1
|
Deininger-Czermak E, Spencer L, Zoelch N, Sankar A, Gascho D, Guggenberger R, Mathieu S, Thali MJ, Blumberg HP. Magnetic resonance imaging of regional gray matter volume in persons who died by suicide. Mol Psychiatry 2025; 30:1029-1033. [PMID: 39237718 PMCID: PMC11835744 DOI: 10.1038/s41380-024-02730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
In vivo neuroimaging research in suicide attempters has shown alterations in frontal system brain regions subserving emotional regulation, motivation, and self-perception; however, data from living individuals is limited in clarifying risk for suicide death. Postmortem neuroimaging provides an approach to study the brain in persons who died by suicide. Here, whole brain voxel-based analyses of magnetic resonance imaging gray matter volume measures were performed comparing persons confirmed by forensic investigation to have died by suicide (n = 24), versus other causes (n = 24), in a univariate model covarying for age and total brain volume; all subjects were scanned within 24 hours after death. Consistent with the hypothesis that persons who died by suicide would show lower gray matter volume in frontal system brain regions, this study of suicides showed lower gray matter volume in ventral frontal and its major connection sites including insula, striatum, and amygdala.
Collapse
Affiliation(s)
- E Deininger-Czermak
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - L Spencer
- Departments of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - N Zoelch
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - A Sankar
- Departments of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - D Gascho
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - R Guggenberger
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - S Mathieu
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - M J Thali
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - H P Blumberg
- Departments of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
García-Gutiérrez MS, Torregrosa AB, Navarrete F, Navarro D, Manzanares J. A comprehensive review of the multifaceted role of cannabinoid receptor type 2 in neurodegenerative and neuropsychiatric disorders. Pharmacol Res 2025; 213:107657. [PMID: 39978657 DOI: 10.1016/j.phrs.2025.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/24/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Research carried out during the last 30 years since the first identification of CB2r in 1993 has changed the landscape of this receptor's role and therapeutic utility. Initially, studies focused on elucidating the role of CB2r at the periphery since it was first characterized in spleen and lymphocytes. Later, CB2r was found in the brain not only under pathological conditions but also under basal conditions. It is now known that this receptor is expressed in different brain regions and different cell types, including neurons and microglia. Experimental studies have provided robust evidence that CB2r is involved in the modulation of the immune system, neuroinflammation, oxidative stress and neuroprotection. Besides, CB2r mediated the response to stress, anxiety, and depression. Also, CB2r plays a relevant role in modulating the reinforcing properties of different drugs of abuse, including alcohol, nicotine and cocaine. In this review, we summarize the cumulative knowledge regarding the immunomodulatory, anti-inflammatory, antioxidant, and neuroprotective properties of CB2r against the development of neurodegenerative diseases. Indeed, we cover the anxiolytic and antidepressant potential of CB2r, which raises the therapeutic interest of this receptor in different psychiatric diseases associated with anxiety and depression. Finally, we discuss the involvement of CB2r in the regulation of drug addiction. A better understanding of the properties of CB2r is essential for the pharmacological development of this receptor in different neurodegenerative, psychiatric, and addictive disorders.
Collapse
Affiliation(s)
- María S García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Abraham B Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain; Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
3
|
Rojo-Romero MA, Gutiérrez-Nájera NA, Cruz-Fuentes CS, Romero-Pimentel AL, Mendoza-Morales R, García-Dolores F, Morales-Marín ME, Castro-Martínez X, González-Sáenz E, Torres-Campuzano J, Medina-Sánchez T, Hernández-Fonseca K, Nicolini-Sánchez H, Jiménez-García LF. Proteome analysis of the prefrontal cortex and the application of machine learning models for the identification of potential biomarkers related to suicide. Front Psychiatry 2025; 15:1429953. [PMID: 40051599 PMCID: PMC11882514 DOI: 10.3389/fpsyt.2024.1429953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/24/2024] [Indexed: 03/09/2025] Open
Abstract
Introduction Suicide is a significant public health problem, with increased rates in low- and middle-income countries such as Mexico; therefore, suicide prevention is important. Suicide is a complex and multifactorial phenomenon in which biological and social factors are involved. Several studies on the biological mechanisms of suicide have analyzed the proteome of the dorsolateral prefrontal cortex (DLPFC) in people who have died by suicide. The aim of this work was to analyze the protein expression profile in the DLPFC of individuals who died by suicide in comparison to age-matched controls in order to gain information on the molecular basis in the brain of these individuals and the selection of potential biomarkers for the identification of individuals at risk of suicide. In addition, this information was analyzed using machine learning (ML) algorithms to propose a model for predicting suicide. Methods Brain tissue (Brodmann area 9) was sampled from male cases (n=9) and age-matched controls (n=7). We analyzed the proteomic differences between the groups using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Bioinformatics tools were used to clarify the biological relevance of the differentially expressed proteins. In addition, this information was analyzed using machine learning (ML) algorithms to propose a model for predicting suicide. Results Twelve differentially expressed proteins were also identified (t 14 ≤ 0.5). Using Western blotting, we validated the decrease in expression of peroxiredoxin 2 and alpha-internexin in the suicide cases. ML models were trained using densitometry data from the 2D gel images of each selected protein and the models could differentiate between both groups (control and suicide cases). Discussion Our exploratory pathway analysis highlighted oxidative stress responses and neurodevelopmental pathways as key processes perturbed in the DLPFC of suicides. Regarding ML models, KNeighborsClassifier was the best predicting conditions. Here we show that these proteins of the DLPFC may help to identify brain processes associated with suicide and they could be validated as potential biomarkers of this outcome.
Collapse
Affiliation(s)
- Manuel Alejandro Rojo-Romero
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
- National Institute of Psychiatry “Ramón de la Fuente Muñíz”, Mexico City, Mexico
| | - Nora Andrea Gutiérrez-Nájera
- Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | | | - Ana Luisa Romero-Pimentel
- Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Roberto Mendoza-Morales
- Institute of Expert Services and Forensic Sciences of Mexico City (INCIFO), Mexico City, Mexico
| | - Fernando García-Dolores
- Institute of Expert Services and Forensic Sciences of Mexico City (INCIFO), Mexico City, Mexico
| | - Mirna Edith Morales-Marín
- Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Xóchitl Castro-Martínez
- Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | | | - Jonatan Torres-Campuzano
- Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Tania Medina-Sánchez
- National Institute of Psychiatry “Ramón de la Fuente Muñíz”, Mexico City, Mexico
| | | | - Humberto Nicolini-Sánchez
- Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Luis Felipe Jiménez-García
- Cell Nanobiology Laboratory, Faculty of Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
4
|
Apweiler M, Saliba SW, Sun L, Streyczek J, Normann C, Hellwig S, Bräse S, Fiebich BL. Modulation of neuroinflammation and oxidative stress by targeting GPR55 - new approaches in the treatment of psychiatric disorders. Mol Psychiatry 2024; 29:3779-3788. [PMID: 38796643 PMCID: PMC11609097 DOI: 10.1038/s41380-024-02614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Pharmacological treatment of psychiatric disorders remains challenging in clinical, pharmacological, and scientific practice. Even if many different substances are established for treating different psychiatric conditions, subgroups of patients show only small or no response to the treatment. The neuroinflammatory hypothesis of the genesis of psychiatric disorders might explain underlying mechanisms in these non-responders. For that reason, recent research focus on neuroinflammatory processes and oxidative stress as possible causes of psychiatric disorders. G-protein coupled receptors (GPCRs) form the biggest superfamily of membrane-bound receptors and are already well known as pharmacological targets in various diseases. The G-protein coupled receptor 55 (GPR55), a receptor considered part of the endocannabinoid system, reveals promising modulation of neuroinflammatory and oxidative processes. Different agonists and antagonists reduce pro-inflammatory cytokine release, enhance the synthesis of anti-inflammatory mediators, and protect cells from oxidative damage. For this reason, GPR55 ligands might be promising compounds in treating subgroups of patients suffering from psychiatric disorders related to neuroinflammation or oxidative stress. New approaches in drug design might lead to new compounds targeting different pathomechanisms of those disorders in just one molecule.
Collapse
Affiliation(s)
- Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
- Department of Cardiology and Angiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
| | - Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Lu Sun
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Jana Streyczek
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Sabine Hellwig
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131, Karlsruhe, Germany
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany.
| |
Collapse
|
5
|
Yamamoto M, Sakai M, Yu Z, Nakanishi M, Yoshii H. Glial Markers of Suicidal Behavior in the Human Brain-A Systematic Review of Postmortem Studies. Int J Mol Sci 2024; 25:5750. [PMID: 38891940 PMCID: PMC11171620 DOI: 10.3390/ijms25115750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Suicide is a major public health priority, and its molecular mechanisms appear to be related to glial abnormalities and specific transcriptional changes. This study aimed to identify and synthesize evidence of the relationship between glial dysfunction and suicidal behavior to understand the neurobiology of suicide. As of 26 January 2024, 46 articles that met the inclusion criteria were identified by searching PubMed and ISI Web of Science. Most postmortem studies, including 30 brain regions, have determined no density or number of total Nissl-glial cell changes in suicidal patients with major psychiatric disorders. There were 17 astrocytic, 14 microglial, and 9 oligodendroglial studies using specific markers of each glial cell and further on their specific gene expression. Those studies suggest that astrocytic and oligodendroglial cells lost but activated microglia in suicides with affective disorder, bipolar disorders, major depression disorders, or schizophrenia in comparison with non-suicided patients and non-psychiatric controls. Although the data from previous studies remain complex and cannot fully explain the effects of glial cell dysfunction related to suicidal behaviors, they provide risk directions potentially leading to suicide prevention.
