1
|
Jia F(F, Brew BJ. Neuropathogenesis of acute HIV: mechanisms, biomarkers, and therapeutic approaches. Curr Opin HIV AIDS 2025; 20:199-208. [PMID: 40110851 PMCID: PMC11970608 DOI: 10.1097/coh.0000000000000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
PURPOSE OF REVIEW The neuropathogenesis of acute HIV leads to rapid central nervous system (CNS) involvement, characterized by early viral entry, immune activation, and the formation of viral reservoirs. Despite effective antiretroviral therapy (ART), these reservoirs persist, drive neuroinflammation and injury and lead to HIV-associated neurodegenerative disorders (HAND). This review provides an updated synthesis of the mechanisms in acute HIV neuropathogenesis, biomarkers of CNS injury and emerging therapeutic approaches. A deeper understanding of these mechanisms is critical for addressing persistent HAND in ART-treated individuals. RECENT FINDINGS Growing evidence now supports the principal role of infected CD4 + T cells in mediating HIV neuroinvasion alongside monocytes, resulting in seeding in perivascular macrophages, pericytes, and adjacent microglia and astrocytes. These reservoirs contribute to ongoing transcriptional activity and viral persistence despite antiretroviral therapy. Neuroinflammation, driven by activated microglia, astrocytes, inflammasomes, and neurotoxic viral proteins, disrupts neuronal homeostasis. Emerging therapies, including latency-reversing agents and transcription inhibitors, show promise in reducing neuroinflammation and reservoir activity. SUMMARY Understanding the mechanisms of HIV neuropathogenesis and reservoir persistence has significant implications for developing targeted therapies to mitigate HAND. Strategies to eliminate CNS reservoirs and reduce neuroinflammation should be prioritized to improve long-term cognitive outcomes in people with HIV.
Collapse
Affiliation(s)
- Fangzhi (Frank) Jia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney RingGold 7800
- Department of Neurology, St Vincent's Hospital, Darlinghurst
- Department of Neurology, Royal North Shore Hospital, St Leonards
| | - Bruce J. Brew
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney RingGold 7800
- Departments of Neurology and Immunology, Peter Duncan Neuroscience Unit, St Vincent's Hospital, University of New South Wales and University of Notre Dame, Darlinghurst, Sydney NSW, Australia
| |
Collapse
|
2
|
Mukerji SS, Bachanová P, Park H, Rosen LV, Kashlan R, Kivisäkk P, Anderson AM, Chow FC, Wu K, Dastgheyb RM, Rubin LH, Tassiopoulos K, Parker RA, Hyle EP. Plasma Neurofilament Light Chain and Glial Fibrillary Acidic Protein as Biomarkers of Cognitive Decline in People With Human Immunodeficiency Virus. J Infect Dis 2025; 231:946-956. [PMID: 39723835 PMCID: PMC11998551 DOI: 10.1093/infdis/jiae623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND We examined the relationship between neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) and cognition in people with human immunodeficiency virus (HIV) at baseline and longitudinally. METHODS Plasma and clinical data were available from virally suppressed people with HIV (PWH) aged ≥45 years in the AIDS Clinical Trials Group HAILO study. Four neuropsychological assessments standardized and averaged (NPZ-4) represented cognition. Plasma collection date marked baseline; slope summarized longitudinal NPZ-4 changes. Linear regressions examined biomarkers associations with baseline NPZ-4 and longitudinal change. RESULTS The study included 503 participants with a median age of 52 (interquartile range [IQR, 48-57]) years and observation of 6 (IQR, 5-7) years, and 26% had baseline cognitive impairment defined by HAILO. Cross-sectionally, higher NfL (β = -.76, P < .01) and GFAP (β = -.44, P = .02) were associated with worse NPZ-4. Longitudinally, the median NPZ-4 slope was 0.003 (IQR, -0.06 to 0.06) units/year with 48% demonstrating cognitive decline. Higher NfL (β = -.08, P < .01), but not GFAP (β = -.03, P = .08), was associated with cognitive decline. CONCLUSIONS NfL and GFAP were associated with worse cognition cross-sectionally; only NfL was associated with cognitive decline. Their clinical utility remains uncertain given small effect sizes and should be studied in populations with more rapid decline.
Collapse
Affiliation(s)
- Shibani S Mukerji
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Petra Bachanová
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Hemi Park
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Linzy V Rosen
- Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Rommi Kashlan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Pia Kivisäkk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Albert M Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Felicia C Chow
- Departments of Neurology and Medicine (Infectious Diseases) and Weill Institute for Neurosciences, University of California, San Francisco, California
| | - Kunling Wu
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Raha M Dastgheyb
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Leah H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Katherine Tassiopoulos
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Robert A Parker
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Center for AIDS Research, Harvard University, Cambridge, Massachusetts
| | - Emily P Hyle
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, Massachusetts
- Center for AIDS Research, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
3
|
Yang M, Zhang X, Zhang D, Zhang Y, Wang J, Zhang Y, Gu C, Zhang X, Wei L. Body Fluid Biomarkers of Neurological Injury in HIV-1-Associated Neurocognitive Disorder. AIDS Res Hum Retroviruses 2025. [PMID: 39938886 DOI: 10.1089/aid.2024.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Since combined antiretroviral therapy for human immunodeficiency virus-associated neurocognitive dysfunction (HAND) only slows the disease's progression, early identification and timely intervention are crucial for effective therapy. In this article, we review the latest evidence in body fluid biomarkers of HAND, providing an overview of research conducted on cerebrospinal fluid and blood samples to draw conclusions on promising biomarkers. Although the significance of biomarkers such as amyloid metabolites, tau proteins, neurofilament light chain, myelin oligodendrocyte glycoprotein, and brain-derived neurotrophic factor in the early detection of HAND may not be immediately clear, they could potentially play a crucial role in evaluating prognosis and tracking the effectiveness of treatment.
