1
|
Fields L, Miles HN, Adrian AE, Patrenets E, Ricke WA, Li L. MSIght: A Modular Platform for Improved Confidence in Global, Untargeted Mass Spectrometry Imaging Annotation. J Proteome Res 2025. [PMID: 40197022 DOI: 10.1021/acs.jproteome.4c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Mass spectrometry imaging (MSI) has gained popularity in clinical analyses due to its high sensitivity, specificity, and throughput. However, global profiling experiments are often still restricted to LC-MS/MS analyses that lack spatial localization due to low-throughput methods for on-tissue peptide identification and confirmation. Additionally, the integration of parallel LC-MS/MS peptide confirmation, as well as histological stains for accurate mapping of identifications, presents a large bottleneck for data analysis, limiting throughput for untargeted profiling experiments. Here, we present a novel platform, termed MSIght, which automates the integration of these multiple modalities into an accessible and modular platform. Histological stains of tissue sections are coregistered to their respective MSI data sets to improve spatial localization and resolution of identified peptides. MS/MS peptide identifications via untargeted LC-MS/MS are used to confirm putative MSI identifications, thus generating MS images with greater confidence in a high-throughput, global manner. This platform has the potential to enable large-scale clinical cohorts to utilize MSI in the future for global proteomic profiling that uncovers novel biomarkers in a spatially resolved manner, thus widely expanding the utility of MSI in clinical discovery.
Collapse
Affiliation(s)
- Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Hannah N Miles
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Urology, George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Alexis E Adrian
- Department of Urology, George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Elliot Patrenets
- Department of Urology, George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Integrative Biology, University of Wisconsin-Madison, 250 N Mills St, Madison, Wisconsin 53706, United States
| | - William A Ricke
- Department of Urology, George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
2
|
Wang Q, Cheng W, He T, Li S, Ao J, He Y, Duan C, Li X, Zhang J. Glycerophospholipid metabolic disorders and gender difference of cantharidin-induced hepatotoxicity in rats: Lipidomics and MALDI mass spectrometry imaging analysis. Chem Biol Interact 2025; 405:111314. [PMID: 39551422 DOI: 10.1016/j.cbi.2024.111314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The hepatotoxicity mechanism of cantharidin (CTD), a major active component of Mylabris was explored based on liver lipidome alterations and spatial distributions in female and male rats using lipidomics and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). After oral CTD exposure, the livers of female rats were screened for 104 differential lipids including lysophosphatidylethanolamine(LysoPE)(20:2/0:0) and diacylglycerol(DG)(18:2/22:4), whereas the livers of male rats were screened for 76 differential lipids including fatty acid(FA)(24:6) and DG(18:0/22:4). According to the MALDI-MSI results, female rats exhibited 12 differential lipids with alteration in the abundance and spatial distribution of phosphatylcholine(PC), phosphatidylethanolamine(PE), lysophosphatidylcholine(LysoPC), and LysoPE in the liver lesion area. On the other hand, male rats exhibited 8 differential lipids with changes in the abundance and spatial distribution of PC, PE, and FA in the liver lesion area. The lipidomics- and MALDI-MSI-detected differential lipids strongly disrupted glycerophospholipid metabolism in both female and male rats. Additionally, phosphatidate phosphatase (Lipin1), choline/ethanolamine phosphotransferase 1 (CEPT1), and phosphatidylethanolamine N-methyltransferase (PEMT) were screened to distinguish CTD hepatoxicity in female and male rats. Western blotting analysis demonstrated a significant elevation in Lipin1 expression in female and male rat livers, accompanied by a decrease in PEMT expression. Furthermore, CEPT1 expression increased significantly in female rat livers and decreased significantly in male rat livers. These findings suggested that CTD could disrupt lipid metabolism in a gender-specific manner. Moreover, the combination of lipidomics and MALDI-MSI could offer valuable insights into CTD-induced hepatotoxicity in rats.
Collapse
Affiliation(s)
- Qiyi Wang
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Weina Cheng
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Tianmu He
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Shan Li
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Jingwen Ao
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Yanmei He
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Cancan Duan
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaofei Li
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Jianyong Zhang
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
3
|
Kartikeyan A, Vasudevan V, Peter AJ, Krishnan N, Velmurugan D, Velusamy P, Anbu P, Palani P, Raman P. Effect of incubation period on the glycosylated protein content in germinated and ungerminated seeds of mung bean (Vigna radiata (L.) Wilczek). Int J Biol Macromol 2022; 217:633-651. [PMID: 35843398 DOI: 10.1016/j.ijbiomac.2022.07.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022]
Abstract
The effects of different incubation periods on the contents of amino acids, proteins, glycosylated proteins and metabolites in germinated and ungerminated mung bean seeds were investigated in this study. The study employs soaking of mung bean seeds in water under laboratory conditions at 28 °C for 3, 6, and 9 h, followed by germination for 12, 24, 36, and 48 h. Seeds collected from different period of imbibition and germination were subjected to total protein extraction for phytochemical analysis. Germination of the seeds was found to be most successful after 6 h of soaking (rather than 9 h of incubation). Hence, seeds imbibed for 6 h were further investigated for germination at 28 °C for 12, 24, 36, and 48 h. Total protein was extracted from both imbibed and germinated seeds, followed by trypsin digestion. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based peptide mass fingerprinting revealed 38 proteins in 6 h water-imbibed seeds and 50 proteins in 24 h germinated seeds. Among these, 16 were identified as glycosylated proteins and the maximum number of glycosylated proteins were detected in 6 h water-imbibed seeds and 24 h germinated seeds. Moreover, High Performance Liquid Chromatography (HPLC) was used to quantify amino acids from the extracted proteins. A total of 15 amino acids were detected, of which eight were essential and the remaining were non-essential; amino acid concentrations increased following 3, 6, and 9 h of imbibition when compared to the control. It was concluded from the study that seeds with 6 h of imbibition and 24 h of germination can be used as potential nutritional source of different amino acids, proteins, glycosylated proteins, and other bioactive metabolites in human diet.
Collapse
Affiliation(s)
- Aradhana Kartikeyan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Vinduja Vasudevan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Aakash John Peter
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Nagasathiya Krishnan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Devadasan Velmurugan
- Office of the Dean Sponsored Research, Publications and Collaborations, AMET University, Kanathur - 603 112, Chennai, Tamil Nadu, India
| | - Palaniyandi Velusamy
- Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chromepet - 600 044, Chennai, Tamil Nadu, India
| | - Periasamy Anbu
- Department of Bilogical Enigneering, College of Engineering, Inha University, Incheon - 22212, Republic of Korea.
| | - Perumal Palani
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai - 600 025, India
| | - Pachaiappan Raman
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
4
|
Jiang H, Zhang Y, Liu Z, Wang X, He J, Jin H. Advanced applications of mass spectrometry imaging technology in quality control and safety assessments of traditional Chinese medicines. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114760. [PMID: 34678417 PMCID: PMC9715987 DOI: 10.1016/j.jep.2021.114760] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicines (TCMs) have made great contributions to the prevention and treatment of human diseases in China, and especially in cases of COVID-19. However, due to quality problems, the lack of standards, and the diversity of dosage forms, adverse reactions to TCMs often occur. Moreover, the composition of TCMs makes them extremely challenging to extract and isolate, complicating studies of toxicity mechanisms. AIM OF THE REVIEW The aim of this paper is therefore to summarize the advanced applications of mass spectrometry imaging (MSI) technology in the quality control, safety evaluations, and determination of toxicity mechanisms of TCMs. MATERIALS AND METHODS Relevant studies from the literature have been collected from scientific databases, such as "PubMed", "Scifinder", "Elsevier", "Google Scholar" using the keywords "MSI", "traditional Chinese medicines", "quality control", "metabolomics", and "mechanism". RESULTS MSI is a new analytical imaging technology that can detect and image the metabolic changes of multiple components of TCMs in plants and animals in a high throughput manner. Compared to other chemical analysis methods, such as liquid chromatography-mass spectrometry (LC-MS), this method does not require the complex extraction and separation of TCMs, and is fast, has high sensitivity, is label-free, and can be performed in high-throughput. Combined with chemometrics methods, MSI can be quickly and easily used for quality screening of TCMs. In addition, this technology can be used to further focus on potential biomarkers and explore the therapeutic/toxic mechanisms of TCMs. CONCLUSIONS As a new type of analysis method, MSI has unique advantages to metabolic analysis, quality control, and mechanisms of action explorations of TCMs, and contributes to the establishment of quality standards to explore the safety and toxicology of TCMs.
