1
|
Nordmann P, Helsens N, Kieffer N, Tinguely C, Greub G, Poirel L. Rapid detection of β-lactamase activity using the rapid Amp NP test. Microbiol Spectr 2025; 13:e0078224. [PMID: 40047444 PMCID: PMC11960058 DOI: 10.1128/spectrum.00782-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/10/2025] [Indexed: 04/03/2025] Open
Abstract
Urinary tract infections (UTIs) are the most common bacterial infections in humans. They are mainly caused by Escherichia coli and other Enterobacterales for which increasing resistance to antibiotics and in particular to β-lactams is extensively reported. The detection of β-lactam resistance phenotypes is currently time-consuming (18 h). Hence, most treatments are given without any results of antibiotic susceptibility testing and may involve broad-spectrum antibiotics. A biochemical diagnostic test has been developed to rapidly evaluate the production of β-lactamases (and consequently the β-lactam resistance) from cultures (104 and 105 CFU/mL) of Gram-positive and Gram-negative isolates representative of bacterial species as a source of UTIs (n = 112). It relies on a centrifugation step after a 90 min preliminary culture and the detection of β-lactamase activity with nitrocefin as substrate using a special filter. Overall, the test gave a positive result for 87.6% of the tested resistant strains with a bacterial load of 105 CFU/mL, and a positive result for 100% of tested extended-spectrum β-lactamases and for carbapenemase producers at the same load. This cost-effective test can be performed in any laboratory and ultimately shall be tested at the patient side and at the general practitioner. Its turn-around-time to get results is less than 2 h. After further improvements, the results obtained with this proof-of-concept test suggest that its use may contribute to rapidly guide the treatment of non-complicated UTIs and, therefore, limit the use of broad-spectrum antibiotics and the emergence of antibiotic resistance. IMPORTANCE This work reports on a totally novel diagnostic technique, the Rapid Amp NP test for the identification of amoxicillin/ampicillin resistance in bacteria that are sources of non-complicated urinary tract infections. Those preliminary results obtained with cultured bacteria are promising. We believe its future use may contribute to reconsider aminopenicillins as a first line therapy for treating UTI infections. The corresponding patent of this test obtained both for the United States and Europe may contribute to its further industrialization.
Collapse
Affiliation(s)
- Patrice Nordmann
- European Institute for Emerging Antibiotic Resistance, University of Fribourg, Fribourg, Switzerland
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
- Institute for Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Helsens
- European Institute for Emerging Antibiotic Resistance, University of Fribourg, Fribourg, Switzerland
- Clinical Microbiology Unit, Pasteur Institute of Lille, Lille, France
| | - Nicolas Kieffer
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Camille Tinguely
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Gilbert Greub
- Institute for Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurent Poirel
- European Institute for Emerging Antibiotic Resistance, University of Fribourg, Fribourg, Switzerland
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Mumin YM, Yüksel G, Özad Düzgün A. Investigation of virulence factor genes and biofilm formation of antibiotic resistant clinical E.coli isolates. Microb Pathog 2025; 199:107257. [PMID: 39725043 DOI: 10.1016/j.micpath.2024.107257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/26/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE The aim of this study is to investigate the antibiotic sensitivity, presence of virulence genes and biofilm formation capacity of 90 clinical E. coli isolates. METHODS The presence of virulence genes in E.coli isolates were investigated by PCR. Ninety clinical isolates of E.coli were subjected to biofilm quantitative analysis using the semi-quantitative crystal violet staining method. RESULTS it was observed that the isolates were resistant to quinolone, cephalosporin, aminoglycoside, carbapenem and penicillin group antibiotics. The presence of virulence factor genes were observed in a total of 86/90 E. coli. The highest rate of fim (92.2 %) virulence factor gene was detected in the strains. Afa, pap, cnf, sfa, hly were detected in 30 %, 13 %, 13 %, 3.3 %, 2.2 % respectively. Also, 13 different virulence factor gene patterns were determined in 90 E. coli isolates. Of the 90 E. coli isolates whose biofilm-forming capacities were evaluated, 42 were found to have biofilm-forming capacity. Of these 26 (28.8 %) the weak, 12 (13.3 %) moderate and 4 (4.4 %) strong biofilm-forming. Also, statistical analysis was performed to investigate the relationship between virulence factor genes and biofilm formation, and none of the 7 genes analyzed showed a significant relationship with biofilm formation. CONCLUSION since pathogenic E. coli is an important public health problem, investigating antibiotic resistance, virulence factor genes and biofilm formation in bacterial pathogens is important for better treatment options.
Collapse
Affiliation(s)
- Yahye Mohamud Mumin
- Department of Biotechnology, Institute of Graduate Education, Gumushane University, Gümüşhane, Turkey
| | - Gamze Yüksel
- Department of Biotechnology, Institute of Graduate Education, Gumushane University, Gümüşhane, Turkey; Bursa City Hospital, Bursa, Turkey
| | - Azer Özad Düzgün
- Department of Occupational Health and Safety, Faculty of Health Sciences, Gumushane University, Gümüşhane, Turkey.
| |
Collapse
|
3
|
Vlad MA, Lixandru BE, Muntean AA, Trandafir I, Luncă C, Tuchiluş C. The First Report of mcr-1-Carrying Escherichia coli, Isolated from a Clinical Sample in the North-East of Romania. Microorganisms 2024; 12:2461. [PMID: 39770664 PMCID: PMC11679583 DOI: 10.3390/microorganisms12122461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Colistin resistance poses a significant clinical challenge, particularly in Gram-negative bacteria. This study investigates the occurrence of plasmid-mediated colistin resistance among Enterobacterales isolates (Escherichia coli, Klebsiella pneumoniae, and Enterobacter spp.) and non-fermentative rods (Acinetobacter baumannii and Pseudomonas aeruginosa). We analyzed 114 colistin-resistant isolates that were selected, based on resistance phenotypes, and isolated between 2019 and 2023. To achieve this, we used the rapid immunochromatographic test, NG-Test® MCR-1; multiplex PCR for mcr-1 to mcr-8, and real-time PCR for mcr-1 and mcr-2. One E. coli isolate was identified as carrying the mcr-1 gene, confirmed by NG-Test® MCR-1, multiplex PCR and whole-genome sequencing. This strain, belonging to ST69, harbored four plasmids, harboring different antimicrobial resistance genes, with mcr-1 being located on a 33,304 bp circular IncX4 plasmid. No mcr-2 to mcr-8-positive isolates were detected, prompting further investigation into alternative colistin resistance mechanisms. This is the first report of a mcr-1-positive, colistin-resistant E. coli isolated from a human clinical sample in the North-East of Romania.
Collapse
Affiliation(s)
- Mădălina-Alexandra Vlad
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania; (M.-A.V.); (C.L.); (C.T.)
- Medical Analysis Laboratory, “St. Spiridon” County Clinical Emergency Hospital Iași, 700111 Iași, Romania
| | - Brîndușa-Elena Lixandru
- Cantacuzino National Medical-Military Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania;
| | - Andrei-Alexandru Muntean
- Cantacuzino National Medical-Military Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania;
- Department of Microbiology II, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Bld. Eroilor Sanitari, 050474 Bucharest, Romania
| | - Irina Trandafir
- Regional Institute of Oncology (IRO), 2-4 G-ral Berthelot Street, 700483 Iași, Romania;
| | - Cătălina Luncă
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania; (M.-A.V.); (C.L.); (C.T.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iași, Romania
| | - Cristina Tuchiluş
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania; (M.-A.V.); (C.L.); (C.T.)
- Medical Analysis Laboratory, “St. Spiridon” County Clinical Emergency Hospital Iași, 700111 Iași, Romania
| |
Collapse
|
4
|
Golpasand T, Keshvari M, Behzadi P. Distribution of chaperone-usher fimbriae and curli fimbriae among uropathogenic Escherichia coli. BMC Microbiol 2024; 24:344. [PMID: 39271999 PMCID: PMC11401301 DOI: 10.1186/s12866-024-03472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND In the present study, we aimed to determine the frequency of the csgA, fimH, mrkD, foc, papaGI, papGII and papGIII genes, to provide and to design fimbrial adhesin gene (FAG) patterns and profiles for the isolated uropathogenic Escherichia coli (UPEC) strains. METHODS The enrollment of 108 positive urine samples was performed during seven months, between January 2022 and July 2022. The UPEC strains were confirmed through the standard microbiological and biochemical tests. The antimicrobial susceptibility test was performed through the Kirby-Bauer disc diffusion method. Molecular screening of FAGs was done through the polymerase chain reaction technology. The statistical analyses including chi square and Fisher's exact tests were performed to interpret the obtained results in the present study. RESULTS As the main results, the antimicrobial resistance (AMR) patterns, multi- (MDR) and extensively drug-resistance (XDR) patterns and FAG patterns were designed and provided. fimH (93.3%), csgA (90.4%) and papG (37.5%) (papGII (30.8%)) genes were recognized as the top three FAGs, respectively. Moreover, the frequency of csgA-fimH gene profile was identified as the top FAG pattern (46.2%) among the others. The isolates bearing csgA-fimH gene profile were armed with a versatile of phenotypic AMR patterns. In the current study, 27.8%, 69.4% and 1.9% of the UPEC isolates were detected as extended-spectrum ß-lactamases (ESBLs) producers, MDR and XDR strains, respectively. CONCLUSIONS In conclusion, detection, providing and designing of patterns and profiles in association with FAGs, AMR feature in UPEC strains give us an effective option to have a successful and influential prevention for both of UTIs initiation and AMR feature.
Collapse
Affiliation(s)
- Taha Golpasand
- Department of Microbiology, Shahr-E-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran
| | - Mohammad Keshvari
- Department of Microbiology, Shahr-E-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran
| | - Payam Behzadi
- Department of Microbiology, Shahr-E-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran.
| |
Collapse
|
5
|
Naziri Z, Derakhshandeh A, Hajirajabi M, Abbasi F, Moezzi MS, Shirmohamadi Sosfad A. Molecular typing and virulence characteristics of Escherichia coli strains isolated from hospital and community acquired urinary tract infections. Mol Biol Rep 2024; 51:509. [PMID: 38622237 DOI: 10.1007/s11033-024-09485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND The main causes of hospital- and community-acquired urinary tract infections (UTIs) are a group of Escherichia coli (E. coli) strains with multiple virulence factors known as uropathogenic E. coli. METHODS AND RESULTS One hundred E. coli isolates from the urine specimens of hospital- and community-acquired UTI patients were characterized based on their virulence factors and genetic relatedness using PCR and RAPD‒PCR, respectively. Among all, the traT (71%), sitA (64%), ompT (54%), malX (49%), ibeA (44%), tsh (39%), hlyD (18%) and cnf1 (12%) genes had the highest to lowest frequencies, respectively. There was no significant difference between the frequency of tested virulence genes in E. coli isolates from inpatients and outpatients. The frequency of the hlyD gene was significantly greater in E. coli isolates from patients hospitalized in gynecology, dermatology and intensive care unit (ICU) wards than in those from other wards. Eight virulence gene patterns were common among the isolates of inpatients in different wards of the same hospital, of which five patterns belonged to the isolates of inpatients in the same ward. More E. coli isolates with similar virulence gene patterns and greater genetic similarity were found in female patients than in male patients. The analysis of the RAPD‒PCR dendrograms revealed more genetic similarities among the E. coli isolates from inpatients than among those from outpatients. CONCLUSION Our findings indicate the presence of a wide variety of virulence factors in E. coli isolates and the possibility of spreading the same clones in different wards of the hospital.
Collapse
Affiliation(s)
- Zahra Naziri
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran.
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran
| | - Maryam Hajirajabi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran
| | - Fatemeh Abbasi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran
| | - Maryam Sadat Moezzi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran
| | | |
Collapse
|
6
|
Pourmoshtagh H, Halaji M, Ranjbar S, Ranjbar R. Molecular characterization of ESBL-producing uropathogenic Escherichia coli isolates among kidney transplant patients: Emergence and spread of B2-ST131 clone type. Heliyon 2024; 10:e27339. [PMID: 38510019 PMCID: PMC10951548 DOI: 10.1016/j.heliyon.2024.e27339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
This study was conducted to identify the distribution of virulence determinants in uropathogenic Escherichia coli (UPEC) isolates obtained from kidney transplant (KTP) and non-transplant patients (non-KTP) with urinary tract infections (UTI). Additionally, the (GTG)5 fingerprinting technique was used to investigate the genetic diversity of Extended-Spectrum B-Lactamase (ESBL)-positive isolates. In this case-control study, 111 urine isolates were obtained from non-KTPs and KTPs, respectively. The presence of genetic markers encoding adhesion proteins, toxins and major E. coli phylogroups was assessed through PCR amplification. Molecular typing of ESBL-positive UPEC strains was performed using (GTG)5 fingerprinting and Multilocus sequence typing (MLST) techniques. Overall, 65 and 46 UPEC isolates were obtained from non-KTPs and KTPs, respectively. Among the studied isolates, traT (85.6%) gene was the most frequently observed virulence gene, followed by kpsMT (49.5%). Using the 80% cut-off point, all the 35 UPEC isolates were classified into four major clusters, namely A, B, C, and D. The majority of the Sequence Type (ST) 131 isolates belonged to cluster A. Additionally, three ST1193 isolates belonged to cluster A and phylogroup B2. Moreover, ST38, ST131 and ST10 were in different cluster. In general, we observed significant differences in the papA, ompT, sat, and vat genes between KTPs and non-KTPs. Furthermore, since all the isolates carried one or more virulence factors (VFs), these findings are concerning in the context of managing UTIs caused by the UPEC strain. Additionally, the distribution of ST and Clonal Complex (CC) among isolates in the main clusters revealed significant differences between MLST and (GTG)5 fingerprinting analysis.