Collapse
Affiliation(s)
- Meijuan Yang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaomei Zhang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Dong Zhang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Yamin Zhang
- Department of Neurology, Gansu Provincial Hospital, Lanzhou, China
| | - Jiamei Wang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Yi Zhang
- Department of Neurology, Gansu Provincial Hospital, Lanzhou, China
| | - Cheng Gu
- Department of Neurology, Gansu Provincial Hospital, Lanzhou, China
| | - Xingwang Zhang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Lianhua Wei
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
4
|
Gustafson DR, Li X, Baird AE, Zetterberg H, Blennow K, Zhang J, Spence AB, Maki P, Sharma A, Weber K, Yucel R. Serum NFL and neuropsychological performance over ∼8 years in women with and without HIV: a longitudinal repeated measures study. EClinicalMedicine 2025; 80:103052. [PMID: 39911246 PMCID: PMC11794164 DOI: 10.1016/j.eclinm.2024.103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/22/2024] [Accepted: 12/20/2024] [Indexed: 02/07/2025] Open
Abstract
Background Blood-based biomarkers of Alzheimer's disease (AD) and stroke, including serum neurofilament light chain (sNFL), are understudied in women living with and without HIV. Methods We assessed cross-sectional and longitudinal change in sNFL between 2008 and 2019 associated with neuropsychological performance (NP) among women living with HIV (WLWH) and without HIV (WLWOH) age ≥40 years in the Women's Interagency HIV Study. Baseline and repeated ∼8-year fasting sNFL levels were measured using Simoa. Sociodemographically-adjusted NP T-scores (attention, working memory, executive function, processing speed, learning, verbal fluency and global) were calculated. Multivariable linear regression analyses stratified by HIV serostatus examined cross-sectional baseline and follow-up associations, and ∼8-year change in sNFL level related to global and domain-specific NP T-scores. Findings 417 participants (290 WLWH, 127 WLWOH), African American/Black (55%), ≥high school education (69%), current/former smokers (79%), and overweight/obese (BMI ≥25.0 kg/m2, 74%) were included. Compared to WLWOH at baseline, WLWH performed worse on memory and global NP. WLWH versus WLWOH had higher baseline (p ≤ 0.001) and follow-up median (p < 0.0001) sNFL levels and ∼8-year change (46.5% in WLWH versus 24.4% in WLWOH, p < 0.0001). Among WLWH, higher baseline sNFL was associated with poorer processing speed, learning, memory and verbal fluency. Among WLWOH, higher baseline sNFL was associated with poorer executive function, processing speed and verbal fluency. Among WLWH, higher follow-up sNFL was associated with poorer executive function. Among WLWOH, higher follow-up sNFL was associated with poorer executive function, processing speed, attention, memory, and global NP. ∼8-year increase in sNFL occurred in both WLWH and WLWOH and was associated with poorer executive function, processing speed, memory, and global performance at follow-up among WLWOH, and poorer executive function in WLWH. Adjustment for multiple comparisons showed associations at cross-sectional follow-up and ∼8-year increase in sNFL in WLWOH, only. Higher sNFL was associated with poorer baseline processing speed in WLWH only. Interpretation Higher levels and greater ∼8-year increases in sNFL were associated with poorer NP by domain in WLWH and WLWOH differentially over time. Funding The contents of this publication are solely the responsibility of the authors and do not represent the official views of the National Institutes of Health (NIH). MACS/WIHS Combined Cohort Study (MWCCS) (Principal Investigators: Bronx CRS (Kathryn Anastos, David Hanna, and Anjali Sharma), U01-HL146204; Brooklyn CRS (Deborah Gustafson and Tracey Wilson), U01-HL146202; Data Analysis and Coordination Center (Gypsyamber D'Souza, Stephen Gange and Elizabeth Topper), U01-HL146193; Chicago-Cook County CRS (Mardge Cohen and Audrey French), U01-HL146245; Northern California CRS (Bradley Aouizerat, Jennifer Price, and Phyllis Tien), U01-HL146242; Metropolitan Washington CRS (Seble Kassaye and Daniel Merenstein), U01-HL146205. The MWCCS is funded primarily by the National Heart, Lung, and Blood Institute (NHLBI), with additional co-funding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute on Aging (NIA), National Institute of Dental and Craniofacial Research (NIDCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Mental Health (NIMH), National Institute on Drug Abuse (NIDA), National Institute of Nursing Research (NINR), National Cancer Institute (NCI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institute on Deafness and Other Communication Disorders (NIDCD), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute on Minority Health and Health Disparities (NIMHD), and in coordination and alignment with the research priorities of the National Institutes of Health, Office of AIDS Research (OAR). MWCCS data collection is also supported by UL1-TR000004 (UCSF CTSA), UL1-TR003098 (JHU ICTR), UL1-TR001881 (UCLA CTSI).
Collapse
Affiliation(s)
- Deborah R. Gustafson
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Xuantao Li
- Department of Epidemiology and Biostatistics, Temple University, Philadelphia, PA, USA
| | - Alison E. Baird
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | | | - Pauline Maki
- University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Recai Yucel
- Department of Epidemiology and Biostatistics, Temple University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Yadav A, Gionet G, Karaj A, Kossenkov AV, Kannan T, Putt ME, Stephens Shields AJ, Ashare RL, Collman RG. Association of smoking with neurocognition, inflammatory and myeloid cell activation profiles in people with HIV on antiretroviral therapy. AIDS 2024; 38:2010-2020. [PMID: 39283742 DOI: 10.1097/qad.0000000000004015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE People with HIV (PWH) experience excess comorbidities, including neurocognitive disorders, which are linked to inflammation, particularly monocyte-macrophage activation. Smoking contributes to morbidity and mortality in well treated PWH. We investigated associations between smoking, neurocognitive function, and inflammation in PWH on antiretroviral therapy (ART). DESIGN We used baseline data on cognition and inflammation from a longitudinal study of virologically suppressed PWH who do and do not smoke. METHODS Participants completed four neurocognitive tests (seven measures), with a composite score as the primary measure. Inflammatory markers were plasma sCD14, sCD163, and CCL2/MCP-1; %CD14 + monocytes expressing CD16, CD163, and CCR2; and %CD8 + T cells co-expressing CD38/HLA-DR. Exploratory analyses included a plasma cytokine/chemokine panel, neurofilament light chain (NFL), hsCRP, and monocyte transcriptomes by RNAseq. RESULTS We recruited 58 PWH [26 current smoking (PWH/S), 32 no current smoking (PWH/NS)]. Mean composite and individual neurocognitive scores did not differ significantly by smoking status except for the color shape task; PWH/S exhibited worse cognitive flexibility, with adjusted mean times 317.2 [95% confidence interval (CI) 1.4-632.9] ms longer than PWH/NS. PWH/S had higher plasma sCD14 than PWH/NS [median (IQR) 1820 (1678-2105) vs. 1551 (1284-1760) ng/ml, P = 0.009]. Other inflammatory markers were not significantly different between PWH/S and PWH/NS. Monocyte transcriptomes showed several functions, regulators, and gene-sets that differed by smoking status. CONCLUSION sCD14, a marker of monocyte activation, is elevated in PWH who smoke. Although neurocognitive measures and other inflammatory markers did not generally differ, these data implicate smoking-related myeloid activation and monocyte gene dysregulation in the HIV/smoking synergy driving HIV-associated comorbidities.