Collapse
Affiliation(s)
- Mana Yamamoto
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mai Sakai
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Miharu Nakanishi
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hatsumi Yoshii
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
6
|
Franco R, Garrigós C, Lillo J. The Olfactory Trail of Neurodegenerative Diseases. Cells 2024; 13:615. [PMID: 38607054 PMCID: PMC11012126 DOI: 10.3390/cells13070615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Alterations in olfactory functions are proposed as possible early biomarkers of neurodegenerative diseases. Parkinson's and Alzheimer's diseases manifest olfactory dysfunction as a symptom, which is worth mentioning. The alterations do not occur in all patients, but they can serve to rule out neurodegenerative pathologies that are not associated with small deficits. Several prevalent neurodegenerative conditions, including impaired smell, arise in the early stages of Parkinson's and Alzheimer's diseases, presenting an attractive prospect as a snitch for early diagnosis. This review covers the current knowledge on the link between olfactory deficits and Parkinson's and Alzheimer's diseases. The review also covers the emergence of olfactory receptors as actors in the pathophysiology of these diseases. Olfactory receptors are not exclusively expressed in olfactory sensory neurons. Olfactory receptors are widespread in the human body; they are expressed, among others, in the testicles, lungs, intestines, kidneys, skin, heart, and blood cells. Although information on these ectopically expressed olfactory receptors is limited, they appear to be involved in cell recognition, migration, proliferation, wound healing, apoptosis, and exocytosis. Regarding expression in non-chemosensory regions of the central nervous system (CNS), future research should address the role, in both the glia and neurons, of olfactory receptors. Here, we review the limited but relevant information on the altered expression of olfactory receptor genes in Parkinson's and Alzheimer's diseases. By unraveling how olfactory receptor activation is involved in neurodegeneration and identifying links between olfactory structures and neuronal death, valuable information could be gained for early diagnosis and intervention strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- School of Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Claudia Garrigós
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
| | - Jaume Lillo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
7
|
Navarro D, Marín-Mayor M, Gasparyan A, García-Gutiérrez MS, Rubio G, Manzanares J. Molecular Changes Associated with Suicide. Int J Mol Sci 2023; 24:16726. [PMID: 38069051 PMCID: PMC10706600 DOI: 10.3390/ijms242316726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Suicide is a serious global public health problem, with a worrying recent increase in suicide rates in both adolescent and adult populations. However, it is essential to recognize that suicide is preventable. A myriad of factors contributes to an individual's vulnerability to suicide. These factors include various potential causes, from psychiatric disorders to genetic and epigenetic alterations. These changes can induce dysfunctions in crucial systems such as the serotonergic, cannabinoid, and hypothalamic-pituitary-adrenal axes. In addition, early life experiences of abuse can profoundly impact an individual's ability to cope with stress, ultimately leading to changes in the inflammatory system, which is a significant risk factor for suicidal behavior. Thus, it is clear that suicidal behavior may result from a confluence of multiple factors. This review examines the primary risk factors associated with suicidal behavior, including psychiatric disorders, early life adversities, and epigenetic modifications. Our goal is to elucidate the molecular changes at the genetic, epigenetic, and molecular levels in the brains of individuals who have taken their own lives and in the plasma and peripheral mononuclear cells of suicide attempters and how these changes may serve as predisposing factors for suicidal tendencies.
Collapse
Affiliation(s)
- Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Marta Marín-Mayor
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Department of Psychiatry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Gabriel Rubio
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Department of Psychiatry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
8
|
González-Castro TB, Genis-Mendoza AD, López-Narváez ML, Juárez-Rojop IE, Ramos-Méndez MA, Tovilla-Zárate CA, Nicolini H. Gene Expression Analysis in Postmortem Brains from Individuals Who Died by Suicide: A Systematic Review. Brain Sci 2023; 13:906. [PMID: 37371384 DOI: 10.3390/brainsci13060906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Around the world, more the 700,000 individuals die by suicide every year. It is necessary to understand the mechanisms associated with suicidal behavior. Recently, an increase in gene expression studies has been in development. Through a systematic review, we aimed to find a candidate gene in gene expression studies on postmortem brains of suicide completers. Databases were systematically searched for published studies. We performed an online search using PubMed, Scopus and Web of Science databases to search studies up until May 2023. The terms included were "gene expression", "expressed genes", "microarray", "qRT-PCR", "brain samples" and "suicide". Our systematic review included 59 studies covering the analysis of 1450 brain tissues from individuals who died by suicide. The majority of gene expression profiles were obtained of the prefrontal cortex, anterior cingulate cortex, dorsolateral prefrontal cortex, ventral prefrontal cortex and orbital frontal cortex area. The most studied mRNAs came of genes in glutamate, γ-amino-butyric acid and polyamine systems. mRNAs of genes in the brain-derived neurotrophic factor, tropomyosin-related kinase B (TrkB), HPA axis and chemokine family were also studied. On the other hand, psychiatric comorbidities indicate that suicide by violent death can alter the profile of mRNA expression.
Collapse
Affiliation(s)
- Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez 86205, Mexico
| | - Alma Delia Genis-Mendoza
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
- Servicio de Atención Psiquiátrica, Hospital Psiquiátrico Infantil Dr. Juan N. Navarro, Ciudad de México 14080, Mexico
| | - María Lilia López-Narváez
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco 86650, Mexico
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico
| | - Miguel Angel Ramos-Méndez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico
| | | | - Humberto Nicolini
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| |
Collapse
|
9
|
Uzuneser TC, Szkudlarek HJ, Jones MJ, Nashed MG, Clement T, Wang H, Ojima I, Rushlow WJ, Laviolette SR. Identification of a novel fatty acid binding protein-5-CB2 receptor-dependent mechanism regulating anxiety behaviors in the prefrontal cortex. Cereb Cortex 2023; 33:2470-2484. [PMID: 35650684 PMCID: PMC10016066 DOI: 10.1093/cercor/bhac220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
The endocannabinoid (eCB) system represents a promising neurobiological target for novel anxiolytic pharmacotherapies. Previous clinical and preclinical evidence has revealed that genetic and/or pharmacological manipulations altering eCB signaling modulate fear and anxiety behaviors. Water-insoluble eCB lipid anandamide requires chaperone proteins for its intracellular transport to degradation, a process that requires fatty acid-binding proteins (FABPs). Here, we investigated the effects of a novel FABP-5 inhibitor, SBFI-103, on fear and anxiety-related behaviors using rats. Acute intra-prelimbic cortex administration of SBFI-103 induced a dose-dependent anxiolytic response and reduced contextual fear expression. Surprisingly, both effects were reversed when a cannabinoid-2 receptor (CB2R) antagonist, AM630, was co-infused with SBFI-103. Co-infusion of the cannabinoid-1 receptor antagonist Rimonabant with SBFI-103 reversed the contextual fear response yet showed no reversal effect on anxiety. Furthermore, in vivo neuronal recordings revealed that intra-prelimbic region SBFI-103 infusion altered the activity of putative pyramidal neurons in the basolateral amygdala and ventral hippocampus, as well as oscillatory patterns within these regions in a CB2R-dependent fashion. Our findings identify a promising role for FABP5 inhibition as a potential target for anxiolytic pharmacotherapy. Furthermore, we identify a novel, CB2R-dependent FABP-5 signaling pathway in the PFC capable of strongly modulating anxiety-related behaviors and anxiety-related neuronal transmission patterns.
Collapse
Affiliation(s)
- Taygun C Uzuneser
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Hanna J Szkudlarek
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Matthew J Jones
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Mina G Nashed
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Timothy Clement
- Institute of Chemical Biology and Drug Discoveries, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Hehe Wang
- Institute of Chemical Biology and Drug Discoveries, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discoveries, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, 100 Nicolls Road, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Walter J Rushlow
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Medical Sciences Building, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, 1151 Richmond Street, Mental Health Care Building, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Steven R Laviolette
- Corresponding author: Department of Anatomy and Cell Biology, University of Western Ontario, 468 Medical Science Building, London, ON N6A 3K7, Canada.
| |
Collapse
|
10
|
Johnston KJ, Huckins LM. Chronic Pain and Psychiatric Conditions. Complex Psychiatry 2023; 9:24-43. [PMID: 37034825 PMCID: PMC10080192 DOI: 10.1159/000527041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Chronic pain is a common condition with high socioeconomic and public health burden. A wide range of psychiatric conditions are often comorbid with chronic pain and chronic pain conditions, negatively impacting successful treatment of either condition. The psychiatric condition receiving most attention in the past with regard to chronic pain comorbidity has been major depressive disorder, despite the fact that many other psychiatric conditions also demonstrate epidemiological and genetic overlap with chronic pain. Further understanding potential mechanisms involved in psychiatric and chronic pain comorbidity could lead to new treatment strategies both for each type of disorder in isolation and in scenarios of comorbidity. Methods This article provides an overview of relationships between DSM-5 psychiatric diagnoses and chronic pain, with particular focus on PTSD, ADHD, and BPD, disorders which are less commonly studied in conjunction with chronic pain. We also discuss potential mechanisms that may drive comorbidity, and present new findings on the genetic overlap of chronic pain and ADHD, and chronic pain and BPD using linkage disequilibrium score regression analyses. Results Almost all psychiatric conditions listed in the DSM-5 are associated with increased rates of chronic pain. ADHD and BPD are significantly genetically correlated with chronic pain. Psychiatric conditions aside from major depression are often under-researched with respect to their relationship with chronic pain. Conclusion Further understanding relationships between psychiatric conditions other than major depression (such as ADHD, BPD, and PTSD as exemplified here) and chronic pain can positively impact understanding of these disorders, and treatment of both psychiatric conditions and chronic pain.