Collapse
Affiliation(s)
- Hassan Pourmoshtagh
- Department of Pediatrics, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Microbiology and Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sina Ranjbar
- Department of Microbiology, Shahr‐e‐Qods Branch, Islamic Azad University, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Jirillo E, Palmirotta R, Colella M, Santacroce L. A Bird's-Eye View of the Pathophysiologic Role of the Human Urobiota in Health and Disease: Can We Modulate It? PATHOPHYSIOLOGY 2024; 31:52-67. [PMID: 38390942 PMCID: PMC10885084 DOI: 10.3390/pathophysiology31010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
For a long time, urine has been considered sterile in physiological conditions, thanks to the particular structure of the urinary tract and the production of uromodulin or Tamm-Horsfall protein (THP) by it. More recently, thanks to the development and use of new technologies, i.e., next-generation sequencing and expanded urine culture, the identification of a microbial community in the urine, the so-called urobiota, became possible. Major phyla detected in the urine are represented by Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Particularly, the female urobiota is largely represented by Lactobacillus spp., which are very active against urinary pathogenic Escherichia (E.) coli (UPEC) strains via the generation of lactic acid and hydrogen peroxide. Gut dysbiosis accounts for recurrent urinary tract infections (UTIs), so-called gut-bladder axis syndrome with the formation of intracellular bacterial communities in the course of acute cystitis. However, other chronic urinary tract infections are caused by bacterial strains of intestinal derivation. Monomicrobial and polymicrobial infections account for the outcome of acute and chronic UTIs, even including prostatitis and chronic pelvic pain. E. coli isolates have been shown to be more invasive and resistant to antibiotics. Probiotics, fecal microbial transplantation, phage therapy, antimicrobial peptides, and immune-mediated therapies, even including vaccines for the treatment of UTIs, will be described.
Collapse
Affiliation(s)
- Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.J.); (R.P.); (L.S.)
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.J.); (R.P.); (L.S.)
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.J.); (R.P.); (L.S.)
- Doctoral School, eCampus University, 22060 Novedrate, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.J.); (R.P.); (L.S.)
| |
Collapse
|
8
|
Wang L, Guan Y, Lin X, Wei J, Zhang Q, Zhang L, Tan J, Jiang J, Ling C, Cai L, Li X, Liang X, Wei W, Li RM. Whole-Genome Sequencing of an Escherichia coli ST69 Strain Harboring blaCTX-M-27 on a Hybrid Plasmid. Infect Drug Resist 2024; 17:365-375. [PMID: 38318209 PMCID: PMC10840416 DOI: 10.2147/idr.s427571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Objective Escherichia coli is a common Gram-negative human pathogen. The emergence of E. coli with multiple-antibiotic-resistant phenotypes has become a serious health concern. This study reports the whole-genome sequences of third-generation cephalosporin-resistant (3GC-R) and multidrug-resistant (MDR) E. coli EC6868 and explores the acquired antibiotic-resistance genes (ARGs) as well as their genetic contexts. Methods E. coli EC6868 was isolated from a vaginal secretion sample of a pregnant patient in China. The antimicrobial susceptibility was assessed, and whole-genome sequencing was conducted. The acquired ARGs, insertion sequence (IS) elements, and integrons within the genome of E. coli EC6868 were identified, and the genetic contexts associated with the ARGs were analyzed systematically. Results E. coli EC6868 was determined to belong to ST69 and harbored a 144.9-kb IncF plasmid (pEC6868-1) with three replicons (Col156, IncFIBAP001918, and IncFII). The ESBL gene blaCTX-M-27 was located on the structure "∆ISEcp1-blaCTX-M-27-IS903B", which was widely present in the species of Enterobacteriales. Other ARGs carried by plasmid pEC6868-1 were mainly located on the 18.9-kb IS26-composite transposon (five copies of intact IS26 and one copy of truncated IS26) composing of IS26-mphA-mrx(A)-mphR(A)-IS6100, ∆TnAs3-eamA-tet(A)-tetR(A)-aph(6)-Id-aph(3")-Ib-sul2-IS26, and a class 1 integron, which was widely present on IncF plasmids of E. coli, mainly distributed in ST131, ST38, and ST405. Notably, pEC6868 in our study was the first report on a plasmid harboring the 18.9-kb structure in E. coli ST69 in China. Conclusion The 3GC-R E. coli ST69 strain with an MDR IncF plasmid carrying blaCTX-M-27 and other ARGs, conferring resistance to aminoglycosides, macrolides, sulfonamides, tetracycline, and trimethoprim, was identified in a hospital in China. Mobile genetic elements including ISEcp1, IS903B, IS26, Tn3, IS6100 and class 1 integron were found within the MDR region, which could play important roles in the global dissemination of these resistance genes.
Collapse
Affiliation(s)
- Ling Wang
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Yuee Guan
- Department of Cardiology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Xu Lin
- Department of Gastrointestinal Surgery, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Jie Wei
- Department of Clinical Laboratory, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Qinghuan Zhang
- Department of Clinical Laboratory, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Limei Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Jing Tan
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Jie Jiang
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Caiqin Ling
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Lei Cai
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Xiaobin Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Xiong Liang
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Wei Wei
- Department of Cardiothoracic Surgery, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Rui-Man Li
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China
| |
Collapse
|
9
|
Flores-Oropeza MA, Ochoa SA, Cruz-Córdova A, Chavez-Tepecano R, Martínez-Peñafiel E, Rembao-Bojórquez D, Zavala-Vega S, Hernández-Castro R, Flores-Encarnacion M, Arellano-Galindo J, Vélez D, Xicohtencatl-Cortes J. Comparative genomic analysis of uropathogenic Escherichia coli strains from women with recurrent urinary tract infection. Front Microbiol 2024; 14:1340427. [PMID: 38328583 PMCID: PMC10848155 DOI: 10.3389/fmicb.2023.1340427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Recurrent urinary tract infections (RUTIs) caused by uropathogenic Escherichia coli are costly public health problems impacting patients' quality of life. Aim In this work, a comparative genomics analysis of three clinical RUTI strains isolated from bladder biopsy specimens was performed. Materials and methods One hundred seventy-two whole genomes of urinary tract E. coli strains were selected from the NCBI database. The search for virulence factors, fitness genes, regions of interest, and genetic elements associated with resistance was manually carried out. The phenotypic characterization of antibiotic resistance, haemolysis, motility, and biofilm formation was performed. Moreover, adherence and invasion assays with human bladder HTB-5 cells, and transmission electron microscopy (TEM) were performed. Results The UTI-1_774U and UTI-3_455U/ST1193 strains were associated with the extraintestinal pathotypes, and the UTI-2_245U/ST295 strain was associated with the intestinal pathotype, according to a phylogenetic analysis of 172 E. coli urinary strains. The three RUTI strains were of clinical, epidemiological, and zoonotic relevance. Several resistance genes were found within the plasmids of these strains, and a multidrug resistance phenotype was revealed. Other virulence genes associated with CFT073 were not identified in the three RUTI strains (genes for type 1 and P fimbriae, haemolysin hlyA, and sat toxin). Quantitative adherence analysis showed that UTI-1_774U was significantly (p < 0.0001) more adherent to human bladder HTB-5 cells. Quantitative invasion analysis showed that UTI-2_245U was significantly more invasive than the control strains. No haemolysis or biofilm activity was detected in the three RUTI strains. The TEM micrographs showed the presence of short and thin fimbriae only in the UTI-2_245U strain. Conclusion The high variability and genetic diversity of the RUTI strains indicate that are a mosaic of virulence, resistance, and fitness genes that could promote recurrence in susceptible patients.
Collapse
Affiliation(s)
- Marco A. Flores-Oropeza
- Posgrado en Ciencias Biomédicas, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Sara A. Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | | | - Eva Martínez-Peñafiel
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Daniel Rembao-Bojórquez
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City, Mexico
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City, Mexico
- Laboratorio Clínico y Banco de Sangre, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City, Mexico
| | - Rigoberto Hernández-Castro
- Departmento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Mexico City, Mexico
| | - Marcos Flores-Encarnacion
- Laboratorio de Microbiología Molecular y Celular, Biomedicina, Facultad de Medicina, BUAP, Puebla, Mexico
| | - José Arellano-Galindo
- Laboratorio de Virología Clínica y Experimental, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Daniel Vélez
- Hospital Militar de Especialidades de la Mujer y Neonatología, Mexico City, Mexico
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 3 IMSS, Mexico City, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
10
|
Kumar G, Kumar Y, Kumar G, Tahlan AK. Characterization of uropathogenic E. coli from various geographical locations in India. J Taibah Univ Med Sci 2023; 18:1527-1535. [PMID: 37693820 PMCID: PMC10492208 DOI: 10.1016/j.jtumed.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 09/12/2023] Open
Abstract
Objectives Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infection, accounting for more than 80% of cases worldwide. This study presents data on prevalent serotypes, resistance profiles, and colonization-aiding virulence characteristics of UPEC from different geographical regions in India. Methods UPEC were serotyped through microtiter plate agglutination. Standard techniques were used to detect various virulence characteristics, i.e., biofilm formation (tissue culture plate method), siderophore production (screened on Chrome Azurol S agar and categorized with Csaky's and Arnow's methods), colicin release (agar overlay technique), gelatin hydrolysis (on gelatinase agar), and cell surface hydrophobicity (salt aggregation method). Antibiotic resistance profiles (against 20 antimicrobial agents) and extended-spectrum beta-lactamase (ESBL) were evaluated according to Clinical and Laboratory Standards Institute guidelines. Results UPEC strains exhibited very high drug resistance rates to most of the commonly used antimicrobial agents; the highest resistance rates were observed for ampicillin (63.4%), nalidixic acid (63.4%), and cefotaxime (62.1%). High rates of multi-drug resistance (63.36%), ESBL-production (34.1%), and carbapenem-resistance (25.0%) were detected in UPEC strains from all geographical regions of India. Hydrophobicity (61.2%), biofilm production (62.5%), and siderophore production (67.7%) were the most common virulence characteristics of UPEC isolates. Co-expression of virulence characteristics was common (69.8%) in UPEC strains. Conclusion UPEC strains with very high antimicrobial-resistance are in circulation in India, and have diverse serotypes and virulence characteristics.
Collapse
Affiliation(s)
- Gulshan Kumar
- National Salmonella and Escherichia Centre, Central Research Institute, Kasauli, Himachal Pradesh, India
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, India
| | - Yashwant Kumar
- National Salmonella and Escherichia Centre, Central Research Institute, Kasauli, Himachal Pradesh, India
| | - Gaurav Kumar
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, India
| | - Ajay K. Tahlan
- National Salmonella and Escherichia Centre, Central Research Institute, Kasauli, Himachal Pradesh, India
| |
Collapse
|
11
|
Chen K, Zhu Y, Su H, Jiang H, Liu X. Modified Zhibai Dihuang pill alleviated urinary tract infection induced by extended-spectrum β-lactamase Escherichia coli in rats by regulating biofilm formation. PHARMACEUTICAL BIOLOGY 2023; 61:674-682. [PMID: 37096639 PMCID: PMC10132235 DOI: 10.1080/13880209.2023.2199786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
CONTEXT Zhibai Dihuang pill (ZD), a traditional Chinese medicine nourishes Yin and reduces internal heat, is believed to have therapeutic effects on urinary tract infections (UTIs). OBJECTIVE To explore the effects and mechanism of modified ZD (MZD) on UTI induced by extended-spectrum β-lactamase (ESBLs) Escherichia coli. MATERIALS AND METHODS Thirty Sprague-Dawley rats were randomly divided into control, model (0.5 mL 1.5 × 108 CFU/mL ESBLs E. coli), MZD (20 g/kg MZD), LVFX (0.025 g/kg LVFX), and MZD + LVFX groups (20 g/kg MZD + 0.025 g/kg LVFX), n = 6. After 14 days of treatment, serum biochemical indicators, renal function indicators, bladder and renal histopathology, and urine bacterial counts in rats were determined. Additionally, the effects of MZD on ESBLs E. coli biofilm formation and related gene expression were analyzed. RESULTS MZD significantly decreased the count of white blood cells (from 13.12 to 9.13), the proportion of neutrophils (from 43.53 to 23.18), C-reactive protein (from 13.21 to 9.71), serum creatinine (from 35.78 to 30.15), and urea nitrogen (from 12.56 to 10.15), relieved the inflammation and fibrosis of bladder and kidney tissues, and reduced the number of bacteria in urine (from 2174 to 559). In addition, MZD inhibited the formation of ESBLs E. coli biofilms (2.04-fold) and decreased the gene expressions of luxS, pfS and ompA (1.41-1.62-fold). DISCUSSION AND CONCLUSION MZD treated ESBLs E. coli-induced UTI inhibited biofilm formation, providing a theoretical basis for the clinical application of MZD. Further study on the clinical effect of MZD may provide a novel therapy option for UTI.