Collapse
Affiliation(s)
| | - Gabrielle Gionet
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine
| | - Antoneta Karaj
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine
| | | | | | - Mary E Putt
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine
| | - Alisa J Stephens Shields
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine
| | - Rebecca L Ashare
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
6
|
Lazar M, Moroti R, Barbu EC, Chitu-Tisu CE, Tiliscan C, Erculescu TM, Rosca RR, Frasila S, Schmilevschi ET, Simion V, Duca GT, Padiu IF, Andreescu DI, Anton AN, Pacurar CG, Perdun PM, Petre AM, Oprea CA, Popescu AM, Maria E, Ion DA, Olariu MC. The Impact of HIV on Early Brain Aging-A Pathophysiological (Re)View. J Clin Med 2024; 13:7031. [PMID: 39685490 DOI: 10.3390/jcm13237031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: This review aims to provide a comprehensive understanding of how HIV alters normal aging trajectories in the brain, presenting the HIV-related molecular mechanisms and pathophysiological pathways involved in brain aging. The review explores the roles of inflammation, oxidative stress, and viral persistence in the brain, highlighting how these factors contribute to neuronal damage and cognitive impairment and accelerate normal brain aging. Additionally, it also addresses the impact of antiretroviral therapy on brain aging and the biological markers associated with its occurrence. Methods: We extensively searched PubMed for English-language articles published from 2000 to 2024. The following keywords were used in the search: "HIV", "brain", "brain aging", "neuroinflammation", "HAART", and "HAND". This strategy yielded 250 articles for inclusion in our review. Results: A combination of blood-brain barrier dysfunction, with the direct effects of HIV on the central nervous system, chronic neuroinflammation, telomere shortening, neurogenesis impairments, and neurotoxicity associated with antiretroviral treatment (ART), alters and amplifies the mechanisms of normal brain aging. Conclusions: Current evidence suggests that HIV infection accelerates neurodegenerative processes of normal brain aging, leading to cognitive decline and structural brain changes at an earlier age than typically observed in the general population.
Collapse
Affiliation(s)
- Mihai Lazar
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, No. 1, Calistrat Grozovici Street, Sector 2, 021105 Bucharest, Romania
| | - Ruxandra Moroti
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, No. 1, Calistrat Grozovici Street, Sector 2, 021105 Bucharest, Romania
| | - Ecaterina Constanta Barbu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Cristina Emilia Chitu-Tisu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Catalin Tiliscan
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
- Faculty of Dental Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Teodora Maria Erculescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Ruxandra Raluca Rosca
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Stefan Frasila
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Emma Teodora Schmilevschi
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Vladimir Simion
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - George Theodor Duca
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Isabela Felicia Padiu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Darie Ioan Andreescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Andreea Nicoleta Anton
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Cosmina Georgiana Pacurar
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Patricia Maria Perdun
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Alexandru Mihai Petre
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Constantin Adrian Oprea
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Adelina Maria Popescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Enachiuc Maria
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Daniela Adriana Ion
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Mihaela Cristina Olariu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, No. 37, Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, No. 1, Calistrat Grozovici Street, Sector 2, 021105 Bucharest, Romania
| |
Collapse
|
7
|
Zeng H, Hendriks LEL, Belderbos J, Brandts L, Compter I, Dubois L, Holt MG, Houben R, Schagen S, Zhang X, Prezzemolo T, De Ruysscher D. Association of Serum Biomarkers With Neurocognitive Decline After PCI in Small Cell Lung Cancer: An Exploratory Study of the Phase III NCT01780675 Trial. Clin Lung Cancer 2024; 25:653-659.e1. [PMID: 39304362 DOI: 10.1016/j.cllc.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION Blood samples were collected to explore potential serum biomarkers associated with neurocognitive function in small-cell lung cancer (SCLC) patients who received prophylactic cranial irradiation (PCI). METHODS This pre-specified study included patients with blood samples available, who participated in a phase III trial (NCT01780675). Blood samples were collected before PCI and 3-days post-initiating PCI. Neurocognitive decline was defined as a decrease of ≥ 5 points on total recall in the Hopkins Verbal Learning Test-Revised (HVLT-R) assessed from pre-PCI to 4-months post-PCI. Biomarkers were screened using univariate logistic regression analysis. P < .1 was considered statistically significant. RESULTS Forty-eight enrolled patients who had blood samples at baseline were included and 27 were available for analysis as the other 21 did not assess neurocognitive function at 4-months. Lower levels of Tie-2 (OR = 0.999, 90% CI 0.998-1.000, P = .062), and higher levels of MIP-1b (OR = 1.022, 90% CI 1.000-1.044, P = .093), CCL-17 (OR = 1.004, 90% CI 1.001-1.006, P = .029), and IL-1α (OR = 1.597, 90% CI 1.077-2.367, P = .05) before PCI were correlated with neurocognitive decline at 4-months. Decrease of VEGF-C (OR = 0.972, 90% CI 0.949-0.996, P = .055), CCL-17 (OR = 0.993, 90% CI 0.988-0.999, P = .036), IL-1α (OR = 0.788, 90% CI 0.635-0.979, P = .071), and VEGF (OR = 0.981, 90% CI 0.965-0.997, P = .051) 3-days post-initiating PCI were also associated with neurocognitive decline at 4-months. CONCLUSIONS Biomarker levels before PCI and changes in their levels 3-days post-initiating PCI may be linked to subsequent neurocognitive decline at 4-months. If validated, these biomarkers could be used to predict the risk of neurocognitive decline and act as a decision aid for personalized PCI in SCLC.
