1
|
Hornisch M, Piazza I. Regulation of gene expression through protein-metabolite interactions. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:7. [PMID: 40052108 PMCID: PMC11879850 DOI: 10.1038/s44324-024-00047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/20/2024] [Indexed: 03/09/2025]
Abstract
Organisms have to adapt to changes in their environment. Cellular adaptation requires sensing, signalling and ultimately the activation of cellular programs. Metabolites are environmental signals that are sensed by proteins, such as metabolic enzymes, protein kinases and nuclear receptors. Recent studies have discovered novel metabolite sensors that function as gene regulatory proteins such as chromatin associated factors or RNA binding proteins. Due to their function in regulating gene expression, metabolite-induced allosteric control of these proteins facilitates a crosstalk between metabolism and gene expression. Here we discuss the direct control of gene regulatory processes by metabolites and recent progresses that expand our abilities to systematically characterize metabolite-protein interaction networks. Obtaining a profound map of such networks is of great interest for aiding metabolic disease treatment and drug target identification.
Collapse
Affiliation(s)
- Maximilian Hornisch
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, Berlin, 13092 Germany
| | - Ilaria Piazza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, Berlin, 13092 Germany
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, 171 65 Sweden
| |
Collapse
|
2
|
Stincone P, Naimi A, Saviola AJ, Reher R, Petras D. Decoding the molecular interplay in the central dogma: An overview of mass spectrometry-based methods to investigate protein-metabolite interactions. Proteomics 2024; 24:e2200533. [PMID: 37929699 DOI: 10.1002/pmic.202200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the emergence of next-generation nucleotide sequencing and mass spectrometry-based proteomics and metabolomics tools, we have comprehensive and scalable methods to analyze the genes, transcripts, proteins, and metabolites of a multitude of biological systems. Despite the fascinating new molecular insights at the genome, transcriptome, proteome and metabolome scale, we are still far from fully understanding cellular organization, cell cycles and biology at the molecular level. Significant advances in sensitivity and depth for both sequencing as well as mass spectrometry-based methods allow the analysis at the single cell and single molecule level. At the same time, new tools are emerging that enable the investigation of molecular interactions throughout the central dogma of molecular biology. In this review, we provide an overview of established and recently developed mass spectrometry-based tools to probe metabolite-protein interactions-from individual interaction pairs to interactions at the proteome-metabolome scale.
Collapse
Affiliation(s)
- Paolo Stincone
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of Tuebingen, Center for Plant Molecular Biology, Tuebingen, Germany
| | - Amira Naimi
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | | | - Raphael Reher
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | - Daniel Petras
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of California Riverside, Department of Biochemistry, Riverside, USA
| |
Collapse
|
3
|
Bailey MA, Martyr JG, Hargrove AE, Fitzgerald MC. Stability-Based Proteomics for Investigation of Structured RNA-Protein Interactions. Anal Chem 2024:10.1021/acs.analchem.3c04978. [PMID: 38341805 PMCID: PMC11316846 DOI: 10.1021/acs.analchem.3c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
RNA-protein interactions are essential to RNA function throughout biology. Identifying the protein interactions associated with a specific RNA, however, is currently hindered by the need for RNA labeling or costly tiling-based approaches. Conventional strategies, which commonly rely on affinity pull-down approaches, are also skewed to the detection of high affinity interactions and frequently miss weaker interactions that may be biologically important. Reported here is the first adaptation of stability-based mass spectrometry methods for the global analysis of RNA-protein interactions. The stability of proteins from rates of oxidation (SPROX) and thermal protein profiling (TPP) methods are used to identify the protein targets of three RNA ligands, the MALAT1 triple helix (TH), a viral stem loop (SL), and an unstructured RNA (PolyU), in LNCaP nuclear lysate. The 315 protein hits with RNA-induced conformational and stability changes detected by TPP and/or SPROX were enriched in previously annotated RNA-binding proteins and included new proteins for hypothesis generation. Also demonstrated are the orthogonality of the SPROX and TPP approaches and the utility of the domain-specific information available with SPROX. This work establishes a novel platform for the global discovery and interrogation of RNA-protein interactions that is generalizable to numerous biological contexts and RNA targets.