Collapse
Affiliation(s)
- Haiyan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yaxin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhigang Liu
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiangyi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China.
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China.
| |
Collapse
|
5
|
Noun M, Akoumeh R, Abbas I. Cell and Tissue Imaging by TOF-SIMS and MALDI-TOF: An Overview for Biological and Pharmaceutical Analysis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-26. [PMID: 34809729 DOI: 10.1017/s1431927621013593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The potential of mass spectrometry imaging (MSI) has been demonstrated in cell and tissue research since 1970. MSI can reveal the spatial distribution of a wide range of atomic and molecular ions detected from biological sample surfaces, it is a powerful and valuable technique used to monitor and detect diverse chemical and biological compounds, such as drugs, lipids, proteins, and DNA. MSI techniques, notably matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) and time of flight secondary ion mass spectrometry (TOF-SIMS), witnessed a dramatic upsurge in studying and investigating biological samples especially, cells and tissue sections. This advancement is attributed to the submicron lateral resolution, the high sensitivity, the good precision, and the accurate chemical specificity, which make these techniques suitable for decoding and understanding complex mechanisms of certain diseases, as well as monitoring the spatial distribution of specific elements, and compounds. While the application of both techniques for the analysis of cells and tissues is thoroughly discussed, a briefing of MALDI-TOF and TOF-SIMS basis and the adequate sampling before analysis are briefly covered. The importance of MALDI-TOF and TOF-SIMS as diagnostic tools and robust analytical techniques in the medicinal, pharmaceutical, and toxicology fields is highlighted through representative published studies.
Collapse
Affiliation(s)
- Manale Noun
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Rayane Akoumeh
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Imane Abbas
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| |
Collapse
|
6
|
Zaikin VG, Borisov RS. Mass Spectrometry as a Crucial Analytical Basis for Omics Sciences. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [PMCID: PMC8693159 DOI: 10.1134/s1061934821140094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review is devoted to the consideration of mass spectrometric platforms as applied to omics sciences. The most significant attention is paid to omics related to life sciences (genomics, proteomics, meta-bolomics, lipidomics, glycomics, plantomics, etc.). Mass spectrometric approaches to solving the problems of petroleomics, polymeromics, foodomics, humeomics, and exosomics, related to inorganic sciences, are also discussed. The review comparatively presents the advantages of various principles of separation and mass spectral techniques, complementary derivatization, used to obtain large arrays of various structural and quantitative information in the mentioned omics sciences.
Collapse
Affiliation(s)
- V. G. Zaikin
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
| | - R. S. Borisov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
- RUDN University, 117198 Moscow, Russia
- Core Facility Center “Arktika,” Northern (Arctic) Federal University, 163002 Arkhangelsk, Russia
| |
Collapse
|
7
|
Unravel the Local Complexity of Biological Environments by MALDI Mass Spectrometry Imaging. Int J Mol Sci 2021; 22:ijms222212393. [PMID: 34830273 PMCID: PMC8623934 DOI: 10.3390/ijms222212393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
Classic metabolomic methods have proven to be very useful to study functional biology and variation in the chemical composition of different tissues. However, they do not provide any information in terms of spatial localization within fine structures. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) does and reaches at best a spatial resolution of 0.25 μm depending on the laser setup, making it a very powerful tool to analyze the local complexity of biological samples at the cellular level. Here, we intend to give an overview of the diversity of the molecules and localizations analyzed using this method as well as to update on the latest adaptations made to circumvent the complexity of samples. MALDI MSI has been widely used in medical sciences and is now developing in research areas as diverse as entomology, microbiology, plant biology, and plant–microbe interactions, the rhizobia symbiosis being the most exhaustively described so far. Those are the fields of interest on which we will focus to demonstrate MALDI MSI strengths in characterizing the spatial distributions of metabolites, lipids, and peptides in relation to biological questions.
Collapse
|
8
|
Dokwal D, Romsdahl TB, Kunz DA, Alonso AP, Dickstein R. Phosphorus deprivation affects composition and spatial distribution of membrane lipids in legume nodules. PLANT PHYSIOLOGY 2021; 185:1847-1859. [PMID: 33793933 PMCID: PMC8133537 DOI: 10.1093/plphys/kiaa115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/13/2020] [Indexed: 05/12/2023]
Abstract
In legumes, symbiotic nitrogen (N) fixation (SNF) occurs in specialized organs called nodules after successful interactions between legume hosts and rhizobia. In a nodule, N-fixing rhizobia are surrounded by symbiosome membranes, through which the exchange of nutrients and ammonium occurs between bacteria and the host legume. Phosphorus (P) is an essential macronutrient, and N2-fixing legumes have a higher requirement for P than legumes grown on mineral N. As in the previous studies, in P deficiency, barrel medic (Medicago truncatula) plants had impaired SNF activity, reduced growth, and accumulated less phosphate in leaves, roots, and nodules compared with the plants grown in P sufficient conditions. Membrane lipids in M. truncatula tissues were assessed using electrospray ionization-mass spectrometry. Galactolipids were found to increase in P deficiency, with declines in phospholipids (PL), especially in leaves. Lower PL losses were found in roots and nodules. Subsequently, matrix-assisted laser desorption/ionization-mass spectrometry imaging was used to spatially map the distribution of the positively charged phosphatidylcholine (PC) species in nodules in both P-replete and P-deficient conditions. Our results reveal heterogeneous distribution of several PC species in nodules, with homogeneous distribution of other PC classes. In P poor conditions, some PC species distributions were observed to change. The results suggest that specific PC species may be differentially important in diverse nodule zones and cell types, and that membrane lipid remodeling during P stress is not uniform across the nodule.