Collapse
Affiliation(s)
- Haiyan Zeng
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Department of Radiation Oncology (Maastro), Maastricht, The Netherlands.
| | - Lizza E L Hendriks
- GROW-School for Oncology and Reproduction, Maastricht University Medical Center+, Department of Pulmonary Diseases, Maastricht, The Netherlands
| | - José Belderbos
- The Netherlands Cancer Institute, Department of Radiation Oncology, Amsterdam, The Netherlands
| | - Lloyd Brandts
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Inge Compter
- GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Department of Radiation Oncology (Maastro), Maastricht, The Netherlands
| | - Ludwig Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Matthew G Holt
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Ruud Houben
- GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Department of Radiation Oncology (Maastro), Maastricht, The Netherlands
| | - Sanne Schagen
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Xin Zhang
- GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Department of Radiation Oncology (Maastro), Maastricht, The Netherlands
| | - Teresa Prezzemolo
- VIB Center for Brain and Disease Research, VIB, Leuven, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven, Belgium
| | - Dirk De Ruysscher
- GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Department of Radiation Oncology (Maastro), Maastricht, The Netherlands
| |
Collapse
|
8
|
Trifilio E, Bottari S, McQuillan LE, Barton DJ, Lamb DG, Robertson C, Rubenstein R, Wang KK, Wagner AK, Williamson JB. Temporal Profile of Serum Neurofilament Light (NF-L) and Heavy (pNF-H) Level Associations With 6-Month Cognitive Performance in Patients With Moderate-Severe Traumatic Brain Injury. J Head Trauma Rehabil 2024; 39:E470-E480. [PMID: 38758056 PMCID: PMC11534502 DOI: 10.1097/htr.0000000000000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
OBJECTIVE Identification of biomarkers of cognitive recovery after traumatic brain injury (TBI) will inform care and improve outcomes. This study assessed the utility of neurofilament (NF-L and pNF-H), a marker of neuronal injury, informing cognitive performance following moderate-to-severe TBI (msTBI). SETTING Level 1 trauma center and outpatient via postdischarge follow-up. PARTICIPANTS N = 94. Inclusion criteria : Glasgow Coma Scale score less than 13 or 13-15 with clinical evidence of moderate-to-severe injury traumatic brain injury on clinical imaging. Exclusion criteria : neurodegenerative condition, brain death within 3 days after injury. DESIGN Prospective observational study. Blood samples were collected at several time points post-injury. Cognitive testing was completed at 6 months post-injury. MAIN MEASURES Serum NF-L (Human Neurology 4-Plex B) pNF-H (SR-X) as measured by SIMOA Quanterix assay. Divided into 3 categorical time points at days post-injury (DPI): 0-15 DPI, 16-90 DPI, and >90 DPI. Cognitive composite comprised executive functioning measures derived from 3 standardized neuropsychological tests (eg, Delis-Kaplan Executive Function System: Verbal Fluency, California Verbal Learning Test, Second Edition, Wechsler Adult Intelligence Scale, Third Edition). RESULTS pNF-H at 16-90 DPI was associated with cognitive outcomes including a cognitive-executive composite score at 6 months ( β = -.430, t34 = -3.190, P = .003). CONCLUSIONS Results suggest that "subacute" elevation of serum pNF-H levels may be associated with protracted/poor cognitive recovery from msTBI and may be a target for intervention. Interpretation is limited by small sample size and including only those who were able to complete cognitive testing.
Collapse
Affiliation(s)
- Erin Trifilio
- Author Affiliations: Brain Rehabilitation Research Center (BRRC), Malcom Randall VAMC, Gainesville, Florida (Drs Trifilio, Lamb, Wang, and Williamson and Ms Bottari); Department of Clinical and Health Psychology (Drs Trifilio and Williamson and Ms Bottari), College of Public Health and Health Professions, and Departments of Emergency Medicine (Dr Wang) and Psychiatry (Drs Lamb and Williamson), College of Medicine, University of Florida, Gainesville; Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (Dr Robertson); Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York (Dr Rubenstein); Department of Physical Medicine and Rehabilitation (Ms McQuillan and Dr Wagner), Department of Emergency Medicine (Dr Barton), Department of Neuroscience (Dr Wagner), Clinical and Translational Science Institute (Dr Wagner), and Safar Center for Resuscitation Research (Dr Wagner); University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia (Dr Wang)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bavato F, Barro C, Schnider LK, Simrén J, Zetterberg H, Seifritz E, Quednow BB. Introducing neurofilament light chain measure in psychiatry: current evidence, opportunities, and pitfalls. Mol Psychiatry 2024; 29:2543-2559. [PMID: 38503931 PMCID: PMC11412913 DOI: 10.1038/s41380-024-02524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
The recent introduction of new-generation immunoassay methods allows the reliable quantification of structural brain markers in peripheral matrices. Neurofilament light chain (NfL), a neuron-specific cytoskeletal component released in extracellular matrices after neuroaxonal impairment, is considered a promising blood marker of active brain pathology. Given its sensitivity to a wide range of neuropathological alterations, NfL has been suggested for the use in clinical practice as a highly sensitive, but unspecific tool to quantify active brain pathology. While large efforts have been put in characterizing its clinical profile in many neurological conditions, NfL has received far less attention as a potential biomarker in major psychiatric disorders. Therefore, we briefly introduce NfL as a marker of neuroaxonal injury, systematically review recent findings on cerebrospinal fluid and blood NfL levels in patients with primary psychiatric conditions and highlight the opportunities and pitfalls. Current evidence suggests an elevation of blood NfL levels in patients with major depression, bipolar disorder, psychotic disorders, anorexia nervosa, and substance use disorders compared to physiological states. However, blood NfL levels strongly vary across diagnostic entities, clinical stage, and patient subgroups, and are influenced by several demographic, clinical, and analytical factors, which require accurate characterization. Potential clinical applications of NfL measure in psychiatry are seen in diagnostic and prognostic algorithms, to exclude neurodegenerative disease, in the assessment of brain toxicity for different pharmacological compounds, and in the longitudinal monitoring of treatment response. The high inter-individual variability of NfL levels and the lack of neurobiological understanding of its release are some of the main current limitations. Overall, this primer aims to introduce researchers and clinicians to NfL measure in the psychiatric field and to provide a conceptual framework for future research directions.