Collapse
Affiliation(s)
- Morgan A Bailey
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Justin G Martyr
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| |
Collapse
|
4
|
Bailey MA, Tang Y, Park HJ, Fitzgerald MC. Comparative Analysis of Protein Folding Stability-Based Profiling Methods for Characterization of Biological Phenotypes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:383-393. [PMID: 36802530 PMCID: PMC10164353 DOI: 10.1021/jasms.2c00248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recently, a new suite of mass spectrometry-based proteomic methods has been developed that enables evaluation of protein folding stability on the proteomic scale. These methods utilize chemical and thermal denaturation approaches (SPROX and TPP, respectively) as well as proteolysis strategies (DARTS, LiP, and PP) to assess protein folding stability. The analytical capabilities of these technique have been well-established for protein target discovery applications. However, less is known about the relative advantages and disadvantages of using these different strategies to characterize biological phenotypes. Reported here is a comparative study of SPROX, TPP, LiP, and conventional protein expression level measurements using both a mouse model of aging and a mammalian cell culture model of breast cancer. Analyses on proteins in brain tissue cell lysates derived from 1- and 18-month-old mice (n = 4-5 at each time point) and on proteins in cell lysates derived from the MCF-7 and MCF-10A cell lines revealed a majority of the differentially stabilized protein hits in each phenotype analysis had unchanged expression levels. In both phenotype analyses, TPP generated the largest number and fraction of differentially stabilized protein hits. Only a quarter of all the protein hits identified in each phenotype analysis had a differential stability that was detected using multiple techniques. This work also reports the first peptide-level analysis of TPP data, which was required for the correct interpretation of the phenotype analyses performed here. Studies on selected protein stability hits also uncovered phenotype-related functional changes.
Collapse
Affiliation(s)
- Morgan A. Bailey
- Department of Chemistry, Duke University, Durham, North Carolina 27708
- These authors contributed equally
| | - Yun Tang
- Department of Chemistry, Duke University, Durham, North Carolina 27708
- These authors contributed equally
| | - Hye-Jin Park
- Department of Chemistry, Duke University, Durham, North Carolina 27708
| | | |
Collapse
|
5
|
Holfeld A, Quast JP, Bruderer R, Reiter L, de Souza N, Picotti P. Limited Proteolysis-Mass Spectrometry to Identify Metabolite-Protein Interactions. Methods Mol Biol 2023; 2554:69-89. [PMID: 36178621 DOI: 10.1007/978-1-0716-2624-5_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolite-protein interactions regulate diverse cellular processes, prompting the development of methods to investigate the metabolite-protein interactome at a global scale. One such method is our previously developed structural proteomics approach, limited proteolysis-mass spectrometry (LiP-MS), which detects proteome-wide metabolite-protein and drug-protein interactions in native bacterial, yeast, and mammalian systems, and allows identification of binding sites without chemical modification. Here we describe a detailed experimental and analytical workflow for conducting a LiP-MS experiment to detect small molecule-protein interactions, either in a single-dose (LiP-SMap) or a multiple-dose (LiP-Quant) format. LiP-Quant analysis combines the peptide-level resolution of LiP-MS with a machine learning-based framework to prioritize true protein targets of a small molecule of interest. We provide an updated R script for LiP-Quant analysis via a GitHub repository accessible at https://github.com/RolandBruderer/MiMB-LiP-Quant .
Collapse
Affiliation(s)
- Aleš Holfeld
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jan-Philipp Quast
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | | | - Natalie de Souza
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Wiebelhaus N, Singh N, Zhang P, Craig SL, Beratan DN, Fitzgerald MC. Discovery of the Xenon-Protein Interactome Using Large-Scale Measurements of Protein Folding and Stability. J Am Chem Soc 2022; 144:3925-3938. [PMID: 35213151 PMCID: PMC10166008 DOI: 10.1021/jacs.1c11900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The intermolecular interactions of noble gases in biological systems are associated with numerous biochemical responses, including apoptosis, inflammation, anesthesia, analgesia, and neuroprotection. The molecular modes of action underlying these responses are largely unknown. This is in large part due to the limited experimental techniques to study protein-gas interactions. The few techniques that are amenable to such studies are relatively low-throughput and require large amounts of purified proteins. Thus, they do not enable the large-scale analyses that are useful for protein target discovery. Here, we report the application of stability of proteins from rates of oxidation (SPROX) and limited proteolysis (LiP) methodologies to detect protein-xenon interactions on the proteomic scale using protein folding stability measurements. Over 5000 methionine-containing peptides and over 5000 semi-tryptic peptides, mapping to ∼1500 and ∼950 proteins, respectively, in the yeast proteome, were assayed for Xe-interacting activity using the SPROX and LiP techniques. The SPROX and LiP analyses identified 31 and 60 Xe-interacting proteins, respectively, none of which were previously known to bind Xe. A bioinformatics analysis of the proteomic results revealed that these Xe-interacting proteins were enriched in those involved in ATP-driven processes. A fraction of the protein targets that were identified are tied to previously established modes of action related to xenon's anesthetic and organoprotective properties. These results enrich our knowledge and understanding of biologically relevant xenon interactions. The sample preparation protocols and analytical methodologies developed here for xenon are also generally applicable to the discovery of a wide range of other protein-gas interactions in complex biological mixtures, such as cell lysates.
