1
|
Cheng J, Wang H, Zhang Y, Wang X, Liu G. Advances in crosslinking chemistry and proximity-enabled strategies: deciphering protein complexes and interactions. Org Biomol Chem 2024; 22:7549-7559. [PMID: 39192765 DOI: 10.1039/d4ob01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Mass spectrometry, coupled with innovative crosslinking techniques to decode protein conformations and interactions through uninterrupted signal connections, has undergone remarkable progress in recent years. It is crucial to develop selective crosslinking reagents that minimally disrupt protein structure and dynamics, providing insights into protein network regulation and biological functions. Compared to traditional crosslinkers, new bifunctional chemical crosslinkers exhibit high selectivity and specificity in connecting proximal amino acid residues, resulting in stable molecular crosslinked products. The conjugation with specific amino acid residues like lysine, cysteine, arginine and tyrosine expands the XL-MS toolbox, enabling more precise modeling of target substrates and leading to improved data quality and reliability. Another emerging crosslinking method utilizes unnatural amino acids (UAAs) derived from proximity-enabled reactivity with specific amino acids or sulfur-fluoride exchange (SuFEx) reactions with nucleophilic residues. These UAAs are genetically encoded into proteins for the formation of specific covalent bonds. This technique combines the benefits of genetic encoding for live cell compatibility with chemical crosslinking, providing a valuable method for capturing transient and weak protein-protein interactions (PPIs) for mapping PPI coordinates and improving the pharmacological properties of proteins. With continued advancements in technology and applications, crosslinking mass spectrometry is poised to play an increasingly significant role in guiding our understanding of protein dynamics and function in the future.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Haiying Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Yuchi Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| |
Collapse
|
2
|
Yang G, Zhang L, Xie S, Wu J, Khan M, Zhang Y, Liu L, Li J. Protonation State-Induced Unfolding of Protein Secondary Structure in the Gas Phase. J Phys Chem Lett 2024; 15:9374-9379. [PMID: 39240543 DOI: 10.1021/acs.jpclett.4c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The combination of infrared spectroscopy (IR) and ion mobility mass spectrometry (IM-MS) has revealed that protein secondary structures are retained upon transformation from aqueous solution to the gas phase under gentle conditions. Yet the details about where and how these structural elements are embedded in the gas phase remain elusive. In this study, we employ long time scale molecular dynamics (MD) simulations to examine the extent to which proteins retain their solution structures and the impact of protonation state on the stability of secondary structures in the gas phase. Our investigation focuses on two well-studied proteins, myoglobin and β-lactoglobulin, representing typical helical and β-sheet proteins, respectively. Our simulations accurately reproduce the experimental collision cross section (CCS) data measured by IM-MS. Based on accurately reproducing previous experimental collision cross section data and dominant secondary structural species obtained from IM-MS and IR, we confirm that both proteins largely retain their native secondary structural components upon passing from aqueous solution to the gas phase. However, we observe significant reductions in secondary structure contents (19.2 ± 1.2% for myoglobin and 7.3 ± 0.6% for β-lactoglobulin) in specific regions predominantly composed of ionizable residues. Further mechanistic analysis suggests that alterations in protonation states of these residues after phase transition induce changes in their local interaction networks and backbone dihedral angles, which potentially promote the unfolding of secondary structures in the gas phase. We anticipate that similar protonation state induced unfolding may be observed in other proteins possessing distinct secondary structures. Further studies on a broader array of proteins will be essential to refine our understanding of protein structural behavior during the transition to the gas phase.
Collapse
Affiliation(s)
- Guiqian Yang
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lanbi Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Song Xie
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Juhong Wu
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Majid Khan
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yongqi Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lin Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
3
|
Bergeron JJM. Proteomics Impact on Cell Biology to Resolve Cell Structure and Function. Mol Cell Proteomics 2024; 23:100758. [PMID: 38574860 PMCID: PMC11070594 DOI: 10.1016/j.mcpro.2024.100758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
The acceleration of advances in proteomics has enabled integration with imaging at the EM and light microscopy levels, cryo-EM of protein structures, and artificial intelligence with proteins comprehensively and accurately resolved for cell structures at nanometer to subnanometer resolution. Proteomics continues to outpace experimentally based structural imaging, but their ultimate integration is a path toward the goal of a compendium of all proteins to understand mechanistically cell structure and function.
Collapse
Affiliation(s)
- John J M Bergeron
- Department of Medicine, McGill University Hospital Research Institute, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
De los Santos L, Beckman RL, DeBarro C, Keener JE, Torres MD, de la Fuente-Nunez C, Brodbelt JS, Fleeman RM. Polyproline peptide targets Klebsiella pneumoniae polysaccharides to collapse biofilms. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101869. [PMID: 38605913 PMCID: PMC11008256 DOI: 10.1016/j.xcrp.2024.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Hypervirulent Klebsiella pneumoniae is known for its increased extracellular polysaccharide production. Biofilm matrices of hypervirulent K. pneumoniae have increased polysaccharide abundance and are uniquely susceptible to disruption by peptide bactenecin 7 (bac7 (1-35)). Here, using confocal microscopy, we show that polysaccharides within the biofilm matrix collapse following bac7 (1-35) treatment. This collapse led to the release of cells from the biofilm, which were then killed by the peptide. Characterization of truncated peptide analogs revealed that their interactions with polysaccharide were responsible for the biofilm matrix changes that accompany bac7 (1-35) treatment. Ultraviolet photodissociation mass spectrometry with the parental peptide or a truncated analog bac7 (10-35) reveal the important regions for bac7 (1-35) complexing with polysaccharides. Finally, we tested bac7 (1-35) using a murine skin abscess model and observed a significant decrease in the bacterial burden. These findings unveil the potential of bac7 (1-35) polysaccharide interactions to collapse K. pneumoniae biofilms.
Collapse
Affiliation(s)
- Laura De los Santos
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Robert L. Beckman
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Christina DeBarro
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - James E. Keener
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Marcelo D.T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Renee M. Fleeman
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- X (formerly Twitter): @FleemanLab
- Lead contact
| |
Collapse
|
5
|
Chaturvedi R, Webb IK. Multiplexed Conformationally Selective, Localized Gas-Phase Hydrogen Deuterium Exchange of Protein Ions Enabled by Transmission-Mode Electron Capture Dissociation. Anal Chem 2022; 94:8975-8982. [PMID: 35708487 DOI: 10.1021/acs.analchem.2c00942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this article, we present an approach for conformationally multiplexed, localized hydrogen deuterium exchange (HDX) of gas-phase protein ions facilitated by ion mobility (IM) followed by electron capture dissociation (ECD). A quadrupole-IM-time of flight instrument previously modified to enable ECD in transmission mode (without ion trapping) immediately following a mobility separation was further modified to allow for deuterated ammonia (ND3) to be leaked in after m/z selection. Collisional activation was minimized to prevent deuterium scrambling from giving structurally irrelevant results. Gas-phase HDX with ECD fragmentation for exchange site localization was demonstrated with the extensively studied protein folding models ubiquitin and cytochrome c. Ubiquitin was ionized from conditions that stabilize the native state and conditions that stabilize the partially folded A-state. IM of deuterated ubiquitin 6+ ions allowed the separation of more compact conformers from more extended conformers. ECD of the separated subpopulations revealed that the more extended (later arriving) conformers had significant, localized differences in the amount of HDX observed. The 5+ charge state showed many regions with protection from HDX, and the 11+ charge state, ionized from conditions that stabilize the A-state, showed high levels of deuterium incorporation throughout most of the protein sequence. The 7+ ions of cytochrome c ionized from aqueous conditions showed greater HDX with unstructured regions of the protein relative to interior, structured regions, especially those involved in heme binding. With careful tuning and attention to deuterium scrambling, our approach holds promise for determining region-specific information on a conformer-selected basis for gas-phase protein structures, including localized characterizations of ligand, epitope, and protein-protein binding.