Collapse
Affiliation(s)
- Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Christian Barro
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura K Schnider
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Cooley SA, Petersen KJ, Tice C, Langford D, Burdo TH, Roman J, Ances BM. Relationships between plasma neurofilament light chain protein, cognition, and brain aging in people with HIV. AIDS 2024; 38:955-962. [PMID: 38329137 PMCID: PMC11062811 DOI: 10.1097/qad.0000000000003861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Neurofilament light chain protein (NfL) is a marker of neuronal injury and neurodegeneration. Typically assessed in cerebrospinal fluid, recent advances have allowed this biomarker to be more easily measured in plasma. This study assesses plasma NfL in people with HIV (PWH) compared with people without HIV (PWoH), and its relationship with cognitive impairment, cardiovascular risk, and a neuroimaging metric of brain aging [brain-age gap (BAG)]. DESIGN One hundred and four PWH (HIV RNA <50 copies/ml) and 42 PWoH provided blood samples and completed a cardiovascular risk score calculator, neuroimaging, and cognitive testing. METHOD Plasma NfL was compared between PWoH and PWH and assessed for relationships with age, HIV clinical markers, cardiovascular disease risk, cognition, and BAG (difference between a brain-predicted age and chronological age). RESULTS Plasma NfL was not significantly different between PWoH and PWH. Higher NfL related to increasing age in both groups. Plasma NfL was not associated with typical HIV disease variables. Within PWH, NfL was higher with higher cardiovascular risk, cognitive impairment and a greater BAG. CONCLUSION Virally suppressed PWH who are cognitively normal likely do not have significant ongoing neurodegeneration, as evidenced by similar plasma NfL compared with PWoH. However, NfL may represent a biomarker of cognitive impairment and brain aging in PWH. Further research examining NfL with longitudinal cognitive decline is needed to understand this relationship more fully.
Collapse
Affiliation(s)
- Sarah A Cooley
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Kalen J Petersen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | | | | | - Tricia H Burdo
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - June Roman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Beau M Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
11
|
Moschopoulos CD, Stanitsa E, Protopapas K, Kavatha D, Papageorgiou SG, Antoniadou A, Papadopoulos A. Multimodal Approach to Neurocognitive Function in People Living with HIV in the cART Era: A Comprehensive Review. Life (Basel) 2024; 14:508. [PMID: 38672778 PMCID: PMC11050956 DOI: 10.3390/life14040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Combination antiretroviral treatment (cART) has revolutionized the management of human immunodeficiency virus (HIV) and has markedly improved the disease burden and life expectancy of people living with HIV. HIV enters the central nervous system (CNS) early in the course of infection, establishes latency, and produces a pro-inflammatory milieu that may affect cognitive functions, even in the cART era. Whereas severe forms of neurocognitive impairment (NCI) such as HIV-associated dementia have declined over the last decades, milder forms have become more prevalent, are commonly multifactorial, and are associated with comorbidity burdens, mental health, cART neurotoxicity, and ageing. Since 2007, the Frascati criteria have been used to characterize and classify HIV-associated neurocognitive disorders (HAND) into three stages, namely asymptomatic neurocognitive impairment (ANI), mild neurocognitive disorder (MND), and HIV-associated dementia (HAD). These criteria are based on a comprehensive neuropsychological assessment that presupposes the availability of validated, demographically adjusted, and normative population data. Novel neuroimaging modalities and biomarkers have been proposed in order to complement NCI assessments, elucidate neuropathogenic mechanisms, and support HIV-associated NCI diagnosis, monitoring, and prognosis. By integrating neuropsychological assessments with biomarkers and neuroimaging into a holistic care approach, clinicians can enhance diagnostic accuracy, prognosis, and patient outcomes. This review interrogates the value of these modes of assessment and proposes a unified approach to NCI diagnosis.
Collapse
Affiliation(s)
- Charalampos D. Moschopoulos
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Evangelia Stanitsa
- 1st Department of Neurology, Medical School of Athens, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.S.); (S.G.P.)
| | - Konstantinos Protopapas
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Dimitra Kavatha
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Medical School of Athens, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.S.); (S.G.P.)
| | - Anastasia Antoniadou
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Antonios Papadopoulos
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| |
Collapse
|
12
|
Stroffolini G, Lazzaro A, Barco A, Pirriatore V, Vai D, Giaccone C, Nigra M, Atzori C, Trunfio M, Bonora S, Di Perri G G, Calcagno A. Changes in Cerebrospinal Fluid, Liver and Intima-media-thickness Biomarkers in Patients with HIV-associated Neurocognitive Disorders Randomized to a Less Neurotoxic Treatment Regimen. J Neuroimmune Pharmacol 2023; 18:551-562. [PMID: 37906406 PMCID: PMC10770227 DOI: 10.1007/s11481-023-10086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023]
Abstract
The prevalence of neurocognitive impairment in people living with HIV is estimated between 30 and 50%. The pathogenesis of HIV-associated neurocognitive disorders is complex and multifactorial. Aim of the study was to measure the change in CSF biomarkers, Fibroscan and IMT measurements in PLWH with HAND randomized to a less neurotoxic regimen, or continuing their treatment. Adult patients with HAND were screened and enrolled if presenting no major resistance associated mutations, no HIV viral replication, not on efavirenz or darunavir, with R5-tropic HIV and without major confounding conditions. Lumbar puncture, IMT and Fibroscan measurements were performed. After 1:1 randomization to a less neurotoxic regimen consisting of darunavir/cobicistat plus emtricitabine plus maraviroc, or mantaining actual care, tests were repeated after 24 weeks: CSF biomarkes (HIV RNA, tau, p-tau, Beta-amyloid1-42, S100Beta and neopterin) were included. Non-parametric tests (Mann-Whitney and Wilcoxon's) were used. 28 participants completed the study. Male and European ancestry were prevalent; median age was 55 years (51-60). All patients were virally suppressed; median CD4 + count was 626 cell/uL (469-772). Baseline characteristics were similar between the study arms. A significant decrease in CSF p-tau and an increase in CSF neopterin and NFL were observed. We observed a significant reduction in liver stiffness at W24. Despite a small sample size we observed changes in neuromarkers and in hepatic stiffness in patients randomized to the experimental arm. We observed changes in CSF biomarkers (lower phosphorylated-tau and higher neopterin and NFL) that need to be replicated in large cohorts. Subclinical neurotoxicity may be observed in patients with HAND and warrants prospective studies.