Collapse
Affiliation(s)
- Kaifa Chen
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yongsheng Zhu
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Hongwei Su
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Hao Jiang
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xin Liu
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
12
|
Samanta P, Doerksen RJ. Identifying FmlH lectin-binding small molecules for the prevention of Escherichia coli-induced urinary tract infections using hybrid fragment-based design and molecular docking. Comput Biol Med 2023; 163:107072. [PMID: 37329611 PMCID: PMC10810094 DOI: 10.1016/j.compbiomed.2023.107072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/26/2023] [Accepted: 05/27/2023] [Indexed: 06/19/2023]
Abstract
Nearly 50% of women are affected by urinary tract infections (UTIs) during their lifetimes. The most common agent to cause UTIs is Uropathogenic Escherichia coli (UPEC). UPEC expresses fibers known as chaperone-usher pathway pili with adhesins that specifically bind to receptors as they colonize various host tissues. UPEC uses an F9/Yde/Fml pilus, tipped with FmlH, which interacts with terminal galactoside/galactosaminoside units in glycoproteins in the epithelial cells of the bladder and kidney. The extensive use of traditional antibiotics has led to the rise of various antibiotic-resistant strains of UPEC. An alternative therapeutic approach is to use an anti-adhesion strategy mediated by competitive tight-binding FmlH inhibitors. In the current study, we have applied various computational modeling techniques, including fragment-based e-pharmacophore virtual screening, molecular docking, molecular dynamics simulations and binding free energy calculations for the design of small molecules that exhibit binding to FmlH. Our modeling protocol successfully predicted ligand moieties, such as a thiazole group, which were previously found as components of UPEC adhesin pili inhibitors, thereby validating our designed screening protocol. The screening protocol developed here could be utilized for design of ligands for other homologous protein targets. We also identified several novel galactosaminoside-containing molecules that, according to the computational modeling, are predicted to interact strongly with FmlH and hence we predict will be good FmlH inhibitors. Additionally, we have prepared and supplied a database of ∼190K small molecules obtained from virtual screening, which can serve as an excellent resource for the discovery of novel FmlH inhibitors.
Collapse
Affiliation(s)
- Priyanka Samanta
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA
| | - Robert J Doerksen
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA; Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA.
| |
Collapse
|
13
|
Xie Z, Jian J, Chen L. Analysis of Antimicrobial Susceptibility in Bacterial Pathogens Associated with Urinary Tract Infections from Beijing Teaching Hospital in China, 2009-2017. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:4360342. [PMID: 37529141 PMCID: PMC10390260 DOI: 10.1155/2023/4360342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023]
Abstract
Objective Since a urinary tract infection (UTI) is easy to relapse and difficult to treat, the antibiotic resistance rate has increased year by year in recent years. This study was to analyze the characteristics of the common pathogenic bacteria and the changes of antibiotic resistance in urinary system infection, so as to guide the standard use of antibiotics in a clinical urinary tract infection and control nosocomial infection effectively. Methods A total of 5,669 strains of a urinary tract infection in the hospital from January 2009 to December 2017 were retrospectively analyzed. Bacterial identification and the antibiotic sensitivity test (AST) were analyzed by using a VITEK-2 Compact system. Results Of the 5669 pathogens, 3,256 (57.44%) of the strains were Gram-negative bacteria (GNB), 1,474 (26%) were Gram-positive bacteria (GPB), and 939 (16.56%) were fungi. Resistant rates of ESBL-producing strains were all significantly different from non-ESBL-producing strains in Escherichia coli (p < 0.05). The resistance rate of ESBL-producing strains to β-lactam antibiotics was all higher than that of non-ESBL-producing strains in Klebsiella pneumoniae (p < 0.05). The detection rate of vancomycin-resistantEnterococcus faecium and Enterococcus faecalis was 37.3% and 3.1%, respectively, and the detection rate of linezolid-resistantEnterococcus faecium and Enterococcus faecalis was 0.68% and 0%, respectively. The drug resistance rate of candida sp. to fluconazole, itraconazole, and voriconazole was 1.7%, 8.5%, and 3.4%, respectively. No amphotericin B-resistant strains were detected in the research. Conclusions Among the 5669 strains isolated from urinary tract infection patients, GNB were the main pathogens. Escherichia coli was the major pathogen. The resistance rate of ESBLs-producingEscherichia coli was higher than that of non-ESBLs-producingEscherichia coli in general; meanwhile, β-lactam/β-lactamase inhibitors and carbapenems maintained good antimicrobial activity against Escherichia coli. The resistance rate of non-ESBLs-producingKlebsiella pneumoniae strains was significantly higher than that of ESBLs-producingKlebsiella pneumoniae strains, and drug resistance was more prominent; most of the antibiotic resistance rates were over 50%. The antimicrobial resistance rate of Enterococcus faecium was significantly higher than that of Enterococcus faecalis. There were rare linezolid-resistant strains. The antimicrobial resistance rate of imidazole to fungi was controlled less than 10%.
Collapse
Affiliation(s)
- Zeqiang Xie
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Peking University Ninth School of Clinical Medicine, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Jiyong Jian
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Peking University Ninth School of Clinical Medicine, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Liang Chen
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Peking University Ninth School of Clinical Medicine, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|
14
|
Arafi V, Hasani A, Sadeghi J, Varshochi M, Poortahmasebi V, Hasani A, Hasani R. Uropathogenic Escherichia coli endeavors: an insight into the characteristic features, resistance mechanism, and treatment choice. Arch Microbiol 2023; 205:226. [PMID: 37156886 DOI: 10.1007/s00203-023-03553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) are the strains diverted from the intestinal status and account mainly for uropathogenicity. This pathotype has gained specifications in structure and virulence to turn into a competent uropathogenic organism. Biofilm formation and antibiotic resistance play an important role in the organism's persistence in the urinary tract. Increased consumption of carbapenem prescribed for multidrug-resistant (MDR) and Extended-spectrum-beta lactamase (ESBL)-producing UPECs, has added to the expansion of resistance. The World Health Organization (WHO) and Centre for Disease Control (CDC) placed the Carbapenem-resistant Enterobacteriaceae (CRE) on their treatment priority lists. Understanding both patterns of pathogenicity, and multiple drug resistance may provide guidance for the rational use of anti-bacterial agents in the clinic. Developing an effective vaccine, adherence-inhibiting compounds, cranberry juice, and probiotics are non-antibiotical approaches proposed for the treatment of drug-resistant UTIs. We aimed to review the distinguishing characteristics, current therapeutic options and promising non-antibiotical approaches against ESBL-producing and CRE UPECs.
Collapse
Affiliation(s)
- Vahid Arafi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Sina Educational, Research and Treatment Centre, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javid Sadeghi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Varshochi
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Hasani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
15
|
Li R, Xu H, Tang H, Shen J, Xu Y. The Characteristics of Extended-Spectrum β-Lactamases (ESBLs)-Producing Escherichia coli in Bloodstream Infection. Infect Drug Resist 2023; 16:2043-2060. [PMID: 37056484 PMCID: PMC10086224 DOI: 10.2147/idr.s400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Background Bloodstream infection (BSI) is a common type of infection frequently diagnosed in clinics. The emergence and spread of ESBLs-producing Escherichia coli (E. coli) has emerged as one of the biggest challenges in global community health. Methods The production of ESBLs was determined by the composite disk diffusion method. The expression of the various resistance and virulence genes were detected by PCR and sequencing. Multi-locus sequence typing (MLST) and phylogenetic groups were used for the classification. The transfer of resistant plasmids was determined by conjugation assay. The statistical differences were analyzed using Statistical Product and Service Solutions (SPSS) version 23.0. Results A total of 60 strains of ESBLs-producing E. coli were collected. The resistance genes that were identified included bla CTX-M, bla TEM, bla SHV, bla OXA-1 and mcr-1. The most common one was the bla CTX-M including bla CTX-M-27 (n = 16), bla CTX-M-14 (n = 15), bla CTX-M-15 (n = 11), bla CTX-M-55 (n = 14) and bla CTX-M-65 (n = 5). A total of 31 STs were detected, and the most abundant among which was ST131 (n = 16, 26.7%). Most of the E. coli (n = 46, 76.7%) belonged to the groups B2 and D. And some virulence genes were related to the classification of the E. coli. Among them, the detection rates of hek/hra, kpsMII and papGII-III in groups B2 and D were higher than those in groups A and B1. The detection rates of cnf1, iucC and papGII-III in ST131 were higher than those in non-ST131. And the distributions of hek/hra, iroN, iucC, kpsMII and papGII-III were related to the bla CTX-M subtypes. Finally, most bacterial (n = 32, 53.3%) resistance genes could be transferred between the bacteria by plasmids, especially IncFIB. Conclusion ESBLs-producing E. coli in BSI exhibited had high resistance rates and carried a variety of virulence factors (VFs). This is necessary to strengthen the monitoring of ESBLs-producing isolates in the medical environment.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
- Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, People’s Republic of China
| | - Huaming Xu
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Hao Tang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Jilu Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
- Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
- Correspondence: Yuanhong Xu, Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China, Tel +86 13505694447, Email
| |
Collapse
|
16
|
Zhang Y, Han Y, Wang L, Kong J, Pan W, Zhang X, Chen L, Yao Z, Zhou T, Cao J. Flufenamic Acid, a Promising Agent for the Sensitization of Colistin-Resistant Gram-Negative Bacteria to Colistin. Microbiol Spectr 2023; 11:e0405222. [PMID: 36971552 PMCID: PMC10100705 DOI: 10.1128/spectrum.04052-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
The continuous development of multidrug-resistant (MDR) Gram-negative bacteria poses a serious risk to public health on a worldwide scale. Colistin is used as the last-line antibiotic for the treatment of MDR pathogens, and colistin-resistant (COL-R) bacterial emergence thus has the potential to have a severe adverse impact on patient outcomes. In this study, synergistic activity was observed when colistin and flufenamic acid (FFA) were combined and used for the in vitro treatment of clinical COL-R Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii strains, as shown by checkerboard and time-kill assays. Crystal violet staining and scanning electron microscopy revealed the synergistic action of colistin-FFA against biofilms. When used to treat murine RAW264.7 macrophages, this combination did not induce any adverse toxicity. Strikingly, the survival rates of bacterially infected Galleria mellonella larvae were improved by such combination treatment, which was also sufficient to reduce the measured bacterial loads in a murine thigh infection model. Mechanistic propidium iodide (PI) staining analysis further demonstrated the ability of these agents to alter bacterial permeability in a manner that enhanced the efficacy of colistin treatment. Together, these data thus demonstrate that colistin and FFA can be synergistically combined to combat the spread of COL-R Gram-negative bacteria, providing a promising therapeutic tool with the potential to protect against COL-R bacterial infections and improve patient outcomes. IMPORTANCE Colistin is a last-line antibiotic used for the treatment of MDR Gram-negative bacterial infections. However, increasing resistance to it has been observed during clinical treatment. In this work, we assessed the efficacy of the combination of colistin and FFA for the treatment of COL-R bacterial isolates, demonstrating that the combined treatment has effective antibacterial and antibiofilm activities. Due to its low cytotoxicity and good therapeutic effects in vitro, the colistin-FFA combination may be a potential candidate for research into a resistance-modifying agent to combat infections caused by COL-R Gram-negative bacteria.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yijia Han
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jingchun Kong
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wei Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Xiaodong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhuocheng Yao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
17
|
Sakaeda K, Sadahira T, Maruyama Y, Iwata T, Watanabe M, Wada K, Araki M. The Genotypic and Phenotypic Characteristics Contributing to Flomoxef Sensitivity in Clinical Isolates of ESBL-Producing E. coli Strains from Urinary Tract Infections. Antibiotics (Basel) 2023; 12:antibiotics12030522. [PMID: 36978389 PMCID: PMC10044560 DOI: 10.3390/antibiotics12030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
We carried out a molecular biological analysis of extended-spectrum β-lactamase (ESBL)-producing E. coli strains and their sensitivity to flomoxef (FMOX). Sequence type (ST) analysis by multilocus sequence typing (MLST) and classification of ESBL genotypes by multiplex PCR were performed on ESBL-producing E. coli strains isolated from urine samples collected from patients treated at our institution between 2008 and 2018. These sequences were compared with results for antimicrobial drug susceptibility determined using a micro-liquid dilution method. We also analyzed cases treated with FMOX at our institution to examine its clinical efficacy. Of the 911 E. coli strains identified, 158 (17.3%) were ESBL-producing. Of these, 67.7% (107/158) were strain ST-131 in ST analysis. Nearly all (154/158; 97.5%) were CTX-M genotypes, with M-14 and M-27 predominating. The isolated strains were sensitive to FMOX in drug susceptibility tests. Among the patient samples, 33 cases received FMOX, and of these, 5 had ESBL-producing E. coli. Among these five cases, three received FMOX for surgical prophylaxis as urinary carriers of ESBL-producing E. coli, and postoperative infections were prevented in all three patients. The other two patients received FMOX treatment for urinary tract infections. FMOX treatment was successful for one, and the other was switched to carbapenem. Our results suggest that FMOX has efficacy for perioperative prophylactic administration in urologic surgery involving carriers of ESBL-producing bacteria and for therapeutic administration for urinary tract infections. Use of FMOX avoids over-reliance on carbapenems or β-lactamase inhibitors and thus is an effective antimicrobial countermeasure.