Collapse
Affiliation(s)
- Ritu Chaturvedi
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Ian K Webb
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, United States.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
6
|
Han M, Smith R, Rock DA. Capillary Electrophoresis-Mass Spectrometry (CE-MS) by Sheath-Flow Nanospray Interface and Its Use in Biopharmaceutical Applications. Methods Mol Biol 2022; 2531:15-47. [PMID: 35941476 DOI: 10.1007/978-1-0716-2493-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Both capillary electrophoresis (CE) and mass spectrometry (MS) technologies are powerful analytical tools that have been used extensively in the characterization of biologics in the biopharmaceutical industry. The direct coupling of CE with MS is an attractive approach, in that the high separation capability of CE and the ultrasensitive detection and accurate identification performance of MS can be combined to provide a powerful system for the analysis of complex analytes. In this chapter, we discuss the detailed procedure of carrying out CE-MS analysis using a nano sheath-flow interface and its applications including intact mass analysis of monoclonal antibodies and fusion proteins, and a biotransformation study of two Fc-FGF21 molecules in a single-dose pharmacokinetic mice study. Optimization processes, including the finetuning of CE conditions and MS parameters, are illustrated in this chapter, with focuses on method robustness and assay reproducibility.
Collapse
Affiliation(s)
- Mei Han
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, USA.
| | - Richard Smith
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Dan A Rock
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| |
Collapse
|
7
|
In a flash of light: X-ray free electron lasers meet native mass spectrometry. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:89-99. [PMID: 34906329 DOI: 10.1016/j.ddtec.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/14/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023]
Abstract
During the last years, X-ray free electron lasers (XFELs) have emerged as X-ray sources of unparalleled brightness, delivering extreme amounts of photons in femtosecond pulses. As such, they have opened up completely new possibilities in drug discovery and structural biology, including studying high resolution biomolecular structures and their functioning in a time resolved manner, and diffractive imaging of single particles without the need for their crystallization. In this perspective, we briefly review the operation of XFELs, their immediate uses for drug discovery and focus on the potentially revolutionary single particle diffractive imaging technique and the challenges which remain to be overcome to fully realize its potential to provide high resolution structures without the need for crystallization, freezing or the need to keep proteins stable at extreme concentrations for long periods of time. As the issues have been to a large extent sample delivery related, we outline a way for native mass spectrometry to overcome these and enable so far impossible research with a potentially huge impact on structural biology and drug discovery, such as studying structures of transient intermediate species in viral life cycles or during functioning of molecular machines.
Collapse
|
8
|
Shen Z, Xiang Y, Vergara S, Chen A, Xiao Z, Santiago U, Jin C, Sang Z, Luo J, Chen K, Schneidman-Duhovny D, Camacho C, Calero G, Hu B, Shi Y. A resource of high-quality and versatile nanobodies for drug delivery. iScience 2021; 24:103014. [PMID: 34522857 PMCID: PMC8426283 DOI: 10.1016/j.isci.2021.103014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
Therapeutic and diagnostic efficacies of small biomolecules and chemical compounds are hampered by suboptimal pharmacokinetics. Here, we developed a repertoire of robust and high-affinity antihuman serum albumin nanobodies (NbHSA) that can be readily fused to small biologics for half-life extension. We characterized the thermostability, binding kinetics, and cross-species reactivity of NbHSAs, mapped their epitopes, and structurally resolved a tetrameric HSA-Nb complex. We parallelly determined the half-lives of a cohort of selected NbHSAs in an HSA mouse model by quantitative proteomics. Compared to short-lived control nanobodies, the half-lives of NbHSAs were drastically prolonged by 771-fold. NbHSAs have distinct and diverse pharmacokinetics, positively correlating with their albumin binding affinities at the endosomal pH. We then generated stable and highly bioactive NbHSA-cytokine fusion constructs "Duraleukin" and demonstrated Duraleukin's high preclinical efficacy for cancer treatment in a melanoma model. This high-quality and versatile Nb toolkit will help tailor drug half-life to specific medical needs.
Collapse
Affiliation(s)
- Zhuolun Shen
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra Vergara
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Apeng Chen
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Pediatric Neurosurgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Zhengyun Xiao
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ulises Santiago
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Changzhong Jin
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhe Sang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh-Carnegie Mellon University Joint Program for Computational Biology, Pittsburgh, PA, USA
| | - Jiadi Luo
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kong Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, Institute of Life Sciences, University of Jerusalem, Tambaram, Israel
| | - Carlos Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Pediatric Neurosurgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Molecular and Cellular Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh-Carnegie Mellon University Joint Program for Computational Biology, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Xie Y, Clarke BP, Kim YJ, Ivey AL, Hill PS, Shi Y, Ren Y. Cryo-EM structure of the yeast TREX complex and coordination with the SR-like protein Gbp2. eLife 2021; 10:e65699. [PMID: 33787496 PMCID: PMC8043747 DOI: 10.7554/elife.65699] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
The evolutionarily conserved TRanscript-EXport (TREX) complex plays central roles during mRNP (messenger ribonucleoprotein) maturation and export from the nucleus to the cytoplasm. In yeast, TREX is composed of the THO sub-complex (Tho2, Hpr1, Tex1, Mft1, and Thp2), the DEAD box ATPase Sub2, and Yra1. Here we present a 3.7 Å cryo-EM structure of the yeast THO•Sub2 complex. The structure reveals the intimate assembly of THO revolving around its largest subunit Tho2. THO stabilizes a semi-open conformation of the Sub2 ATPase via interactions with Tho2. We show that THO interacts with the serine-arginine (SR)-like protein Gbp2 through both the RS domain and RRM domains of Gbp2. Cross-linking mass spectrometry analysis supports the extensive interactions between THO and Gbp2, further revealing that RRM domains of Gbp2 are in close proximity to the C-terminal domain of Tho2. We propose that THO serves as a landing pad to configure Gbp2 to facilitate its loading onto mRNP.
Collapse
Affiliation(s)
- Yihu Xie
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Bradley P Clarke
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Yong Joon Kim
- Department of Cell Biology, University of PittsburghPittsburghUnited States
- Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon UniversityPittsburghUnited States
| | - Austin L Ivey
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Pate S Hill
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Yi Shi
- Department of Cell Biology, University of PittsburghPittsburghUnited States
- Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon UniversityPittsburghUnited States
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
10
|
Xiang Y, Sang Z, Bitton L, Xu J, Liu Y, Schneidman-Duhovny D, Shi Y. Integrative proteomics identifies thousands of distinct, multi-epitope, and high-affinity nanobodies. Cell Syst 2021; 12:220-234.e9. [PMID: 33592195 PMCID: PMC7979497 DOI: 10.1016/j.cels.2021.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/13/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
The antibody immune response is essential for the survival of mammals. However, we still lack a systematic understanding of the antibody repertoire. Here, we developed a proteomic strategy to survey, at an unprecedented scale, the landscape of antigen-engaged, circulating camelid heavy-chain antibodies, whose minimal binding fragments are called VHH antibodies or nanobodies. The sensitivity and robustness of this approach were validated with three antigens spanning orders of magnitude in immune responses; thousands of distinct, high-affinity nanobody families were reliably identified and quantified. Using high-throughput structural modeling, cross-linking mass spectrometry, mutagenesis, and deep learning, we mapped and analyzed the epitopes of >100,000 antigen-nanobody complexes. Our results revealed a surprising diversity of ultrahigh-affinity camelid nanobodies for specific antigen binding on various dominant epitope clusters. Nanobodies utilize both shape and charge complementarity to enable highly selective antigen binding. Interestingly, we found that nanobody-antigen binding can mimic conserved intracellular protein-protein interactions. A record of this paper's Transparent Peer Review process is included in the Supplemental information.
Collapse
Affiliation(s)
- Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhe Sang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh, Carnegie Mellon University Program for Computational Biology, Pittsburgh, PA, USA
| | - Lirane Bitton
- School of Computer Science and Engineering, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Jianquan Xu
- Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Liu
- Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel.