Collapse
Affiliation(s)
- Keira J.A. Johnston
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | - Laura M. Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Eraso‐Pichot A, Pouvreau S, Olivera‐Pinto A, Gomez‐Sotres P, Skupio U, Marsicano G. Endocannabinoid signaling in astrocytes. Glia 2023; 71:44-59. [PMID: 35822691 PMCID: PMC9796923 DOI: 10.1002/glia.24246] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023]
Abstract
The study of the astrocytic contribution to brain functions has been growing in popularity in the neuroscience field. In the last years, and especially since the demonstration of the involvement of astrocytes in synaptic functions, the astrocyte field has revealed multiple functions of these cells that seemed inconceivable not long ago. In parallel, cannabinoid investigation has also identified different ways by which cannabinoids are able to interact with these cells, modify their functions, alter their communication with neurons and impact behavior. In this review, we will describe the expression of different endocannabinoid system members in astrocytes. Moreover, we will relate the latest findings regarding cannabinoid modulation of some of the most relevant astroglial functions, namely calcium (Ca2+ ) dynamics, gliotransmission, metabolism, and inflammation.
Collapse
Affiliation(s)
- Abel Eraso‐Pichot
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Sandrine Pouvreau
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Alexandre Olivera‐Pinto
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Paula Gomez‐Sotres
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Urszula Skupio
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Giovanni Marsicano
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| |
Collapse
|
12
|
Patricio F, Morales Dávila E, Patricio-Martínez A, Arana Del Carmen N, Martínez I, Aguilera J, Perez-Aguilar JM, Limón ID. Intrapallidal injection of cannabidiol or a selective GPR55 antagonist decreases motor asymmetry and improves fine motor skills in hemiparkinsonian rats. Front Pharmacol 2022; 13:945836. [PMID: 36120297 PMCID: PMC9479130 DOI: 10.3389/fphar.2022.945836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
Cannabidiol (CBD) presents antiparkinsonian properties and neuromodulatory effects, possibly due to the pleiotropic activity caused at multiple molecular targets. Recently, the GPR55 receptor has emerged as a molecular target of CBD. Interestingly, GPR55 mRNA is expressed in the external globus pallidus (GPe) and striatum, hence, it has been suggested that its activity is linked to motor dysfunction in Parkinson’s disease (PD). The present study aimed to evaluate the effect of the intrapallidal injection of both CBD and a selective GPR55 antagonist (CID16020046) on motor asymmetry, fine motor skills, and GAD-67 expression in hemiparkinsonian rats. The hemiparkinsonian animal model applied involved the induction of a lesion in male Wistar rats via the infusion of the neurotoxin 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle via stereotaxic surgery. After a period of twenty days, a second surgical procedure was performed to implant a guide cannula into the GPe. Seven days later, lysophosphatidylinositol (LPI), CBD, or CID16020046 were injected once a day for three consecutive days (from the 28th to the 30th day post-lesion). Amphetamine-induced turning behavior was evaluated on the 14th and 30th days post-injury. The staircase test and fine motor skills were evaluated as follows: the rats were subject to a ten-day training period prior to the 6-OHDA injury; from the 15th to the 19th days post-lesion, the motor skills alterations were evaluated under basal conditions; and, from the 28th to the 30th day post-lesion, the pharmacological effects of the drugs administered were evaluated. The results obtained show that the administration of LPI or CBD generated lower levels of motor asymmetry in the turning behavior of hemiparkinsonian rats. It was also found that the injection of CBD or CID16020046, but not LPI, in the hemiparkinsonian rats generated significantly superior performance in the staircase test, in terms of the use of the forelimb contralateral to the 6-OHDA-induced lesion, when evaluated from the 28th to the 30th day post-lesion. Similar results were also observed for superior fine motor skills performance for pronation, grasp, and supination. Finally, the immunoreactivity levels were found to decrease for the GAD-67 enzyme in the striatum and the ipsilateral GPe of the rats injected with CBD and CID16020046, in contrast with those lesioned with 6-OHDA. The results obtained suggest that the inhibitory effects of CBD and CID16020046 on GPR55 in the GPe could be related to GABAergic overactivation in hemiparkinsonism, thus opening new perspectives to explain, at a cellular level, the reversal of the motor impairment observed in PD models.
Collapse
Affiliation(s)
- Felipe Patricio
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Eliud Morales Dávila
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Nayeli Arana Del Carmen
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Isabel Martínez
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - José Aguilera
- Departament de Bioquímica i de Biologia Molecular, Facultad de Medicina, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Ilhuicamina Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Ilhuicamina Daniel Limón, ,
| |
Collapse
|
13
|
Ferranti AS, Foster DJ. Cannabinoid type-2 receptors: An emerging target for regulating schizophrenia-relevant brain circuits. Front Neurosci 2022; 16:925792. [PMID: 36033626 PMCID: PMC9403189 DOI: 10.3389/fnins.2022.925792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Although the cannabinoid type-2 receptor (CB2) is highly expressed in the immune system, emerging evidence points to CB2 playing a key role in regulating neuronal function in the central nervous system. Recent anatomical studies, combined with electrophysiological studies, indicate that CB2 receptors are expressed in specific dopaminergic and glutamatergic brain circuits that are hyperactive in schizophrenia patients. The ability of CB2 receptors to inhibit dopaminergic and hippocampal circuits, combined with the anti-inflammatory effects of CB2 receptor activation, make this receptor an intriguing target for treating schizophrenia, a disease where novel interventions that move beyond dopamine receptor antagonists are desperately needed. The development of new CB2-related pharmacological and genetic tools, including the first small molecule positive allosteric modulator of CB2 receptors, has greatly advanced our understanding of this receptor. While more work is needed to further elucidate the translational value of selectively targeting CB2 receptors with respect to schizophrenia, the studies discussed below could suggest that CB2 receptors are anatomically located in schizophrenia-relevant circuits, where the physiological consequence of CB2 receptor activation could correct circuit-based deficits commonly associated with positive and cognitive deficits.
Collapse
Affiliation(s)
- Anthony S. Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Daniel J. Foster
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
14
|
Ishiguro H, Kibret BG, Horiuchi Y, Onaivi ES. Potential Role of Cannabinoid Type 2 Receptors in Neuropsychiatric and Neurodegenerative Disorders. Front Psychiatry 2022; 13:828895. [PMID: 35774086 PMCID: PMC9237241 DOI: 10.3389/fpsyt.2022.828895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) is composed of the two canonical receptor subtypes; type-1 cannabinoid (CB1R) and type 2 receptor (CB2R), endocannabinoids (eCBs) and enzymes responsible for the synthesis and degradation of eCBs. Recently, with the identification of additional lipid mediators, enzymes and receptors, the expanded ECS called the endocannabinoidome (eCBome) has been identified and recognized. Activation of CB1R is associated with a plethora of physiological effects and some central nervous system (CNS) side effects, whereas, CB2R activation is devoid of such effects and hence CB2Rs might be utilized as potential new targets for the treatment of different disorders including neuropsychiatric disorders. Previous studies suggested that CB2Rs were absent in the brain and they were considered as peripheral receptors, however, recent studies confirmed the presence of CB2Rs in different brain regions. Several studies have now focused on the characterization of its physiological and pathological roles. Studies done on the role of CB2Rs as a therapeutic target for treating different disorders revealed important putative role of CB2R in neuropsychiatric disorders that requires further clinical validation. Here we provide current insights and knowledge on the potential role of targeting CB2Rs in neuropsychiatric and neurodegenerative disorders. Its non-psychoactive effect makes the CB2R a potential target for treating CNS disorders; however, a better understanding of the fundamental pharmacology of CB2R activation is essential for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hiroki Ishiguro
- Department of Clinical Genetics, Graduate School of Medical Science, University of Yamanashi, Kofu, Japan
- Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Kofu, Japan
| | - Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Yasue Horiuchi
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| |
Collapse
|
15
|
Role of Cannabinoid CB2 Receptor in Alcohol Use Disorders: From Animal to Human Studies. Int J Mol Sci 2022; 23:ijms23115908. [PMID: 35682586 PMCID: PMC9180470 DOI: 10.3390/ijms23115908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Cumulative evidence has pointed out cannabinoid CB2 receptors (CB2r) as a potential therapeutic key target for treating alcohol use disorder (AUD). This review provides the most relevant results obtained from rodent and human studies, including an integrative section focused on the involvement of CB2r in the neurobiology of alcohol addiction. A literature search was conducted using the electronic databases Medline and Scopus for articles. The search strategy was as follows: “Receptor, Cannabinoid, CB2” AND “Alcohol-Related Disorders” AND “human/or patients”; “Receptor, Cannabinoid, CB2” AND “Alcohol” OR “Ethanol” AND “rodents/or mice/or rats”. Pharmacological approaches demonstrated that the activation or blockade of CB2r modulated different alcohol-addictive behaviors. Rodent models of alcoholism revealed significant alterations of CB2r in brain areas of the reward system. In addition, mice lacking CB2r (CB2KO) show increased alcohol consumption, motivation, and relapse alterations. It has been stressed that the potential neurobiological mechanisms underlying their behavioral effects involve critical elements of the alcohol reward system. Interestingly, recent postmortem studies showed CNR2 alterations in brain areas of alcoholic patients. Moreover, although the number of studies is limited, the results revealed an association between some genetic alterations of the CNR2 and an increased risk for developing AUD. This review provides evidence that CB2r may play a role in alcohol addiction. Clinical studies are necessary to figure out whether CB2r ligands may prove useful for the treatment of AUD in humans.