Collapse
Affiliation(s)
- Dhiraj Dokwal
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 USA
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203 USA
| | - Trevor B Romsdahl
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 USA
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203 USA
| | - Daniel A Kunz
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 USA
| | - Ana Paula Alonso
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 USA
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203 USA
| | - Rebecca Dickstein
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 USA
- BioDiscovery Institute, University of North Texas, Denton, Texas 76203 USA
- Author for communication:
| |
Collapse
|
9
|
McGuiness PN, Reid JB, Foo E. The influence of ethylene, gibberellins and brassinosteroids on energy and nitrogen-fixation metabolites in nodule tissue. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110846. [PMID: 33691972 DOI: 10.1016/j.plantsci.2021.110846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 05/12/2023]
Abstract
Legume nodules are a unique plant organ that contain nitrogen-fixing rhizobial bacteria. For this interaction to be mutually beneficial, plant and bacterial metabolism must be precisely co-ordinated. Plant hormones are known to play essential roles during the establishment of legume-rhizobial symbioses but their role in subsequent nodule metabolism has not been explored in any depth. The plant hormones brassinosteroids, ethylene and gibberellins influence legume infection, nodule number and in some cases nodule function. In this paper, the influence of these hormones on nodule metabolism was examined in a series of well characterised pea mutants with altered hormone biosynthesis or response. A targeted set of metabolites involved in nutrient exchange and nitrogen fixation was examined in nodule tissue of mutant and wild type plants. Gibberellin-deficiency had a major negative impact on the level of several major dicarboxylates supplied to rhizobia by the plant and also led to a significant deficit in the amino acids involved in glutamine-aspartate transamination, consistent with the limited bacteroid development and low fixation rate of gibberellin-deficient na mutant nodules. In contrast, no major effects of brassinosteroid-deficiency or ethylene-insensitivity on the key metabolites in these pathways were found. Therefore, although all three hormones influence infection and nodule number, only gibberellin is important for the establishment of a functional nodule metabolome.
Collapse
Affiliation(s)
- Peter N McGuiness
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - James B Reid
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - Eloise Foo
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia.
| |
Collapse
|
10
|
de Souza LP, Borghi M, Fernie A. Plant Single-Cell Metabolomics-Challenges and Perspectives. Int J Mol Sci 2020; 21:E8987. [PMID: 33256100 PMCID: PMC7730874 DOI: 10.3390/ijms21238987] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Omics approaches for investigating biological systems were introduced in the mid-1990s and quickly consolidated to become a fundamental pillar of modern biology. The idea of measuring the whole complement of genes, transcripts, proteins, and metabolites has since become widespread and routinely adopted in the pursuit of an infinity of scientific questions. Incremental improvements over technical aspects such as sampling, sensitivity, cost, and throughput pushed even further the boundaries of what these techniques can achieve. In this context, single-cell genomics and transcriptomics quickly became a well-established tool to answer fundamental questions challenging to assess at a whole tissue level. Following a similar trend as the original development of these techniques, proteomics alternatives for single-cell exploration have become more accessible and reliable, whilst metabolomics lag behind the rest. This review summarizes state-of-the-art technologies for spatially resolved metabolomics analysis, as well as the challenges hindering the achievement of sensu stricto metabolome coverage at the single-cell level. Furthermore, we discuss several essential contributions to understanding plant single-cell metabolism, finishing with our opinion on near-future developments and relevant scientific questions that will hopefully be tackled by incorporating these new exciting technologies.
Collapse
Affiliation(s)
- Leonardo Perez de Souza
- Max Planck Institute of Molecular Plant Physiology, Am Müehlenberg 1, Golm, 14476 Potsdam, Germany
| | - Monica Borghi
- Department of Biology, Utah State University, 1435 Old Main Hill, Logan, UT 84322, USA;
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Müehlenberg 1, Golm, 14476 Potsdam, Germany
| |
Collapse
|
11
|
Liu A, Ku YS, Contador CA, Lam HM. The Impacts of Domestication and Agricultural Practices on Legume Nutrient Acquisition Through Symbiosis With Rhizobia and Arbuscular Mycorrhizal Fungi. Front Genet 2020; 11:583954. [PMID: 33193716 PMCID: PMC7554533 DOI: 10.3389/fgene.2020.583954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/03/2022] Open
Abstract
Legumes are unique among plants as they can obtain nitrogen through symbiosis with nitrogen-fixing rhizobia that form root nodules in the host plants. Therefore they are valuable crops for sustainable agriculture. Increasing nitrogen fixation efficiency is not only important for achieving better plant growth and yield, but it is also crucial for reducing the use of nitrogen fertilizer. Arbuscular mycorrhizal fungi (AMF) are another group of important beneficial microorganisms that form symbiotic relationships with legumes. AMF can promote host plant growth by providing mineral nutrients and improving the soil ecosystem. The trilateral legume-rhizobia-AMF symbiotic relationships also enhance plant development and tolerance against biotic and abiotic stresses. It is known that domestication and agricultural activities have led to the reduced genetic diversity of cultivated germplasms and higher sensitivity to nutrient deficiencies in crop plants, but how domestication has impacted the capability of legumes to establish beneficial associations with rhizospheric microbes (including rhizobia and fungi) is not well-studied. In this review, we will discuss the impacts of domestication and agricultural practices on the interactions between legumes and soil microbes, focusing on the effects on AMF and rhizobial symbioses and hence nutrient acquisition by host legumes. In addition, we will summarize the genes involved in legume-microbe interactions and studies that have contributed to a better understanding of legume symbiotic associations using metabolic modeling.
Collapse
Affiliation(s)
| | | | | | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Agtuca BJ, Stopka SA, Evans S, Samarah L, Liu Y, Xu D, Stacey MG, Koppenaal DW, Paša-Tolić L, Anderton CR, Vertes A, Stacey G. Metabolomic profiling of wild-type and mutant soybean root nodules using laser-ablation electrospray ionization mass spectrometry reveals altered metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1937-1958. [PMID: 32410239 DOI: 10.1111/tpj.14815] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 05/18/2023]
Abstract
The establishment of the nitrogen-fixing symbiosis between soybean and Bradyrhizobium japonicum is a complex process. To document the changes in plant metabolism as a result of symbiosis, we utilized laser ablation electrospray ionization-mass spectrometry (LAESI-MS) for in situ metabolic profiling of wild-type nodules, nodules infected with a B. japonicum nifH mutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in the stearoyl-acyl carrier protein desaturase (sacpd-c) gene, which were previously shown to have an altered nodule ultrastructure. The results showed that the relative abundance of fatty acids, purines, and lipids was significantly changed in response to the symbiosis. The nifH mutant nodules had elevated levels of jasmonic acid, correlating with signs of nitrogen deprivation. Nodules resulting from the mixed inoculant displayed similar, overlapping metabolic distributions within the sectors of effective (fix+ ) and ineffective (nifH mutant, fix- ) endosymbionts. These data are inconsistent with the notion that plant sanctioning is cell autonomous. Nodules lacking sacpd-c displayed an elevation of soyasaponins and organic acids in the central necrotic regions. The present study demonstrates the utility of LAESI-MS for high-throughput screening of plant phenotypes. Overall, nodules disrupted in the symbiosis were elevated in metabolites related to plant defense.
Collapse
Affiliation(s)
- Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sylwia A Stopka
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Sterling Evans
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Laith Samarah
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Yang Liu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Minviluz G Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
13
|
Gulin AA, Nadtochenko VA, Pogorelova VN, Melnikov MY, Pogorelov AG. Sample Preparation of Biological Tissues and Cells for the Time-of-Flight Secondary Ion Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s106193482006009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Pei C, Liu C, Wang Y, Cheng D, Li R, Shu W, Zhang C, Hu W, Jin A, Yang Y, Wan J. FeOOH@Metal-Organic Framework Core-Satellite Nanocomposites for the Serum Metabolic Fingerprinting of Gynecological Cancers. Angew Chem Int Ed Engl 2020; 59:10831-10835. [PMID: 32237260 DOI: 10.1002/anie.202001135] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Indexed: 12/11/2022]
Abstract
High-throughput metabolic analysis is of significance in diagnostics, while tedious sample pretreatment has largely hindered its clinic application. Herein, we designed FeOOH@ZIF-8 composites with enhanced ionization efficiency and size-exclusion effect for laser desorption/ionization mass spectrometry (LDI-MS)-based metabolic diagnosis of gynecological cancers. The FeOOH@ZIF-8-assisted LDI-MS achieved rapid, sensitive, and selective metabolic fingerprints of the native serum without any enrichment or purification. Further analysis of extracted serum metabolic fingerprints successfully discriminated patients with gynecological cancers (GCs) from healthy controls and also differentiated three major subtypes of GCs. Given the low cost, high-throughput, and easy operation, our approach brings a new dimension to disease analysis and classification.
