaging. The best-performing cut-point was then validated as a predictor of amyloid status in an independent cohort (D: MISSION AD E2609-301/302, n = 240). RESULTS Virtually identical t-tau/Aβ42 cut-points (∼0.54) performed best in both test cohorts and with similar accuracy (areas under ROC curve [AUCs] [A/B: 0.95; C: 0.94]). The cut-point yielded an overall percent agreement with amyloid PET of 85.0% in validation cohort D. DISCUSSION Lumipulse CSF biomarker measures with validated cut-points have clinical utility in identifying AD pathology.
Collapse
Affiliation(s)
| | | | - Julia Gray
- Department of Neurology, Knight Alzheimer’s Disease Research Center, Washington University, St. Louis, MO, 63110, USA
| | | | - Els Huyck
- Fujirebio Europe, Ghent, 9052 Belgium
| | - CJ Traynham
- Fujirebio Diagnostics Inc., Malvern, PA, 19355, USA
| | | | - Anne M. Fagan
- Department of Neurology, Knight Alzheimer’s Disease Research Center, Washington University, St. Louis, MO, 63110, USA
- Corresponding author: Anne M. Fagan, PhD, Dept. of Neurology, Washington University in St. Louis, 660 S. Euclid Ave., Campus Box 8111, St. Louis, MO 63110, Tel: (314) 362-3453, Fax: (314) 362-2244,
| | | |
Collapse
|
19
|
Suppiah S, Didier MA, Vinjamuri S. The Who, When, Why, and How of PET Amyloid Imaging in Management of Alzheimer's Disease-Review of Literature and Interesting Images. Diagnostics (Basel) 2019; 9:diagnostics9020065. [PMID: 31242587 PMCID: PMC6627350 DOI: 10.3390/diagnostics9020065] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/10/2023] Open
Abstract
Amyloid imaging using positron emission tomography (PET) has an emerging role in the management of Alzheimer’s disease (AD). The basis of this imaging is grounded on the fact that the hallmark of AD is the histological detection of beta amyloid plaques (Aβ) at post mortem autopsy. Currently, there are three FDA approved amyloid radiotracers used in clinical practice. This review aims to take the readers through the array of various indications for performing amyloid PET imaging in the management of AD, particularly using 18F-labelled radiopharmaceuticals. We elaborate on PET amyloid scan interpretation techniques, their limitations and potential improved specificity provided by interpretation done in tandem with genetic data such as apolipiprotein E (APO) 4 carrier status in sporadic cases and molecular information (e.g., cerebral spinal fluid (CSF) amyloid levels). We also describe the quantification methods such as the standard uptake value ratio (SUVr) method that utilizes various cutoff points for improved accuracy of diagnosing AD, such as a threshold of 1.122 (area under the curve 0.894), which has a sensitivity of 92.3% and specificity of 90.5%, whereas the cutoff points may be higher in APOE ε4 carriers (1.489) compared to non-carriers (1.313). Additionally, recommendations for future developments in this field are also provided.
Collapse
Affiliation(s)
- Subapriya Suppiah
- Centre for Diagnostic Nuclear Imaging, University Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Department of Imaging, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mellanie-Anne Didier
- The Royal Liverpool and Broadgreen University Hospitals NHS Trusts, Prescot St, Liverpool L7 8XP, UK.
- Section of Nuclear Medicine, Department of Surgery, Radiology, Anaesthesia & Intensive Care, The University Hospital of The West Indies, The University of The West Indies, Mona Campus, Kingston 7, Jamaica.
| | - Sobhan Vinjamuri
- The Royal Liverpool and Broadgreen University Hospitals NHS Trusts, Prescot St, Liverpool L7 8XP, UK.
| |
Collapse
|
20
|
Abstract
Alzheimer's disease (AD) dementia refers to a particular onset and course of cognitive and functional decline associated with age together with a particular neuropathology. It was first described by Alois Alzheimer in 1906 about a patient whom he first encountered in 1901. Modern clinical diagnostic criteria have been developed, and criteria have also been proposed to recognize preclinical (or presymptomatic) stages of the disease with the use of biomarkers. The primary neuropathology was described by Alzheimer, and in the mid-1980s subsequently evolved into a more specific neuropathologic definition that recognizes the comorbid neuropathologies that frequently contribute to clinical dementia. Alzheimer's disease is now the most common form of neurodegenerative dementia in the United States with a disproportionate disease burden in minority populations. Deficits in the ability to encode and store new memories characterizes the initial stages of the disease. Subsequent progressive changes in cognition and behavior accompany the later stages. Changes in amyloid precursor protein (APP) cleavage and production of the APP fragment beta-amyloid (Aβ) along with hyperphosphorylated tau protein aggregation coalesce to cause reduction in synaptic strength, synaptic loss, and neurodegeneration. Metabolic, vascular, and inflammatory changes, as well as comorbid pathologies are key components of the disease process. Symptomatic treatment offers a modest, clinically measurable effect in cognition, but disease-modifying therapies are desperately needed.