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh, Carnegie Mellon University Program for Computational Biology, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Xiang Y, Nambulli S, Xiao Z, Liu H, Sang Z, Duprex WP, Schneidman-Duhovny D, Zhang C, Shi Y. Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science 2020; 370:1479-1484. [PMID: 33154108 PMCID: PMC7857400 DOI: 10.1126/science.abe4747] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Cost-effective, efficacious therapeutics are urgently needed to combat the COVID-19 pandemic. In this study, we used camelid immunization and proteomics to identify a large repertoire of highly potent neutralizing nanobodies (Nbs) to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor binding domain (RBD). We discovered Nbs with picomolar to femtomolar affinities that inhibit viral infection at concentrations below the nanograms-per-milliliter level, and we determined a structure of one of the most potent Nbs in complex with the RBD. Structural proteomics and integrative modeling revealed multiple distinct and nonoverlapping epitopes and indicated an array of potential neutralization mechanisms. We bioengineered multivalent Nb constructs that achieved ultrahigh neutralization potency (half-maximal inhibitory concentration as low as 0.058 ng/ml) and may prevent mutational escape. These thermostable Nbs can be rapidly produced in bulk from microbes and resist lyophilization and aerosolization.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/immunology
- Animals
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibody Affinity
- COVID-19/therapy
- Camelids, New World
- Escherichia coli
- Humans
- Neutralization Tests
- Protein Binding
- Protein Domains
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- SARS-CoV-2/immunology
- Single-Domain Antibodies/chemistry
- Single-Domain Antibodies/genetics
- Single-Domain Antibodies/immunology
Collapse
Affiliation(s)
- Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sham Nambulli
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhengyun Xiao
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhe Sang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh-Carnegie Mellon University Program in Computational Biology, Pittsburgh, PA, USA
| | - W Paul Duprex
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- University of Pittsburgh-Carnegie Mellon University Program in Computational Biology, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Yu Y, Liu H, Yu Z, Witkowska HE, Cheng Y. Stoichiometry of Nucleotide Binding to Proteasome AAA+ ATPase Hexamer Established by Native Mass Spectrometry. Mol Cell Proteomics 2020; 19:1997-2015. [PMID: 32883800 PMCID: PMC7710143 DOI: 10.1074/mcp.ra120.002067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/04/2020] [Indexed: 11/06/2022] Open
Abstract
AAA+ ATPases constitute a large family of proteins that are involved in a plethora of cellular processes including DNA disassembly, protein degradation and protein complex disassembly. They typically form a hexametric ring-shaped structure with six subunits in a (pseudo) 6-fold symmetry. In a subset of AAA+ ATPases that facilitate protein unfolding and degradation, six subunits cooperate to translocate protein substrates through a central pore in the ring. The number and type of nucleotides in an AAA+ ATPase hexamer is inherently linked to the mechanism that underlies cooperation among subunits and couples ATP hydrolysis with substrate translocation. We conducted a native MS study of a monodispersed form of PAN, an archaeal proteasome AAA+ ATPase, to determine the number of nucleotides bound to each hexamer of the WT protein. We utilized ADP and its analogs (TNP-ADP and mant-ADP), and a nonhydrolyzable ATP analog (AMP-PNP) to study nucleotide site occupancy within the PAN hexamer in ADP- and ATP-binding states, respectively. Throughout all experiments we used a Walker A mutant (PANK217A) that is impaired in nucleotide binding as an internal standard to mitigate the effects of residual solvation on mass measurement accuracy and to serve as a reference protein to control for nonspecific nucleotide binding. This approach led to the unambiguous finding that a WT PAN hexamer carried - from expression host - six tightly bound ADP molecules that could be exchanged for ADP and ATP analogs. Although the Walker A mutant did not bind ADP analogs, it did bind AMP-PNP, albeit at multiple stoichiometries. We observed variable levels of hexamer dissociation and an appearance of multimeric species with the over-charged molecular ion distributions across repeated experiments. We posit that these phenomena originated during ESI process at the final stages of ESI droplet evolution.
Collapse
Affiliation(s)
- Yadong Yu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Haichuan Liu
- Department of OBGYN & Reproductive Sci, Sandler-Moore MS Core Facility, University of California San Francisco, San Francisco, California, USA
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - H Ewa Witkowska
- Department of OBGYN & Reproductive Sci, Sandler-Moore MS Core Facility, University of California San Francisco, San Francisco, California, USA.
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
13
|
Fleeman RM, Macias LA, Brodbelt JS, Davies BW. Defining principles that influence antimicrobial peptide activity against capsulated Klebsiella pneumoniae. Proc Natl Acad Sci U S A 2020; 117:27620-27626. [PMID: 33087568 PMCID: PMC7959497 DOI: 10.1073/pnas.2007036117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The extracellular polysaccharide capsule of Klebsiella pneumoniae resists penetration by antimicrobials and protects the bacteria from the innate immune system. Host antimicrobial peptides are inactivated by the capsule as it impedes their penetration to the bacterial membrane. While the capsule sequesters most peptides, a few antimicrobial peptides have been identified that retain activity against encapsulated K. pneumoniae, suggesting that this bacterial defense can be overcome. However, it is unclear what factors allow peptides to avoid capsule inhibition. To address this, we created a peptide analog with strong antimicrobial activity toward several K. pneumoniae strains from a previously inactive peptide. We characterized the effects of these two peptides on K. pneumoniae, along with their physical interactions with K. pneumoniae capsule. Both peptides disrupted bacterial cell membranes, but only the active peptide displayed this activity against capsulated K. pneumoniae Unexpectedly, the active peptide showed no decrease in capsule binding, but did lose secondary structure in a capsule-dependent fashion compared with the inactive parent peptide. We found that these characteristics are associated with capsule-peptide aggregation, leading to disruption of the K. pneumoniae capsule. Our findings reveal a potential mechanism for disrupting the protective barrier that K. pneumoniae uses to avoid the immune system and last-resort antibiotics.
Collapse
Affiliation(s)
- Renee M Fleeman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Bryan W Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712;
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
14
|
Xiang Y, Nambulli S, Xiao Z, Liu H, Sang Z, Duprex WP, Schneidman-Duhovny D, Zhang C, Shi Y. Versatile, Multivalent Nanobody Cocktails Efficiently Neutralize SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32869034 PMCID: PMC7457627 DOI: 10.1101/2020.08.24.264333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The outbreak of COVID-19 has severely impacted global health and the economy. Cost-effective, highly efficacious therapeutics are urgently needed. Here, we used camelid immunization and proteomics to identify a large repertoire of highly potent neutralizing nanobodies (Nbs) to the SARS-CoV-2 spike (S) protein receptor-binding domain (RBD). We discovered multiple elite Nbs with picomolar to femtomolar affinities that inhibit viral infection at sub-ng/ml concentration, more potent than some of the best human neutralizing antibodies. We determined a crystal structure of such an elite neutralizing Nb in complex with RBD. Structural proteomics and integrative modeling revealed multiple distinct and non-overlapping epitopes and indicated an array of potential neutralization mechanisms. Structural characterization facilitated the bioengineering of novel multivalent Nb constructs into multi-epitope cocktails that achieved ultrahigh neutralization potency (IC50s as low as 0.058 ng/ml) and may prevent mutational escape. These thermostable Nbs can be rapidly produced in bulk from microbes and resist lyophilization, and aerosolization. These promising agents are readily translated into efficient, cost-effective, and convenient therapeutics to help end this once-in-a-century health crisis.