Collapse
Affiliation(s)
- Congcong Pei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - You Wang
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, Shanghai, 200001, P. R. China.,Department of Obstetrics and Gynecology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China
| | - Dan Cheng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Wenli Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Aihua Jin
- Institute of Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
15
|
Pei C, Liu C, Wang Y, Cheng D, Li R, Shu W, Zhang C, Hu W, Jin A, Yang Y, Wan J. FeOOH@Metal–Organic Framework Core–Satellite Nanocomposites for the Serum Metabolic Fingerprinting of Gynecological Cancers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Congcong Pei
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Chao Liu
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - You Wang
- Shanghai Key Laboratory of Gynecologic OncologyRenji Hospital Shanghai 200001 P. R. China
- Department of Obstetrics and GynecologySchool of MedicineShanghai Jiao Tong University Shanghai 200001 P. R. China
| | - Dan Cheng
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland Brisbane QLD 4072 Australia
| | - Rongxin Li
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Wenli Hu
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Aihua Jin
- Institute of Molecular BioscienceThe University of Queensland St Lucia Queensland 4072 Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland Brisbane QLD 4072 Australia
| | - Jingjing Wan
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| |
Collapse
|
16
|
Veličković D, Chu RK, Myers GL, Ahkami AH, Anderton CR. An approach for visualizing the spatial metabolome of an entire plant root system inspired by the Swiss-rolling technique. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4363. [PMID: 31018010 DOI: 10.1002/jms.4363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 05/11/2023]
Abstract
The spatial configuration and morphology of roots are commonly monitored for a better understanding of plant health and development. However, this approach provides minimal details about the biochemistry regulating the observable traits. Therefore, the ability to metabolically map the entire root structure would be of major value. Here, we developed a sample preparation approach that enables imaging of the entire root within a restricted space (width of microscope slide), which was influenced by the Swiss-rolling technique. We were able to image and confidently identify molecules along the entire root structure from rolled-root tissue sections using multiple spatially resolved mass spectrometry approaches.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Gabriel L Myers
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
17
|
Hay AE, Herrera-Belaroussi A, Rey M, Fournier P, Normand P, Boubakri H. Feedback Regulation of N Fixation in Frankia-Alnus Symbiosis Through Amino Acids Profiling in Field and Greenhouse Nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:499-508. [PMID: 31916486 DOI: 10.1094/mpmi-10-19-0289-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Symbiosis established between actinorhizal plants and Frankia spp., which are nitrogen-fixing actinobacteria, promotes nodule organogenesis, the site of metabolic exchange. The present study aimed to identify amino acid markers involved in Frankia-Alnus interactions by comparing nodules and associated roots from field and greenhouse samples. Our results revealed a high level of citrulline in all samples, followed by arginine (Arg), aspartate (Asp), glutamate (Glu), γ-amino-n-butyric acid (GABA), and alanine (Ala). Interestingly, the field metabolome approach highlighted more contrasted amino acid patterns between nodules and roots compared with greenhouse samples. Indeed, 12 amino acids had a mean relative abundance significantly different between field nodule and root samples, against only four amino acids in greenhouse samples, underlining the importance of developing "ecometabolome" approaches. In order to monitor the effects on Frankia cells (respiration and nitrogen fixation activities) of amino acid with an abundance pattern evocative of a role in symbiosis, in-vitro assays were performed by supplementing them in nitrogen-free cultures. Amino acids had three types of effects: i) those used by Frankia as nitrogen source (Glu, Gln, Asp), ii) amino acids stimulating both nitrogen fixation and respiration (e.g., Cit, GABA, Ala, valine, Asn), and iii) amino acids triggering a toxic effect (Arg, histidine). In this paper, a N-metabolic model was proposed to discuss how the host plant and bacteria modulate amino acids contents in nodules, leading to a fine regulation sustaining high bacterial nitrogen fixation.
Collapse
Affiliation(s)
- Anne-Emmanuelle Hay
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
- Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, Centre d'Etude des Substances Naturelles
| | - Aude Herrera-Belaroussi
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Marjolaine Rey
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
- Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, Centre d'Etude des Substances Naturelles
| | - Pascale Fournier
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Philippe Normand
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Hasna Boubakri
- Université de Lyon, F-69361, Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| |
Collapse
|
18
|
Keller C, Gemperline E, Li L. MALDI Mass Spectrometry Imaging of Peptides in Medicago truncatula Root Nodules. Methods Mol Biol 2020; 2139:341-351. [PMID: 32462598 PMCID: PMC7430052 DOI: 10.1007/978-1-0716-0528-8_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mass spectrometry imaging is routinely used to visualize the distributions of biomolecules in tissue sections. In plants, mass spectrometry imaging of metabolites is more often conducted, but the imaging of larger molecules is less frequently performed despite the importance of proteins and endogenous peptides to the plant. Here, we describe a matrix-assisted laser desorption/ionization mass spectrometry imaging method for the imaging of peptides in Medicago truncatula root nodules. Sample preparation steps including embedding in gelatin, sectioning, and matrix application are described. The method described is employed to determine the spatial distribution of hundreds of peptide peaks.
Collapse
Affiliation(s)
- Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Erin Gemperline
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA. .,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
19
|
Montes-Grajales D, Esturau-Escofet N, Esquivel B, Martinez-Romero E. Exo-Metabolites of Phaseolus vulgaris-Nodulating Rhizobial Strains. Metabolites 2019; 9:E105. [PMID: 31151153 PMCID: PMC6630823 DOI: 10.3390/metabo9060105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/01/2023] Open
Abstract
Rhizobia are able to convert dinitrogen into biologically available forms of nitrogen through their symbiotic association with leguminous plants. This results in plant growth promotion, and also in conferring host resistance to different types of stress. These bacteria can interact with other organisms and survive in a wide range of environments, such as soil, rhizosphere, and inside roots. As most of these processes are molecularly mediated, the aim of this research was to identify and quantify the exo-metabolites produced by Rhizobium etli CFN42, Rhizobium leucaenae CFN299, Rhizobium tropici CIAT899, Rhizobium phaseoli Ch24-10, and Sinorhizobium americanum CFNEI156, by nuclear magnetic resonance (NMR). Bacteria were grown in free-living cultures using minimal medium containing sucrose and glutamate. Interestingly, we found that even when these bacteria belong to the same family (Rhizobiaceae) and all form nitrogen-fixing nodules on Phaseolus vulgaris roots, they exhibited different patterns and concentrations of chemical species produced by them.
Collapse
Affiliation(s)
- Diana Montes-Grajales
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico.