Collapse
Affiliation(s)
- Nancy Wiebelhaus
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Niven Singh
- Program in Computational Biology and Bioinformatics, Center for Genomics and Computational Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L. Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David N. Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Program in Computational Biology and Bioinformatics, Center for Genomics and Computational Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Michael C. Fitzgerald
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
7
|
McKenzie-Coe A, Montes NS, Jones LM. Hydroxyl Radical Protein Footprinting: A Mass Spectrometry-Based Structural Method for Studying the Higher Order Structure of Proteins. Chem Rev 2021; 122:7532-7561. [PMID: 34633178 DOI: 10.1021/acs.chemrev.1c00432] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydroxyl radical protein footprinting (HRPF) coupled to mass spectrometry has been successfully used to investigate a plethora of protein-related questions. The method, which utilizes hydroxyl radicals to oxidatively modify solvent-accessible amino acids, can inform on protein interaction sites and regions of conformational change. Hydroxyl radical-based footprinting was originally developed to study nucleic acids, but coupling the method with mass spectrometry has enabled the study of proteins. The method has undergone several advancements since its inception that have increased its utility for more varied applications such as protein folding and the study of biotherapeutics. In addition, recent innovations have led to the study of increasingly complex systems including cell lysates and intact cells. Technological advances have also increased throughput and allowed for better control of experimental conditions. In this review, we provide a brief history of the field of HRPF and detail recent innovations and applications in the field.
Collapse
Affiliation(s)
- Alan McKenzie-Coe
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Nicholas S Montes
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
8
|
Saei AA, Beusch CM, Sabatier P, Wells JA, Gharibi H, Meng Z, Chernobrovkin A, Rodin S, Näreoja K, Thorsell AG, Karlberg T, Cheng Q, Lundström SL, Gaetani M, Végvári Á, Arnér ESJ, Schüler H, Zubarev RA. System-wide identification and prioritization of enzyme substrates by thermal analysis. Nat Commun 2021; 12:1296. [PMID: 33637753 PMCID: PMC7910609 DOI: 10.1038/s41467-021-21540-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the immense importance of enzyme-substrate reactions, there is a lack of general and unbiased tools for identifying and prioritizing substrate proteins that are modified by the enzyme on the structural level. Here we describe a high-throughput unbiased proteomics method called System-wide Identification and prioritization of Enzyme Substrates by Thermal Analysis (SIESTA). The approach assumes that the enzymatic post-translational modification of substrate proteins is likely to change their thermal stability. In our proof-of-concept studies, SIESTA successfully identifies several known and novel substrate candidates for selenoprotein thioredoxin reductase 1, protein kinase B (AKT1) and poly-(ADP-ribose) polymerase-10 systems. Wider application of SIESTA can enhance our understanding of the role of enzymes in homeostasis and disease, opening opportunities to investigate the effect of post-translational modifications on signal transduction and facilitate drug discovery.
Collapse
Affiliation(s)
- Amir Ata Saei
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Christian M Beusch
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pierre Sabatier
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Juan Astorga Wells
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Zhaowei Meng
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alexey Chernobrovkin
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Pelago Bioscience AB, Solna, Sweden
| | - Sergey Rodin
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Katja Näreoja
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ann-Gerd Thorsell
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Tobias Karlberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Susanna L Lundström
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Massimiliano Gaetani
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
- Chemical Proteomics Core Facility, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ákos Végvári
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Proteomics Biomedicum, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Herwig Schüler
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
9
|
Yin V, Konermann L. Probing the Effects of Heterogeneous Oxidative Modifications on the Stability of Cytochrome c in Solution and in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:73-83. [PMID: 32401029 DOI: 10.1021/jasms.0c00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Covalent modifications by reactive oxygen species can modulate the function and stability of proteins. Thermal unfolding experiments in solution are a standard tool for probing oxidation-induced stability changes. Complementary to such solution investigations, the stability of electrosprayed protein ions can be assessed in the gas phase by collision-induced unfolding (CIU) and ion-mobility spectrometry. A question that remains to be explored is whether oxidation-induced stability alterations in solution are mirrored by the CIU behavior of gaseous protein ions. Here, we address this question using chloramine-T-oxidized cytochrome c (CT-cyt c) as a model system. CT-cyt c comprises various proteoforms that have undergone MetO formation (+16 Da) and Lys carbonylation (LysCH2-NH2 → LysCHO, -1 Da). We found that CT-cyt c in solution was destabilized, with a ∼5 °C reduced melting temperature compared to unmodified controls. Surprisingly, CIU experiments revealed the opposite trend, i.e., a stabilization of CT-cyt c in the gas phase. To pinpoint the source of this effect, we performed proteoform-resolved CIU on CT-cyt c fractions that had been separated by cation exchange chromatography. In this way, it was possible to identify MetO formation at residue 80 as the key modification responsible for stabilization in the gas phase. Possibly, this effect is caused by newly formed contacts of the sulfoxide with aromatic residues in the protein core. Overall, our results demonstrate that oxidative modifications can affect protein stability in solution and in the gas phase very differently.