Collapse
Affiliation(s)
- Giacomo Stroffolini
- Department of Medical Sciences, Infectious Diseases Unit, University of Turin, Turin, Italy
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Alessandro Lazzaro
- Department of Medical Sciences, Infectious Diseases Unit, University of Turin, Turin, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Ambra Barco
- Department of Medical Sciences, Infectious Diseases Unit, University of Turin, Turin, Italy
- Department of Infectious Diseases, Novara Hospital, Novara, Italy
| | - Veronica Pirriatore
- Department of Medical Sciences, Infectious Diseases Unit, University of Turin, Turin, Italy
| | - Daniela Vai
- Maria Vittoria Hospital, Unit of Neurology, Asl Città di Torino, Turin, Italy
| | - Claudia Giaccone
- Maria Vittoria Hospital, Unit of Neurology, Asl Città di Torino, Turin, Italy
| | - Marco Nigra
- San Giovanni Bosco Hospital, Laboratory, Asl Città di Torino, Turin, Italy
| | - Cristiana Atzori
- Maria Vittoria Hospital, Laboratory, Asl Città di Torino, Turin, Italy
| | - Mattia Trunfio
- Department of Medical Sciences, Infectious Diseases Unit, University of Turin, Turin, Italy
| | - Stefano Bonora
- Department of Medical Sciences, Infectious Diseases Unit, University of Turin, Turin, Italy
| | - Giovanni Di Perri G
- Department of Medical Sciences, Infectious Diseases Unit, University of Turin, Turin, Italy
| | - Andrea Calcagno
- Department of Medical Sciences, Infectious Diseases Unit, University of Turin, Turin, Italy.
| |
Collapse
|
13
|
Green NS, Rosano C, Bangirana P, Opoka R, Munube D, Kasirye P, Kawooya M, Lubowa SK, Mupere E, Conroy A, Minja FJ, Boehme AK, Kang MS, Honig LS, Idro R. Neurofilament light chain: A potential biomarker for cerebrovascular disease in children with sickle cell anaemia. Br J Haematol 2023; 203:460-467. [PMID: 37581299 PMCID: PMC10615726 DOI: 10.1111/bjh.19036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
Cerebrovascular injury frequently occurs in children with sickle cell anaemia (SCA). Limited access to magnetic resonance imaging and angiography (MRI-MRA) in sub-Saharan Africa impedes detection of clinically unapparent cerebrovascular injury. Blood-based brain biomarkers of cerebral infarcts have been identified in non-SCA adults. Using plasma samples from a well-characterized cross-sectional sample of Ugandan children with SCA, we explored relationships between biomarker levels and MRI-detected cerebral infarcts and transcranial Doppler (TCD) arterial velocity. Testing was performed using a 4-plex panel of brain injury biomarkers, including neurofilament light chain (NfL), a central nervous system neuron-specific protein. Mean biomarker levels from the SCA group (n = 81) were similar to those from non-SCA sibling controls (n = 54). Within the SCA group, NfL levels were significantly higher in those with MRI-detected infarcts compared to no infarcts, and higher with elevated TCD velocity versus normal velocity. Elevated NfL remained strongly associated with MRI-detected infarcts after adjusting for sex and age. All non-SCA controls and SCA participants lacking MRI-detected infarcts had low NfL levels. These data suggest potential utility of plasma-based NfL levels to identify children with SCA cerebrovascular injury. Replication and prospective studies are needed to confirm these novel findings and the clinical utility of NfL versus MRI imaging.
Collapse
Affiliation(s)
- Nancy S Green
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Paul Bangirana
- Department of Psychiatry, Makerere University College of Health Sciences, Kampala, Uganda
- Global Health Uganda, Kampala, Uganda
| | - Robert Opoka
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Deogratias Munube
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Philip Kasirye
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Michael Kawooya
- Department of Radiology, Makerere University College of Health Sciences, Kampala, Uganda
- Ernest Cook Ultrasound Research and Education Institute (ECUREI), Mengo Hospital, Kampala, Uganda
| | - Samson K Lubowa
- Department of Radiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Ezekiel Mupere
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Andrea Conroy
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Frank J Minja
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Amelia K Boehme
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Min Suk Kang
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Lawrence S Honig
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Richard Idro
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
14
|
Li X, Yucel R, Clervius H, Kamalakar K, Zetterberg H, Blennow K, Zhang J, Adimora A, Collins L, Fischl M, Kassaye S, Maki P, Seaberg E, Sharma A, Vance D, Gustafson DR. Plasma Biomarkers of Alzheimer Disease in Women With and Without HIV. JAMA Netw Open 2023; 6:e2344194. [PMID: 38019518 PMCID: PMC10687654 DOI: 10.1001/jamanetworkopen.2023.44194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023] Open
Abstract
Importance Blood-based biomarkers associated with increased risk of Alzheimer disease (AD) are understudied in people living with and without HIV, particularly women. Objective To determine whether baseline or 1-year changes in plasma amyloid-β40 (Aβ40), Aβ42, ratio of Aβ42 to Aβ40, total tau (t-tau), phosphorylated tau 231 (p-tau231), glial fibrillary acidic protein (GFAP), and/or neurofilament light chain (NFL) are associated with neuropsychological performance (NP) among women living with HIV (WLWH) and women living without HIV (WLWOH). Design, Setting, and Participants This longitudinal, prospective, cohort study with 1-year repeated clinical measures (NP only measured once) and biospecimen collection occurred between 2017 and 2019. Participants were women aged 40 years or older from 10 clinical research sites in cities across the US that were part of the Women's Interagency HIV Study. Data analysis was conducted from April to December 2022. Exposure Laboratory-confirmed HIV status and AD biomarkers. Main Outcomes and Measures Sociodemographically adjusted NP T-scores (attention and working memory, executive function, processing speed, memory, learning, verbal fluency, motor function, and global performance) were the primary outcomes. Baseline and 1-year fasting plasma Aβ40, Aβ42, t-tau, p-tau231, GFAP, and NFL levels were measured and analyzed using multivariable linear regression. Results The study consisted of 307 participants (294 aged ≥50 years [96%]; 164 African American or Black women [53%]; 214 women with a high school education or higher [70%]; 238 women who were current or former smokers [78%]; and 236 women [77%] who were overweight or obese [body mass index >25]) including 209 WLWH and 98 WLWOH. Compared with WLWOH at baseline, WLWH performed worse on learning (mean [SD] T-score 47.8 [11.3] vs 51.4 [10.5]), memory (mean [SD] T-score 48.3 [11.6] vs 52.4 [10.2]), verbal fluency (mean [SD] T-score 48.3 [9.8] vs 50.7 [8.5]), and global (mean [SD] T-score 49.2 [6.8] vs 51.1 [5.9]) NP assessments. Baseline median Aβ40, GFAP, and NFL levels were higher among WLWH vs WLWOH. There were no differences in 1-year biomarker change by HIV serostatus. Lower learning, memory, and motor NP were associated with 1-year Aβ40 increase; lower learning and motor with Aβ42 increase; lower motor with p-tau231 increase; and lower processing speed, verbal fluency and motor with NFL increase in the entire sample. Among WLWH, a 1-year increase in Aβ40 from baseline to follow-up was associated with worse learning, memory, and global NP; a 1-year increase in t-tau with worse executive function; and a 1-year increase in NFL with worse processing speed. Among WLWOH, a 1-year increase in Aβ40 and Aβ42 were associated with poorer memory performance and NFL was associated with poorer motor performance. Conclusions and Relevance These findings suggest that increases in certain plasma AD biomarkers are associated with NP in WLWH and WLWOH and may be associated with later onset of AD, and measuring these biomarkers could be a pivotal advancement in monitoring aging brain health and development of AD among women with and without HIV.