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
- Environmental and Computational Chemistry Group, University of Cartagena, Cartagena 130015, Colombia.
| | - Nuria Esturau-Escofet
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Baldomero Esquivel
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | | |
Collapse
|
20
|
diCenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, Mengoni A. Multidisciplinary approaches for studying rhizobium–legume symbioses. Can J Microbiol 2019; 65:1-33. [DOI: 10.1139/cjm-2018-0377] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The rhizobium–legume symbiosis is a major source of fixed nitrogen (ammonia) in the biosphere. The potential for this process to increase agricultural yield while reducing the reliance on nitrogen-based fertilizers has generated interest in understanding and manipulating this process. For decades, rhizobium research has benefited from the use of leading techniques from a very broad set of fields, including population genetics, molecular genetics, genomics, and systems biology. In this review, we summarize many of the research strategies that have been employed in the study of rhizobia and the unique knowledge gained from these diverse tools, with a focus on genome- and systems-level approaches. We then describe ongoing synthetic biology approaches aimed at improving existing symbioses or engineering completely new symbiotic interactions. The review concludes with our perspective of the future directions and challenges of the field, with an emphasis on how the application of a multidisciplinary approach and the development of new methods will be necessary to ensure successful biotechnological manipulation of the symbiosis.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Maryam Zamani
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alice Checcucci
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
21
|
Yoon S, Lee TG. Biological tissue sample preparation for time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging. NANO CONVERGENCE 2018; 5:24. [PMID: 30467706 PMCID: PMC6153193 DOI: 10.1186/s40580-018-0157-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/05/2018] [Indexed: 05/03/2023]
Abstract
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging is an analytical technique rapidly expanding in use in biological studies. This technique is based on high spatial resolution (50-100 nm), high surface sensitivity (1-2 nm top-layer), and statistical analytic power. In mass spectrometry imaging (MSI), sample preparation is a crucial step to maintaining the natural state of the biomolecules and providing accurate spatial information. However, a number of problems associated with temperature changes in tissue samples such as loss of original distribution due to undesired molecular migration during the sample preparation or reduced ionization efficiency make it difficult to accurately perform MSI. Although frozen hydrate analysis is the ideal sample preparation method to eliminate the effects of temperature, this approach is hindered by mechanical limitations. Alternatively, an adhesive-tape-supported mounting and freeze-drying preparation has been proposed. This paper provides a concise review of the sample preparation procedures, a review of current issues, and proposes efficacious solutions for ToF-SIMS imaging in biological research.
Collapse
Affiliation(s)
- Sohee Yoon
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113 Republic of Korea
| | - Tae Geol Lee
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113 Republic of Korea
| |
Collapse
|
22
|
Li B, Zhang Y, Ge J, Liu K, Li P. Sample preparation for mass spectrometry imaging of leaf tissues: a case study on analyte delocalization. Anal Bioanal Chem 2018; 410:7449-7456. [PMID: 30215125 DOI: 10.1007/s00216-018-1355-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023]
Abstract
Appropriate sample preparation is pivotally important to obtain high-quality mass spectrometry imaging (MSI) data. Unlike mammalian tissues, preparation of cryosections from plant tissues for MSI measurement is quite challenging due to its intrinsic complex texture and cellular structure. This is especially true for leaf samples which are generally thin, water-rich, and fragile. In this work, a systematic study was performed, aiming to evaluate three embedding materials and five mounting approaches for matrix-assisted laser desorption ionization (MALDI) MSI of secondary metabolites in cross sections of the ginkgo leaf. Delocalization of endogenous metabolites was chosen as a major indicator for evaluation of three embedding materials including ice, carboxymethyl cellulose (CMC), and gelatin and different mounting approaches. Image distortion and analyte delocalization were observed when ice was used as an embedding medium. CMC embedding provided better results compared to the ice by using modified mounting approach. Among three embedding materials, no delocalization was observed in specimens embedded with gelatin, and gelatin embedding is the least affected by different mounting approaches. An alternative approach to mitigate analyte delocalization is the removal of embedding media embraced the tissue sections before mounting, which is particularly suitable for ice-embedded samples. Additionally, the extent of analyte delocalization was closely related to their lipophilicity/hydrophilicity properties, and less analyte diffusion was observed for hydrophobic analytes than for the water-soluble compounds.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China. .,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Ying Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Junyue Ge
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Kehui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China. .,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
23
|
Veličković D, Agtuca BJ, Stopka SA, Vertes A, Koppenaal DW, Paša-Tolić L, Stacey G, Anderton CR. Observed metabolic asymmetry within soybean root nodules reflects unexpected complexity in rhizobacteria-legume metabolite exchange. THE ISME JOURNAL 2018. [PMID: 29899508 DOI: 10.1038/s41396-018-0188-188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
In this study, the three-dimensional spatial distributions of a number of metabolites involved in regulating symbiosis and biological nitrogen fixation (BNF) within soybean root nodules were revealed using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). While many metabolites exhibited distinct spatial compartmentalization, some metabolites were asymmetrically distributed throughout the nodule (e.g., S-adenosylmethionine). These results establish a more complex metabolic view of plant-bacteria symbiosis (and BNF) within soybean nodules than previously hypothesized. Collectively these findings suggest that spatial perspectives in metabolic regulation should be considered to unravel the overall complexity of interacting organisms, like those relating to associations of nitrogen-fixing bacteria with host plants.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sylwia A Stopka
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA.
| |
Collapse
|
24
|
Veličković D, Agtuca BJ, Stopka SA, Vertes A, Koppenaal DW, Paša-Tolić L, Stacey G, Anderton CR. Observed metabolic asymmetry within soybean root nodules reflects unexpected complexity in rhizobacteria-legume metabolite exchange. THE ISME JOURNAL 2018; 12:2335-2338. [PMID: 29899508 PMCID: PMC6092352 DOI: 10.1038/s41396-018-0188-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/02/2018] [Accepted: 02/26/2018] [Indexed: 11/30/2022]
Abstract
In this study, the three-dimensional spatial distributions of a number of metabolites involved in regulating symbiosis and biological nitrogen fixation (BNF) within soybean root nodules were revealed using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). While many metabolites exhibited distinct spatial compartmentalization, some metabolites were asymmetrically distributed throughout the nodule (e.g., S-adenosylmethionine). These results establish a more complex metabolic view of plant-bacteria symbiosis (and BNF) within soybean nodules than previously hypothesized. Collectively these findings suggest that spatial perspectives in metabolic regulation should be considered to unravel the overall complexity of interacting organisms, like those relating to associations of nitrogen-fixing bacteria with host plants.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sylwia A Stopka
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA.
| |
Collapse
|
25
|
Qin L, Zhang Y, Liu Y, He H, Han M, Li Y, Zeng M, Wang X. Recent advances in matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for in situ analysis of endogenous molecules in plants. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:351-364. [PMID: 29667236 DOI: 10.1002/pca.2759] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Mass spectrometry imaging (MSI) as a label-free and powerful imaging technique enables in situ evaluation of a tissue metabolome and/or proteome, becoming increasingly popular in the detection of plant endogenous molecules. OBJECTIVE The characterisation of structure and spatial information of endogenous molecules in plants are both very important aspects to better understand the physiological mechanism of plant organism. METHODS Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a commonly-used tissue imaging technique, which requires matrix to assist in situ detection of a variety of molecules on the surface of a tissue section. In previous studies, MALDI-MSI was mostly used for the detection of molecules from animal tissue sections, compared to plant samples due to cell structural limitations, such as plant cuticles, epicuticular waxes, and cell walls. Despite the enormous progress that has been made in tissue imaging, there is still a challenge for MALDI-MSI suitable for the imaging of endogenous compounds in plants. RESULTS This review summarises the recent advances in MALDI-MSI, focusing on the application of in situ detection of endogenous molecules in different plant organs, i.e. root, stem, leaf, flower, fruit, and seed. CONCLUSION Further improvements on instrumentation sensitivity, matrix selection, image processing and sample preparation will expand the application of MALDI-MSI in plant research.