Collapse
Affiliation(s)
| | - Sham Nambulli
- Center for Vaccine Research.,Department of Microbiology and Molecular Genetics School of Medicine
| | | | - Heng Liu
- Department of Pharmacology and Chemical Biology University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhe Sang
- Department of Cell Biology.,Pitt/CMU Program for Computational Biology
| | - W Paul Duprex
- Center for Vaccine Research.,Department of Microbiology and Molecular Genetics School of Medicine
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Shi
- Department of Cell Biology.,Pitt/CMU Program for Computational Biology
| |
Collapse
|
15
|
Holmquist ML, Ihms EC, Gollnick P, Wysocki VH, Foster MP. Population Distributions from Native Mass Spectrometry Titrations Reveal Nearest-Neighbor Cooperativity in the Ring-Shaped Oligomeric Protein TRAP. Biochemistry 2020; 59:2518-2527. [PMID: 32558551 PMCID: PMC8093080 DOI: 10.1021/acs.biochem.0c00352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Allostery pervades macromolecular function and drives cooperative binding of ligands to macromolecules. To decipher the mechanisms of cooperative ligand binding, it is necessary to define, at a microscopic level, the thermodynamic consequences of binding of each ligand to its energetically coupled site(s). However, extracting these microscopic constants is difficult for macromolecules with more than two binding sites, because the observable [e.g., nuclear magnetic resonance (NMR) chemical shift changes, fluorescence, and enthalpy] can be altered by allostery, thereby distorting its proportionality to site occupancy. Native mass spectrometry (MS) can directly quantify the populations of homo-oligomeric protein species with different numbers of bound ligands, provided the populations are proportional to ion counts and that MS-compatible electrolytes do not alter the overall thermodynamics. These measurements can help decipher allosteric mechanisms by providing unparalleled access to the statistical thermodynamic partition function. We used native MS (nMS) to study the cooperative binding of tryptophan (Trp) to Bacillus stearothermophilus trp RNA binding attenuation protein (TRAP), a ring-shaped homo-oligomeric protein complex with 11 identical binding sites. MS-compatible solutions did not significantly perturb protein structure or thermodynamics as assessed by isothermal titration calorimetry and NMR spectroscopy. Populations of Trpn-TRAP11 states were quantified as a function of Trp concentration by nMS. The population distributions could not be explained by a noncooperative binding model but were described well by a mechanistic nearest-neighbor cooperative model. Nonlinear least-squares fitting yielded microscopic thermodynamic constants that define the interactions between neighboring binding sites. This approach may be applied to quantify thermodynamic cooperativity in other ring-shaped proteins.
Collapse
Affiliation(s)
- Melody L Holmquist
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Elihu C Ihms
- VPPL, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, 9W. Watkins Mill Road, Suite 250, Gaithersburg, Maryland 20878, United States
| | - Paul Gollnick
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
16
|
Donald LJ, Spearman M, Mishra N, Komatsu E, Butler M, Perreault H. Mass spectrometric analysis of core fucosylation and sequence variation in a human-camelid monoclonal antibody. Mol Omics 2020; 16:221-230. [PMID: 32163054 DOI: 10.1039/c9mo00168a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrospray mass spectrometry (ESI-MS) was used to measure the masses of an intact dimeric monoclonal antibody (Mab) and assess the fucosylation level. The Mab under study was EG2-hFc, a chimeric human-camelid antibody of about 80 kDa (A. Bell et al., Cancer Lett., 2010, 289(1), 81-90). It was obtained from cell culture with and without a fucosylation inhibitor, and treated with EndoS which cleaves between the two core N-acetyl glucosamine (GlcNAc) residues. It is the first time that this combined approach with a unique mass spectrometer was used to measure 146 Da differences as part of a large intact dimeric antibody. Results showed that in the dimer, both heavy chains were fucosylated on the core GlcNAc of the Fc Asn site equivalent to Asn297. In the presence of the fucosylation inhibitor, fucosylation was lost on both subunits. Following reduction, monomers were analyzed and the masses obtained corroborated the dimer results. Dimeric EG2-hFc Mab treated with PNGase F, to deglycosylate the protein, was also measured by MS for mass comparison. In spite of the success of fucosylation level measurements, the experimental masses of deglycosylated dimers and GlcNAc-Fuc bearing dimers did not correspond to masses of our sequence of reference (A. Bell et al., Cancer Lett., 2010, 289(1), 81-90; ; ), which prompted experiments to determine the protein backbone sequence. Digest mixtures from trypsin, GluC, as well as trypsin + GluC proteolysis were analyzed by matrix-assisted laser desorption/ionization (MALDI) MS and MS/MS. A few variations were found relative to the reference sequence, which are discussed in detail herein. These measurements allowed us to build a new "experimental" sequence for the EG2-hFc samples investigated in this work, although there are still ambiguities to be resolved in this new sequence. MALDI-MS/MS also confirmed the fucosylation pattern in the Fc tryptic peptide EEQYNSTYR.
Collapse
Affiliation(s)
- Lynda J Donald
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Crittenden CM, Novelli ET, Mehaffey MR, Xu GN, Giles DH, Fies WA, Dalby KN, Webb LJ, Brodbelt JS. Structural Evaluation of Protein/Metal Complexes via Native Electrospray Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1140-1150. [PMID: 32275426 PMCID: PMC7386362 DOI: 10.1021/jasms.0c00066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ultraviolet photodissociation (UVPD) has emerged as a promising tool to characterize proteins with regard to not only their primary sequences and post-translational modifications, but also their tertiary structures. In this study, three metal-binding proteins, Staphylococcal nuclease, azurin, and calmodulin, are used to demonstrate the use of UVPD to elucidate metal-binding regions via comparisons between the fragmentation patterns of apo (metal-free) and holo (metal-bound) proteins. The binding of staphylococcal nuclease to calcium was evaluated, in addition to a series of lanthanide(III) ions which are expected to bind in a similar manner as calcium. On the basis of comparative analysis of the UVPD spectra, the binding region for calcium and the lanthanide ions was determined to extend from residues 40-50, aligning with the known crystal structure. Similar analysis was performed for both azurin (interrogating copper and silver binding) and calmodulin (four calcium binding sites). This work demonstrates the utility of UVPD methods for determining and analyzing the metal binding sites of a variety of classes of proteins.
Collapse
Affiliation(s)
| | - Elisa T Novelli
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - M Rachel Mehaffey
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Gulan N Xu
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - David H Giles
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Whitney A Fies
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712, United States
- Graduate Program in Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States
| | - Lauren J Webb
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
- Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States
- Texas Materials Institute, University of Texas, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Brodbelt JS, Morrison LJ, Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem Rev 2020; 120:3328-3380. [PMID: 31851501 PMCID: PMC7145764 DOI: 10.1021/acs.chemrev.9b00440] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of new ion-activation/dissociation methods continues to be one of the most active areas of mass spectrometry owing to the broad applications of tandem mass spectrometry in the identification and structural characterization of molecules. This Review will showcase the impact of ultraviolet photodissociation (UVPD) as a frontier strategy for generating informative fragmentation patterns of ions, especially for biological molecules whose complicated structures, subtle modifications, and large sizes often impede molecular characterization. UVPD energizes ions via absorption of high-energy photons, which allows access to new dissociation pathways relative to more conventional ion-activation methods. Applications of UVPD for the analysis of peptides, proteins, lipids, and other classes of biologically relevant molecules are emphasized in this Review.
Collapse
Affiliation(s)
- Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lindsay J. Morrison
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Inês Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
19
|
Affiliation(s)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Xiang Y, Shen Z, Shi Y. Chemical Cross-Linking and Mass Spectrometric Analysis of the Endogenous Yeast Exosome Complexes. Methods Mol Biol 2020; 2062:383-400. [PMID: 31768986 DOI: 10.1007/978-1-4939-9822-7_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical cross-linking and mass spectrometric readout (CX-MS) has become a useful toolkit for structural analysis of protein complexes. CX-MS enables rapid detection of a larger number of cross-link peptides from the chemically cross-linked protein assembly, providing invaluable cross-link spatial restraints to understand the architecture of the complex. Since CX-MS is complementary with other structural and computational modeling tools, it can be used for integrative structural determination of large native protein assemblies. However, due to technical limitations, current CX-MS applications have still been predominantly confined to complexes reconstituted from recombinant proteins where large amount of purified materials are available. Cross-linking and hybrid structural proteomic analysis of endogenous protein complexes remains a challenge. In this chapter, we present a protocol that efficiently couples affinity capture of endogenous complexes with sensitive CX-MS analysis, with particular application to the yeast RNA processing exosome complexes.