Collapse
Affiliation(s)
- Kazuma Sakaeda
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Takuya Sadahira
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan
- Correspondence: ; Tel.: +81-86-231-7287; Fax: +81-86-231-3986
| | - Yuki Maruyama
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Takehiro Iwata
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masami Watanabe
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Koichiro Wada
- Koichiro Wada Department of Urology, School of Medicine, Shimane University, 89-1, Enya-cho, Izumo 693-8501, Japan
| | - Motoo Araki
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
18
|
Li HF, Zhang LX, Zhang WL, Li J, Li YQ, Hu TP. Study on Virulence Genes, Drug Resistance and Molecular Epidemiology of Klebsiella pneumoniae with High Virulence in Inner Mongolia, China. Infect Drug Resist 2023; 16:1133-1144. [PMID: 36861017 PMCID: PMC9969862 DOI: 10.2147/idr.s391468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/16/2022] [Indexed: 02/25/2023] Open
Abstract
Objective The purpose of this study was to analyse the clinical, microbiological and molecular epidemiological characteristics of patients with pyogenic liver abscess (PLA) caused by Klebsiella pneumoniae (KPN) in Inner Mongolia, China. Methods The KPN isolates from 78 KPN-PLA cases admitted to a tertiary teaching hospital in Baotou, Inner Mongolia, from 2016 to 2019 were studied systematically and described comprehensively. The virulence factors, drug resistance and sequence types of KPN in different samples were identified by a wire-drawing test, polymerase chain reaction, a drug susceptibility test and multi-site sequence typing. Results There were more male than female KPN-PLA patients (P<0.05). The mortality rate was 2.5%, and KPN-PLA was significantly associated with diabetes mellitus (P<0.05). Most of the KPN isolates in the puncture fluid of patients with KPN-PLA were hypervirulent KPN (HvKP). The positive rate of the KPN-PLA specimens was higher than that of the blood and urine specimens. The KPN isolates of the urine specimens had higher drug resistance than the other two (P<0.05). The hypermucoviscous KPN, aerobic actin (aero) (+), K1 and K2 serotypes accounted for 80.8%, 89.7%, 56.4% and 26.9%, respectively. In addition to ironB (3.8%), the detection rates of virulence factors rmpA, irp2, entB, iucD, aero, wcaG, iutA, kfu, ybtA, iron, fimH and mrkD were higher (69.2%-100.0%). The positive rate of KPN isolates of the KPN-PLA puncture fluid was higher than that of the blood and urine samples (P<0.05). In addition, ST23 was found to be the dominant ST (32.1%) of KPN-PLA in the Baotou region. Conclusion In the KPN-PLA specimens, the KPN isolates were more virulent than those in the blood and urine specimens, and a carbapenem-resistant HvKP strain emerged. This research will help improve the understanding of HvKP and provide useful suggestions for KPN-PLA treatments.
Collapse
Affiliation(s)
- Hong-Fu Li
- Department of Clinical Laboratory, Zhuhai Third People’s Hospital, Zhuhai, People’s Republic of China,Department of Clinical laboratory, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Inner Mongolia, People’s Republic of China
| | - Li-Xia Zhang
- Department of Clinical laboratory, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Inner Mongolia, People’s Republic of China
| | - Wen-Lan Zhang
- Department of Clinical laboratory, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Inner Mongolia, People’s Republic of China
| | - Jing Li
- Department of Clinical laboratory, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Inner Mongolia, People’s Republic of China
| | - Ya-Qian Li
- Department of Clinical laboratory, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Inner Mongolia, People’s Republic of China
| | - Tong-Ping Hu
- Department of Clinical laboratory, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Inner Mongolia, People’s Republic of China,Correspondence: Tong-Ping Hu, Department of Clinical laboratory, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No. 41, of Linyin Road, Kundulun District, Baotou City, Baotou, 014000, People’s Republic of China, Tel +86 13296922365, Email
| |
Collapse
|
19
|
AbuSara A, Tayyeb N, Matalka L, Almomani B, Abaza H, Nazer L. Prevalence and Predictors of Multi-Drug Resistant Organisms Among Ambulatory Cancer Patients with Urinary Tract Infections. Infect Drug Resist 2023; 16:747-753. [PMID: 36760782 PMCID: PMC9904220 DOI: 10.2147/idr.s388680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/16/2022] [Indexed: 02/05/2023] Open
Abstract
Purpose Urinary tract infections (UTIs) are among the most common community-acquired infections in patients with cancer. Though the prevalence of multi-drug resistant organisms (MDROs) has increased, there are limited studies on MDROs among ambulatory cancer patients with UTIs. Therefore, we aimed to evaluate the prevalence and predictors of MDROs in this patient population. Patients and Methods A retrospective study of adult cancer patients treated for bacterial UTIs in the ambulatory setting at King Hussein Cancer Center. The medical laboratory's system was used to identify positive urine cultures taken in the ambulatory setting, between Aug 2020 and March 2021. UTIs were defined as a positive urine culture along with the initiation of antibiotics empirically or as definitive therapy. Patient characteristics, as well as the type and sensitivity of the bacterial organisms, were recorded. MDROs were defined as intrinsic or acquired non-susceptibility to at least one agent in three or more antimicrobial categories. Logistic regression was used to identify predictors that were independently associated with MDROs. Results A total of 376 patients had UTIs that met the inclusion criteria; mean age 60.5±15.1 (SD) years and 330 (87.8%) had solid tumors. Gram-negative bacteria was recorded in the majority of UTIs (n = 368, 97.9%), the most common being Escherichia-coli (n = 220, 59.8%) and Klebsiella-pneumonia (n = 68, 18.5%). MDROs were recorded in 226 (60.1%) of urine cultures, with the majority being extended-spectrum-beta-lactamase producing organisms (n = 142, 62.8%). The only significant predictor was having had a UTI with MDRO within the past 6 months (OR 5.6, 95% CI 2.1-15.2). Conclusion More than half of the positive urine cultures of cancer patients treated for UTIs in the ambulatory setting were MDROs. A subsequent UTI due to MDROs is more likely to occur in patients who had a UTI with an MDRO within the past 6 months.
Collapse
Affiliation(s)
- Aseel AbuSara
- Department of Pharmacy, King Hussein Cancer Center, Amman, Jordan,Correspondence: Aseel AbuSara, Department of Pharmacy, King Hussein Cancer Center, Queen Rania Al-Abdallah Street, P.O.Box 1269, Amman, 1191, Jordan, Tel + 962-6 5300460, Email
| | - Nabiha Tayyeb
- Department of Pharmacy, King Hussein Cancer Center, Amman, Jordan
| | - Lujain Matalka
- Department of Pharmacy, King Hussein Cancer Center, Amman, Jordan
| | - Bayan Almomani
- Department of Microbiology, King Hussein Cancer Center, Amman, Jordan
| | - Haneen Abaza
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan
| | - Lama Nazer
- Department of Pharmacy, King Hussein Cancer Center, Amman, Jordan
| |
Collapse
|
20
|
High Virulence and Multidrug Resistance of Escherichia coli Isolated in Periodontal Disease. Microorganisms 2022; 11:microorganisms11010045. [PMID: 36677337 PMCID: PMC9863014 DOI: 10.3390/microorganisms11010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontal disease is caused by different gram-negative anaerobic bacteria; however, Escherichia coli has also been isolated from periodontitis and its role in periodontitis is less known. This study aimed to determine the variability in virulence genotype, antibiotic resistance phenotype, biofilm formation, phylogroups, and serotypes in different emerging periodontal strains of Escherichia coli, isolated from patients with periodontal disease and healthy controls. E. coli, virulence genes, and phylogroups, were identified by PCR, antibiotic susceptibility by the Kirby-Bauer method, biofilm formation was quantified using polystyrene microtiter plates, and serotypes were determined by serotyping. Although E. coli was not detected in the controls (n = 70), it was isolated in 14.7% (100/678) of the patients. Most of the strains (n = 81/100) were multidrug-resistance. The most frequent adhesion genes among the strains were fimH and iha, toxin genes were usp and hlyA, iron-acquisition genes were fyuA and irp2, and protectin genes were ompT, and KpsMT. Phylogroup B2 and serotype O25:H4 were the most predominant among the strains. These findings suggest that E. coli may be involved in periodontal disease due to its high virulence, multidrug-resistance, and a wide distribution of phylogroups and serotypes.
Collapse
|
21
|
Li J, Jiang F, Xie A, Jiang Y. Analysis of the Distribution and Drug Resistance of Pathogens in Patients with Urinary Tract Infection in the Eastern Chongming Area of Shanghai from 2018 to 2020. Infect Drug Resist 2022; 15:6413-6422. [PMID: 36345539 PMCID: PMC9636864 DOI: 10.2147/idr.s384515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Purpose The aim of this study was to clarify the distribution and drug resistance of pathogens causing urinary tract infection (UTI) and to provide a scientific reference for the rational application of antibiotics. Patients and Methods The results of bacterial identification and drug sensitivity analysis of midstream urine samples in our hospital from January 2018 to December 2020 were retrospectively analyzed. The data were analyzed using WHONET 5.6 and SPSS 26.0 (IBM) software. Results In all, 1786 pathogens were isolated from 13,141 midstream urine culture samples. Of these, 1093 (61.2%) were gram-negative bacteria, mainly Escherichia coli [29.1%] and Klebsiella pneumoniae [14.3%]; 543 (30.4%) were gram-positive bacteria, mainly Enterococcus faecium [16.7%] and Enterococcus faecalis [8.4%]; and 150 (8.4%) were fungal isolates, with the most common being Candida albicans (3.7%). The resistance rates of E. coli to piperacillin/tazobactam (3.4% vs 10.0%, p<0.05), ampicillin/sulbactam (43.0% vs 53.8%, p<0.05), and ciprofloxacin (58.0% vs 72.9%, p<0.05) increased significantly. K. pneumoniae was highly sensitive to ertapenem (100%). Two Enterococcus spp were highly sensitive to tigecycline (100%), and a small number of norvancomycin-resistant strains were found. The drug resistance rate of E. faecium to quinupristin was 6.7%. The drug resistance rates of E. faecalis to furantoin and ampicillin were 4.0% and 4.7%, respectively. Conclusion The pathogens that cause UTIs in patients are diverse, with the most common being E. coli. The isolated pathogens exhibited different resistance patterns. Antibiotics should be rationally selected based on the resistance patterns of the pathogens.
Collapse
Affiliation(s)
- Jing Li
- Department of Urology, Chongming Branch of Shanghai Tenth People’s Hospital, Shanghai, Tongji University School of Medicine, Shanghai, 202157, People’s Republic of China
| | - Feifei Jiang
- Department of Clinical Laboratory, Chongming Branch of Shanghai Tenth People’s Hospital, Shanghai, Tongji University School of Medicine, Shanghai, 202157, People’s Republic of China
| | - An Xie
- Department of Nosocomial Infection Control, Chongming Branch of Shanghai Tenth People’s Hospital, Shanghai, Tongji University School of Medicine, Shanghai, 202157, People’s Republic of China
| | - Yufeng Jiang
- Department of Urology, Chongming Branch of Shanghai Tenth People’s Hospital, Shanghai, Tongji University School of Medicine, Shanghai, 202157, People’s Republic of China,Correspondence: Yufeng Jiang, Department of Urology, Chongming Branch of Shanghai Tenth People’s Hospital, Shanghai, Tongji University School of Medicine, Shanghai, 202157, People’s Republic of China, Tel +86 18101879807, Email
| |
Collapse
|
22
|
Bastidas-Caldes C, Romero-Alvarez D, Valdez-Vélez V, Morales RD, Montalvo-Hernández A, Gomes-Dias C, Calvopiña M. Extended-Spectrum Beta-Lactamases Producing Escherichia coli in South America: A Systematic Review with a One Health Perspective. Infect Drug Resist 2022; 15:5759-5779. [PMID: 36204394 PMCID: PMC9531622 DOI: 10.2147/idr.s371845] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Carlos Bastidas-Caldes
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
- Doctoral Program in Public and Animal Health, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
- Correspondence: Carlos Bastidas-Caldes, One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, 170124, Ecuador, Tel +593 983 174949, Email
| | - Daniel Romero-Alvarez
- One Health Reserch Group, Faculty of Medicine, Universidad de las Américas, Quito, Ecuador
- Biodiversity Institute and Department of Ecology & Evolutionary Biology, The University of Kansas, Lawrence, KS, USA
| | - Victor Valdez-Vélez
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
| | - Roberto D Morales
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
| | - Andrés Montalvo-Hernández
- One Health Research Group, Faculty of Engineering and Applied Sciences, Universidad de las Américas, Quito, Ecuador
| | - Cicero Gomes-Dias
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Manuel Calvopiña
- One Health Reserch Group, Faculty of Medicine, Universidad de las Américas, Quito, Ecuador
| |
Collapse
|
23
|
Hashimoto M, Mao BH, Chiou CS, Huang WC, Nyoman Putra Dwija IB, Jeng SL, Wu JJ, Wang MC, Lin WH, Tseng CC, Teng CH. Association between Escherichia coli with NotI-restriction resistance and urinary tract infections. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:686-694. [PMID: 34963576 DOI: 10.1016/j.jmii.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Escherichia coli is the most common cause of urinary tract infections (UTIs). It is widely accepted that uropathogenic E. coli (UPEC) mainly emerge from the distal gut microbiota. Identification of bacterial characteristics that are able to differentiate UPEC from fecal commensal strains will facilitate the development of novel strategies to detect and monitor the spread of UPEC. METHODS Fifty fecal commensal, 83 UTI-associated and 40 biliary tract infection (BTI)-associated E. coli isolates were analyzed. The NotI restriction patterns of chromosomal DNA in the isolates were determined by pulse-field gel electrophoresis. The phylogenetic types and the presence of 9 known virulence genes of each isolate were determined by PCR analyses. Additionally, the susceptibilities of the isolates to antibiotics were revealed. Then the associations of NotI resistance with UTI-associated isolates, phylotypes, and antibiotic resistance were assessed. RESULTS NotI resistance was correlated with UTI-associated isolates, compared to the fecal isolates. Consistently, NotI-resistant isolates harbored a greater number of virulence factors and mainly belonged to phylotype B2. Additionally NotI resistance was correlated with chloramphenicol resistance among the bacteria. Among the fecal, UTI-associated and BTI-associated groups, the distribution of NotI-resistant group B2 isolates was correlated with UTI-associated bacteria. CONCLUSION NotI resistance alone is a potential marker for distinguishing fecal strains and UPEC, while the combination of NotI resistance and B2 phylogeny is a candidate marker to differentiate UPEC from fecal and other extraintestinal pathogenic E. coli. Additionally, NotI resistance may be valuable for assessing the potential of chloramphenicol resistance of E. coli.