Collapse
Affiliation(s)
- Xuantao Li
- Department of Epidemiology and Biostatistics, Temple University, Philadelphia, Pennsylvania
| | - Recai Yucel
- Department of Epidemiology and Biostatistics, Temple University, Philadelphia, Pennsylvania
| | - Helene Clervius
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn
- Downstate Neurology at One Brooklyn Health, Brookdale Hospital, Brooklyn, New York
| | - Kundun Kamalakar
- School of Public Health, State University of New York Downstate Health Sciences University, Brooklyn
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jinbing Zhang
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Adaora Adimora
- Department of Medicine, School of MedicineUniversity of North Carolina at Chapel Hill
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
| | - Lauren Collins
- Division of Infectious Diseases, Emory University, Atlanta, Georgia
| | - Margaret Fischl
- Division of Infectious Diseases, Department of Medicine, University of Miami, Miami, Florida
| | - Seble Kassaye
- Department of Medicine, Division of Infectious Diseases, Georgetown University Medical Center, Washington, DC
| | - Pauline Maki
- Department of Psychiatry, University of Illinois College of Medicine, Chicago
- Department of Psychology, University of Illinois College of Medicine, Chicago
- Department of Obstetrics and Gynecology, University of Illinois College of Medicine, Chicago
| | - Eric Seaberg
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Anjali Sharma
- Division of General Internal Medicine, Albert Einstein College of Medicine, New York, New York
- Division of Infectious Diseases, Albert Einstein College of Medicine, New York, New York
| | - David Vance
- Department of Acute, Chronic and Continuing Care, University of Alabama at Birmingham
| | - Deborah R. Gustafson
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
15
|
Thela L, Decloedt E, Zetterberg H, Gisslén M, Lesosky M, Gleich M, Koutsilieri E, Scheller C, Hye A, Joska J. Blood and cerebrospinal fluid biomarker changes in patients with HIV-associated neurocognitive impairment treated with lithium: analysis from a randomised placebo-controlled trial. J Neurovirol 2023; 29:156-166. [PMID: 36790601 DOI: 10.1007/s13365-023-01116-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/15/2022] [Accepted: 01/21/2023] [Indexed: 02/16/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) persist in the era of antiretroviral therapy (ART). Thus, ART does not completely halt or reverse the pathological processes behind HAND. Adjuvant mitigating treatments are, therefore, prudent. Lithium treatment is known to promote neuronal brain-derived neurotrophic factors (BDNF). Lithium is also an inhibitor of glycogen synthase kinase-3 beta (GSK-3-β). We analyzed biomarkers obtained from participants in a randomized placebo-controlled trial of lithium in ART-treated individuals with moderate or severe HAND. We assayed markers at baseline and 24 weeks across several pathways hypothesized to be affected by HIV, inflammation, or degeneration. Investigated biomarkers included dopamine, BDNF, neurofilament light chain, and CD8 + lymphocyte activation (CD38 + HLADR +). Alzheimer's Disease (AD) biomarkers included soluble amyloid precursor protein alpha and beta (sAPPα/β), Aβ38, 40, 42, and ten other biomarkers validated as predictors of mild cognitive impairment and progression in previous studies. These include apolipoprotein C3, pre-albumin, α1-acid glycoprotein, α1-antitrypsin, PEDF, CC4, ICAM-1, RANTES, clusterin, and cystatin c. We recruited 61 participants (placebo = 31; lithium = 30). The age baseline mean was 40 (± 8.35) years and the median CD4 + T-cell count was 498 (IQR: 389-651) cells/μL. Biomarker concentrations between groups did not differ at baseline. However, both groups' blood dopamine levels decreased significantly after 24 weeks (adj. p < 002). No other marker was significantly different between groups, and we concluded that lithium did not confer neuroprotection following 24 weeks of treatment. However, the study was limited in duration and sample size.
Collapse
Affiliation(s)
- Lindokuhle Thela
- HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, E Floor, Neuroscience Centre, Anzio Road, Groote Schuur Hospital, Observatory, 7925, Cape Town, South Africa.