Collapse
Affiliation(s)
- Yufei Xiang
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhuolun Shen
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Olinares PDB, Chait BT. Native Mass Spectrometry Analysis of Affinity-Captured Endogenous Yeast RNA Exosome Complexes. Methods Mol Biol 2020; 2062:357-382. [PMID: 31768985 DOI: 10.1007/978-1-4939-9822-7_17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Native mass spectrometry (MS) enables direct mass measurement of intact protein assemblies generating relevant subunit composition and stoichiometry information. Combined with cross-linking and structural data, native MS-derived information is crucial for elucidating the architecture of macromolecular assemblies by integrative structural methods. The exosome complex from budding yeast was among the first endogenous protein complexes to be affinity isolated and subsequently characterized by this technique, providing improved understanding of its composition and structure. We present a protocol that couples efficient affinity capture of yeast exosome complexes and sensitive native MS analysis, including rapid affinity isolation of the endogenous exosome complex from cryolysed yeast cells, elution in nondenaturing conditions by protease cleavage, depletion of the protease, buffer exchange, and native MS measurements using an Orbitrap-based instrument (Exactive Plus EMR).
Collapse
Affiliation(s)
- Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA.
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| |
Collapse
|
22
|
Mutuku SM, Trim PJ, Prabhala BK, Irani S, Bremert KL, Logan JM, Brooks DA, Stahl J, Centenera MM, Snel MF, Butler LM. Evaluation of Small Molecule Drug Uptake in Patient-Derived Prostate Cancer Explants by Mass Spectrometry. Sci Rep 2019; 9:15008. [PMID: 31628408 PMCID: PMC6802206 DOI: 10.1038/s41598-019-51549-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
Patient-derived explant (PDE) culture of solid tumors is increasingly being applied to preclinical evaluation of novel therapeutics and for biomarker discovery. In this technique, treatments are added to culture medium and penetrate the tissue via a gelatin sponge scaffold. However, the penetration profile and final concentrations of small molecule drugs achieved have not been determined to date. Here, we determined the extent of absorption of the clinical androgen receptor antagonist, enzalutamide, into prostate PDEs, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and matrix-assisted laser/desorption ionisation (MALDI) mass spectrometry imaging (MSI). In a cohort of 11 PDE tissues from eight individual patients, LC-MS/MS quantification of PDE homogenates confirmed enzalutamide (10 µM) uptake by all PDEs, which reached maximal average tissue concentration of 0.24-0.50 ng/µg protein after 48 h culture. Time dependent uptake of enzalutamide (50 µM) in PDEs was visualized using MALDI MSI over 24-48 h, with complete penetration throughout tissues evident by 6 h of culture. Drug signal intensity was not homogeneous throughout the tissues but had areas of markedly high signal that corresponded to drug target (androgen receptor)-rich epithelial regions of tissue. In conclusion, application of MS-based drug quantification and visualization in PDEs, and potentially other 3-dimensional model systems, can provide a more robust basis for experimental study design and interpretation of pharmacodynamic data.
Collapse
Affiliation(s)
- Shadrack M Mutuku
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.,Prostate Cancer Research Group, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Paul J Trim
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Bala K Prabhala
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.,Department of Drug Design and Pharmacology, University of Copenhagen, København, Denmark
| | - Swati Irani
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.,Prostate Cancer Research Group, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.,Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kayla L Bremert
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.,Prostate Cancer Research Group, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.,Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jessica M Logan
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, 5000, Australia
| | - Douglas A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, 5000, Australia
| | - Jürgen Stahl
- Clinpath Laboratories, Adelaide, SA, 5000, Australia
| | - Margaret M Centenera
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.,Prostate Cancer Research Group, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.,Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Marten F Snel
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Lisa M Butler
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia. .,Prostate Cancer Research Group, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia. .,Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
23
|
Mapping low-affinity/high-specificity peptide-protein interactions using ligand-footprinting mass spectrometry. Proc Natl Acad Sci U S A 2019; 116:21001-21011. [PMID: 31578253 DOI: 10.1073/pnas.1819533116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Short linear peptide motifs that are intracellular ligands of folded proteins are a modular, incompletely understood molecular interaction language in signaling systems. Such motifs, which frequently occur in intrinsically disordered protein regions, often bind partner proteins with modest affinity and are difficult to study with conventional structural biology methods. We developed LiF-MS (ligand-footprinting mass spectrometry), a method to map peptide binding sites on folded protein domains that allows consideration of their dynamic disorder, and used it to analyze a set of D-motif peptide-mitogen-activated protein kinase (MAPK) associations to validate the approach and define unknown binding structures. LiF-MS peptide ligands carry a short-lived, indiscriminately reactive cleavable crosslinker that marks contacts close to ligand binding sites with high specificity. Each marked amino acid provides an independent constraint for a set of directed peptide-protein docking simulations, which are analyzed by agglomerative hierarchical clustering. We found that LiF-MS provides accurate ab initio identification of ligand binding surfaces and a view of potential binding ensembles of a set of D-motif peptide-MAPK associations. Our analysis provides an MKK4-JNK1 structural model, which has thus far been crystallographically unattainable, a potential alternate binding mode for part of the NFAT4-JNK interaction, and evidence of bidirectional association of MKK4 peptide with ERK2. Overall, we find that LiF-MS is an effective noncrystallographic way to understand how short linear motifs associate with specific sites on folded protein domains at the level of individual amino acids.
Collapse
|
24
|
Developments in integrative modeling with dynamical interfaces. Curr Opin Struct Biol 2019; 56:11-17. [DOI: 10.1016/j.sbi.2018.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 11/19/2022]
|
25
|
Martin-Fernandez ML, Clarke DT, Roberts SK, Zanetti-Domingues LC, Gervasio FL. Structure and Dynamics of the EGF Receptor as Revealed by Experiments and Simulations and Its Relevance to Non-Small Cell Lung Cancer. Cells 2019; 8:E316. [PMID: 30959819 PMCID: PMC6523254 DOI: 10.3390/cells8040316] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/25/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is historically the prototypical receptor tyrosine kinase, being the first cloned and the first where the importance of ligand-induced dimer activation was ascertained. However, many years of structure determination has shown that EGFR is not completely understood. One challenge is that the many structure fragments stored at the PDB only provide a partial view because full-length proteins are flexible entities and dynamics play a key role in their functionality. Another challenge is the shortage of high-resolution data on functionally important higher-order complexes. Still, the interest in the structure/function relationships of EGFR remains unabated because of the crucial role played by oncogenic EGFR mutants in driving non-small cell lung cancer (NSCLC). Despite targeted therapies against EGFR setting a milestone in the treatment of this disease, ubiquitous drug resistance inevitably emerges after one year or so of treatment. The magnitude of the challenge has inspired novel strategies. Among these, the combination of multi-disciplinary experiments and molecular dynamic (MD) simulations have been pivotal in revealing the basic nature of EGFR monomers, dimers and multimers, and the structure-function relationships that underpin the mechanisms by which EGFR dysregulation contributes to the onset of NSCLC and resistance to treatment.