Collapse
Affiliation(s)
- Victor Yin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
10
|
Dai L, Li Z, Chen D, Jia L, Guo J, Zhao T, Nordlund P. Target identification and validation of natural products with label-free methodology: A critical review from 2005 to 2020. Pharmacol Ther 2020; 216:107690. [PMID: 32980441 DOI: 10.1016/j.pharmthera.2020.107690] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Natural products (NPs) have been an important source of therapeutic drugs in clinic use and contributed many chemical probes for research. The usefulness of NPs is however often marred by the incomplete understanding of their direct cellular targets. A number of experimental methods for drug target identification have been developed over the years. One class of methods, termed "label-free" methodology, exploits the energetic and biophysical features accompanying the association of macromolecules with drugs and other compounds in their native forms. Herein we review the working principles, assay implementations, and key applications of the most important approaches, and also give examples where they have been applied to NPs. We also assess the key advantages and limitations of each method. Furthermore, we address when and how the label-free methodology can be particularly useful considering some of the unique features of NP chemistry and bioactivation.
Collapse
Affiliation(s)
- Lingyun Dai
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China; Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.
| | - Zhijie Li
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China; Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Dan Chen
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Lin Jia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China
| | - Tianyun Zhao
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Pär Nordlund
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
11
|
Zhang X, Ruan C, Zhu H, Li K, Zhang W, Wang K, Hu L, Ye M. A Simplified Thermal Proteome Profiling Approach to Screen Protein Targets of a Ligand. Proteomics 2020; 20:e1900372. [PMID: 32578935 DOI: 10.1002/pmic.201900372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/10/2020] [Indexed: 01/10/2023]
Abstract
Thermal proteome profiling is a powerful energetic-based chemical proteomics method to reveal the ligand-protein interaction. However, the costly multiplexed isotopic labeling reagent, mainly Multiplexed isobaric tandem mass tag (TMT), and the long mass spectrometric time limits the wide application of this method. Here a simple and cost-effective strategy by using dimethyl labeling technique instead of TMT labeling is reported to quantify proteins and by using the peptides derived from the same protein to determine significantly changed proteins in one LC-MS run. This method is validated by identifying the known targets of methotrexate and geldanamycin. In addition, several potential off-targets involved in detoxification of reactive oxygen species pathway are also discovered for geldanamycin. This method is further applied to map the interactome of adenosine triphosphate (ATP) in the 293T cell lysate by using ATP analogue, adenylyl imidodiphosphate (AMP-PNP), as the ligand. As a result, a total of 123 AMP-PNP-sensitive proteins are found, of which 59 proteins are stabilized by AMP-PNP. Approximately 53% and 20% of these stabilized candidate protein targets are known as ATP and RNA binding proteins. Overall, above results demonstrated that this approach could be a valuable platform for the unbiased target proteins identification with reduced reagent cost and mass spectrometric time.
Collapse
Affiliation(s)
- Xiaolei Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Chengfei Ruan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - He Zhu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kejia Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenbo Zhang
- Key Laboratory Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Keyun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lianghai Hu
- Key Laboratory Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
12
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
13
|
Lyu J, Wang K, Ye M. Modification-free approaches to screen drug targets at proteome level. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Cabrera A, Wiebelhaus N, Quan B, Ma R, Meng H, Fitzgerald MC. Comparative Analysis of Mass-Spectrometry-Based Proteomic Methods for Protein Target Discovery Using a One-Pot Approach. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:217-226. [PMID: 32031398 PMCID: PMC7441748 DOI: 10.1021/jasms.9b00041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recently, several mass-spectrometry- and protein-denaturation-based proteomic methods have been developed to facilitate protein target discovery efforts in drug mode-of-action studies. These methods, which include the stability of proteins from rates of oxidation (SPROX), pulse proteolysis (PP), chemical denaturation and protein precipitation (CPP), and thermal proteome profiling (TPP) techniques, have been used in an increasing number of applications in recent years. However, while the advantages and disadvantages to using these different techniques have been reviewed, the analytical characteristics of these methods have not been directly compared. Reported here is such a direct comparison using the well-studied immunosuppressive drug, cyclosporine A (CsA), and the proteins in a yeast cell lysate. Also described is a one-pot strategy that can be utilized with each technique to streamline data acquisition and analysis. We find that there are benefits to utilizing all four strategies for protein target discovery including increased proteomic coverage and reduced false positive rates that approach 0%. Moreover, the one-pot strategy described here makes such an experiment feasible, because of the 10-fold reduction in reagent costs and instrument time it affords.
Collapse
Affiliation(s)
- Aurora Cabrera
- Department of Chemistry, Duke University, Durham, North Carolina 27708
| | - Nancy Wiebelhaus
- Department of Chemistry, Duke University, Durham, North Carolina 27708
| | - Baiyi Quan
- Department of Chemistry, Duke University, Durham, North Carolina 27708
| | - Renze Ma
- Department of Chemistry, Duke University, Durham, North Carolina 27708
| | - He Meng
- Department of Chemistry, Duke University, Durham, North Carolina 27708
| | - Michael C. Fitzgerald
- Department of Chemistry, Duke University, Durham, North Carolina 27708
- Address Reprint Requests To: Professor Michael C. Fitzgerald, Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346, Tel: 919-660-1547, Fax: 919-660-1605,
| |
Collapse
|
15
|
Genereux JC. Mass spectrometric approaches for profiling protein folding and stability. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:111-144. [PMID: 31928723 DOI: 10.1016/bs.apcsb.2019.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein stability reports on protein homeostasis, function, and binding interactions, such as to other proteins, metabolites and drugs. As such, there is a pressing need for technologies that can report on protein stability. The ideal technique could be applied in vitro or in vivo systems, proteome-wide, independently of matrix, under native conditions, with residue-level resolution, and on protein at endogenous levels. Mass spectrometry has rapidly become a preferred technology for identifying and quantifying proteins. As such, it has been increasingly incorporated into methodologies for interrogating protein stability and folding. Although no single technology can satisfy all desired applications, several emerging approaches have shown outstanding success at providing biological insight into the stability of the proteome. This chapter outlines some of these recent emerging technologies.