Collapse
Affiliation(s)
- Masayuki Hashimoto
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Bin-Hsu Mao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chien-Shun Chiou
- The Central Region Laboratory, Center of Research and Diagnostics, Centers for Disease Control, Taichung City, Taiwan
| | - Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ida Bagus Nyoman Putra Dwija
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Microbiology Clinic Department, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Shuen-Lin Jeng
- Department of Statistics, Institute of Data Science, and Center for Innovative FinTech Business Models, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Wei-Hung Lin
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chin-Chung Tseng
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
24
|
Yang X, Chen H, Zheng Y, Qu S, Wang H, Yi F. Disease burden and long-term trends of urinary tract infections: A worldwide report. Front Public Health 2022; 10:888205. [PMID: 35968451 PMCID: PMC9363895 DOI: 10.3389/fpubh.2022.888205] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundUrinary tract infections (UTIs) are one of the most common infections worldwide, but little is known about their global scale and long-term trends. We aimed to estimate the spatiotemporal patterns of UTIs' burden along with its attributable risk factors at a global level, as well as the variations of the burdens according to socio-demographic status, regions, nations, sexes, and ages, which may be helpful in guiding targeted prevention and treatment programs.MethodsData from the Global Burden of Disease Study 2019 were analyzed to depict the incidence, mortality, and disability-adjusted life years (DALYs) of UTIs in 204 countries and territories from 1990 to 2019 by socio-demographic status, nations, region, sex, and age.ResultsGlobally, 404.61 million cases, 236,790 deaths, and 520,200 DALYs were estimated in 2019. In particular, 2.4 times growth in deaths from 1990 to 2019 was observed, along with an increasing age-standardized mortality rate (ASMR) from 2.77/100,000 to 3.13/100,000. Age-standardized incidence rate (ASIR) was consistently pronounced in regions with higher socio-demographic index (SDI), which presented remarkable upward trends in ASMR and age-standardized DALY rate (ASDR). In contrast, countries with a low SDI or high baseline burden achieved a notable decline in burden rates over the past three decades. Although the ASIR was 3.6-fold higher in females than males, there was no sex-based difference in ASMR and ASDR. The burden rate typically increased with age, and the annual increasing trend was more obvious for people over 60 years, especially in higher SDI regions.ConclusionsThe burden of UTIs showed variations according to socio-demographic status, nation, region, sex, and age in the last three decades. The overall increasing burden intimates that proper prevention and treatment efforts should be strengthened, especially in high-income regions and aging societies.
Collapse
Affiliation(s)
- Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Chen
- Clinical Epidemiology Unit, Qilu Hospital, Shandong University, Jinan, China
| | - Yue Zheng
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Chest Pain Center, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China
| | - Sifeng Qu
- Department of Urology, Qilu Hospital, Shandong University, Jinan, China
| | - Hao Wang
- Department of Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
- *Correspondence: Hao Wang
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Fan Yi
| |
Collapse
|
25
|
Khalifeh OM, Obaidat MM. Urinary tract virulence genes in extended-spectrum beta-lactamase E. coli from dairy cows, beef cattle, and small ruminants. Acta Trop 2022; 234:106611. [PMID: 35850234 DOI: 10.1016/j.actatropica.2022.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 11/01/2022]
Abstract
Extended-spectrum β-lactamase Escherichia coli is an important cause of urinary tract infections in humans. ESBL producers E. coli were reported in food-producing animals, but no previous study reported the virulence potential of these isolates. Thus, this study determined the virulence potential of ESBL producers E. coli isolates from 518 beef feces, 610 dairy cow feces, 305 dairy cow milk, 503 sheep milk and 445 goat milk samples. A total of 278 isolates; specifically, 130 from beef feces, 39 from the cow's feces, 42 from cow's milk, 44 from sheep milk and 23 from goats' milk were isolated and then tested for 14 virulence genes by polymerase chain reaction. After that, the correlation of virulence genes presence among the isolates was determined statistically. Overall, 97% of the isolates carried fimH, 39% carried iroN E. coli and 32% carried papC. The kpsMT K1, cnf1, papAH, papG allele II & III, papG allele II, and kpsMT II were carried by 6 to 23% of the isolates, while less than 6% of the isolates carried papG allele III, papG allele I, Univcnf, iutA and hlyA. About 68.2% of the isolates carried two or more virulence genes and 41.8% carried three or more. Moreover, the isolates had 71 different profiles of virulence genes, where the most common profiles were fimH alone (86 isolate), fimH + iroN E. coli (35 isolate), fimH + papC (20 isolate), and fimH + papC + iroN E. coli (13 isolate). The adhesion, capsule synthesis and toxins secretion genes were significantly associated (p ˂ 0.01) with each other. These results call for awareness about the risk of food animals as reservoirs of ESBL uropathogenic E. coli that would threaten public health and limits the treatment options for urinary tract infections.
Collapse
Affiliation(s)
- Omar Mohammad Khalifeh
- Faculty of Medicine, Jordan University of Science and Technology, Ar-Ramtha, Irbid, Jordan
| | - Mohammad M Obaidat
- Faculty of Veterinary Medicine, Jordan University of Science and Technology, Ar-Ramtha, Irbid 22110, Jordan.
| |
Collapse
|
26
|
Tiemtoré RYW, Mètuor Dabiré A, Ouermi D, Sougué S, Benao S, Simporé J. Isolation and Identification of Escherichia coli and Klebsiella pneumoniae Strains Resistant to the Oxyimino-Cephalosporins and the Monobactam by Production of GES Type Extended Spectrum Bêta-Lactamase (ESBL) at Saint Camille Hospital Center in Ouagadougou, Burkina Faso. Infect Drug Resist 2022; 15:3191-3204. [PMID: 35754782 PMCID: PMC9231687 DOI: 10.2147/idr.s360945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022] Open
Abstract
Background Bacterial resistance to beta lactamins is a real public health problem as it complicates treatment strategies. Several types of beta lactamase confer this resistance. Numerous studies report a high prevalence of ESBL producers among Gram-negative bacilli. The objective of this work was to identify the presence of the resistance gene GES in strains of E. coli and K. pneumoniae in Burkina Faso. Methods During this study 39 strains of E. coli and K. pneumoniae resistant to oxyimino-cephalosporin and monobactam were collected in several samples and analyzed to determine the presence of the beta lactamase resistance gene BlaGES by classic PCR. Results In the present study, resistant strains were observed in 21 E. coli and 18 K. pneumoniae. Among producers of ESBL isolates, the presence of the GES gene was detected up to 63% in E. coli and 37% in K pneumoniae. Conclusion This study highlighted the presence of the GES gene in strains of E. coli and K. pneumoniae resistant to oxyimino-cephalosporin and monobactam in Burkina Faso. This highlights the presence of new ESBL in Burkina, which is of great interest for the proper care of patients and the control of resistance to antibiotics.
Collapse
Affiliation(s)
- Rahimatou Yasmine Wendkuni Tiemtoré
- Biomolecular and Genetic Laboratory (LABIOGENE), Pietro Annigoni Biomolecular Research Center (CERBA), Department of Biochemistry-Microbiology, University Joseph Ki Zerbo, Ouagadougou, Burkina Faso
| | - Amana Mètuor Dabiré
- Biomolecular and Genetic Laboratory (LABIOGENE), Pietro Annigoni Biomolecular Research Center (CERBA), Department of Biochemistry-Microbiology, University Joseph Ki Zerbo, Ouagadougou, Burkina Faso.,Department of Biochemistry-Microbiology, University of Dédougou, Dédougou, Burkina Faso
| | - Djénéba Ouermi
- Biomolecular and Genetic Laboratory (LABIOGENE), Pietro Annigoni Biomolecular Research Center (CERBA), Department of Biochemistry-Microbiology, University Joseph Ki Zerbo, Ouagadougou, Burkina Faso
| | - Serge Sougué
- Biomolecular and Genetic Laboratory (LABIOGENE), Pietro Annigoni Biomolecular Research Center (CERBA), Department of Biochemistry-Microbiology, University Joseph Ki Zerbo, Ouagadougou, Burkina Faso
| | - Stéphanie Benao
- Biomolecular and Genetic Laboratory (LABIOGENE), Pietro Annigoni Biomolecular Research Center (CERBA), Department of Biochemistry-Microbiology, University Joseph Ki Zerbo, Ouagadougou, Burkina Faso
| | - Jacques Simporé
- Biomolecular and Genetic Laboratory (LABIOGENE), Pietro Annigoni Biomolecular Research Center (CERBA), Department of Biochemistry-Microbiology, University Joseph Ki Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
27
|
Aramwittayanukul S, Malathum K, Kantachuvesiri S, Arpornsujaritkun N, Chootip P, Bruminhent J. Impact of Carbapenem Peri-Transplant Prophylaxis and Risk of Extended-Spectrum Cephalosporin-Resistant Enterobacterales Early Urinary Tract Infection in Kidney Transplant Recipients: A Propensity Score-Matched Analysis. Front Med (Lausanne) 2022; 9:841293. [PMID: 35733866 PMCID: PMC9207318 DOI: 10.3389/fmed.2022.841293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundUrinary tract infection (UTI) is the most common bacterial infection after kidney transplantation (KT), leading to unfavorable clinical and allograft outcomes. Gram-negative uropathogenic bacteria are frequently encountered especially extended-spectrum cephalosporin-resistant (ESC-R) Enterobacterales (EB), causing UTI early after KT.MethodsA retrospective single transplant study was conducted between January 2016 and December 2019. We performed 1:1 nearest-neighbor propensity score matching without replacement using recipient age, recipient sex, induction, transplant year, human leukocyte antigen, cold ischemia time, and panel-reactive antibody before analyses. Cumulative incidence of ESC-R EB early (within 14 days after KT) UTI was estimated by the Kaplan–Meier method. Risk factors for ESC-R EB early UTI were analyzed by a Cox proportional hazards model. Variables measured after transplantation were considered time-dependent covariates.ResultsWe included 620 KT recipients (37% women; mean age ± SD, 43 ± 11 years). Overall, 64% and 76% received deceased-donor allograft and induction therapy. Sixty-five (10%) and 555 (90%) received carbapenems and cefuroxime peri-transplant prophylaxis, respectively. Early UTI occurred in 183 (30%) patients, 52% caused by ESC-R EB. Propensity score matching produced 65 well-balanced pairs. During a 14-day follow-up, the cumulative incidence of ESC-R EB early UTI was 5 and 28% in the carbapenems and cefuroxime groups, respectively (log-rank test = 0.003). Peri-transplant carbapenems prophylaxis was a protective factor against ESC-R EB after KT (hazard ratio, 0.19; 95% confidence interval, 0.05–0.64; p = 0.008). Clinical and allograft outcomes did not differ significantly between the groups.ConclusionsIn the setting where ESC-R EB UTI is common among KT recipients, carbapenems peri-transplant prophylaxis could protect against the occurrence of early ESC-R EB UTI after KT. Further prospective studies should focus on this specific infection prevention strategy.
Collapse
Affiliation(s)
- Suwadee Aramwittayanukul
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kumthorn Malathum
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Surasak Kantachuvesiri
- Division of Nephrology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Ramathibodi Excellence Center for Organ Transplantation, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nuttapon Arpornsujaritkun
- Ramathibodi Excellence Center for Organ Transplantation, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Vascular and Transplant Unit, Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Patumsri Chootip
- Department of Nursing Services, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jackrapong Bruminhent
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Ramathibodi Excellence Center for Organ Transplantation, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Jackrapong Bruminhent ; orcid.org/0000-0003-0930-8936
| |
Collapse
|
28
|
Gao Z, Liu Y, Zhang L, Yang Z, Lv L, Wang S, Chen L, Zhou N, Zhu Y, Jiang X, Shi B, Li Y. Nociceptor Neurons are Involved in the Host Response to Escherichia coli Urinary Tract Infections. J Inflamm Res 2022; 15:3337-3353. [PMID: 35702548 PMCID: PMC9188809 DOI: 10.2147/jir.s356960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Urinary tract infections (UTIs) can evoke a rapid host immune response leading to bladder inflammation and epithelial damage. Neuroimmune interactions are critical for regulating immune function in mucosal tissues. Yet the role of nociceptor neurons in bladder host defense has not been well defined. This study aimed to explore the interaction between nociceptor neurons and bladder immune system during UTIs. Methods In this study, whether uropathogenic Escherichia coli (UPEC) and lipopolysaccharide (LPS) can directly stimulate nociceptor neurons was detected. Female C57BL/6J mice were treated with high dose of capsaicin, a high-affinity TRPV1 agonist, to ablate nociceptor neurons. Bladder inflammation, barrier epithelial function and bladder immune cell infiltration were assessed after UPEC infection. The level of neuropeptide calcitonin gene-related peptide (CGRP) in infected bladder was detected. Furthermore, the effects of CGRP on neutrophils and macrophages were evaluated both in vitro and in vivo. Results We found that UPEC and its pathogenic factor LPS could directly excite nociceptor neurons, releasing CGRP into infected bladder, which suppressed the recruitment of neutrophils, the polarization of macrophages and the killing function of UPEC. Both Botulinum neurotoxin A (BoNT/A) and BIBN4096 (CGRP antagonism) blocked neuronal inhibition and prevented against UPEC infection. Conclusion The present study showed a novel mechanism by which UPEC stimulated the secretion of CGRP from nociceptor neurons to suppress innate immunity.