Collapse
Affiliation(s)
- Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - David T Clarke
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - Selene K Roberts
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | | |
Collapse
|
26
|
Reid DJ, Diesing JM, Miller MA, Perry SM, Wales JA, Montfort WR, Marty MT. MetaUniDec: High-Throughput Deconvolution of Native Mass Spectra. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:118-127. [PMID: 29667162 PMCID: PMC6192864 DOI: 10.1007/s13361-018-1951-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/23/2018] [Accepted: 03/10/2018] [Indexed: 05/11/2023]
Abstract
The expansion of native mass spectrometry (MS) methods for both academic and industrial applications has created a substantial need for analysis of large native MS datasets. Existing software tools are poorly suited for high-throughput deconvolution of native electrospray mass spectra from intact proteins and protein complexes. The UniDec Bayesian deconvolution algorithm is uniquely well suited for high-throughput analysis due to its speed and robustness but was previously tailored towards individual spectra. Here, we optimized UniDec for deconvolution, analysis, and visualization of large data sets. This new module, MetaUniDec, centers around a hierarchical data format 5 (HDF5) format for storing datasets that significantly improves speed, portability, and file size. It also includes code optimizations to improve speed and a new graphical user interface for visualization, interaction, and analysis of data. To demonstrate the utility of MetaUniDec, we applied the software to analyze automated collision voltage ramps with a small bacterial heme protein and large lipoprotein nanodiscs. Upon increasing collisional activation, bacterial heme-nitric oxide/oxygen binding (H-NOX) protein shows a discrete loss of bound heme, and nanodiscs show a continuous loss of lipids and charge. By using MetaUniDec to track changes in peak area or mass as a function of collision voltage, we explore the energetic profile of collisional activation in an ultra-high mass range Orbitrap mass spectrometer. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Deseree J Reid
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Jessica M Diesing
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Matthew A Miller
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Scott M Perry
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Jessica A Wales
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA.
| |
Collapse
|
27
|
Nshanian M, Lantz C, Wongkongkathep P, Schrader T, Klärner FG, Blümke A, Despres C, Ehrmann M, Smet-Nocca C, Bitan G, Loo JA. Native Top-Down Mass Spectrometry and Ion Mobility Spectrometry of the Interaction of Tau Protein with a Molecular Tweezer Assembly Modulator. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:16-23. [PMID: 30062477 PMCID: PMC6320309 DOI: 10.1007/s13361-018-2027-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 05/19/2023]
Abstract
Native top-down mass spectrometry (MS) and ion mobility spectrometry (IMS) were applied to characterize the interaction of a molecular tweezer assembly modulator, CLR01, with tau, a protein believed to be involved in a number of neurodegenerative disorders, including Alzheimer's disease. The tweezer CLR01 has been shown to inhibit aggregation of amyloidogenic polypeptides without toxic side effects. ESI-MS spectra for different forms of tau protein (full-length, fragments, phosphorylated, etc.) in the presence of CLR01 indicate a primary binding stoichiometry of 1:1. The relatively high charging of the protein measured from non-denaturing solutions is typical of intrinsically disordered proteins, such as tau. Top-down mass spectrometry using electron capture dissociation (ECD) is a tool used to determine not only the sites of post-translational modifications but also the binding site(s) of non-covalent interacting ligands to biomolecules. The intact protein and the protein-modulator complex were subjected to ECD-MS to obtain sequence information, map phosphorylation sites, and pinpoint the sites of inhibitor binding. The ESI-MS study of intact tau proteins indicates that top-down MS is amenable to the study of various tau isoforms and their post-translational modifications (PTMs). The ECD-MS data point to a CLR01 binding site in the microtubule-binding region of tau, spanning residues K294-K331, which includes a six-residue nucleating segment PHF6 (VQIVYK) implicated in aggregation. Furthermore, ion mobility experiments on the tau fragment in the presence of CLR01 and phosphorylated tau reveal a shift towards a more compact structure. The mass spectrometry study suggests a picture for the molecular mechanism of the modulation of protein-protein interactions in tau by CLR01. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Michael Nshanian
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Piriya Wongkongkathep
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thomas Schrader
- Institute of Chemistry, University of Duisburg-Essen, Essen, Germany
| | | | - Anika Blümke
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstrasse, Essen, Germany
| | - Clément Despres
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Université Lille, CNRS, 59000, Lille, France
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstrasse, Essen, Germany
| | - Caroline Smet-Nocca
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Université Lille, CNRS, 59000, Lille, France
| | - Gal Bitan
- Department of Neurology and Brain Research Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
28
|
Ziemianowicz DS, Ng D, Schryvers AB, Schriemer DC. Photo-Cross-Linking Mass Spectrometry and Integrative Modeling Enables Rapid Screening of Antigen Interactions Involving Bacterial Transferrin Receptors. J Proteome Res 2018; 18:934-946. [DOI: 10.1021/acs.jproteome.8b00629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Santambrogio C, Natalello A, Brocca S, Ponzini E, Grandori R. Conformational Characterization and Classification of Intrinsically Disordered Proteins by Native Mass Spectrometry and Charge‐State Distribution Analysis. Proteomics 2018; 19:e1800060. [DOI: 10.1002/pmic.201800060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/29/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Carlo Santambrogio
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Antonino Natalello
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Stefania Brocca
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Erika Ponzini
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Rita Grandori
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| |
Collapse
|
30
|
Beaufour M, Ginguené D, Le Meur R, Castaing B, Cadene M. Liquid Native MALDI Mass Spectrometry for the Detection of Protein-Protein Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1981-1994. [PMID: 30066268 PMCID: PMC6153977 DOI: 10.1007/s13361-018-2015-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 05/29/2023]
Abstract
Native mass spectrometry (MS) encompasses methods to keep noncovalent interactions of biomolecular complexes intact in the gas phase throughout the instrument and to measure the mass-to-charge ratios of supramolecular complexes directly in the mass spectrometer. Electrospray ionization (ESI) in nondenaturing conditions is now an established method to characterize noncovalent systems. Matrix-assisted laser desorption/ionization (MALDI), on the other hand, consumes low quantities of samples and largely tolerates contaminants, making it a priori attractive for native MS. However, so-called native MALDI approaches have so far been based on solid deposits, where the rapid transition of the sample through a solid state can engender the loss of native conformations. Here we present a new method for native MS based on liquid deposits and MALDI ionization, unambiguously detecting intact noncovalent protein complexes by direct desorption from a liquid spot for the first time. To control for aggregation, we worked with HUαβ, a heterodimer that does not spontaneously rearrange into homodimers in solution. Screening through numerous matrix solutions to observe first the monomeric protein, then the dimer complex, we settled on a nondenaturing binary matrix solution composed of acidic and basic organic matrices in glycerol, which is stable in vacuo. The role of temporal and spatial laser irradiation patterns was found to be critical. Both a protein-protein and a protein-ligand complex could be observed free of aggregation. To minimize gas-phase dissociation, source parameters were optimized to achieve a conservation of complexes above 50% for both systems. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Martine Beaufour
- Centre de Biophysique Moléculaire, UPR4301, CNRS, affiliated to Université d'Orléans, Rue Charles Sadron, 45071, Orléans Cedex 2, France
| | - David Ginguené
- Centre de Biophysique Moléculaire, UPR4301, CNRS, affiliated to Université d'Orléans, Rue Charles Sadron, 45071, Orléans Cedex 2, France
| | - Rémy Le Meur
- Centre de Biophysique Moléculaire, UPR4301, CNRS, affiliated to Université d'Orléans, Rue Charles Sadron, 45071, Orléans Cedex 2, France
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, UPR4301, CNRS, affiliated to Université d'Orléans, Rue Charles Sadron, 45071, Orléans Cedex 2, France
| | - Martine Cadene
- Centre de Biophysique Moléculaire, UPR4301, CNRS, affiliated to Université d'Orléans, Rue Charles Sadron, 45071, Orléans Cedex 2, France.
| |
Collapse
|
31
|
Calabrese AN, Radford SE. Mass spectrometry-enabled structural biology of membrane proteins. Methods 2018; 147:187-205. [DOI: 10.1016/j.ymeth.2018.02.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/30/2018] [Accepted: 02/21/2018] [Indexed: 01/01/2023] Open
|
32
|
Crittenden CM, Morrison LJ, Fitzpatrick MD, Myers AP, Novelli ET, Rosenberg J, Akin LD, Srinivasa S, Shear JB, Brodbelt JS. Towards mapping electrostatic interactions between Kdo 2-lipid A and cationic antimicrobial peptides via ultraviolet photodissociation mass spectrometry. Analyst 2018; 143:3607-3618. [PMID: 29968868 PMCID: PMC6056329 DOI: 10.1039/c8an00652k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cationic antimicrobial peptides (CAMPs) have been known to act as multi-modal weapons against Gram-negative bacteria. As a new approach to investigate the nature of the interactions between CAMPs and the surfaces of bacteria, native mass spectrometry and two MS/MS strategies (ultraviolet photodissociation (UVPD) and higher energy collisional activation (HCD)) are used to examine formation and disassembly of saccharolipid·peptide complexes. Kdo2-lipid A (KLA) is used as a model saccharolipid to evaluate complexation with a series of cationic peptides (melittin and three analogs). Collisional activation of the KLA·peptide complexes results in the disruption of electrostatic interactions, resulting in apo-sequence ions with shifts in the distribution of ions compared to the fragmentation patterns of the apo-peptides. UVPD of the KLA·peptide complexes results in both apo- and holo-sequence ions of the peptides, the latter in which the KLA remains bound to the truncated peptide fragment despite cleavage of a covalent bond of the peptide backbone. Mapping both the N- and C-terminal holo-product ions gives insight into the peptide motifs (specifically an electropositive KRKR segment and a proline residue) that are responsible for mediating the electrostatic interactions between the cationic peptides and saccharolipid.