Collapse
Affiliation(s)
- Joseph C Genereux
- Department of Chemistry, University of California, Riverside, CA, United States
| |
Collapse
|
16
|
Luzarowski M, Skirycz A. Emerging strategies for the identification of protein-metabolite interactions. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4605-4618. [PMID: 31087097 PMCID: PMC6760282 DOI: 10.1093/jxb/erz228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/10/2019] [Indexed: 05/31/2023]
Abstract
Interactions between biological molecules enable life. The significance of a cell-wide understanding of molecular complexes is thus obvious. In comparison to protein-protein interactions, protein-metabolite interactions remain under-studied. However, this has been gradually changing due to technological progress. Here, we focus on the interactions between ligands and receptors, the triggers of signalling events. While the number of small molecules with proven or proposed signalling roles is rapidly growing, most of their protein receptors remain unknown. Conversely, there are numerous signalling proteins with predicted ligand-binding domains for which the identities of the metabolite counterparts remain elusive. Here, we discuss the current biochemical strategies for identifying protein-metabolite interactions and how they can be used to characterize known metabolite regulators and identify novel ones.
Collapse
Affiliation(s)
- Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | |
Collapse
|
17
|
Diether M, Nikolaev Y, Allain FHT, Sauer U. Systematic mapping of protein-metabolite interactions in central metabolism of Escherichia coli. Mol Syst Biol 2019; 15:e9008. [PMID: 31464375 PMCID: PMC6706640 DOI: 10.15252/msb.20199008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 01/30/2023] Open
Abstract
Metabolite binding to proteins regulates nearly all cellular processes, but our knowledge of these interactions originates primarily from empirical in vitro studies. Here, we report the first systematic study of interactions between water-soluble proteins and polar metabolites in an entire biological subnetwork. To test the depth of our current knowledge, we chose to investigate the well-characterized Escherichia coli central metabolism. Using ligand-detected NMR, we assayed 29 enzymes towards binding events with 55 intracellular metabolites. Focusing on high-confidence interactions at a false-positive rate of 5%, we detected 98 interactions, among which purine nucleotides accounted for one-third, while 50% of all metabolites did not interact with any enzyme. In contrast, only five enzymes did not exhibit any metabolite binding and some interacted with up to 11 metabolites. About 40% of the interacting metabolites were predicted to be allosteric effectors based on low chemical similarity to their target's reactants. For five of the eight tested interactions, in vitro assays confirmed novel regulatory functions, including ATP and GTP inhibition of the first pentose phosphate pathway enzyme. With 76 new candidate regulatory interactions that have not been reported previously, we essentially doubled the number of known interactions, indicating that the presently available information about protein-metabolite interactions may only be the tip of the iceberg.
Collapse
Affiliation(s)
- Maren Diether
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Life Science Zurich PhD Program on Systems BiologyZurichSwitzerland
| | - Yaroslav Nikolaev
- Institute of Molecular Biology and BiophysicsETH ZurichZurichSwitzerland
| | - Frédéric HT Allain
- Institute of Molecular Biology and BiophysicsETH ZurichZurichSwitzerland
| | - Uwe Sauer
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| |
Collapse
|
18
|
Drewes G, Knapp S. Chemoproteomics and Chemical Probes for Target Discovery. Trends Biotechnol 2018; 36:1275-1286. [DOI: 10.1016/j.tibtech.2018.06.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/28/2022]
|
19
|
Kaur U, Meng H, Lui F, Ma R, Ogburn RN, Johnson JHR, Fitzgerald MC, Jones LM. Proteome-Wide Structural Biology: An Emerging Field for the Structural Analysis of Proteins on the Proteomic Scale. J Proteome Res 2018; 17:3614-3627. [PMID: 30222357 DOI: 10.1021/acs.jproteome.8b00341] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, a suite of new mass-spectrometry-based proteomics methods has been developed that now enables the conformational properties of proteins and protein-ligand complexes to be studied in complex biological mixtures, from cell lysates to intact cells. Highlighted here are seven of the techniques in this new toolbox. These techniques include chemical cross-linking (XL-MS), hydroxyl radical footprinting (HRF), Drug Affinity Responsive Target Stability (DARTS), Limited Proteolysis (LiP), Pulse Proteolysis (PP), Stability of Proteins from Rates of Oxidation (SPROX), and Thermal Proteome Profiling (TPP). The above techniques all rely on conventional bottom-up proteomics strategies for peptide sequencing and protein identification. However, they have required the development of unconventional proteomic data analysis strategies. Discussed here are the current technical challenges associated with these different data analysis strategies as well as the relative analytical capabilities of the different techniques. The new biophysical capabilities that the above techniques bring to bear on proteomic research are also highlighted in the context of several different application areas in which these techniques have been used, including the study of protein ligand binding interactions (e.g., protein target discovery studies and protein interaction network analyses) and the characterization of biological states.