Collapse
Affiliation(s)
- Liang Qin
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yawen Zhang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yaqin Liu
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Huixin He
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Manman Han
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| | - Yanyan Li
- The Hospital of Minzu University of China, Minzu University of China, Beijing, P. R. China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Xiaodong Wang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, P. R. China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, P. R. China
| |
Collapse
|
26
|
Functional Genomics Approaches to Studying Symbioses between Legumes and Nitrogen-Fixing Rhizobia. High Throughput 2018; 7:ht7020015. [PMID: 29783718 PMCID: PMC6023288 DOI: 10.3390/ht7020015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 01/24/2023] Open
Abstract
Biological nitrogen fixation gives legumes a pronounced growth advantage in nitrogen-deprived soils and is of considerable ecological and economic interest. In exchange for reduced atmospheric nitrogen, typically given to the plant in the form of amides or ureides, the legume provides nitrogen-fixing rhizobia with nutrients and highly specialised root structures called nodules. To elucidate the molecular basis underlying physiological adaptations on a genome-wide scale, functional genomics approaches, such as transcriptomics, proteomics, and metabolomics, have been used. This review presents an overview of the different functional genomics approaches that have been performed on rhizobial symbiosis, with a focus on studies investigating the molecular mechanisms used by the bacterial partner to interact with the legume. While rhizobia belonging to the alpha-proteobacterial group (alpha-rhizobia) have been well studied, few studies to date have investigated this process in beta-proteobacteria (beta-rhizobia).
Collapse
|
27
|
Keller C, Maeda J, Jayaraman D, Chakraborty S, Sussman MR, Harris JM, Ané JM, Li L. Comparison of Vacuum MALDI and AP-MALDI Platforms for the Mass Spectrometry Imaging of Metabolites Involved in Salt Stress in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2018; 9:1238. [PMID: 30210517 PMCID: PMC6121006 DOI: 10.3389/fpls.2018.01238] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/06/2018] [Indexed: 05/23/2023]
Abstract
Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is routinely used to determine the spatial distributions of various biomolecules in tissues. Recently, there has been an increased interest in creating higher resolution images using sources with more focused beams. One such source, an atmospheric pressure (AP) MALDI source from MassTech, has a laser capable of reaching spatial resolutions of 10 μm. Here, the AP-MALDI source coupled with a Q Exactive HF Orbitrap platform is compared to the commercial MALDI LTQ Orbitrap XL system using Medicago truncatula root nodules. AP-MALDI parameters, such as the S-lens value, capillary temperature, and spray voltage, were optimized on the Q Exactive-HF platform for optimal detection of plant metabolites. The performance of the two systems was evaluated for sensitivity, spatial resolution, and overall ability to detect plant metabolites. The commercial MALDI LTQ Orbitrap XL was superior regarding the number of compounds detected, as at least two times more m/z were detected compared to the AP-MALDI system. However, although the AP-MALDI source requires a spatial resolution higher than 10 μm to get the best signal, the spatial resolution at 30 μm is still superior compared to the 75 μm spatial resolution achieved on the MALDI platform. The AP-MALDI system was also used to investigate the metabolites present in M. truncatula roots and root nodules under high salt and low salt conditions. A discriminative analysis with SCiLS software revealed m/z ions specific to the control and salt conditions. This analysis revealed 44 m/z ions present at relatively higher abundances in the control samples, and 77 m/z enriched in the salt samples. Liquid chromatography-tandem MS was performed to determine the putative molecular identities of some of the mass ions enriched in each sample, including, asparagine, adenosine, and nicotianamine in the control samples, and arginine and soyasaponin I in the salt treated samples.
Collapse
Affiliation(s)
- Caitlin Keller
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, United States
| | - Junko Maeda
- Department of Agronomy, University of Wisconsin–Madison, Madison, WI, United States
| | | | - Sanhita Chakraborty
- Department of Plant Biology, University of Vermont, Burlington, VT, United States
| | - Michael R. Sussman
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
| | - Jeanne M. Harris
- Department of Plant Biology, University of Vermont, Burlington, VT, United States
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin–Madison, Madison, WI, United States
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, United States
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
- *Correspondence: Lingjun Li, ;
| |
Collapse
|
28
|
Bokhart MT, Nazari M, Garrard KP, Muddiman DC. MSiReader v1.0: Evolving Open-Source Mass Spectrometry Imaging Software for Targeted and Untargeted Analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:8-16. [PMID: 28932998 PMCID: PMC5786496 DOI: 10.1007/s13361-017-1809-6] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 05/03/2023]
Abstract
A major update to the mass spectrometry imaging (MSI) software MSiReader is presented, offering a multitude of newly added features critical to MSI analyses. MSiReader is a free, open-source, and vendor-neutral software written in the MATLAB platform and is capable of analyzing most common MSI data formats. A standalone version of the software, which does not require a MATLAB license, is also distributed. The newly incorporated data analysis features expand the utility of MSiReader beyond simple visualization of molecular distributions. The MSiQuantification tool allows researchers to calculate absolute concentrations from quantification MSI experiments exclusively through MSiReader software, significantly reducing data analysis time. An image overlay feature allows the incorporation of complementary imaging modalities to be displayed with the MSI data. A polarity filter has also been incorporated into the data loading step, allowing the facile analysis of polarity switching experiments without the need for data parsing prior to loading the data file into MSiReader. A quality assurance feature to generate a mass measurement accuracy (MMA) heatmap for an analyte of interest has also been added to allow for the investigation of MMA across the imaging experiment. Most importantly, as new features have been added performance has not degraded, in fact it has been dramatically improved. These new tools and the improvements to the performance in MSiReader v1.0 enable the MSI community to evaluate their data in greater depth and in less time. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Mark T Bokhart
- Department of Chemistry, W. M. Keck FTMS Laboratory for Human Health Research, Raleigh, NC, USA
| | - Milad Nazari
- Department of Chemistry, W. M. Keck FTMS Laboratory for Human Health Research, Raleigh, NC, USA
| | - Kenneth P Garrard
- Department of Chemistry, W. M. Keck FTMS Laboratory for Human Health Research, Raleigh, NC, USA
- Precision Engineering Consortium, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - David C Muddiman
- Department of Chemistry, W. M. Keck FTMS Laboratory for Human Health Research, Raleigh, NC, USA.
| |
Collapse
|
29
|
Montes A, Bisson MA, Gardella JA, Aga DS. Uptake and transformations of engineered nanomaterials: Critical responses observed in terrestrial plants and the model plant Arabidopsis thaliana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1497-1516. [PMID: 28793406 DOI: 10.1016/j.scitotenv.2017.06.190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 05/12/2023]
Abstract
With the applications of engineered nanomaterials (ENMs) continually expanding and production quickly growing, residues of ENMs will end up in the environment at levels that may be harmful to non-target organisms. Many of the tunable properties that have made them desirable, such as type, size, charge, or coating, also contribute to the current difficulties in understanding the fate of ENMs in the environment. This review article focuses on studies that investigate plant-ENM interactions, including techniques used to study these interactions and documented plant responses due to the phytotoxic effects of ENMs. The many variables which can be altered for an experiment, such as type, size, and concentration of ENMs, make it difficult to formulate generalizations about the uptake mechanism involved, or to make an inference on the subcellular localization and distribution of the internalized ENMs in plant tissue. In order to avoid these challenges, studies can utilize a model organism such as Arabidopsis thaliana, and a combination of analytical techniques that can reveal complementary information in order to assess how the different experimental conditions influence the uptake and phytotoxicity of ENMs. This review presents recent studies regarding plant-ENM interactions employing Arabidopsis to demonstrate how the use of this model plant can advance our understanding of plant-ENM interactions and guide additional studies using other plant species. Overarching results suggest that more sensitive tests and consistency in experimental designs are needed to fully assess and understand the phytotoxic effects of ENMs in the environment.