Collapse
Affiliation(s)
| | - Lindsay J Morrison
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Mignon D Fitzpatrick
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Allison P Myers
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Elisa T Novelli
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Jake Rosenberg
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Lucas D Akin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Sorin Srinivasa
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Jason B Shear
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
33
|
Zhou M, Yan J, Romano CA, Tebo BM, Wysocki VH, Paša-Tolić L. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:723-733. [PMID: 29388167 PMCID: PMC7305857 DOI: 10.1007/s13361-017-1882-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 05/11/2023]
Abstract
Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase, Mnx, from Bacillus sp. PL-12 has been successfully overexpressed in active form as a protein complex with a molecular mass of 211 kDa. We have recently used surface induced dissociation (SID) and ion mobility-mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data from the native mass spectrometry experiments led to a plausible structural model of this multicopper oxidase, which has been difficult to study by conventional structural biology methods. It was also revealed that each Mnx subunit binds a variable number of copper ions. Becasue of the heterogeneity of the protein and limited mass resolution, ambiguities in assigning some of the observed peaks remained as a barrier to fully understanding the role of metals and potential unknown ligands in Mnx. In this study, we performed SID in a modified Fourier transform-ion cyclotron resonance (FTICR) mass spectrometer. The high mass accuracy and resolution offered by FTICR unveiled unexpected artificial modifications on the protein that had been previously thought to be iron bound species based on lower resolution spectra. Additionally, isotopically resolved spectra of the released subcomplexes revealed the metal binding stoichiometry at different structural levels. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA, 99354, USA
| | - Jing Yan
- Department of Chemistry and Biochemistry, Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA, 99354, USA.
| |
Collapse
|
34
|
Polasky DA, Lermyte F, Nshanian M, Sobott F, Andrews PC, Loo JA, Ruotolo BT. Fixed-Charge Trimethyl Pyrilium Modification for Enabling Enhanced Top-Down Mass Spectrometry Sequencing of Intact Protein Complexes. Anal Chem 2018; 90:2756-2764. [PMID: 29360341 PMCID: PMC6340295 DOI: 10.1021/acs.analchem.7b04806] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mass spectrometry of intact proteins and protein complexes has the potential to provide a transformative level of information on biological systems, ranging from sequence and post-translational modification analysis to the structures of whole protein assemblies. This ambitious goal requires the efficient fragmentation of both intact proteins and the macromolecular, multicomponent machines they collaborate to create through noncovalent interactions. Improving technologies in an effort to achieve such fragmentation remains perhaps the greatest challenge facing current efforts to comprehensively analyze cellular protein composition and is essential to realizing the full potential of proteomics. In this work, we describe the use of a trimethyl pyrylium (TMP) fixed-charge covalent labeling strategy aimed at enhancing fragmentation for challenging intact proteins and intact protein complexes. Combining analysis of TMP-modified and unmodified protein complexes results in a greater diversity of regions within the protein that give rise to fragments, and results in an up to 2.5-fold increase in sequence coverage when compared to unmodified protein alone, for protein complexes up to 148 kDa. TMP modification offers a simple and powerful platform to expand the capabilities of existing mass spectrometric instrumentation for the complete characterization of intact protein assemblies.
Collapse
Affiliation(s)
- Daniel A. Polasky
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109
| | - Frederik Lermyte
- ♯ Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Michael Nshanian
- ‡ Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095
| | - Frank Sobott
- ♯ Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- ° The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- + School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Phillip C. Andrews
- ‖ Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor MI, 48109
| | - Joseph A. Loo
- ‡ Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095
- § Department of Biological Chemistry, David Geffen School of Medicine, and UCLA/DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109
| |
Collapse
|
35
|
Morrison LJ, Chai W, Rosenberg JA, Henkelman G, Brodbelt JS. Characterization of hydrogen bonding motifs in proteins: hydrogen elimination monitoring by ultraviolet photodissociation mass spectrometry. Phys Chem Chem Phys 2018; 19:20057-20074. [PMID: 28722742 DOI: 10.1039/c7cp04073c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Determination of structure and folding of certain classes of proteins remains intractable by conventional structural characterization strategies and has spurred the development of alternative methodologies. Mass spectrometry-based approaches have a unique capacity to differentiate protein heterogeneity due to the ability to discriminate populations, whether minor or major, featuring modifications or complexation with non-covalent ligands on the basis of m/z. Cleavage of the peptide backbone can be further utilized to obtain residue-specific structural information. Here, hydrogen elimination monitoring (HEM) upon ultraviolet photodissociation (UVPD) of proteins transferred to the gas phase via nativespray ionization is introduced as an innovative approach to deduce backbone hydrogen bonding patterns. Using well-characterized peptides and a series of proteins, prediction of the engagement of the amide carbonyl oxygen of the protein backbone in hydrogen bonding using UVPD-HEM is demonstrated to show significant agreement with the hydrogen-bonding motifs derived from molecular dynamics simulations and X-ray crystal structures.
Collapse
|
36
|
Yu C, Huang L. Cross-Linking Mass Spectrometry: An Emerging Technology for Interactomics and Structural Biology. Anal Chem 2018; 90:144-165. [PMID: 29160693 PMCID: PMC6022837 DOI: 10.1021/acs.analchem.7b04431] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
37
|
Stjepanovic G, Baskaran S, Lin MG, Hurley JH. Vps34 Kinase Domain Dynamics Regulate the Autophagic PI 3-Kinase Complex. Mol Cell 2017; 67:528-534.e3. [PMID: 28757208 DOI: 10.1016/j.molcel.2017.07.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/16/2017] [Accepted: 06/30/2017] [Indexed: 12/29/2022]
Abstract
The class III phosphatidylinositol 3-kinase complex I (PI3KC3-C1) is required for the initiation of essentially all macroautophagic processes. PI3KC3-C1 consists of the lipid kinase catalytic subunit VPS34, the VPS15 scaffold, and the regulatory BECN1 and ATG14 subunits. The VPS34 catalytic domain and BECN1:ATG14 subcomplex do not touch, and it is unclear how allosteric signals are transmitted to VPS34. We used EM and crosslinking mass spectrometry to dissect five conformational substates of the complex, including one in which the VPS34 catalytic domain is dislodged from the complex but remains tethered by an intrinsically disordered linker. A "leashed" construct prevented dislodging without interfering with the other conformations, blocked enzyme activity in vitro, and blocked autophagy induction in yeast cells. This pinpoints the dislodging and tethering of the VPS34 catalytic domain, and its regulation by VPS15, as a master allosteric switch in autophagy induction.
Collapse
Affiliation(s)
- Goran Stjepanovic
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sulochanadevi Baskaran
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mary G Lin
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
38
|
Zilkenat S, Grin I, Wagner S. Stoichiometry determination of macromolecular membrane protein complexes. Biol Chem 2017; 398:155-164. [PMID: 27664774 DOI: 10.1515/hsz-2016-0251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
Abstract
Gaining knowledge of the structural makeup of protein complexes is critical to advance our understanding of their formation and functions. This task is particularly challenging for transmembrane protein complexes, and grows ever more imposing with increasing size of these large macromolecular structures. The last 10 years have seen a steep increase in solved high-resolution membrane protein structures due to both new and improved methods in the field, but still most structures of large transmembrane complexes remain elusive. An important first step towards the structure elucidation of these difficult complexes is the determination of their stoichiometry, which we discuss in this review. Knowing the stoichiometry of complex components not only answers unresolved structural questions and is relevant for understanding the molecular mechanisms of macromolecular machines but also supports further attempts to obtain high-resolution structures by providing constraints for structure calculations.