Collapse
|
16
|
Bright U, Akirav I. Modulation of Endocannabinoid System Components in Depression: Pre-Clinical and Clinical Evidence. Int J Mol Sci 2022; 23:5526. [PMID: 35628337 PMCID: PMC9146799 DOI: 10.3390/ijms23105526] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Depression is characterized by continuous low mood and loss of interest or pleasure in enjoyable activities. First-line medications for mood disorders mostly target the monoaminergic system; however, many patients do not find relief with these medications, and those who do suffer from negative side effects and a discouragingly low rate of remission. Studies suggest that the endocannabinoid system (ECS) may be involved in the etiology of depression and that targeting the ECS has the potential to alleviate depression. ECS components (such as receptors, endocannabinoid ligands, and degrading enzymes) are key neuromodulators in motivation and cognition as well as in the regulation of stress and emotions. Studies in depressed patients and in animal models for depression have reported deficits in ECS components, which is motivating researchers to identify potential diagnostic and therapeutic biomarkers within the ECS. By understanding the effects of cannabinoids on ECS components in depression, we enhance our understanding of which brain targets they hit, what biological processes they alter, and eventually how to use this information to design better therapeutic options. In this article, we discuss the literature on the effects of cannabinoids on ECS components of specific depression-like behaviors and phenotypes in rodents and then describe the findings in depressed patients. A better understanding of the effects of cannabinoids on ECS components in depression may direct future research efforts to enhance diagnosis and treatment.
Collapse
Affiliation(s)
- Uri Bright
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
17
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
18
|
Cannabinoid CB1 Receptor Involvement in the Actions of CBD on Anxiety and Coping Behaviors in Mice. Pharmaceuticals (Basel) 2022; 15:ph15040473. [PMID: 35455470 PMCID: PMC9027088 DOI: 10.3390/ph15040473] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
The anxiolytic and antidepressant properties of cannabidiol (CBD) have been evaluated in several studies. However, the molecular mechanisms involved in these actions remain unclear. A total of 130 male mice were used. CBD’s ability to modulate emotional disturbances (anxiety and depressive-like behaviors) was evaluated at different doses in wild-type (CD1; 10, 20 and 30 mg/kg; i.p.) and knockout (CB1KO, CB2KO; GPR55KO; 20 mg/kg) mice. Moreover, CBD effects (20 mg/kg; i.p.) were evaluated in mice previously treated with the CB1r-antagonist SR141716A (2mg/kg; i.p.). Relative gene expression analyses of Cnr1 and Cnr2, Gpr55 and GABA(A)α2 and γ2 receptor subunits were performed in the amygdala (AMY) and hippocampus (HIPP) of CD1 mice. CBD (10 and 20 mg/kg) showed anxiolytic and antidepressant actions in CD1 mice, being more effective at 20 mg/kg. Its administration did not induce anxiolytic actions in CB1KO mice, contrary to CB2KO and GPR55KO. In all of them, the lack of cannabinoid receptors did not modify the antidepressant activity of CBD. Interestingly, the administration of the CB1r antagonist SR141716A blocked the anxiolytic-like activity of CBD. Real-time PCR studies revealed a significant reduction in Cnr1 and GABA(A)α2 and γ2 gene expression in the HIPP and AMY of CD1 mice treated with CBD. Opposite changes were observed in the Cnr2. Indeed, Gpr55 was increased in the AMY and reduced in the HIPP. CB1r appears to play a relevant role in modulating the anxiolytic actions of CBD. Moreover, this study revealed that CBD also modified the gene expression of GABA(A) subunits α2 and γ2 and CB1r, CB2r and GPR55, in a dose- and brain-region-dependent manner, supporting a multimodal mechanism of action for CBD.
Collapse
|
19
|
Kibret BG, Ishiguro H, Horiuchi Y, Onaivi ES. New Insights and Potential Therapeutic Targeting of CB2 Cannabinoid Receptors in CNS Disorders. Int J Mol Sci 2022; 23:975. [PMID: 35055161 PMCID: PMC8778243 DOI: 10.3390/ijms23020975] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/22/2022] Open
Abstract
The endocannabinoid system (ECS) is ubiquitous in most human tissues, and involved in the regulation of mental health. Consequently, its dysregulation is associated with neuropsychiatric and neurodegenerative disorders. Together, the ECS and the expanded endocannabinoidome (eCBome) are composed of genes coding for CB1 and CB2 cannabinoid receptors (CB1R, CB2R), endocannabinoids (eCBs), and the metabolic enzyme machinery for their synthesis and catabolism. The activation of CB1R is associated with adverse effects on the central nervous system (CNS), which has limited the therapeutic use of drugs that bind this receptor. The discovery of the functional neuronal CB2R raised new possibilities for the potential and safe targeting of the ECS for the treatment of CNS disorders. Previous studies were not able to detect CB2R mRNA transcripts in brain tissue and suggested that CB2Rs were absent in the brain and were considered peripheral receptors. Studies done on the role of CB2Rs as a potential therapeutic target for treating different disorders revealed the important putative role of CB2Rs in certain CNS disorders, which requires further clinical validation. This review addresses recent advances on the role of CB2Rs in neuropsychiatric and neurodegenerative disorders, including, but not limited to, anxiety, depression, schizophrenia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) and addiction.
Collapse
Affiliation(s)
- Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA
| | - Hiroki Ishiguro
- Department of Neuropsychiatry and Clinical Ethics, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan;
| | - Yasue Horiuchi
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA
| |
Collapse
|
20
|
Functional Selectivity of Coumarin Derivates Acting via GPR55 in Neuroinflammation. Int J Mol Sci 2022; 23:ijms23020959. [PMID: 35055142 PMCID: PMC8779649 DOI: 10.3390/ijms23020959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 12/22/2022] Open
Abstract
Anti-neuroinflammatory treatment has gained importance in the search for pharmacological treatments of different neurological and psychiatric diseases, such as depression, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Clinical studies demonstrate a reduction of the mentioned diseases’ symptoms after the administration of anti-inflammatory drugs. Novel coumarin derivates have been shown to elicit anti-neuroinflammatory effects via G-protein coupled receptor GPR55, with possibly reduced side-effects compared to the known anti-inflammatory drugs. In this study, we, therefore, evaluated the anti-inflammatory capacities of the two novel coumarin-based compounds, KIT C and KIT H, in human neuroblastoma cells and primary murine microglia. Both compounds reduced PGE2-concentrations likely via the inhibition of COX-2 synthesis in SK-N-SH cells but only KIT C decreased PGE2-levels in primary microglia. The examination of other pro- and anti-inflammatory parameters showed varying effects of both compounds. Therefore, the differences in the effects of KIT C and KIT H might be explained by functional selectivity as well as tissue- or cell-dependent expression and signal pathways coupled to GPR55. Understanding the role of chemical residues in functional selectivity and specific cell- and tissue-targeting might open new therapeutic options in pharmacological drug development and might improve the treatment of the mentioned diseases by intervening in an early step of their pathogenesis.
Collapse
|
21
|
Morcuende A, García-Gutiérrez MS, Tambaro S, Nieto E, Manzanares J, Femenia T. Immunomodulatory Role of CB2 Receptors in Emotional and Cognitive Disorders. Front Psychiatry 2022; 13:866052. [PMID: 35492718 PMCID: PMC9051035 DOI: 10.3389/fpsyt.2022.866052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Emotional behavior, memory, and learning have been associated with alterations in the immune system in neuropsychiatric and neurodegenerative diseases. In recent years, several studies pointed out the involvement of the cannabinoid receptor 2 (CB2r) in the immune system and the regulation of inflammation. This receptor is widely distributed in different tissues and organs with higher expression in spleen and immune system cells. However, CB2r has also been detected in several brain areas and different brain cell types, such as neurons and glia. These findings suggest that CB2r may closely relate the immune system and the brain circuits regulating inflammation, mood, and cognitive functions. Therefore, we review the studies that may help elucidate the molecular bases of CB2r in regulating inflammation in different brain cells and its role in the pathophysiology of psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Alvaro Morcuende
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Simone Tambaro
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elena Nieto
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Teresa Femenia
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain
| |
Collapse
|
22
|
Apweiler M, Saliba SW, Streyczek J, Hurrle T, Gräßle S, Bräse S, Fiebich BL. Targeting Oxidative Stress: Novel Coumarin-Based Inverse Agonists of GPR55. Int J Mol Sci 2021; 22:ijms222111665. [PMID: 34769094 PMCID: PMC8584154 DOI: 10.3390/ijms222111665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/14/2021] [Accepted: 10/24/2021] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress is associated with different neurological and psychiatric diseases. Therefore, development of new pharmaceuticals targeting oxidative dysregulation might be a promising approach to treat these diseases. The G-protein coupled receptor 55 (GPR55) is broadly expressed in central nervous tissues and cells and is involved in the regulation of inflammatory and oxidative cell homeostasis. We have recently shown that coumarin-based compounds enfold inverse agonistic activities at GPR55 resulting in the inhibition of prostaglandin E2. However, the antioxidative effects mediated by GPR55 were not evaluated yet. Therefore, we investigated the antioxidative effects of two novel synthesized coumarin-based compounds, KIT C and KIT H, in primary mouse microglial and human neuronal SK-N-SK cells. KIT C and KIT H show antioxidative properties in SK-N-SH cells as well as in primary microglia. In GPR55-knockout SK-N-SH cells, the antioxidative effects are abolished, suggesting a GPR55-dependent antioxidative mechanism. Since inverse agonistic GPR55 activation in the brain seems to be associated with decreased oxidative stress, KIT C and KIT H possibly act as inverse agonists of GPR55 eliciting promising therapeutic options for oxidative stress related diseases.