Collapse
Affiliation(s)
- Zhengdong Gao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, People’s Republic of China
| | - Yaxiao Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, People’s Republic of China
| | - Lekai Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, People’s Republic of China
| | - Zizhuo Yang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, People’s Republic of China
| | - Linchen Lv
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, People’s Republic of China
| | - Shuai Wang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, People’s Republic of China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, People’s Republic of China
| | - Nan Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, People’s Republic of China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Xuewen Jiang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, People’s Republic of China
- Correspondence: Benkang Shi; Yan Li, Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, People’s Republic of China, Email ;
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, People’s Republic of China
| |
Collapse
|
29
|
Firoozeh F, Zibaei M, Badmasti F, Khaledi A. Virulence factors, antimicrobial resistance and the relationship between these characteristics in uropathogenic Escherichia coli. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Nejjari C, El Achhab Y, Benaouda A, Abdelfattah C. Antimicrobial resistance among GLASS pathogens in Morocco: an epidemiological scoping review. BMC Infect Dis 2022; 22:438. [PMID: 35525923 PMCID: PMC9077917 DOI: 10.1186/s12879-022-07412-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Monitoring of antimicrobial resistance (AMR) is of great importance due to the frequency of strains becoming increasingly resistant to antibiotics. This review, using a public health focused approach, which aims to understand and describe the current status of AMR in Morocco in relation to WHO priority pathogens and treatment guidelines. METHODS PubMed, ScienceDirect and Google Scholar Databases and grey literature are searched published articles on antimicrobial drug resistance data for GLASS priority pathogens isolated from Morocco between January 2011 and December 2021. Articles are screened using strict inclusion/exclusion criteria. AMR data is extracted with medians and IQR of resistance rates. RESULTS Forty-nine articles are included in the final analysis. The most reported bacterium is Escherichia coli with median resistance rates of 90.9%, 64.0%, and 56.0%, for amoxicillin, amoxicillin-clavulanic acid, and co-trimoxazole, respectively. Colistin had the lowest median resistance with 0.1%. A median resistance of 63.0% is calculated for amoxicillin-clavulanic acid in Klebsiella pneumonia. Imipenem resistance with a median of 74.5% is reported for Acinetobacter baumannii. AMR data for Streptococcus pneumonie does not exceed 50.0% as a median. CONCLUSIONS Whilst resistance rates are high for most of GLASS pathogens, there are deficient data to draw vigorous conclusions about the current status AMR in Morocco. The recently join to the GLASS system surveillance will begin to address this data gap.
Collapse
Affiliation(s)
- Chakib Nejjari
- International School of Public Health, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Youness El Achhab
- Laboratory of Epidemiology, Clinical Research and Community Health, Faculty of Medicine and Pharmacy of Fez, University Sidi Mohamed Ben Abdellah, Km 2.2 Rte Sidi Harazem, B.P 1893, Fez, Morocco.
- CRMEF Fez-Meknes, Rue Kuwait, B.P 49, Fez, Morocco.
| | - Amina Benaouda
- Department of Microbiology, Cheikh Zayed International University Hospital, Rabat, Morocco
| | - Chakib Abdelfattah
- Department of Infectious Diseases, Faculty of Medicine, University Hassan II, Casablanca, Morocco
| |
Collapse
|
31
|
Idrees MM, Rasool MF, Imran I, Khalid A, Saeed A, Ahmad T, Alqahtani F. A Cross-Sectional Study to Evaluate Antimicrobial Susceptibility of Uropathogens from South Punjab, Pakistan. Infect Drug Resist 2022; 15:1845-1855. [PMID: 35450113 PMCID: PMC9017698 DOI: 10.2147/idr.s356489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/07/2022] [Indexed: 01/09/2023] Open
Abstract
Background Urinary tract infections (UTIs) are a common infection caused by uropathogenic bacteria. Drug resistance against common antibiotics is a leading cause of treatment failure in UTIs. Objective This study was conducted to check the prevalence of antimicrobial susceptibility against uropathogens and identify the best treatment option against UTIs. Methods In this cross-sectional study, urine samples (n = 1000) were collected and cultured for pure bacterial growth by using cysteine-lactose-electrolyte-deficient (CLED) media. After physical and biochemical characterization, antibacterial susceptibility was performed by the Kirby-Bauer disk diffusion method. Results Uropathogenic bacteria were successfully isolated in 57% (n = 572) of total tested samples (n = 1000). Escherichia coli 51.2% (n = 293/572), Klebsiella species 15.4% (n = 88/572), Enterococcus species 15.4% (n = 88/572), Pseudomonas species 9.4% (n = 54/572), Staphylococcus aureus 3.2% (n = 18/572), coagulase-negative Staphylococci (CoNS) 3.0% (n = 17/572) and Proteus species 2.4% (n = 14/572) were the most prevalent organism in UTIs. Prevalence of Gram-negative rods (GNRs) was 78.5% (n = 449/572) among UTI patients as compared to Gram-positive cocci (GPCs) 21.5% (n = 123/572). Escherichia coli 65.3% (n = 293/449), Klebsiella species 19.6% (n = 88/449), Pseudomonas species 12.0% (54/449) and Proteus species 3.1% (n = 14/449) were the most prevalent GNRs in UTIs, while Enterococcus species 71.5% (n = 88/123), Staphylococcus aureus 14.6% (n = 18/123) and coagulase-negative Staphylococci (CoNS) 13.8% (17/123) were the most prevalent GPCs in UTIs. The majority of isolated uropathogens showed resistance against routinely used antibiotics. However, teicoplanin and linezolid were the most effective drugs against GPCs and piperacillin/tazobactam, meropenem and imipenem were the most effective drugs against GNRs. Nitrofurantoin and fosfomycin were shown to be most effective against both GNRs and GPCs. Conclusion In conclusion, Escherichia coli (GNRs) and Enterococcus species (GPCs) are the most prevalent organisms among UTIs patients, which are shown to be antibiotic-resistant to the most commonly used antibiotics. However, nitrofurantoin and fosfomycin are the most effective drugs against uropathogens in UTIs.
Collapse
Affiliation(s)
- Muhammad Mubashar Idrees
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, 60800, Pakistan
- Multan Institute of Kidney Diseases (MIKD), Multan, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Ayesha Khalid
- Multan Institute of Kidney Diseases (MIKD), Multan, Pakistan
| | - Ali Saeed
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Tanveer Ahmad
- Institute for Advanced Biosciences (IAB), CNRS UMR5309, INSERM U1209, Grenoble Alpes University, La Tronche, 38700, France
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
32
|
Derakhshan S, Ahmadi S, Ahmadi E, Nasseri S, Aghaei A. Characterization of Escherichia coli isolated from urinary tract infection and association between virulence expression and antimicrobial susceptibility. BMC Microbiol 2022; 22:89. [PMID: 35387587 PMCID: PMC8985246 DOI: 10.1186/s12866-022-02506-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The capacity of antibiotics to modulate bacterial virulence has raised concerns over the appropriateness of antibiotic therapies, including when dosing strategies fall below sub-therapeutic levels. In this work, we investigated the ability of antibiotics to influence virulence in Escherichia coli isolated from urinary tract infection (UTI). RESULTS Out of 120 isolates, 32.5% carried pap, 21.7% carried hlyA, and 17.5% carried cnf. The predominant B2 phylogroup was significantly associated with the quinolone-resistant isolates. A significant association was seen between the presence of hlyA hemolysin and susceptibility to ceftriaxone and ciprofloxacin (P < 0.05). Sub-inhibitory concentrations of both antibiotics reduced the levels of hlyA expression and hemolysis in isolates treated with antibiotics compared to untreated isolates (P < 0.05). Growth rate assay showed that the decrease in hlyA expression was not an effect of decreased growth rate. CONCLUSION Our study indicated the inhibitory effect of ciprofloxacin and ceftriaxone on the level of hemolysis, suggesting that the sub-inhibitory concentrations of these antibiotics may affect the outcome of infections. Further studies, including animal models may elucidate the outcome of virulence modulation by these antibiotics in UTI pathogenesis.
Collapse
Affiliation(s)
- Safoura Derakhshan
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran. .,Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Sanaz Ahmadi
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Erfan Ahmadi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sherko Nasseri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Abbas Aghaei
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
33
|
Stepanova N. How Advanced Is Our Understanding of the Role of Intestinal Barrier Dysfunction in the Pathogenesis of Recurrent Urinary Tract Infections. Front Pharmacol 2022; 13:780122. [PMID: 35359839 PMCID: PMC8960443 DOI: 10.3389/fphar.2022.780122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
A comprehensive understanding of urinary tract infections (UTIs), one of the most common human infections, is required as they are complex and poorly understood diseases. Periurethral and vaginal colonization by rectal flora, with the constant presence of pathogens in the urethra, is the initial step of the recurrent UTIs pathway. Current scientific data describe the genetic, etiological, biological, and behavioral risk factors for recurring UTIs, but they do not include the effect of intestinal barrier function on the disease. Although gut microbiota has been proposed as the main source for UTIs, the cross-talk between intestinal barrier dysfunction and the recurrence of UTIs has not yet been supported by scientific data. In this opinion review, based on published data and the results of our clinical studies, I aimed to outline the possible contribution of intestinal barrier dysfunction to the pathogenesis of recurrent UTIs. I believe that the unanswered questions raised by this review can guide further experimental and controlled studies to clarify the mechanisms underlying the role of intestinal barrier dysfunction in the pathogenesis of recurrent UTIs.
Collapse
Affiliation(s)
- Natalia Stepanova
- State Institution “Institute of Nephrology National Academy of Medical Science of Ukraine”, Kyiv, Ukraine
| |
Collapse
|
34
|
Singh A, Padmesh S, Dwivedi M, Kostova I. How Good are Bacteriophages as an Alternative Therapy to Mitigate Biofilms of Nosocomial Infections. Infect Drug Resist 2022; 15:503-532. [PMID: 35210792 PMCID: PMC8860455 DOI: 10.2147/idr.s348700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Bacteria survive on any surface through the generation of biofilms that provide a protective environment to grow as well as making them drug resistant. Extracellular polymeric matrix is a crucial component in biofilm formation. The presence of biofilms consisting of common opportunistic and nosocomial, drug-resistant pathogens has been reported on medical devices like catheters and prosthetics, leading to many complications. Several approaches are under investigation to combat drug-resistant bacteria. Deployment of bacteriophages is one of the promising approaches to invade biofilm that may expose bacteria to the conditions adverse for their growth. Penetration into these biofilms and their destruction by bacteriophages is brought about due to their small size and ability of their progeny to diffuse through the bacterial cell wall. The other mechanisms employed by phages to infect biofilms may include their relocation through water channels to embedded host cells, replication at local sites followed by infection to the neighboring cells and production of depolymerizing enzymes to decompose viscous biofilm matrix, etc. Various research groups are investigating intricacies involved in phage therapy to mitigate the bacterial infection and biofilm formation. Thus, bacteriophages represent a good control over different biofilms and further understanding of phage-biofilm interaction at molecular level may overcome the clinical challenges in phage therapy. The present review summarizes the comprehensive details on dynamic interaction of phages with bacterial biofilms and the role of phage-derived enzymes - endolysin and depolymerases in extenuating biofilms of clinical and medical concern. The methodology employed was an extensive literature search, using several keywords in important scientific databases, such as Scopus, Web of Science, PubMed, ScienceDirect, etc. The keywords were also used with Boolean operator "And". More than 250 relevant and recent articles were selected and reviewed to discuss the evidence-based data on the application of phage therapy with recent updates, and related potential challenges.
Collapse
Affiliation(s)
- Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Sudhakar Padmesh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, Sofia, 1000, Bulgaria
| |
Collapse
|
35
|
Investigation of Antibiotic Susceptibility and Virulence Genes in Escherichia coli Strains Isolated from Blood and Urine Samples. J PEDIAT INF DIS-GER 2022. [DOI: 10.1055/s-0041-1741525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Objective Extraintestinal Escherichia coli isolates are the most common gram-negative pathogens in humans and cause urinary tract infections, sepsis, neonatal meningitis, and others. The aim of this study was to investigate the rates of antibiotic resistance and virulence factors (kpsM II, neuc K1, hlyF, fyuA, afa/draBC, sat, chuA, fimH, tsh, yfcv, ibeA, traT, iucD, usp, iutA, cnf1, hlyA, papC, sfa/focDE, and ompT) of E. coli strains isolated from blood and urine samples.