Collapse
|
39
|
Warnke S, Hoffmann W, Seo J, De Genst E, von Helden G, Pagel K. From Compact to String-The Role of Secondary and Tertiary Structure in Charge-Induced Unzipping of Gas-Phase Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:638-646. [PMID: 27921259 DOI: 10.1007/s13361-016-1551-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/22/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
In the gas phase, protein ions can adopt a broad range of structures, which have been investigated extensively in the past using ion mobility-mass spectrometry (IM-MS)-based methods. Compact ions with low number of charges undergo a Coulomb-driven transition to partially folded species when the charge increases, and finally form extended structures with presumably little or no defined structure when the charge state is high. However, with respect to the secondary structure, IM-MS methods are essentially blind. Infrared (IR) spectroscopy, on the other hand, is sensitive to such structural details and there is increasing evidence that helices as well as β-sheet-like structures can exist in the gas phase, especially for ions in low charge states. Very recently, we showed that also the fully extended form of highly charged protein ions can adopt a distinct type of secondary structure that features a characteristic C5-type hydrogen bond pattern. Here we use a combination of IM-MS and IR spectroscopy to further investigate the influence of the initial, native conformation on the formation of these structures. Our results indicate that when intramolecular Coulomb-repulsion is large enough to overcome the stabilization energies of the genuine secondary structure, all proteins, regardless of their sequence or native conformation, form C5-type hydrogen bond structures. Furthermore, our results suggest that in highly charged proteins the positioning of charges along the sequence is only marginally influenced by the basicity of individual residues. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Stephan Warnke
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Waldemar Hoffmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Jongcheol Seo
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Erwin De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Gert von Helden
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Kevin Pagel
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany.
| |
Collapse
|
40
|
Kim D, Wagner N, Wooding K, Clemmer DE, Russell DH. Ions from Solution to the Gas Phase: A Molecular Dynamics Simulation of the Structural Evolution of Substance P during Desolvation of Charged Nanodroplets Generated by Electrospray Ionization. J Am Chem Soc 2017; 139:2981-2988. [DOI: 10.1021/jacs.6b10731] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Doyong Kim
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Nicole Wagner
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kerry Wooding
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E. Clemmer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
41
|
McBride AA. The Promise of Proteomics in the Study of Oncogenic Viruses. Mol Cell Proteomics 2017; 16:S65-S74. [PMID: 28104704 DOI: 10.1074/mcp.o116.065201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/16/2016] [Indexed: 12/30/2022] Open
Abstract
Oncogenic viruses are responsible for about 15% human cancers. This article explores the promise and challenges of viral proteomics in the study of the oncogenic human DNA viruses, HPV, McPyV, EBV and KSHV. These viruses have coevolved with their hosts and cause persistent infections. Each virus encodes oncoproteins that manipulate key cellular pathways to promote viral replication and evade the host immune response. Viral proteomics can identify cellular pathways perturbed by viral infection, identify cellular proteins that are crucial for viral persistence and oncogenesis, and identify important diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Alison A McBride
- From the ‡Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, 33 North Drive, MSC3209, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
42
|
Sun J, Yuan Z, Bai L, Li H. Cryo-EM of dynamic protein complexes in eukaryotic DNA replication. Protein Sci 2017; 26:40-51. [PMID: 27589669 PMCID: PMC5192969 DOI: 10.1002/pro.3033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 12/21/2022]
Abstract
DNA replication in Eukaryotes is a highly dynamic process that involves several dozens of proteins. Some of these proteins form stable complexes that are amenable to high-resolution structure determination by cryo-EM, thanks to the recent advent of the direct electron detector and powerful image analysis algorithm. But many of these proteins associate only transiently and flexibly, precluding traditional biochemical purification. We found that direct mixing of the component proteins followed by 2D and 3D image sorting can capture some very weakly interacting complexes. Even at 2D average level and at low resolution, EM images of these flexible complexes can provide important biological insights. It is often necessary to positively identify the feature-of-interest in a low resolution EM structure. We found that systematically fusing or inserting maltose binding protein (MBP) to selected proteins is highly effective in these situations. In this chapter, we describe the EM studies of several protein complexes involved in the eukaryotic DNA replication over the past decade or so. We suggest that some of the approaches used in these studies may be applicable to structural analysis of other biological systems.
Collapse
Affiliation(s)
- Jingchuan Sun
- Cryo‐EM Structural Biology LaboratoryVan Andel Research InstituteGrand RapidsMichigan49503
| | - Zuanning Yuan
- Cryo‐EM Structural Biology LaboratoryVan Andel Research InstituteGrand RapidsMichigan49503
- The Biochemistry and Structural Biology ProgramStony Brook UniversityStony BrookNew York11794
| | - Lin Bai
- Cryo‐EM Structural Biology LaboratoryVan Andel Research InstituteGrand RapidsMichigan49503
| | - Huilin Li
- Cryo‐EM Structural Biology LaboratoryVan Andel Research InstituteGrand RapidsMichigan49503
| |
Collapse
|
43
|
Abstract
Protein complexes form the critical foundation for a wide range of biological process, however understanding the intricate details of their activities is often challenging. In this review we describe how mass spectrometry plays a key role in the analysis of protein assemblies and the cellular pathways which they are involved in. Specifically, we discuss how the versatility of mass spectrometric approaches provides unprecedented information on multiple levels. We demonstrate this on the ubiquitin-proteasome proteolytic pathway, a process that is responsible for protein turnover. We follow the various steps of this degradation route and illustrate the different mass spectrometry workflows that were applied for elucidating molecular information. Overall, this review aims to stimulate the integrated use of multiple mass spectrometry approaches for analyzing complex biological systems.
Collapse
|
44
|
Fagerquist CK. Unlocking the proteomic information encoded in MALDI-TOF-MS data used for microbial identification and characterization. Expert Rev Proteomics 2016; 14:97-107. [DOI: 10.1080/14789450.2017.1260451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clifton K. Fagerquist
- United States Department of Agriculture (USDA), Agricultural Research Service, Albany, CA, USA
| |
Collapse
|
45
|
|
46
|
Morrison LJ, Brodbelt JS. 193 nm Ultraviolet Photodissociation Mass Spectrometry of Tetrameric Protein Complexes Provides Insight into Quaternary and Secondary Protein Topology. J Am Chem Soc 2016; 138:10849-59. [PMID: 27480400 DOI: 10.1021/jacs.6b03905] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein-protein interfaces and architecture are critical to the function of multiprotein complexes. Mass spectrometry-based techniques have emerged as powerful strategies for characterization of protein complexes, particularly for heterogeneous mixtures of structures. In the present study, activation and dissociation of three tetrameric protein complexes (streptavidin, transthyretin, and hemoglobin) in the gas phase was undertaken by 193 nm ultraviolet photodissociation (UVPD) for the characterization of higher order structure. High pulse energy UVPD resulted in the production of dimers and low charged monomers exhibiting symmetrical charge partitioning among the subunits (the so-called symmetrical dissociation pathways), consistent with the subunit organization of the complexes. In addition, UVPD promoted backbone cleavages of the monomeric subunits, the abundances of which corresponded to the more flexible loop regions of the proteins.
Collapse
Affiliation(s)
- Lindsay J Morrison
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| |
Collapse
|
47
|
Native Mass Spectrometry in Fragment-Based Drug Discovery. Molecules 2016; 21:molecules21080984. [PMID: 27483215 PMCID: PMC6274484 DOI: 10.3390/molecules21080984] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/14/2016] [Accepted: 07/23/2016] [Indexed: 11/17/2022] Open
Abstract
The advent of native mass spectrometry (MS) in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein-ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD). Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.
Collapse
|