Collapse
Affiliation(s)
- Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany; (M.A.); (S.W.S.); (J.S.)
| | - Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany; (M.A.); (S.W.S.); (J.S.)
| | - Jana Streyczek
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany; (M.A.); (S.W.S.); (J.S.)
| | - Thomas Hurrle
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (T.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany;
| | - Simone Gräßle
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany;
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (T.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany;
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany; (M.A.); (S.W.S.); (J.S.)
- Correspondence:
| |
Collapse
|
23
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Navarro D, Manzanares J. CB2 Receptor Involvement in the Treatment of Substance Use Disorders. Biomolecules 2021; 11:1556. [PMID: 34827554 PMCID: PMC8615453 DOI: 10.3390/biom11111556] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
The pharmacological modulation of the cannabinoid receptor 2 (CB2r) has emerged as a promising potential therapeutic option in addiction. The purpose of this review was to determine the functional involvement of CB2r in the effects produced by drugs of abuse at the central nervous system (CNS) level by assessing evidence from preclinical and clinical studies. In rodents, several reports suggest the functional involvement of CB2r in the effects produced by drugs of abuse such as alcohol, cocaine, or nicotine. In addition, the discovery of CB2r in brain areas that are part of the reward system supports the relevance of CB2r in the field of addiction. Interestingly, animal studies support that the CB2r regulates anxiety and depression behavioral traits. Due to its frequent comorbidity with neuropsychiatric disorders, these pharmacological actions may be of great interest in managing SUD. Preliminary clinical trials are focused on exploring the therapeutic potential of modulating CB2r in treating addictive disorders. These promising results support the development of new pharmacological tools regulating the CB2r that may help to increase the therapeutic success in the management of SUD.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| |
Collapse
|
24
|
Chen C, Lin H, Xu F, Liu J, Cai Q, Yang F, Lv L, Jiang Y. Risk factors associated with suicide among esophageal carcinoma patients from 1975 to 2016. Sci Rep 2021; 11:18766. [PMID: 34548616 PMCID: PMC8455550 DOI: 10.1038/s41598-021-98260-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
Throughout the world, esophageal cancer patients had a greater suicidal risk compared with ordinary people. Thus, we aimed to affirm suicide rates, standardized mortality rates, and underlying suicide-related risk factors of esophageal cancer patients. Patients suffering esophageal cancer were chosen from the Surveillance, Epidemiology, and End Results repository in 1975–2016. Suicide rates as well as standardized mortality rates in the patients were measured. Univariable and multivariable Cox regression had been adopted for establishing the latent suicide risk factors among patients suffering esophageal cancer. On multivariable Cox regression, gender (male vs. female, HR: 6.37), age of diagnosis (70–105 vs. 0–55, HR: 2.69), marital status, race (white race vs. black race, HR: 6.64; American Indian/Alaska Native, Asian/Pacific Islander vs. black race, HR: 8.60), histologic Grade (Grade III vs. Grade I, HR: 2.36), no surgery performed (no/unknown vs. yes, HR: 2.01), no chemotherapy performed were independent risk factors related to suicide in patients suffering esophageal cancer. Male sex, the older age, unmarried state, non-black race, histologic Grade III, no surgery performed, no chemotherapy performed were strongly related to suicide in patients suffering esophageal cancer.
Collapse
Affiliation(s)
- Chongfa Chen
- Department of Hepatobiliary Surgery, Dongfang Hospital, Xiamen University, No.156, West Second Ring North Road, Gulou District, Fuzhou, People's Republic of China
| | - Huapeng Lin
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Fengfeng Xu
- Department of Cardiothoracic Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, People's Republic of China
| | - Jianyong Liu
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, People's Republic of China
| | - Qiucheng Cai
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, People's Republic of China
| | - Fang Yang
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, People's Republic of China
| | - Lizhi Lv
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, People's Republic of China
| | - Yi Jiang
- Department of Hepatobiliary Surgery, Dongfang Hospital, Xiamen University, No.156, West Second Ring North Road, Gulou District, Fuzhou, People's Republic of China.
| |
Collapse
|
25
|
Biringer RG. Endocannabinoid signaling pathways: beyond CB1R and CB2R. J Cell Commun Signal 2021; 15:335-360. [PMID: 33978927 PMCID: PMC8222499 DOI: 10.1007/s12079-021-00622-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
The search for cannabinoid receptors other than CB1R and CB2R has been ongoing for over a decade. A number of orphan receptors have been proposed as potential cannabinoid receptors primarily based on phylogenic arguments and reactivity towards known endocannabinoids and phytocannabinoids. Seven putative cannabinoid receptors are described and discussed, and evidence for and against their inclusion in this category are presented.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
26
|
Lillo J, Lillo A, Zafra DA, Miralpeix C, Rivas-Santisteban R, Casals N, Navarro G, Franco R. Identification of the Ghrelin and Cannabinoid CB 2 Receptor Heteromer Functionality and Marked Upregulation in Striatal Neurons from Offspring of Mice under a High-Fat Diet. Int J Mol Sci 2021; 22:ijms22168928. [PMID: 34445634 PMCID: PMC8396234 DOI: 10.3390/ijms22168928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Cannabinoids have been reported as orexigenic, i.e., as promoting food intake that, among others, is controlled by the so-called “hunger” hormone, ghrelin. The aim of this paper was to look for functional and/or molecular interactions between ghrelin GHSR1a and cannabinoid CB2 receptors at the central nervous system (CNS) level. In a heterologous system we identified CB2-GHSR1a receptor complexes with a particular heteromer print consisting of impairment of CB2 receptor/Gi-mediated signaling. The blockade was due to allosteric interactions within the heteromeric complex as it was reverted by antagonists of the GHSR1a receptor. Cannabinoids acting on the CB2 receptor did not affect cytosolic increases of calcium ions induced by ghrelin acting on the GHSR1a receptor. In situ proximity ligation imaging assays confirmed the expression of CB2-GHSR1a receptor complexes in both heterologous cells and primary striatal neurons. We tested heteromer expression in neurons from offspring of high-fat-diet mouse mothers as they have more risk to be obese. Interestingly, there was a marked upregulation of those complexes in striatal neurons from siblings of pregnant female mice under a high-fat diet.
Collapse
Affiliation(s)
- Jaume Lillo
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.L.); (D.A.Z.)
| | - David A. Zafra
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.L.); (D.A.Z.)
| | - Cristina Miralpeix
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08190 Sant Cugat del Vallès, Spain; (C.M.); (N.C.)
| | - Rafael Rivas-Santisteban
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08190 Sant Cugat del Vallès, Spain; (C.M.); (N.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos, 3, 28029 Madrid, Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.L.); (D.A.Z.)
- Institut de Neurociències, Universitat de Barcelona (UBNeuro), 08035 Barcelona, Spain
- Correspondence: (G.N.); (R.F.); Tel.: +34-934021208 (R.F.)
| | - Rafael Franco
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
- School of Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (G.N.); (R.F.); Tel.: +34-934021208 (R.F.)
| |
Collapse
|
27
|
Guidolin D, Tortorella C, Marcoli M, Cervetto C, Maura G, Agnati LF. Receptor-Receptor Interactions and Glial Cell Functions with a Special Focus on G Protein-Coupled Receptors. Int J Mol Sci 2021; 22:8656. [PMID: 34445362 PMCID: PMC8395429 DOI: 10.3390/ijms22168656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
The discovery that receptors from all families can establish allosteric receptor-receptor interactions and variably associate to form receptor complexes operating as integrative input units endowed with a high functional and structural plasticity has expanded our understanding of intercellular communication. Regarding the nervous system, most research in the field has focused on neuronal populations and has led to the identification of many receptor complexes representing an important mechanism to fine-tune synaptic efficiency. Receptor-receptor interactions, however, also modulate glia-neuron and glia-glia intercellular communication, with significant consequences on synaptic activity and brain network plasticity. The research on this topic is probably still at the beginning and, here, available evidence will be reviewed and discussed. It may also be of potential interest from a pharmacological standpoint, opening the possibility to explore, inter alia, glia-based neuroprotective therapeutic strategies.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Chiara Cervetto
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
28
|
Oyagawa CRM, Grimsey NL. Cannabinoid receptor CB 1 and CB 2 interacting proteins: Techniques, progress and perspectives. Methods Cell Biol 2021; 166:83-132. [PMID: 34752341 DOI: 10.1016/bs.mcb.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cannabinoid receptors 1 and 2 (CB1 and CB2) are implicated in a range of physiological processes and have gained attention as promising therapeutic targets for a number of diseases. Protein-protein interactions play an integral role in modulating G protein-coupled receptor (GPCR) expression, subcellular distribution and signaling, and the identification and characterization of these will not only improve our understanding of GPCR function and biology, but may provide a novel avenue for therapeutic intervention. A variety of techniques are currently being used to investigate GPCR protein-protein interactions, including Förster/fluorescence and bioluminescence resonance energy transfer (FRET and BRET), proximity ligation assay (PLA), and bimolecular fluorescence complementation (BiFC). However, the reliable application of these methodologies is dependent on the use of appropriate controls and the consideration of the physiological context. Though not as extensively characterized as some other GPCRs, the investigation of CB1 and CB2 interacting proteins is a growing area of interest, and a range of interacting partners have been identified to date. This review summarizes the current state of the literature regarding the cannabinoid receptor interactome, provides commentary on the methodologies and techniques utilized, and discusses future perspectives.