Collapse
Affiliation(s)
- Upneet Kaur
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| | - He Meng
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | | | - Renze Ma
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Ryenne N Ogburn
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Julia H R Johnson
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Michael C Fitzgerald
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| |
Collapse
|
20
|
Van Vleet TR, Liguori MJ, Lynch JJ, Rao M, Warder S. Screening Strategies and Methods for Better Off-Target Liability Prediction and Identification of Small-Molecule Pharmaceuticals. SLAS DISCOVERY 2018; 24:1-24. [PMID: 30196745 DOI: 10.1177/2472555218799713] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pharmaceutical discovery and development is a long and expensive process that, unfortunately, still results in a low success rate, with drug safety continuing to be a major impedance. Improved safety screening strategies and methods are needed to more effectively fill this critical gap. Recent advances in informatics are now making it possible to manage bigger data sets and integrate multiple sources of screening data in a manner that can potentially improve the selection of higher-quality drug candidates. Integrated screening paradigms have become the norm in Pharma, both in discovery screening and in the identification of off-target toxicity mechanisms during later-stage development. Furthermore, advances in computational methods are making in silico screens more relevant and suggest that they may represent a feasible option for augmenting the current screening paradigm. This paper outlines several fundamental methods of the current drug screening processes across Pharma and emerging techniques/technologies that promise to improve molecule selection. In addition, the authors discuss integrated screening strategies and provide examples of advanced screening paradigms.
Collapse
Affiliation(s)
- Terry R Van Vleet
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - Michael J Liguori
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - James J Lynch
- 2 Department of Integrated Science and Technology, AbbVie, N Chicago, IL, USA
| | - Mohan Rao
- 1 Department of Investigative Toxicology and Pathology, AbbVie, N Chicago, IL, USA
| | - Scott Warder
- 3 Department of Target Enabling Science and Technology, AbbVie, N Chicago, IL, USA
| |
Collapse
|
21
|
Ogburn RN, Jin L, Meng H, Fitzgerald MC. Discovery of Tamoxifen and N-Desmethyl Tamoxifen Protein Targets in MCF-7 Cells Using Large-Scale Protein Folding and Stability Measurements. J Proteome Res 2017; 16:4073-4085. [PMID: 28927269 DOI: 10.1021/acs.jproteome.7b00442] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The proteins in an MCF-7 cell line were probed for tamoxifen (TAM) and n-desmethyl tamoxifen (NDT) induced stability changes using the Stability of Proteins from Rates of Oxidation (SPROX) technique in combination with two different quantitative proteomics strategies, including one based on SILAC and one based on isobaric mass tags. Over 1000 proteins were assayed for TAM- and NDT-induced protein stability changes, and a total of 163 and 200 protein hits were identified in the TAM and NDT studies, respectively. A subset of 27 high-confidence protein hits were reproducibly identified with both proteomics strategies and/or with multiple peptide probes. One-third of the high-confidence hits have previously established experimental links to the estrogen receptor, and nearly all of the high-confidence hits have established links to breast cancer. One high-confidence protein hit that has known estrogen receptor binding properties, Y-box binding protein 1 (YBX1), was further validated as a direct binding target of TAM using both the SPROX and pulse proteolysis techniques. Proteins with TAM- and/or NDT-induced expression level changes were also identified in the SILAC-SPROX experiments. These proteins with expression level changes included only a small fraction of those with TAM- and/or NDT-induced stability changes.
Collapse
Affiliation(s)
- Ryenne N Ogburn
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Lorrain Jin
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - He Meng
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|
22
|
Diether M, Sauer U. Towards detecting regulatory protein–metabolite interactions. Curr Opin Microbiol 2017; 39:16-23. [DOI: 10.1016/j.mib.2017.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 01/20/2023]
|
23
|
Liu YK, Lin TH, Liu PF. ATP alters protein folding and function of Escherichia coli uridine phosphorylase. Arch Biochem Biophys 2017; 634:11-20. [PMID: 28917600 DOI: 10.1016/j.abb.2017.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 01/07/2023]
Abstract
Uridine phosphorylase is one of the critical enzymes in the pyrimidine salvage pathway. Cells regenerate uridine for nucleotide metabolism by incorporating uracil with ribose-1-phosphate with this enzyme. Recent studies indicate that Escherichia coli uridine phosphorylase is destabilized in the presence of ATP. However, the mechanism underlying the destabilization process and its influence on uridine phosphorylase function remain to be established. Here, we comprehensively investigated the effects of ATP on protein folding and function of Escherichia coli uridine phosphorylase. Our results demonstrate that ATP apparently decreases the stability of uridine phosphorylase in a concentration-dependent manner. Additionally, simply increasing the level of ATP led to a reduction of enzymatic activity to complete inhibition. Further studies showed that uridine phosphorylase accumulates as a partially unfolded state in the presence of ATP. Moreover, ATP specifically accelerated the unfolding rate of uridine phosphorylase with no observable effects on the refolding process. Our preliminary findings suggest that ATP can alter the protein folding and function of enzymes via apparent destabilization. This mechanism may be significant for proteins functioning under conditions of high levels of ATP, such as cancer cell environments.