Collapse
Affiliation(s)
- Angelina Montes
- Department of Chemistry, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Mary A Bisson
- Department of Biological Sciences, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Joseph A Gardella
- Department of Chemistry, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
30
|
Stopka SA, Agtuca BJ, Koppenaal DW, Paša-Tolić L, Stacey G, Vertes A, Anderton CR. Laser-ablation electrospray ionization mass spectrometry with ion mobility separation reveals metabolites in the symbiotic interactions of soybean roots and rhizobia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:340-354. [PMID: 28394446 DOI: 10.1111/tpj.13569] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 05/18/2023]
Abstract
Technologies enabling in situ metabolic profiling of living plant systems are invaluable for understanding physiological processes and could be used for rapid phenotypic screening (e.g., to produce plants with superior biological nitrogen-fixing ability). The symbiotic interaction between legumes and nitrogen-fixing soil bacteria results in a specialized plant organ (i.e., root nodule) where the exchange of nutrients between host and endosymbiont occurs. Laser-ablation electrospray ionization mass spectrometry (LAESI-MS) is a method that can be performed under ambient conditions requiring minimal sample preparation. Here, we employed LAESI-MS to explore the well characterized symbiosis between soybean (Glycine max L. Merr.) and its compatible symbiont, Bradyrhizobium japonicum. The utilization of ion mobility separation (IMS) improved the molecular coverage, selectivity, and identification of the detected biomolecules. Specifically, incorporation of IMS resulted in an increase of 153 differentially abundant spectral features in the nodule samples. The data presented demonstrate the advantages of using LAESI-IMS-MS for the rapid analysis of intact root nodules, uninfected root segments, and free-living rhizobia. Untargeted pathway analysis revealed several metabolic processes within the nodule (e.g., zeatin, riboflavin, and purine synthesis). Compounds specific to the uninfected root and bacteria were also detected. Lastly, we performed depth profiling of intact nodules to reveal the location of metabolites to the cortex and inside the infected region, and lateral profiling of sectioned nodules confirmed these molecular distributions. Our results established the feasibility of LAESI-IMS-MS for the analysis and spatial mapping of plant tissues, with its specific demonstration to improve our understanding of the soybean-rhizobial symbiosis.
Collapse
Affiliation(s)
- Sylwia A Stopka
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, DC, 20052, USA
| | - Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Akos Vertes
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, DC, 20052, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| |
Collapse
|
31
|
Ho YN, Shu LJ, Yang YL. Imaging mass spectrometry for metabolites: technical progress, multimodal imaging, and biological interactions. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28488813 DOI: 10.1002/wsbm.1387] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/24/2017] [Accepted: 02/28/2017] [Indexed: 12/19/2022]
Abstract
Imaging mass spectrometry (IMS) allows the study of the spatial distribution of small molecules in biological samples. IMS is able to identify and quantify chemicals in situ from whole tissue sections to single cells. Both vacuum mass spectrometry (MS) and ambient MS systems have advanced considerably over the last decade; however, some limitations are still hard to surmount. Sample pretreatment, matrix or solvent choices, and instrument improvement are the key factors that determine the successful application of IMS to different samples and analytes. IMS with innovative MS analyzers, powerful MS spectrum databases, and analysis tools can efficiently dereplicate, identify, and quantify natural products. Moreover, multimodal imaging systems and multiple MS-based systems provide additional structural, chemical, and morphological information and are applied as complementary tools to explore new fields. IMS has been applied to reveal interactions between living organisms at molecular level. Recently, IMS has helped solve many previously unidentifiable relations between bacteria, fungi, plants, animals, and insects. Other significant interactions on the chemical level can also be resolved using expanding IMS techniques. WIREs Syst Biol Med 2017, 9:e1387. doi: 10.1002/wsbm.1387 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ying-Ning Ho
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Lin-Jie Shu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
32
|
Anne-Emmanuelle H, Hasna B, Antoine B, Marjolaine R, Guillaume M, Laetitia CG, Gilles C, Aude HB. Control of Endophytic Frankia Sporulation by Alnus Nodule Metabolites. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:205-214. [PMID: 28072559 DOI: 10.1094/mpmi-11-16-0235-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A unique case of microbial symbiont capable of dormancy within its living host cells has been reported in actinorhizal symbioses. Some Frankia strains, named Sp+, are able to sporulate inside plant cells, contrarily to Sp- strains. The presence of metabolically slowed-down bacterial structures in host cells alters our understanding of symbiosis based on reciprocal benefits between both partners, and its impact on the symbiotic processes remains unknown. The present work reports a metabolomic study of Sp+ and Sp- nodules (from Alnus glutinosa), in order to highlight variabilities associated with in-planta sporulation. A total of 21 amino acids, 44 sugars and organic acids, and 213 secondary metabolites were detected using UV and mass spectrometric-based profiling. Little change was observed in primary metabolites, suggesting that in-planta sporulation would not strongly affect the primary functionalities of the symbiosis. One secondary metabolite (M27) was detected only in Sp+ nodules. It was identified as gentisic acid 5-O-β-d-xylopyranoside, previously reported as involved in plant defenses against microbial pathogens. This metabolite significantly increased Frankia in-vitro sporulation, unlike another metabolite significantly more abundant in Sp- nodules [M168 = (5R)-1,7-bis-(3,4-dihydroxyphenyl)-heptane-5-O-β-d-glucopyranoside]. All these results suggest that the plant could play an important role in the Frankia ability to sporulate in planta and allow us to discuss a possible sanction emitted by the host against less cooperative Sp+ symbionts.