Collapse
Affiliation(s)
- Caitlin R M Oyagawa
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
29
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
30
|
Duffy SS, Hayes JP, Fiore NT, Moalem-Taylor G. The cannabinoid system and microglia in health and disease. Neuropharmacology 2021; 190:108555. [PMID: 33845074 DOI: 10.1016/j.neuropharm.2021.108555] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Recent years have yielded significant advances in our understanding of microglia, the immune cells of the central nervous system (CNS). Microglia are key players in CNS development, immune surveillance, and the maintenance of proper neuronal function throughout life. In the healthy brain, homeostatic microglia have a unique molecular signature. In neurological diseases, microglia become activated and adopt distinct transcriptomic signatures, including disease-associated microglia (DAM) implicated in neurodegenerative disorders. Homeostatic microglia synthesise the endogenous cannabinoids 2-arachidonoylglycerol and anandamide and express the cannabinoid receptors CB1 and CB2 at constitutively low levels. Upon activation, microglia significantly increase their synthesis of endocannabinoids and upregulate their expression of CB2 receptors, which promote a protective microglial phenotype by enhancing their production of neuroprotective factors and reducing their production of pro-inflammatory factors. Here, we summarise the effects of the microglial cannabinoid system in the CNS demyelinating disease multiple sclerosis, the neurodegenerative diseases Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, chronic inflammatory and neuropathic pain, and psychiatric disorders including depression, anxiety and schizophrenia. We discuss the therapeutic potential of cannabinoids in regulating microglial activity and highlight the need to further investigate their specific microglia-dependent immunomodulatory effects.
Collapse
Affiliation(s)
- Samuel S Duffy
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Jessica P Hayes
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Nathan T Fiore
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Gila Moalem-Taylor
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, UNSW Sydney, NSW, 2052, Australia.
| |
Collapse
|
31
|
Heinbockel T, Bhatia-Dey N, Shields VDC. Endocannabinoid-mediated neuromodulation in the main olfactory bulb at the interface of environmental stimuli and central neural processing. Eur J Neurosci 2021; 55:1002-1014. [PMID: 33724578 DOI: 10.1111/ejn.15186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022]
Abstract
The olfactory system has become an important functional gateway to understand and analyze neuromodulation since olfactory dysfunction and deficits have emerged as prodromal and, at other times, as first symptoms of many of neurodegenerative, neuropsychiatric and communication disorders. Considering olfactory dysfunction as outcome of altered, damaged and/or inefficient olfactory processing, in the current review, we analyze how olfactory processing interacts with the endocannabinoid signaling system. In the human body, endocannabinoid synthesis is a natural and on-demand response to a wide range of physiological and environmental stimuli. Our current understanding of the response dynamics of the endocannabinoid system is based in large part on research advances in limbic system areas, such as the hippocampus and the amygdala. Functional interactions of this signaling system with olfactory processing and associated pathways are just emerging but appear to grow rapidly with multidimensional approaches. Recent work analyzing the crystal structure of endocannabinoid receptors bound to their agonists in a signaling complex has opened avenues for developing specific therapeutic drugs that could help with neuroinflammation, neurodegeneration, and alleviation/reduction of pain. We discuss the role of endocannabinoids as signaling molecules in the olfactory system and the relevance of the endocannabinoid system for synaptic plasticity.
Collapse
Affiliation(s)
- Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Naina Bhatia-Dey
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Vonnie D C Shields
- Biological Sciences Department, Fisher College of Science and Mathematics, Towson University, Towson, MD, USA
| |
Collapse
|
32
|
Chen C, Jiang Y, Yang F, Cai Q, Liu J, Wu Y, Lin H. Risk factors associated with suicide among hepatocellular carcinoma patients: A surveillance, epidemiology, and end results analysis. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2021; 47:640-648. [PMID: 33051117 PMCID: PMC7538389 DOI: 10.1016/j.ejso.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/02/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Throughout the world, hepatocellular carcinoma (HCC) remains the primary type of liver cancer. The suicide risk was higher among patients with HCC than the general population. Hence, the purpose of this study was to confirm the suicide rates, standardized mortality ratios (SMRs), and the potential risk factors associated with suicide among HCC patients. METHODS HCC patients were collected from the Surveillance, Epidemiology, and End Results (SEER) database during 1975-2016. Suicide rates and SMRs among these patients were calculated, and the general population of the United States (U.S.) during 1975-2016 was used as a reference. Univariable and multivariable Cox regression were taken to find out the underlying risk factors of suicide in HCC patients. RESULTS There were 70 suicides identified among 102,567 individuals with HCC observed for 160,500.88 person years. The suicide rate was 43.61 per 100,000 person-years, and SMR was 2.26 (95% CI: 1.78-2.84). On Cox regression, year of diagnosis (1975-1988 vs. 2003-2016, HR: 3.00, 95% CI: 1.01-8.89, P = 0.047; 1989-2002 vs. 2003-2016, HR: 1.92, 95% CI: 1.10-3.34, P = 0.021), gender (male vs. female, HR: 8.72, 95% CI: 2.73-27.81, P < 0.001), age at diagnosis (63-105 years old vs. 0-55 years old, HR: 2.28, 95% CI: 1.21-4.31, P = 0.011), race (white race vs. American Indian/Alaska Native, Asian/Pacific Islander, HR: 3.02, 95% CI: 1.35-6.76, P = 0.007) were independent risk factors of suicide among HCC patients. CONCLUSIONS Diagnosed in the early years (1975-2002), male sex, the older age (63-105 years old), white race, survival months (<2 months) were significantly associated with suicide among HCC patients. For the sake of preventing suicide behaviors, the government, clinicians, and family members should take adequate measures to decrease the rate of suicide, especially in patients with high-risk factors of suicide.
Collapse
Affiliation(s)
- Chongfa Chen
- Department of Hepatobiliary Surgery, Dongfang Hospital, Xiamen University, China
| | - Yi Jiang
- Department of Hepatobiliary Surgery, Dongfang Hospital, Xiamen University, China
| | - Fang Yang
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, China
| | - Qiucheng Cai
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, China
| | - Jianyong Liu
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, China
| | - Yushen Wu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, China.
| | - Huapeng Lin
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, China.
| |
Collapse
|
33
|
Zhao Y, Wang L, Edmiston EK, Womer FY, Jiang X, Wu F, Kong L, Zhou Y, Wang F, Tang Y, Wei S. Alterations in gray matter volumes and intrinsic activity in the prefrontal cortex are associated with suicide attempts in patients with bipolar disorder. Psychiatry Res Neuroimaging 2021; 307:111229. [PMID: 33242746 DOI: 10.1016/j.pscychresns.2020.111229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/13/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
Bipolar disorder (BD) is associated with increased suicidal behavior. Understanding the neural features of suicide attempts (SA) in patients with BD is critical to preventing suicidal behavior. The prefrontal cortex (PFC) is a key region related to SA. In this study, forty BD patients with a history of SA (BD+SA), 70 BD patients without a history of SA (BD-SA), and 110 individuals in a healthy control (HC) group underwent structural magnetic resonance imaging (MRI) and resting-state functional MRI. We used voxel-based morphometry (VBM) and amplitude of low frequency fluctuations (ALFF) techniques to examine the gray matter volumes (GMVs) and ALFF values in the PFC. Compared with the HC group, both the BD+SA and BD-SA groups had lower GMVs and higher ALFF values in the medial PFC (MPFC), ventral PFC (VPFC), and dorsolateral PFC (DLPFC). The ALFF values in the MPFC, VPFC, and DLPFC in the BD+SA group were significantly higher than those in the BD-SA group. These findings suggest that BD patients with SA have intrinsic activity abnormalities in PFC regions. This provides potentially identifiable neuroimaging markers in BD patients with SA that could be used to increase our understanding of suicidal behavior.
Collapse
Affiliation(s)
- Yimeng Zhao
- Department of Psychiatry, China Medical University, Shenyang, Liaoning, China; Department of Psychiatry, First Affiliated Hospital, China Medical University, 155 Nanjing North St., Shenyang, 110001, Liaoning, China; Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Lifei Wang
- Department of Psychiatry, China Medical University, Shenyang, Liaoning, China; Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Elliot K Edmiston
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Fay Y Womer
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Xiaowei Jiang
- Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China; Department of Radiology, First Affiliated Hospital, China Medical University, 155 Nanjing North St., Shenyang, 110001, Liaoning, China
| | - Feng Wu
- Department of Psychiatry, First Affiliated Hospital, China Medical University, 155 Nanjing North St., Shenyang, 110001, Liaoning, China
| | - Lingtao Kong
- Department of Psychiatry, First Affiliated Hospital, China Medical University, 155 Nanjing North St., Shenyang, 110001, Liaoning, China
| | - Yifang Zhou
- Department of Psychiatry, First Affiliated Hospital, China Medical University, 155 Nanjing North St., Shenyang, 110001, Liaoning, China; Department of Geriatric Medicine, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Fei Wang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, 155 Nanjing North St., Shenyang, 110001, Liaoning, China; Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China; Department of Radiology, First Affiliated Hospital, China Medical University, 155 Nanjing North St., Shenyang, 110001, Liaoning, China
| | - Yanqing Tang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, 155 Nanjing North St., Shenyang, 110001, Liaoning, China; Department of Geriatric Medicine, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.
| | - Shengnan Wei
- Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China; Department of Radiology, First Affiliated Hospital, China Medical University, 155 Nanjing North St., Shenyang, 110001, Liaoning, China.