Collapse
Affiliation(s)
- Yi-Kai Liu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC
| | - Tzu-Hsuan Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC
| | - Pei-Fen Liu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan, ROC.
| |
Collapse
|
24
|
Liu F, Fitzgerald MC. Large-Scale Analysis of Breast Cancer-Related Conformational Changes in Proteins Using Limited Proteolysis. J Proteome Res 2016; 15:4666-4674. [PMID: 27794609 DOI: 10.1021/acs.jproteome.6b00755] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conformational changes in proteins can lead to disease. Thus, methods for identifying conformational changes in proteins can further improve our understanding and facilitate detection of disease states. Here we combine limited proteolysis (LiP) with Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) to characterize breast cancer-related conformational changes in proteins on the proteomic scale. Studied here are the conformational properties of proteins in two cell culture models of breast cancer, including the MCF-10A and MCF-7 cell lines. The SILAC-LiP approach described here identified ∼200 proteins with cell-line-dependent conformational changes, as determined by their differential susceptibility to proteolytic digestion using the nonspecific protease, proteinase K. The protease susceptibility profiles of the proteins in these cell lines were compared to thermodynamic stability and expression level profiles previously generated for proteins in these same breast cancer cell lines. The comparisons revealed that there was little overlap between the proteins with protease susceptibility changes and the proteins with thermodynamic stability and/or expression level changes. Thus, the large-scale conformational analysis described here provides unique insight into the molecular basis of the breast cancer phenotypes in this study.
Collapse
Affiliation(s)
- Fang Liu
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|
25
|
Roberts JH, Liu F, Karnuta JM, Fitzgerald MC. Discovery of Age-Related Protein Folding Stability Differences in the Mouse Brain Proteome. J Proteome Res 2016; 15:4731-4741. [PMID: 27806573 DOI: 10.1021/acs.jproteome.6b00927] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Described here is the application of thermodynamic stability measurements to study age-related differences in the folding and stability of proteins in a rodent model of aging. Thermodynamic stability profiles were generated for 809 proteins in brain cell lysates from mice, aged 6 (n = 7) and 18 months (n = 9) using the Stability of Proteins from Rates of Oxidation (SPROX) technique. The biological variability of the protein stability measurements was low and within the experimental error of SPROX. A total of 83 protein hits were detected with age-related stability differences in the brain samples. Remarkably, the large majority of the brain protein hits were destabilized in the old mice, and the hits were enriched in proteins that have slow turnover rates (p < 0.07). Furthermore, 70% of the hits have been previously linked to aging or age-related diseases. These results help validate the use of thermodynamic stability measurements to capture relevant age-related proteomic changes and establish a new biophysical link between these proteins and aging.
Collapse
Affiliation(s)
- Julia H Roberts
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Fang Liu
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Jaret M Karnuta
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|
26
|
Xu Y, Wallace MAG, Fitzgerald MC. Thermodynamic Analysis of the Geldanamycin-Hsp90 Interaction in a Whole Cell Lysate Using a Mass Spectrometry-Based Proteomics Approach. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1670-1676. [PMID: 27530778 DOI: 10.1007/s13361-016-1457-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
Geldanamycin is a natural product with well-established and potent anti-cancer activities. Heat shock protein 90 (Hsp90) is the known target of geldanamycin, which directly binds to Hsp90's N-terminal ATP binding domain and inhibits Hsp90's ATPase activity. The affinity of geldanamycin for Hsp90 has been measured in multiple studies. However, there have been large discrepancies between the reported dissociation constants (i.e., Kd values), which have ranged from low nanomolar to micromolar. Here the stability of proteins from rates of oxidation (SPROX) technique was used in combination with an isobaric mass tagging strategy to measure the binding affinity of geldanamycin to unpurified Hsp90 in an MCF-7 cell lysate. The Kd values determined here were dependent on how long geldanamycin was equilibrated with the lysate prior to SPROX analysis. The Kd values determined using equilibration times of 0.5 and 24 h were 1 and 0.03 μM, respectively. These Kd values, which are similar to those previously reported in a geldanamycin-Hsp90 binding study that involved the use of a fluorescently labeled geldanamycin analogue, establish that the slow-tight binding behavior previously observed for the fluorescently labeled geldanamycin analogue is not an artifact of the fluorescent label, but rather an inherent property of the geldanamycin-Hsp90 binding interaction. The slow-tight binding property of this complex may be related to time-dependent conformational changes in Hsp90 and/or to time-dependent chemical changes in geldanamycin, both of which have been previously proposed to explain the slow-tight binding behavior of the geldanamycin-Hsp90 complex. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yingrong Xu