Collapse
Affiliation(s)
- Hay Anne-Emmanuelle
- 1 PRES Université de Lyon, F-69361, Lyon, France and Université Lyon 1, F-69622, Villeurbanne, France; and
- 2 Laboratoire Ecologie Microbienne, UMR 5557 CNRS-Lyon1, Villeurbanne
| | - Boubakri Hasna
- 1 PRES Université de Lyon, F-69361, Lyon, France and Université Lyon 1, F-69622, Villeurbanne, France; and
- 2 Laboratoire Ecologie Microbienne, UMR 5557 CNRS-Lyon1, Villeurbanne
| | - Buonomo Antoine
- 1 PRES Université de Lyon, F-69361, Lyon, France and Université Lyon 1, F-69622, Villeurbanne, France; and
- 2 Laboratoire Ecologie Microbienne, UMR 5557 CNRS-Lyon1, Villeurbanne
| | - Rey Marjolaine
- 1 PRES Université de Lyon, F-69361, Lyon, France and Université Lyon 1, F-69622, Villeurbanne, France; and
- 2 Laboratoire Ecologie Microbienne, UMR 5557 CNRS-Lyon1, Villeurbanne
| | - Meiffren Guillaume
- 1 PRES Université de Lyon, F-69361, Lyon, France and Université Lyon 1, F-69622, Villeurbanne, France; and
- 2 Laboratoire Ecologie Microbienne, UMR 5557 CNRS-Lyon1, Villeurbanne
| | - Cotin-Galvan Laetitia
- 1 PRES Université de Lyon, F-69361, Lyon, France and Université Lyon 1, F-69622, Villeurbanne, France; and
- 2 Laboratoire Ecologie Microbienne, UMR 5557 CNRS-Lyon1, Villeurbanne
| | - Comte Gilles
- 1 PRES Université de Lyon, F-69361, Lyon, France and Université Lyon 1, F-69622, Villeurbanne, France; and
- 2 Laboratoire Ecologie Microbienne, UMR 5557 CNRS-Lyon1, Villeurbanne
| | - Herrera-Belaroussi Aude
- 1 PRES Université de Lyon, F-69361, Lyon, France and Université Lyon 1, F-69622, Villeurbanne, France; and
- 2 Laboratoire Ecologie Microbienne, UMR 5557 CNRS-Lyon1, Villeurbanne
| |
Collapse
|
33
|
Zamani M, diCenzo GC, Milunovic B, Finan TM. A putative 3-hydroxyisobutyryl-CoA hydrolase is required for efficient symbiotic nitrogen fixation in Sinorhizobium meliloti and Sinorhizobium fredii NGR234. Environ Microbiol 2016; 19:218-236. [PMID: 27727485 DOI: 10.1111/1462-2920.13570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/06/2016] [Indexed: 12/12/2022]
Abstract
We report that the smb20752 gene of the alfalfa symbiont Sinorhizobium meliloti is a novel symbiotic gene required for full N2 -fixation. Deletion of smb20752 resulted in lower nitrogenase activity and smaller nodules without impacting overall nodule morphology. Orthologs of smb20752 were present in all alpha and beta rhizobia, including the ngr_b20860 gene of Sinorhizobium fredii NGR234. A ngr_b20860 mutant formed Fix- determinate nodules that developed normally to a late stage of the symbiosis on the host plants Macroptilium atropurpureum and Vigna unguiculata. However an early symbiotic defect was evident during symbiosis with Leucaena leucocephala, producing Fix- indeterminate nodules. The smb20752 and ngr_b20860 genes encode putative 3-hydroxyisobutyryl-CoA (HIB-CoA) hydrolases. HIB-CoA hydrolases are required for l-valine catabolism and appear to prevent the accumulation of toxic metabolic intermediates, particularly methacrylyl-CoA. Evidence presented here and elsewhere (Curson et al., , PLoS ONE 9:e97660) demonstrated that Smb20752 and NGR_b20860 can also prevent metabolic toxicity, are required for l-valine metabolism, and play an undefined role in 3-hydroxybutyrate catabolism. We present evidence that the symbiotic defect of the HIB-CoA hydrolase mutants is independent of the inability to catabolize l-valine and suggest it relates to the toxicity resulting from metabolism of other compounds possibly related to 3-hydroxybutyric acid.
Collapse
Affiliation(s)
- Maryam Zamani
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - George C diCenzo
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Branislava Milunovic
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Turlough M Finan
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| |
Collapse
|
34
|
Gemperline E, Keller C, Jayaraman D, Maeda J, Sussman MR, Ané JM, Li L. Examination of Endogenous Peptides in Medicago truncatula Using Mass Spectrometry Imaging. J Proteome Res 2016; 15:4403-4411. [PMID: 27726374 DOI: 10.1021/acs.jproteome.6b00471] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plant science is an important, rapidly developing area of study. Within plant science, one area of study that has grown tremendously with recent technological advances, such as mass spectrometry, is the field of plant-omics; however, plant peptidomics is relatively underdeveloped in comparison with proteomics and metabolomics. Endogenous plant peptides can act as signaling molecules and have been shown to affect cell division, development, nodulation, reproduction, symbiotic associations, and defense reactions. There is a growing need to uncover the role of endogenous peptides on a molecular level. Mass spectrometric imaging (MSI) is a valuable tool for biological analyses as it allows for the detection of thousands of analytes in a single experiment and also displays spatial information for the detected analytes. Despite the prediction of a large number of plant peptides, their detection and imaging with spatial localization and chemical specificity is currently lacking. Here we analyzed the endogenous peptides and proteins in Medicago truncatula using matrix-assisted laser desorption/ionization (MALDI)-MSI. Hundreds of endogenous peptides and protein fragments were imaged, with interesting peptide spatial distribution changes observed between plants in different developmental stages.
Collapse
Affiliation(s)
- Erin Gemperline
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Dhileepkumar Jayaraman
- Department of Agronomy, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Junko Maeda
- Department of Agronomy, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michael R Sussman
- Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Bacteriology, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| |
Collapse
|
35
|
Dong Y, Li B, Aharoni A. More than Pictures: When MS Imaging Meets Histology. TRENDS IN PLANT SCIENCE 2016; 21:686-698. [PMID: 27155743 DOI: 10.1016/j.tplants.2016.04.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/29/2016] [Accepted: 04/07/2016] [Indexed: 05/28/2023]
Abstract
Attaining high-resolution spatial information is a recurrent challenge in biological research, particularly in the case of small-molecule distribution. Mass spectrometry imaging (MSI) is an innovative molecular histology technique that could provide such information. It allows in situ and label-free measurement of both the abundance and distribution of a variety of molecules at the tissue or single cell level. The application of MSI in plant research has received considerable attention; thus, in this review, we describe the current state of MSI in plants. In particular, we present an overview of MSI approaches, highlight the recent technical and methodological developments, and discuss a range of applications contributing to the field of plant science.
Collapse
Affiliation(s)
- Yonghui Dong
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Bin Li
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
36
|
Ghaste M, Mistrik R, Shulaev V. Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics. Int J Mol Sci 2016; 17:ijms17060816. [PMID: 27231903 PMCID: PMC4926350 DOI: 10.3390/ijms17060816] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 02/02/2023] Open
Abstract
Metabolomics, along with other "omics" approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data.
Collapse
Affiliation(s)
- Manoj Ghaste
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203, USA.
| | | | - Vladimir Shulaev
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
37
|
Abstract
Plant-omics is rapidly becoming an important field of study in the scientific community due to the urgent need to address many of the most important questions facing humanity today with regard to agriculture, medicine, biofuels, environmental decontamination, ecological sustainability, etc. High-performance mass spectrometry is a dominant tool for interrogating the metabolomes, peptidomes, and proteomes of a diversity of plant species under various conditions, revealing key insights into the functions and mechanisms of plant biochemistry.
Collapse
Affiliation(s)
- Erin Gemperline
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
38
|
Dong Y, Li B, Malitsky S, Rogachev I, Aharoni A, Kaftan F, Svatoš A, Franceschi P. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review. FRONTIERS IN PLANT SCIENCE 2016; 7:60. [PMID: 26904042 PMCID: PMC4748743 DOI: 10.3389/fpls.2016.00060] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/14/2016] [Indexed: 05/18/2023]
Abstract
Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites.
Collapse
Affiliation(s)
- Yonghui Dong
- Biostatistics and Data Management, Research and Innovation Centre - Fondazione Edmund MachS. Michele all'Adige, Italy
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovot, Israel
| | - Bin Li
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Sergey Malitsky
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovot, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovot, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovot, Israel
| | - Filip Kaftan
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical EcologyJena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical EcologyJena, Germany
| | - Pietro Franceschi
- Biostatistics and Data Management, Research and Innovation Centre - Fondazione Edmund MachS. Michele all'Adige, Italy
- *Correspondence: Pietro Franceschi
| |
Collapse
|
39
|
Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ. Curr Opin Biotechnol 2015; 37:53-60. [PMID: 26613199 DOI: 10.1016/j.copbio.2015.10.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 01/13/2023]
Abstract
Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. It is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding to metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.
Collapse
|