| |
Collapse
|
34
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Kumar R, Bungau S. Integrating Endocannabinoid Signalling In Depression. J Mol Neurosci 2021; 71:2022-2034. [PMID: 33471311 DOI: 10.1007/s12031-020-01774-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Depression is a common mental disorder and is the leading cause of suicide globally. Because of the significant diversity in mental disorders, accurate diagnosis is difficult. Hence, the investigation of novel biomarkers is a key research perspective in psychotherapy to enable an individually tailored treatment approach. The prefrontal cortex (PFC) is a vital cortical region whose circuitry has been implicated in the development of depressive disorder. The endocannabinoid system (ECS) has garnered increasing attention because of its involvement in several diverse physiological brain processes including regulation of emotional, motivational and cognitive functions. The current review article explores the function of the key elements of the ECS as a biomarker in depressive disorder. The activity of endocannabinoids is thought to be moderated by the CB1 receptors in the central nervous system (CNS). Variations in the concentration of endocannabinoids and the binding affinity of CB1 receptors and their density have been identified in the PFC of persons with depression. Such discoveries support our theory that alteration in endocannabinoid function leads to the pathophysiological features of depressive disorders. Moreover, evidence from animal and human studies has revealed that dysfunction in endocannabinoid signalling can produce depression-like behaviours; therefore, improvement of endocannabinoid signalling may represent a new therapeutic approach for the management of depressive disorders.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Distt. Shimla, Government College of Pharmacy, Himachal Pradesh, Rohru, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ravinder Kumar
- Cardiovascular Research Institute, Icahn School of Medicine, New York, USA
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
35
|
Pérez-Olives C, Rivas-Santisteban R, Lillo J, Navarro G, Franco R. Recent Advances in the Potential of Cannabinoids for Neuroprotection in Alzheimer's, Parkinson's, and Huntington's Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1264:81-92. [PMID: 33332005 DOI: 10.1007/978-3-030-57369-0_6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three prevalent neurodegenerative diseases, Parkinson's, Alzheimer's, and Huntington's are in need of symptomatic relief of slowing disease progression or both. This chapter focuses on the potential of cannabinoids to afford neuroprotection, i.e. avoid or retard neuronal death. The neuroprotective potential of cannabinoids is known from the work in animal models and is mediated by the two cannabinoid receptors (CB1/CB2) and eventually, by their heteromers, GPR55, orphan receptors (GPR3/GPR6/GPR12/GPR18), or PPARγ. Now, there is the time to translate the findings into patients. The chapter takes primarily into account advances since 2016 and addresses the issue of proving neuroprotection in humans. One recent discovery is the existence of activated microglia with neuroprotective phenotype; cannabinoids are good candidates to skew phenotype, especially via glial CB2 receptors (CB2R), whose targeting has, a priori, less side effects those targeting the CBs1 receptor (CB1R), which are expressed in both neurons and glia. The fact that a cannabis extract (SativexTM) is approved for human therapy, such that cannabis use will likely be legalized in many countries and different possibilities that cannabinoid pharmacology suggests a successful route of cannabinoids (natural or synthetic) all the way to be approved and used in the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Catalina Pérez-Olives
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Rivas-Santisteban
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain
| | - Jaume Lillo
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain. .,Department Biochemistry and Physiology. Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain.
| | - Rafael Franco
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
36
|
Mannekote Thippaiah S, Iyengar SS, Vinod KY. Exo- and Endo-cannabinoids in Depressive and Suicidal Behaviors. Front Psychiatry 2021; 12:636228. [PMID: 33967855 PMCID: PMC8102729 DOI: 10.3389/fpsyt.2021.636228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cannabis (marijuana) has been known to humans for thousands of years but its neurophysiological effects were sparsely understood until recently. Preclinical and clinical studies in the past two decades have indisputably supported the clinical proposition that the endocannabinoid system plays an important role in the etiopathogeneses of many neuropsychiatric disorders, including mood and addictive disorders. In this review, we discuss the existing knowledge of exo- and endo-cannabinoids, and role of the endocannabinoid system in depressive and suicidal behavior. A dysfunction in this system, located in brain regions such as prefrontal cortex and limbic structures is implicated in mood regulation, impulsivity and decision-making, may increase the risk of negative mood and cognition as well as suicidality. The literature discussed here also suggests that the endocannabinoid system may be a viable target for treatments of these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Srinagesh Mannekote Thippaiah
- Valleywise Behavioral Health, Phoenix, AZ, United States.,Creighton University School of Medicine, Phoenix, AZ, United States
| | - Sloka S Iyengar
- The American Museum of Natural History, New York, NY, United States
| | - K Yaragudri Vinod
- Department of Analytical Psychopharmacology, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,Department of Child & Adolescent Psychiatry, New York University Langone Health, New York, NY, United States
| |
Collapse
|
37
|
Scherma M, Muntoni AL, Riedel G, Fratta W, Fadda P. Cannabinoids and their therapeutic applications in mental disorders
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 22:271-279. [PMID: 33162770 PMCID: PMC7605020 DOI: 10.31887/dcns.2020.22.3/pfadda] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mental disorders represent a significant public health burden worldwide due to their high prevalence, chronically disabling nature, and substantial impact on quality of life. Despite growing knowledge of the pathological mechanisms that underlie the development of these disorders, a high percentage of patients do not respond to first-line clinical treatments; thus, there is a strong need for alternative therapeutic approaches. During the past half-century, after the identification of the endocannabinoid system and its role in multiple physiological processes, both natural and synthetic cannabinoids have attracted considerable interest as putative medications in pathological conditions such as, but not exclusive to, mental disorders. Here, we provide a summary of cannabinoid effects in support of possible therapeutic applications for major depression, bipolar disorder, anxiety, posttraumatic stress disorder, and schizophrenia. Considering this evidence, highlighted benefits and risks of cannabinoid use in the management of these illnesses require further experimental study.
.
Collapse
Affiliation(s)
- Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Paola Fadda
- Author affiliations: Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy; Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom (Gernot Riedel); National Neuroscience Institute, Pisa, Italy
| |
Collapse
|
38
|
Wróbel A, Serefko A, Szopa A, Ulrich D, Poleszak E, Rechberger T. O-1602, an Agonist of Atypical Cannabinoid Receptors GPR55, Reverses the Symptoms of Depression and Detrusor Overactivity in Rats Subjected to Corticosterone Treatment. Front Pharmacol 2020; 11:1002. [PMID: 32733244 PMCID: PMC7360849 DOI: 10.3389/fphar.2020.01002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 11/21/2022] Open
Abstract
In view of the fact that GPR55 receptors are localized in brain areas implicated in the pathophysiology of depression, GPR55 gene expression is reduced in the dorsolateral prefrontal cortex of suicide victims, and GPR55 receptor agonism exerts an anxiolytic-like effect, GPR55 receptors have drawn our attention as a potential target in the treatment of mood disorders. Therefore, in the present study, we wanted to check whether a 7-day intravenous administration of O-1602 (0.25 mg/kg/day) – a phytocannabinoid-like analogue of cannabidiol that belongs to the agonists of GPR55 receptors, was able to reverse the corticosterone-induced depressive-like behavior accompanied by detrusor overactivity in female Wistar rats. Additionally, we tried to determine the influence of GPR55 stimulation on the bladder, hippocampal and urine levels of several biomarkers that play a role in the functioning of the urinary bladder and/or the pathophysiology of depression. Our experiments showed that O-1602 therapy improved signs of depression (measured by the forced swim test) and detrusor contractility (measured by conscious cystometry) in animals exposed to the corticosterone treatment. Moreover, the treatment reduced the oxidative damage in the urinary bladder and neuroinflammation (observed as the reduction of elevated levels of 3-NIT, MAL, and IL-1β, TNF-α, CRF, respectively). The O-1602 treatment also reversed the abnormal changes in the bladder, hippocampal or urine values of CGRP, OCT3, VAChT, BDNF, and NGF. The above-mentioned findings allow to suggest that in the future the modulation of atypical cannabinoid receptors GPR55 could have a potential role in the treatment of depression and overactive bladder.
Collapse
Affiliation(s)
- Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Anna Serefko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Szopa
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Daniela Ulrich
- Department of Obstetrics and Gynaecology, Medical University Graz, Graz, Germany
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Tomasz Rechberger
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
39
|
Banaszkiewicz I, Biala G, Kruk-Slomka M. Contribution of CB2 receptors in schizophrenia-related symptoms in various animal models: Short review. Neurosci Biobehav Rev 2020; 114:158-171. [PMID: 32437746 DOI: 10.1016/j.neubiorev.2020.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022]
Abstract
Schizophrenia is a severe and chronic mental disease with a high prevalence and a variety of symptoms. Data from behavioural studies suggest that it is rational to investigate the endocannabinoid system (ECS) and its cannabinoid receptor (CBr) because they seem to underlie susceptibility to schizophrenia, and these findings have pointed to several lines of future research. Currently, most available studies address the role of CBr type 1 in schizophrenia-like responses. Here, we present for the first time, a review that demonstrates the pivotal role of CBr type 2 in the regulation of neurobiological processes underlying cognition, psychosis- and mood-related (anxiety, depression) behaviours, all of which may be included in schizophrenia symptoms. This review is based on available evidence from the PubMed database regarding schizophrenia-like symptoms induced via CB2r modulation in various animal models. The data presented in this manuscript indicate that CB2r could be a promising new key target in the treatment of different central nervous system (CNS) disorders, which manifest as psychosis, mood-related disturbances and/or memory impairment.