Methods A total of 150 E. coli strains isolated from blood and urine samples sent to the Microbiology Laboratory, Faculty of Medicine Hospital, Selcuk University were included in the study. The identification and antibiotic susceptibility tests were performed with the VITEK 2 automated system. Multiplex polymerase chain reaction was used to detect the virulence genes.
Results Although the highest antibiotic resistance rate found was against ampicillin (73.3%), the lowest rates were against ertapenem and meropenem (0.7%). Extended-spectrum β-lactamase positivity was 38% in E. coli blood isolates and 29% in urine. The highest rates of virulence genes were detected in fimH gene (92%). iutA gene was 91.3%, traT 76%, fyuA 50%, chuA 54.7%, iucD 46.7%, ompT 32.7%, yfcv 31.3%, hlyF 28.7%, sat 22%, papC and sfa/focDE 20%, kpsM II 19.3%, neuc K1 14.7%, tsh 13.3%, cnf1 6.7%, afa/draBC 6%, ibeA 5.3%, usp 4.7%, and hlyA 3.3%. kpsM II, tsh, hlyA, papC, sfa/focDE, and ompT genes were higher in blood isolates.
Conclusion High antibiotic resistance rates and virulence genes were detected in E. coli strains in Konya, Turkey. This is the first study in Turkey where both a large number and a variety of virulence factors were investigated and compared. Multicenter studies are needed to better understand E. coli virulence.
Collapse
|
36
|
Allami M, Bahreini M, Sharifmoghadam MR. Antibiotic resistance, phylogenetic typing, and virulence genes profile analysis of uropathogenic Escherichia coli isolated from patients in southern Iraq. J Appl Genet 2022; 63:401-412. [PMID: 35143031 DOI: 10.1007/s13353-022-00683-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/17/2021] [Accepted: 01/12/2022] [Indexed: 12/26/2022]
Abstract
Of the most common infectious diseases that occur mainly by uropathogenic Escherichia coli (UPEC) is urinary tract infections (UTIs). The purpose of this study was to investigate virulence factors, antibiotic resistance, and phylogenetic groups among UPEC strains isolated from patients with UTI in southern Iraq. A total of 100 UPEC isolates were collected from urine samples of UTI patients from various hospitals in southern Iraq, and confirmed by morphological and biochemical tests. Antimicrobial susceptibility testing on isolates was performed by disk diffusion method. Multiplex PCR techniques were used to evaluate the phylogenetic groups based on Clermont method and to detect the presence of six virulence factor genes. The majority of isolates belonged to the phylogenetic groups B2 (46%) and C (13%). The most prevalent virulence factors were fimH (96%), followed by aer (47%), papC (36%), cnf1 (17%), hly (15%), and afa (8%). Phenotypic testing showed that the isolates were most resistant to piperacillin, ticarcillin, amoxicillin/clavulanic acid (92%, 91%, and 88%, respectively) and most sensitive to amikacin and imipenem, respectively. The maximum antibiotic resistance and virulence factors were observed in the phylogenetic group B2. The results showed that the UPEC isolates had all six virulence factors with high frequency and the highest drug resistance. Besides, the results showed a direct relationship between virulence factors, gene diversity, phylogenetic background, and antimicrobial resistance in the UPEC isolates.
Collapse
Affiliation(s)
- Mohammed Allami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Masoumeh Bahreini
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
37
|
Chang Z, Zhang J, Lei M, Jiang Z, Wu X, Huang Y, He Z, Zhang Y, Li S, Duan X, Wu W. Dissecting and Evaluating the Therapeutic Targets of Coptis Chinensis Franch in the Treatment of Urinary Tract Infections Induced by Escherichia coli. Front Pharmacol 2022; 12:794869. [PMID: 35095505 PMCID: PMC8790249 DOI: 10.3389/fphar.2021.794869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Coptis chinensis Franch (CCF) is extensively used in the treatment of inflammatory-related diseases. Accumulating studies have previously demonstrated the anti-inflammatory properties of CCF, yet data on its exact targets against urinary tract infections (UTIs) remain largely unknown. Therefore, the present study decodes the potential targets of action of CCF against UTIs by network pharmacology combined with experiment evaluations. Based on the pharmacology network analysis, the current study yielded six core ingredients: quercetin, palmatine (R)-canadine, berlambine, berberine, and berberrubine. The protein–protein interaction network (PPI) was generated by the string database, and then, four targets (IL6, FOS, MYC, and EGFR) were perceived as the major CCF targets using the CytoNCA plug-in. The results of molecular docking showed that the six core constituents of CCF had strong binding affinities toward the four key targets of UTIs after docking into the crystal structure. The enrichment analysis indicated that the possible regulatory mechanisms of CCF against UTIs were based on the modules of inflammation, immune responses, and apoptosis among others. Experimentally, the Escherichia coli (E. coli) strain CFT073 was applied to establish in vivo and in vitro models. In vivo results revealed that the key targets, IL6 and FOS, are significantly upregulated in rat bladder tissues of UTIs, whereas the expression of MYC and EGFR remained steady. Last, in vitro results further confirmed the therapeutic potential of CCF by reducing the expression of IL6 and FOS. In conclusion, IL6 and FOS were generally upregulated in the progression of E. coli–induced UTIs, whereas the CCF intervention exerted a preventive role in host cells stimulated by E. coli, partially due to inhibiting the expression of IL6 and FOS.
Collapse
Affiliation(s)
- Zhenglin Chang
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jinhu Zhang
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Lei
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zheng Jiang
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiangkun Wu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, China
| | - Yapeng Huang
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhican He
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuyan Zhang
- Guangzhou Institute of Dermatology, Guangzhou, China
| | - Shujue Li
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaolu Duan
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenqi Wu
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Urology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
38
|
Waldorff MS, Bjerrum L, Holm A, Siersma V, Bang C, Llor C, Cordoba G. Influence of Antimicrobial Resistance on the Course of Symptoms in Female Patients Treated for Uncomplicated Cystitis Caused by Escherichia coli. Antibiotics (Basel) 2022; 11:188. [PMID: 35203790 PMCID: PMC8868151 DOI: 10.3390/antibiotics11020188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Resistance to the prescribed antibiotic causes a longer duration of symptoms in patients with urinary tract infection. Yet, a study found that patients infected with trimethoprim-resistant Escherichia coli (E. coli) had a prolonged duration of symptoms even if treated with an antibiotic to which the strain was susceptible. The purpose of this study was to attempt to reproduce this finding in a different cohort. METHODS We analyzed data from two studies from general practice in the Capital Region of Denmark including patients from 2014 to 2016. The primary outcome was the severity of frequency and dysuria. The secondary outcome was the number of days until symptoms had disappeared. RESULTS We included 180 women treated for uncomplicated cystitis caused by E. coli. We found that 16.11% (n = 29) of the E. coli strains were resistant to all of the three selected antibiotics (ampicillin, sulfamethizole and trimethoprim). There was no significant difference in severity or time until the symptoms had disappeared between women infected with resistant or susceptible E. coli. CONCLUSIONS Strains of E. coli resistant to ampicillin, sulfamethizole and trimethoprim causing uncomplicated cystitis do not result in more severe symptoms or a longer symptom duration if treated with an antibiotic to which they are susceptible.
Collapse
Affiliation(s)
- Marie Soees Waldorff
- Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, 1350 Copenhagen, Denmark; (L.B.); (A.H.); (V.S.); (C.B.); (G.C.)
| | - Lars Bjerrum
- Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, 1350 Copenhagen, Denmark; (L.B.); (A.H.); (V.S.); (C.B.); (G.C.)
| | - Anne Holm
- Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, 1350 Copenhagen, Denmark; (L.B.); (A.H.); (V.S.); (C.B.); (G.C.)
| | - Volkert Siersma
- Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, 1350 Copenhagen, Denmark; (L.B.); (A.H.); (V.S.); (C.B.); (G.C.)
| | - Christine Bang
- Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, 1350 Copenhagen, Denmark; (L.B.); (A.H.); (V.S.); (C.B.); (G.C.)
| | - Carl Llor
- University Institute in Primary Care Research Jordi Gol, Via Roma Health Centre, 08007 Barcelona, Spain;
- Department of Public Health, General Practice, University of Southern Denmark, 5000 Odense, Denmark
| | - Gloria Cordoba
- Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, 1350 Copenhagen, Denmark; (L.B.); (A.H.); (V.S.); (C.B.); (G.C.)
| |
Collapse
|
39
|
Khonsari MS, Behzadi P, Foroohi F. The prevalence of type 3 fimbriae in Uropathogenic Escherichia coli isolated from clinical urine samples. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100881] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Behzadi P, García-Perdomo HA, Karpiński TM. Toll-Like Receptors: General Molecular and Structural Biology. J Immunol Res 2021; 2021:9914854. [PMID: 34195298 PMCID: PMC8181103 DOI: 10.1155/2021/9914854] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIM Toll-like receptors (TLRs) are pivotal biomolecules in the immune system. Today, we are all aware of the importance of TLRs in bridging innate and adaptive immune system to each other. The TLRs are activated through binding to damage/danger-associated molecular patterns (DAMPs), microbial/microbe-associated molecular patterns (MAMPs), pathogen-associated molecular patterns (PAMPs), and xenobiotic-associated molecular patterns (XAMPs). The immunogenetic molecules of TLRs have their own functions, structures, coreceptors, and ligands which make them unique. These properties of TLRs give us an opportunity to find out how we can employ this knowledge for ligand-drug discovery strategies to control TLRs functions and contribution, signaling pathways, and indirect activities. Hence, the authors of this paper have a deep observation on the molecular and structural biology of human TLRs (hTLRs). METHODS AND MATERIALS To prepare this paper and fulfill our goals, different search engines (e.g., GOOGLE SCHOLAR), Databases (e.g., MEDLINE), and websites (e.g., SCOPUS) were recruited to search and find effective papers and investigations. To reach this purpose, we tried with papers published in the English language with no limitation in time. The iCite bibliometrics was exploited to check the quality of the collected publications. RESULTS Each TLR molecule has its own molecular and structural biology, coreceptor(s), and abilities which make them unique or a complementary portion of the others. These immunogenetic molecules have remarkable roles and are much more important in different sections of immune and nonimmune systems rather than that we understand to date. CONCLUSION TLRs are suitable targets for ligand-drug discovery strategies to establish new therapeutics in the fields of infectious and autoimmune diseases, cancers, and other inflammatory diseases and disorders.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Herney Andrés García-Perdomo
- Division of Urology. Department of Surgery, School of Medicine, UROGIV Research Group, Universidad del Valle, Cali, Colombia
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| |
Collapse
|
41
|
Arsène MMJ, Podoprigora IV, Davares AKL, Razan M, Das MS, Senyagin AN. Antibacterial activity of grapefruit peel extracts and green-synthesized silver nanoparticles. Vet World 2021; 14:1330-1341. [PMID: 34220139 PMCID: PMC8243687 DOI: 10.14202/vetworld.2021.1330-1341] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/23/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND AIM The gradual loss of efficacy of conventional antibiotics is a global issue. Plant material extracts and green-synthesized nanoparticles are among the most promising options to address this problem. Therefore, the aim of this study was to assess the antibacterial properties of aqueous and hydroalcoholic extracts of grapefruit peels as well as their inclusion in green-synthesized silver nanoparticles (AgNPs). MATERIALS AND METHODS Aqueous and hydroalcoholic extracts (80% v/v) were prepared, and the volume and mass yields were determined. The synthesis of AgNPs was done in an eco-friendly manner using AgNO3 as a precursor. The nanoparticles were characterized by ultraviolet-vis spectrometry and photon cross-correlation spectroscopy. The antibacterial activity of the extracts was tested on three Gram-positive bacteria (Staphylococcus aureus ATCC 6538, clinical Enterococcus faecalis, and S. aureus) and two Gram-negative bacteria (two clinical Escherichia coli) using various concentrations of extracts (100, 50, 25, 12, and 5 mg/mL and 5% dimethyl sulfoxide as negative control). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the microdilution method. Modulation of cefazoline and ampicillin on resistant E. coli and S. aureus strains was added to the mixture design response surface methodology with extreme vertices design, with the diameters of inhibition and the fractional inhibitory concentration index as responses and factors, respectively. The antibiotic, the ethanolic extract, and water varied from 0.1 MIC to 0.9 MIC for the first two and from 0 to 0.8 in proportion for the third. Validating the models was done by calculating the absolute average deviation, bias factor, and accuracy factor. RESULTS The volume yield of the EE and aqueous extract (AE) was 96.2% and 93.8% (v/v), respectively, whereas their mass yields were 7.84% and 9.41% (m/m), respectively. The synthesized AgNPs were very uniform and homogeneous, and their size was dependent on the concentration of AgNO3. The antibacterial activity of the two extracts was dose-dependent, and the largest inhibition diameter was observed for the Gram-positive bacteria (S. aureus ATCC 6538; AE, 12; EE, 16), whereas AgNPs had a greater effect on Gram-negative bacteria. The MICs (mg/mL) of the AEs varied from 3.125 (S. aureus ATCC 6538) to 12.5 (E. coli 1 and E. coli 2), whereas the MICs of the EEs varied from 1.5625 (S. aureus 1, S. aureus ATCC 6538, and E. faecalis) to 6.25 (E. coli 1). There was a significant difference between the MICs of AEs and EEs (p=0.014). The MBCs (mg/mL) of the AEs varied from 12.5 (S. aureus ATCC 6538) to 50 (S. aureus 1), whereas those of the EEs varied from 6.25 (S. aureus 1) to 25 (E. coli 1 and E. faecalis). Ethanolic grapefruit extracts demonstrated an ability to modulate cefazolin on E. coli and S. aureus but were completely indifferent to ampicillin on E. coli. CONCLUSION Grapefruit peel extracts and their AgNPs exhibit antibacterial properties that can be exploited for the synthesis of new antimicrobials and their EEs may be efficiently used synergistically with other antibiotics against bacteria with intermediate susceptibility.