- Pfizer, Inc., Groton, CT, 06340, USA
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - M Ariel Geer Wallace
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | | |
Collapse
|
27
|
Geer Wallace MA, Kwon DY, Weitzel DH, Lee CT, Stephenson TN, Chi JT, Mook RA, Dewhirst MW, Hong J, Fitzgerald MC. Discovery of Manassantin A Protein Targets Using Large-Scale Protein Folding and Stability Measurements. J Proteome Res 2016; 15:2688-96. [PMID: 27322910 DOI: 10.1021/acs.jproteome.6b00237] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Manassantin A is a natural product that has been shown to have anticancer activity in cell-based assays, but has a largely unknown mode-of-action. Described here is the use of two different energetics-based approaches to identify protein targets of manassantin A. Using the stability of proteins from rates of oxidation technique with an isobaric mass tagging strategy (iTRAQ-SPROX) and the pulse proteolysis technique with a stable isotope labeling with amino acids in cell culture strategy (SILAC-PP), over 1000 proteins in a MDA-MB-231 cell lysate grown under hypoxic conditions were assayed for manassantin A interactions (both direct and indirect). A total of 28 protein hits were identified with manassantin A-induced thermodynamic stability changes. Two of the protein hits (filamin A and elongation factor 1α) were identified using both experimental approaches. The remaining 26 hit proteins were only assayed in either the iTRAQ-SPROX or the SILAC-PP experiment. The 28 potential protein targets of manassantin A identified here provide new experimental avenues along which to explore the molecular basis of manassantin A's mode of action. The current work also represents the first application iTRAQ-SPROX and SILAC-PP to the large-scale analysis of protein-ligand binding interactions involving a potential anticancer drug with an unknown mode-of-action.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- Department of Chemistry, Duke University , Durham, North Carolina 27708-0346, United States
| | - Do-Yeon Kwon
- Department of Chemistry, Duke University , Durham, North Carolina 27708-0346, United States
| | | | | | - Tesia N Stephenson
- Department of Chemistry, Duke University , Durham, North Carolina 27708-0346, United States
| | | | | | | | - Jiyong Hong
- Department of Chemistry, Duke University , Durham, North Carolina 27708-0346, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University , Durham, North Carolina 27708-0346, United States
| |
Collapse
|
28
|
Vahidi S, Konermann L. Probing the Time Scale of FPOP (Fast Photochemical Oxidation of Proteins): Radical Reactions Extend Over Tens of Milliseconds. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1156-64. [PMID: 27067899 DOI: 10.1007/s13361-016-1389-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 05/11/2023]
Abstract
Hydroxyl radical (⋅OH) labeling with mass spectrometry detection reports on protein conformations and interactions. Fast photochemical oxidation of proteins (FPOP) involves ⋅OH production via H2O2 photolysis by UV laser pulses inside a flow tube. The experiments are conducted in the presence of a scavenger (usually glutamine) that shortens the ⋅OH lifetime. The literature claims that FPOP takes place within 1 μs. This ultrafast time scale implies that FPOP should be immune to labeling-induced artifacts that may be encountered with other techniques. Surprisingly, the FPOP time scale has never been validated in direct kinetic measurements. Here we employ flash photolysis for probing oxidation processes under typical FPOP conditions. Bleaching of the reporter dye cyanine-5 (Cy5) served as readout of the time-dependent radical milieu. Surprisingly, Cy5 oxidation extends over tens of milliseconds. This time range is four orders of magnitude longer than expected from the FPOP literature. We demonstrate that the glutamine scavenger generates metastable secondary radicals in the FPOP solution, and that these radicals lengthen the time frame of Cy5 oxidation. Cy5 and similar dyes are widely used for monitoring the radical dose experienced by proteins in solution. The measured Cy5 kinetics thus strongly suggest that protein oxidation in FPOP extends over a much longer time window than previously thought (i.e., many milliseconds instead of one microsecond). The optical approach developed here should be suitable for assessing the performance of future FPOP-like techniques with improved temporal labeling characteristics. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
29
|
Li J, Xu H, West GM, Jones LH. Label-free technologies for target identification and validation. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00045b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical probes have been instrumental in revealing new targets and confirming target engagement. However, substantial effort and resources are required to design and synthesize these probes. In contrast, label-free technologies have the advantage of bypassing the need for chemical probes. Here we highlight the recent developments in label-free methods and discuss the pros and cons of each approach.
Collapse
Affiliation(s)
- Jing Li
- Worldwide Medicinal Chemistry
- Pfizer
- Cambridge
- USA
| | - Hua Xu
- Worldwide Medicinal Chemistry
- Pfizer
- Cambridge
- USA
| | | | | |
Collapse
|