Collapse
Affiliation(s)
- Jose A Soria Lopez
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States; Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego, La Jolla, CA, United States
| | - Hector M González
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States; Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego, La Jolla, CA, United States
| | - Gabriel C Léger
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States; Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
21
|
Valotassiou V, Malamitsi J, Papatriantafyllou J, Dardiotis E, Tsougos I, Psimadas D, Alexiou S, Hadjigeorgiou G, Georgoulias P. SPECT and PET imaging in Alzheimer’s disease. Ann Nucl Med 2018; 32:583-593. [PMID: 30128693 DOI: 10.1007/s12149-018-1292-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Varvara Valotassiou
- Nuclear Medicine Department, University Hospital of Larissa, Mezourlo, 41110, Larissa, Thessaly, Greece.
| | - Julia Malamitsi
- Medical Physics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Ioannis Tsougos
- Nuclear Medicine Department, University Hospital of Larissa, Mezourlo, 41110, Larissa, Thessaly, Greece
| | - Dimitrios Psimadas
- Nuclear Medicine Department, University Hospital of Larissa, Mezourlo, 41110, Larissa, Thessaly, Greece
| | - Sotiria Alexiou
- Nuclear Medicine Department, University Hospital of Larissa, Mezourlo, 41110, Larissa, Thessaly, Greece
| | - George Hadjigeorgiou
- Neurology Department, University Hospital of Larissa, Thessaly, Greece
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Greece
| | - Panagiotis Georgoulias
- Nuclear Medicine Department, University Hospital of Larissa, Mezourlo, 41110, Larissa, Thessaly, Greece
| |
Collapse
|
22
|
Meyer MA, Hudock SA. Posterior cortical atrophy: A rare variant of Alzheimer's disease. Neurol Int 2018; 10:7665. [PMID: 30069290 PMCID: PMC6050447 DOI: 10.4081/ni.2018.7665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/13/2018] [Indexed: 11/26/2022] Open
Abstract
Posterior cortical atrophy is a rare condition first described in 1988 involving progressive degeneration and atrophy of the occipital cortex, often recognized after an unexplained homonymous hemianopsia may be discovered. We report a case in association with Alzheimer’s disease in a 77-year-old female, who underwent brain single-photon emission computed tomography as well brain positron emission tomography using Florbetapir to further evaluate progressive cognitive decline. The patient had also been followed in Ophthalmology for glaucoma, where a progressive unexplained change in her visual field maps were noted over one year consistent with a progressive right homonymous hemianopsia. This rare combination of findings in association with her dementia led to a detailed review of all her imaging studies, concluding with the surprising recognition for a clear hemi-atrophy of the primary left occipital cortex was occurring, consistent with Alzheimer’s disease affecting the primary visual cortex. Further awareness of this disease pattern is needed, as Alzheimer’s disease typically does not affect the primary visual cortex; other conditions to consider in general include Lewy Body dementia, cortico-basal degeneration and prion disease.
Collapse
Affiliation(s)
- Michael A Meyer
- Departments of Neurology and Ophthalmology, Guthrie Clinic, Sayre, PA, USA
| | - Stephen A Hudock
- Departments of Neurology and Ophthalmology, Guthrie Clinic, Sayre, PA, USA
| |
Collapse
|
23
|
Kollack-Walker S, Liu CY, Fleisher AS. The Role of Neuroimaging in the Assessment of the Cognitively Impaired Elderly. Neurol Clin 2017; 35:231-262. [PMID: 28410658 DOI: 10.1016/j.ncl.2017.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article reviews the current diagnostic tools that are available for structural, functional, and molecular imaging of the brain, summarizing some of the key findings that have been reported in individuals diagnosed with Alzheimer disease, mild cognitive impairment, prodromal AD, or other prevalent dementias. Given recent advances in the development of amyloid PET tracers, current guidelines for the use of amyloid PET imaging in patients with cognitive complaints are reviewed. In addition, data addressing the potential value of amyloid PET imaging in the clinical setting are highlighted.
Collapse
Affiliation(s)
- Sara Kollack-Walker
- Scientific Comm, Global Med Comm - Bio-Medicines BU-NS, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Collin Y Liu
- Department of Neurology, Keck School of Medicine at the University of Southern California, 1520 San Pablo Street, HCC-2, Suite 3000, Los Angeles, CA 90033, USA
| | - Adam S Fleisher
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| |
Collapse
|
24
|
Munder T, Pfeffer A, Schreyer S, Guo J, Braun J, Sack I, Steiner B, Klein C. MR elastography detection of early viscoelastic response of the murine hippocampus to amyloid β accumulation and neuronal cell loss due to Alzheimer's disease. J Magn Reson Imaging 2017; 47:105-114. [DOI: 10.1002/jmri.25741] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/03/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Tonia Munder
- Department of Neurology; Charité - University Medicine Berlin; Berlin Germany
| | - Anna Pfeffer
- Department of Neurology; Charité - University Medicine Berlin; Berlin Germany
| | - Stefanie Schreyer
- Department of Neurology; Charité - University Medicine Berlin; Berlin Germany
| | - Jing Guo
- Department of Radiology; Charité - University Medicine Berlin; Berlin Germany
| | - Juergen Braun
- Institute for Medical Informatics; Charité - University Medicine Berlin; Berlin Germany
| | - Ingolf Sack
- Department of Radiology; Charité - University Medicine Berlin; Berlin Germany
| | - Barbara Steiner
- Department of Neurology; Charité - University Medicine Berlin; Berlin Germany
| | - Charlotte Klein
- Department of Neurology; Charité - University Medicine Berlin; Berlin Germany
| |
Collapse
|
25
|
Shefner JM, Sabbagh MN. An Appraisal of Novel Biomarkers for Evaluating and Monitoring Neurologic Diseases: Editorial Introduction. Neurotherapeutics 2017; 14:1-3. [PMID: 27933486 PMCID: PMC5233637 DOI: 10.1007/s13311-016-0502-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jeremy M. Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ USA
| | - Marwan N. Sabbagh
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ USA
| |
Collapse
|