Collapse
Affiliation(s)
- Mbarga M. J. Arsène
- Department of Microbiology and Virology, Institute of Medicine, RUDN University, Moscow, Russia
| | - I. V. Podoprigora
- Department of Microbiology and Virology, Institute of Medicine, RUDN University, Moscow, Russia
| | - Anyutoulou K. L. Davares
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University Ngaoundere, Cameroon
| | - Marouf Razan
- Department of Microbiology and Virology, Institute of Medicine, RUDN University, Moscow, Russia
| | - M. S. Das
- Department of Microbiology and Virology, Institute of Medicine, RUDN University, Moscow, Russia
| | - A. N. Senyagin
- Department of Microbiology and Virology, Institute of Medicine, RUDN University, Moscow, Russia
| |
Collapse
|
42
|
Rezatofighi SE, Mirzarazi M, Salehi M. Virulence genes and phylogenetic groups of uropathogenic Escherichia coli isolates from patients with urinary tract infection and uninfected control subjects: a case-control study. BMC Infect Dis 2021; 21:361. [PMID: 33865334 PMCID: PMC8052790 DOI: 10.1186/s12879-021-06036-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 04/05/2021] [Indexed: 12/02/2022] Open
Abstract
Background Urinary Tract Infection (UTI) is one of the most common bacterial infectious diseases which causes considerable morbidity and costly health problems. Uropathogenic Escherichia coli (UPEC), the most common pathogen causing UTI, is a highly heterogeneous group of extraintestinal pathogenic E. coli (ExPEC) which may carry a variety of virulence factors and belonging to different phylogenetic backgrounds. The current study aimed to investigate the frequency and association between various virulence factors (VFs) and phylogenetic groups of UPEC and commensal isolates. Methods UPEC and commensal E. coli strains isolated from UTI and feces of healthy humans were compared for the presence of VFs and phylogenetic groups. Association between virulence genes was investigated and cluster analysis was employed. Results According to the results, among a 30 virulence markers tested, the pathogenicity-associated island (PAI), papAH, papEF, fimH, fyuA, and traT genes prevalence were statistically significant in UPEC isolates. A strong association was found between the B2 and D phylogenetic groups and clinical isolates of UPEC; while, commensal isolates were mostly associated with phylogenetic group A. The aggregated VFs scores were more than twice higher in the UPEC isolates in comparison with the commensal isolates. Interestingly, the B2 group in both UPEC and commensal isolates had the highest VF scores. A strong positive association was found between several virulence genes. The clustering results demonstrated that UPEC or commensal E. coli isolates were highly heterogeneous due to different composition of their virulence gene pool and pathogenicity islands. Conclusion Genetic structure and VFs of UPEC strains vary from region to region; therefore, to control the UTI, the epidemiological aspects and characterization of the UPEC isolates need to be investigated in different regions. Since UPEC isolates are generally originate from the commensal strains, it may be feasible to reduce the UTI burden by interfering the intestinal colonization, particularly in the highly pathogenic clonal lineages such as B2.
Collapse
Affiliation(s)
- Seyedeh Elham Rezatofighi
- Department of biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6135743135, Iran.
| | - Mahsa Mirzarazi
- Department of biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6135743135, Iran
| | - Mansour Salehi
- Department of Genetics and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
43
|
Qindeel M, Barani M, Rahdar A, Arshad R, Cucchiarini M. Nanomaterials for the Diagnosis and Treatment of Urinary Tract Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:546. [PMID: 33671511 PMCID: PMC7926703 DOI: 10.3390/nano11020546] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
The diagnosis and treatment of urinary tract infections (UTIs) remain challenging due to the lack of convenient assessment techniques and to the resistance to conventional antimicrobial therapy, showing the need for novel approaches to address such problems. In this regard, nanotechnology has a strong potential for both the diagnosis and therapy of UTIs via controlled delivery of antimicrobials upon stable, effective and sustained drug release. On one side, nanoscience allowed the production of various nanomaterial-based evaluation tools as precise, effective, and rapid procedures for the identification of UTIs. On the other side, nanotechnology brought tremendous breakthroughs for the treatment of UTIs based on the use of metallic nanoparticles (NPs) for instance, owing to the antimicrobial properties of metals, or of surface-tailored nanocarriers, allowing to overcome multidrug-resistance and prevent biofilm formation via targeted drug delivery to desired sites of action and preventing the development of cytotoxic processes in healthy cells. The goal of the current study is therefore to present the newest developments for the diagnosis and treatment of UTIs based on nanotechnology procedures in relation to the currently available techniques.
Collapse
Affiliation(s)
- Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.Q.); (R.A.)
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.Q.); (R.A.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg. 37, D-66421 Homburg, Germany
| |
Collapse
|
44
|
Behzadi P, Baráth Z, Gajdács M. It's Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:42. [PMID: 33406652 PMCID: PMC7823828 DOI: 10.3390/antibiotics10010042] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is the most frequent cause of infection among non-fermenting Gram-negative bacteria, predominantly affecting immunocompromised patients, but its pathogenic role should not be disregarded in immunocompetent patients. These pathogens present a concerning therapeutic challenge to clinicians, both in community and in hospital settings, due to their increasing prevalence of resistance, and this may lead to prolonged therapy, sequelae, and excess mortality in the affected patient population. The resistance mechanisms of P. aeruginosa may be classified into intrinsic and acquired resistance mechanisms. These mechanisms lead to occurrence of resistant strains against important antibiotics-relevant in the treatment of P. aeruginosa infections-such as β-lactams, quinolones, aminoglycosides, and colistin. The occurrence of a specific resistotype of P. aeruginosa, namely the emergence of carbapenem-resistant but cephalosporin-susceptible (Car-R/Ceph-S) strains, has received substantial attention from clinical microbiologists and infection control specialists; nevertheless, the available literature on this topic is still scarce. The aim of this present review paper is to provide a concise summary on the adaptability, virulence, and antibiotic resistance of P. aeruginosa to a readership of basic scientists and clinicians.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran;
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62-64, 6720 Szeged, Hungary;
| | - Márió Gajdács
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
45
|
Behzadi P, Urbán E, Matuz M, Benkő R, Gajdács M. The Role of Gram-Negative Bacteria in Urinary Tract Infections: Current Concepts and Therapeutic Options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1323:35-69. [PMID: 32596751 DOI: 10.1007/5584_2020_566] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Urinary tract infections (UTIs) are some of the most common infections in human medicine worldwide, recognized as an important public health concern to healthcare systems around the globe. In addition, urine specimens are one of the most frequently submitted samples for culture to the clinical microbiology laboratory, exceeding the number of most of the other sample types. The epidemiology, species-distribution and susceptibility-patterns of uropathogens vary greatly in a geographical and time-dependent manner and it also strongly correlated with the reported patient population studied. Nevertheless, many studies highlight the fact that the etiological agents in UTIs have changed considerably, both in nosocomial and community settings, with a shift towards "less common" microorganisms having more pronounced roles. There is increasing demand for further research to advance diagnostics and treatment options, and to improve care of the patients. The aim of this review paper was to summarize current developments in the global burden of UTI, the diagnostic aspects of these infectious pathologies, the possible etiological agents and their virulence determinants (with a special focus on the members of the Enterobacterales order), current guidelines and quality indicators in the therapy of UTIs and the emergence of multidrug resistance in urinary pathogens.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences Islamic Azad University, Tehran, Iran
| | - Edit Urbán
- Department of Public Health, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Institute of Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Mária Matuz
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Ria Benkő
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Central Pharmacy Service, Emergency Department, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Márió Gajdács
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary.
| |
Collapse
|
46
|
Behzadi P, García-Perdomo HA, Karpiński TM, Issakhanian L. Metallo-ß-lactamases: a review. Mol Biol Rep 2020; 47:6281-6294. [PMID: 32654052 DOI: 10.1007/s11033-020-05651-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/08/2020] [Indexed: 01/09/2023]
Abstract
Microbial pathogens including Enterobacteriaceae family members bear different antibiotic resistance genes comprising Extended-Spectrum-ß-Lactamases (ESBLs) and Metallo-ß-Lactamases (MBLs) on their chromosomes and mobile genetic elements such as plasmids and transposons. Because of the clinical concern regarding MBLs in global public healthcare system, this review focuses on different characteristics of MBLs. For preparing this review article, different databases, websites and search engines such as MEDLINE, SCOPUS, SCIENCEDIRECT and GOOGLE SCHOLAR were searched via MeSH keywords of Enterobacteriaceae, Escherichia coli, Klebsiella pneumoniae, MBL and Bioinformatics. Different types of papers comprising review articles and original articles which were published between the years of 1980 and 2020 were searched, studied and selected by the authors. The results show that, the importance of the spread of MBLs among microbial pathogens may lead to progressive studies for definite treatment. The use of computational biology and chemistry and bioinformatics has had effective consequences on recognition and identification of different properties of MBLs. The application of bioinformatic software tools and databases gives us a great promise regarding production of effective inhibitors against MBLs to have a definite treatment.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Fath Highway, Shahr-e-Qods, End of Shahid Kalhor Blvd, Post Box: 37541-374, Tehran, Iran.
| | | | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712, Poznań, Poland
| | | |
Collapse
|
47
|
Sarshar M, Behzadi P, Ambrosi C, Zagaglia C, Palamara AT, Scribano D. FimH and Anti-Adhesive Therapeutics: A Disarming Strategy Against Uropathogens. Antibiotics (Basel) 2020; 9:E397. [PMID: 32664222 PMCID: PMC7400442 DOI: 10.3390/antibiotics9070397] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Chaperone-usher fimbrial adhesins are powerful weapons against the uropathogens that allow the establishment of urinary tract infections (UTIs). As the antibiotic therapeutic strategy has become less effective in the treatment of uropathogen-related UTIs, the anti-adhesive molecules active against fimbrial adhesins, key determinants of urovirulence, are attractive alternatives. The best-characterized bacterial adhesin is FimH, produced by uropathogenic Escherichia coli (UPEC). Hence, a number of high-affinity mono- and polyvalent mannose-based FimH antagonists, characterized by different bioavailabilities, have been reported. Given that antagonist affinities are firmly associated with the functional heterogeneities of different FimH variants, several FimH inhibitors have been developed using ligand-drug discovery strategies to generate high-affinity molecules for successful anti-adhesion therapy. As clinical trials have shown d-mannose's efficacy in UTIs prevention, it is supposed that mannosides could be a first-in-class strategy not only for UTIs, but also to combat other Gram-negative bacterial infections. Therefore, the current review discusses valuable and effective FimH anti-adhesive molecules active against UTIs, from design and synthesis to in vitro and in vivo evaluations.
Collapse
Affiliation(s)
- Meysam Sarshar
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia- Cenci Bolognetti Foundation, 00185 Rome, Italy
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| | - Cecilia Ambrosi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Carlo Zagaglia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia- Cenci Bolognetti Foundation, 00185 Rome, Italy
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| |
Collapse
|
48
|
Gajdács M, Ábrók M, Lázár A, Burián K. Differential epidemiology and antibiotic resistance of lactose-fermenting and non-fermenting Escherichia coli: Is it just a matter of taste? Biol Futur 2020; 71:175-182. [PMID: 34554531 DOI: 10.1007/s42977-020-00016-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/20/2020] [Indexed: 02/01/2023]
Abstract
Urinary tract infections (UTIs) are some of the most common infections affecting humans worldwide. Occurrence of atypical, lactose non-fermenting, biochemically "inactive" strains of E. coli in clinical material has been described in the literature, which may cause a significant diagnostic challenge. The present retrospective microbiological study was carried out using isolates and data collected between January 1, 2013, and December 31, 2017, at the Institute of Clinical Microbiology. n = 24,285 positive urine samples were noted during the study period, out of which, samples positive for either lac + and lac- E. coli were included in the analysis. E. coli represented n = 7075 (55.8% ± 4.6%) of outpatient and n = 4916 (42.4% ± 3.6%) of inpatient isolates. n = 401 (3.3%; 80.2 ± 14.6/year) lac- E. coli isolates were identified from urinary tract infections. The ratio of lac- E. coli isolates was significantly higher in outpatient samples (262 vs. 139). Resistance levels of lac- isolates for antibiotics commonly used for treating UTIs were significantly higher for both inpatient and outpatient isolates: norfloxacin, ciprofloxacin, fosfomycin and nitrofurantoin. It is essential to pay attention to the presence of lac- strains, and their omission from clinical material during diagnostic procedures may have significant consequences for epidemiological studies and therapy.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös Utca 6., Szeged, 6720, Hungary.
| | - Marianna Ábrók
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Semmelweis utca 6., Szeged, 6725, Hungary
| | - Andrea Lázár
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Semmelweis utca 6., Szeged, 6725, Hungary
| | - Katalin Burián
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Semmelweis utca 6., Szeged, 6725, Hungary
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10., Szeged, 6720, Hungary
| |
Collapse
|