Collapse
Affiliation(s)
- Izabela Banaszkiewicz
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland.
| |
Collapse
|
40
|
Endocannabinoid-Mediated Neuromodulation in the Olfactory Bulb: Functional and Therapeutic Significance. Int J Mol Sci 2020; 21:ijms21082850. [PMID: 32325875 PMCID: PMC7216281 DOI: 10.3390/ijms21082850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Endocannabinoid synthesis in the human body is naturally occurring and on-demand. It occurs in response to physiological and environmental stimuli, such as stress, anxiety, hunger, other factors negatively disrupting homeostasis, as well as the therapeutic use of the phytocannabinoid cannabidiol and recreational use of exogenous cannabis, which can lead to cannabis use disorder. Together with their specific receptors CB1R and CB2R, endocannabinoids are major components of endocannabinoid-mediated neuromodulation in a rapid and sustained manner. Extensive research on endocannabinoid function and expression includes studies in limbic system structures such as the hippocampus and amygdala. The wide distribution of endocannabinoids, their on-demand synthesis at widely different sites, their co-existence in specific regions of the body, their quantitative differences in tissue type, and different pathological conditions indicate their diverse biological functions that utilize specific and overlapping pathways in multiple organ systems. Here, we review emerging evidence of these pathways with a special emphasis on the role of endocannabinoids in decelerating neurodegenerative pathology through neural networks initiated by cells in the main olfactory bulb.
Collapse
|
41
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
42
|
Pelassa S, Guidolin D, Venturini A, Averna M, Frumento G, Campanini L, Bernardi R, Cortelli P, Buonaura GC, Maura G, Agnati LF, Cervetto C, Marcoli M. A2A-D2 Heteromers on Striatal Astrocytes: Biochemical and Biophysical Evidence. Int J Mol Sci 2019; 20:ijms20102457. [PMID: 31109007 PMCID: PMC6566402 DOI: 10.3390/ijms20102457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Our previous findings indicate that A2A and D2 receptors are co-expressed on adult rat striatal astrocytes and on the astrocyte processes, and that A2A-D2 receptor–receptor interaction can control the release of glutamate from the processes. Functional evidence suggests that the receptor–receptor interaction was based on heteromerization of native A2A and D2 receptors at the plasma membrane of striatal astrocyte processes. We here provide biochemical and biophysical evidence confirming that receptor–receptor interaction between A2A and D2 receptors at the astrocyte plasma membrane is based on A2A-D2 heteromerization. To our knowledge, this is the first direct demonstration of the ability of native A2A and D2 receptors to heteromerize on glial cells. As striatal astrocytes are recognized to be involved in Parkinson’s pathophysiology, the findings that adenosine A2A and dopamine D2 receptors can form A2A-D2 heteromers on the astrocytes in the striatum (and that these heteromers can play roles in the control of the striatal glutamatergic transmission) may shed light on the molecular mechanisms involved in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Simone Pelassa
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Via Gabelli 63, 35122 Padova, Italy.
| | - Arianna Venturini
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Monica Averna
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy.
| | - Giulia Frumento
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Letizia Campanini
- Division of Experimental Oncology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy.
| | - Rosa Bernardi
- Division of Experimental Oncology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy.
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM) Alma Mater Studiorum-University of Bologna, Via Altura 3, 40139 Bologna, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139 Bologna, Italy.
| | - Giovanna Calandra Buonaura
- Department of Biomedical and NeuroMotor Sciences (DIBINEM) Alma Mater Studiorum-University of Bologna, Via Altura 3, 40139 Bologna, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139 Bologna, Italy.
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Luigi F Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 65 Stockholm, Sweden.
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
- Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy.
| |
Collapse
|
43
|
Jordan CJ, Xi ZX. Progress in brain cannabinoid CB 2 receptor research: From genes to behavior. Neurosci Biobehav Rev 2019; 98:208-220. [PMID: 30611802 PMCID: PMC6401261 DOI: 10.1016/j.neubiorev.2018.12.026] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 01/01/2023]
Abstract
The type 2 cannabinoid receptor (CB2R) was initially regarded as a peripheral cannabinoid receptor. However, recent technological advances in gene detection, alongside the availability of transgenic mouse lines, indicate that CB2Rs are expressed in both neurons and glial cells in the brain under physiological and pathological conditions, and are involved in multiple functions at cellular and behavioral levels. Brain CB2Rs are inducible and neuroprotective via up-regulation in response to various insults, but display species differences in gene and receptor structures, CB2R expression, and receptor responses to various CB2R ligands. CB2R transcripts also differ between the brain and spleen. In the brain, CB2A is the major transcript isoform, while CB2A and CB2B transcripts are present at higher levels in the spleen. These new findings regarding brain versus spleen CB2R isoforms may in part explain why early studies failed to detect brain CB2R gene expression. Here, we review evidence supporting the expression and function of brain CB2R from gene and receptor levels to cellular functioning, neural circuitry, and animal behavior.
Collapse
Affiliation(s)
- Chloe J Jordan
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
44
|
Franco R, Villa M, Morales P, Reyes-Resina I, Gutiérrez-Rodríguez A, Jiménez J, Jagerovic N, Martínez-Orgado J, Navarro G. Increased expression of cannabinoid CB 2 and serotonin 5-HT 1A heteroreceptor complexes in a model of newborn hypoxic-ischemic brain damage. Neuropharmacology 2019; 152:58-66. [PMID: 30738036 DOI: 10.1016/j.neuropharm.2019.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/07/2018] [Accepted: 02/04/2019] [Indexed: 12/21/2022]
Abstract
Preclinical work shows cannabidiol as a promising drug to manage neonatal hypoxic-ischemic brain damage (NHIBD). The molecular mechanism is not well defined but the beneficial effects of this phytocannabinoid are blocked by antagonists of both cannabinoid CB2 (CB2R) and serotonin 5-HT1A (5-HT1AR) receptors that, in addition, may form heteromers in a heterologous expression system. Using bioluminescence energy transfer, we have shown a direct interaction of the two receptors that leads to a particular signaling in a heterologous system. A property attributed to the heteromer, namely cross-antagonism, was found in primary cultures of neurons thus indicating the occurrence of the receptor heteromer in the CNS. Oxygen-glucose deprivation to neurons led to an increase of CB2R-mediated signaling and an upregulation of CB2-5-HT1A heteroreceptor complex expression. In situ proximity ligation assays in brain cortical sections were performed to compare the expression of CB2-5-HT1A complexes in rat E20 fetuses and at different postnatal days. The expression, which is elevated in fetus and shortly after birth, was sharply reduced at later ages (even at P7). The expression of heteromer receptors was more marked in a model of NHIBD and, remarkably, the drop in expression was significantly delayed with respect to controls. These results indicate that CB2-5-HT1A heteroreceptor complex may be considered as a target in the therapy of the NHIBD. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.
| | - María Villa
- Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Irene Reyes-Resina
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Ana Gutiérrez-Rodríguez
- Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Jasmina Jiménez
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Department of Biochemistry and Physiology. Facultat de Farmàcia. Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
45
|
Martínez-Pinilla E, Aguinaga D, Navarro G, Rico AJ, Oyarzábal J, Sánchez-Arias JA, Lanciego JL, Franco R. Targeting CB 1 and GPR55 Endocannabinoid Receptors as a Potential Neuroprotective Approach for Parkinson's Disease. Mol Neurobiol 2019; 56:5900-5910. [PMID: 30687889 DOI: 10.1007/s12035-019-1495-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/11/2019] [Indexed: 12/29/2022]
Abstract
Cannabinoid CB1 receptors (CB1R) and the GPR55 receptor are expressed in striatum and are potential targets in the therapy of Parkinson's disease (PD), one of the most prevalent neurodegenerative diseases in developed countries. The aim of this paper was to address the potential of ligands acting on those receptors to prevent the action of a neurotoxic agent, MPP+, that specifically affects neurons of the substantia nigra due to uptake via the dopamine DAT transporter. The SH-SY5Y cell line model was used as it expresses DAT and, therefore, is able to uptake MPP+ that inhibits complex I of the respiratory mitochondrial chain and leads to cell death. Cells were transfected with cDNAs coding for either or both receptors. Receptors in cotransfected cells formed heteromers as indicated by the in situ proximity ligation assays. Cell viability was assayed by oxygen rate consumption and by the bromide-based MTT method. Assays of neuroprotection using two concentrations of MPP+ showed that cells expressing receptor heteromers were more resistant to the toxic effect. After correction by effects on cell proliferation, the CB1R antagonist, SR141716, afforded an almost full neuroprotection in CB1R-expressing cells even when a selective agonist, ACEA, was present. In contrast, SR141716 was not effective in cells expressing CB1/GPR55 heteromeric complexes. In addition, an agonist of GPR55, CID1792197, did not enhance neuroprotection in GPR55-expressing cells. These results show that neurons expressing heteromers are more resistant to cell death but question the real usefulness of CB1R, GPR55, and their heteromers as targets to afford PD-related neuroprotection.
Collapse
Affiliation(s)
- Eva Martínez-Pinilla
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Julián Clavería s/n, 33006, Oviedo, Asturias, Spain.
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Asturias, Spain.
- Instituto de Salud del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| | - David Aguinaga
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Diagonal 643, Prevosti Building, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona. IBUB, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Navarro
- Institut de Biomedicina de la Universitat de Barcelona. IBUB, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Alberto J Rico
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Neurosciences Division, Centre for Applied Medical Research, CIMA, University of Navarra, Avenida Pío XII, 55, 31008, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Julen Oyarzábal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Juan A Sánchez-Arias
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - José Luis Lanciego
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Neurosciences Division, Centre for Applied Medical Research, CIMA, University of Navarra, Avenida Pío XII, 55, 31008, Pamplona, Spain.
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain.
| | - Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Diagonal 643, Prevosti Building, 08028, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona. IBUB, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|