| | - Eric Decloedt
- Division of Clinical Pharmacology, Department of Medicine, Stellenbosch University, Cape Town, South Africa
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Magnus Gisslén
- Department of Infectious Disease, Institute of Biomedicine, the Sahlngreska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Disease, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Maia Lesosky
- Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Melanie Gleich
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Eleni Koutsilieri
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Carsten Scheller
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Abdul Hye
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, and NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - John Joska
- HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, E Floor, Neuroscience Centre, Anzio Road, Groote Schuur Hospital, Observatory, 7925, Cape Town, South Africa
| |
Collapse
|
16
|
Rocha NP, Teixeira AL, Colpo GD, Babicz MA, Thompson JL, Woods SP. Blood Biomarkers of Neuronal/Axonal and Glial Injury in Human Immunodeficiency Virus-Associated Neurocognitive Disorders. Dement Geriatr Cogn Disord 2023; 51:467-474. [PMID: 36746132 PMCID: PMC9992101 DOI: 10.1159/000527659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/17/2022] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Approximately half of the people living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HANDs). However, the neuropathogenesis of HAND is complex, and identifying reliable biomarkers has been challenging. METHODS This study included 132 participants aged 50 and older from greater San Diego County. The participants were divided into three groups: PLWH with HAND (n = 29), PLWH without HAND (n = 73), and seronegatives without cognitive impairment (n = 30). Peripheral blood was collected at the clinical assessment, and plasma levels of neurofilament light chain (NfL), phosphorylated Tau 181 (pTau181), and glial fibrillary acidic protein (GFAP) were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Plasma levels of NfL (but not pTau181 and GFAP) were significantly associated with HAND at a medium effect size (p = 0.039, Cohen's d = 0.45 for HAND + vs. HAND-). Notably, higher levels of NfL were significantly associated with HAND diagnosis even after adjusting for sex. DISCUSSION Our data suggest that neuronal degeneration (as evidenced by increased levels of NfL), but not tau pathology or glial degeneration, is related to cognitive status in PLWH. Our results corroborate the view that blood NfL is a promising biomarker of cognitive impairment in PLWH.
Collapse
Affiliation(s)
- Natalia P. Rocha
- Mitchell Center for Alzheimer’s disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonio L. Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gabriela D. Colpo
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | | |
Collapse
|
17
|
Zetterberg H, Teunissen C, van Swieten J, Kuhle J, Boxer A, Rohrer JD, Mitic L, Nicholson AM, Pearlman R, McCaughey SM, Tatton N. The role of neurofilament light in genetic frontotemporal lobar degeneration. Brain Commun 2023; 5:fcac310. [PMID: 36694576 PMCID: PMC9866262 DOI: 10.1093/braincomms/fcac310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/26/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Genetic frontotemporal lobar degeneration caused by autosomal dominant gene mutations provides an opportunity for targeted drug development in a highly complex and clinically heterogeneous dementia. These neurodegenerative disorders can affect adults in their middle years, progress quickly relative to other dementias, are uniformly fatal and have no approved disease-modifying treatments. Frontotemporal dementia, caused by mutations in the GRN gene which encodes the protein progranulin, is an active area of interventional drug trials that are testing multiple strategies to restore progranulin protein deficiency. These and other trials are also examining neurofilament light as a potential biomarker of disease activity and disease progression and as a therapeutic endpoint based on the assumption that cerebrospinal fluid and blood neurofilament light levels are a surrogate for neuroaxonal damage. Reports from genetic frontotemporal dementia longitudinal studies indicate that elevated concentrations of blood neurofilament light reflect disease severity and are associated with faster brain atrophy. To better inform patient stratification and treatment response in current and upcoming clinical trials, a more nuanced interpretation of neurofilament light as a biomarker of neurodegeneration is now required, one that takes into account its relationship to other pathophysiological and topographic biomarkers of disease progression from early presymptomatic to later clinically symptomatic stages.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden.,Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.,Dementia Research Institute, University College London, London, UK.,DRI Fluid Biomarker Laboratory, Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Charlotte Teunissen
- Department of Clinical Chemistry, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - John van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jens Kuhle
- Department of Clinical Research, Department of Neurology, Department of Biomedicine, Multiple Sclerosis Centre, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Adam Boxer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan D Rohrer
- Queen Square UCL Institute of Neurology, Dementia Research Centre, UK Dementia Research Institute, University College London, London, UK
| | - Laura Mitic
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA.,The Bluefield Project to Cure FTD, San Francisco, CA, USA
| | - Alexandra M Nicholson
- The Bluefield Project to Cure FTD, San Francisco, CA, USA.,Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | | | | | - Nadine Tatton
- Medical Affairs, Alector, Inc., South San Francisco, CA, USA
| |
Collapse
|
18
|
Characterization of Macrophage-Tropic HIV-1 Infection of Central Nervous System Cells and the Influence of Inflammation. J Virol 2022; 96:e0095722. [PMID: 35975998 PMCID: PMC9472603 DOI: 10.1128/jvi.00957-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
HIV-1 infection within the central nervous system (CNS) includes evolution of the virus, damaging inflammatory cascades, and the involvement of multiple cell types; however, our understanding of how Env tropism and inflammation can influence CNS infectivity is incomplete. In this study, we utilize macrophage-tropic and T cell-tropic HIV-1 Env proteins to establish accurate infection profiles for multiple CNS cells under basal and interferon alpha (IFN-α) or lipopolysaccharide (LPS)-induced inflammatory states. We found that macrophage-tropic viruses confer entry advantages in primary myeloid cells, including monocyte-derived macrophage, microglia, and induced pluripotent stem cell (iPSC)-derived microglia. However, neither macrophage-tropic or T cell-tropic HIV-1 Env proteins could mediate infection of astrocytes or neurons, and infection was not potentiated by induction of an inflammatory state in these cells. Additionally, we found that IFN-α and LPS restricted replication in myeloid cells, and IFN-α treatment prior to infection with vesicular stomatitis virus G protein (VSV G) Envs resulted in a conserved antiviral response across all CNS cell types. Further, using RNA sequencing (RNA-seq), we found that only myeloid cells express HIV-1 entry receptor/coreceptor transcripts at a significant level and that these transcripts in select cell types responded only modestly to inflammatory signals. We profiled the transcriptional response of multiple CNS cells to inflammation and found 57 IFN-induced genes that were differentially expressed across all cell types. Taken together, these data focus attention on the cells in the CNS that are truly permissive to HIV-1, further highlight the role of HIV-1 Env evolution in mediating infection in the CNS, and point to limitations in using model cell types versus primary cells to explore features of virus-host interaction. IMPORTANCE The major feature of HIV-1 pathogenesis is the induction of an immunodeficient state in the face of an enhanced state of inflammation. However, for many of those infected, there can be an impact on the central nervous system (CNS) resulting in a wide range of neurocognitive defects. Here, we use a highly sensitive and quantitative assay for viral infectivity to explore primary and model cell types of the brain for their susceptibility to infection using viral entry proteins derived from the CNS. In addition, we examine the ability of an inflammatory state to alter infectivity of these cells. We find that myeloid cells are the only cell types in the CNS that can be infected and that induction of an inflammatory state negatively impacts viral infection across all cell types.
Collapse
|
19
|
Mudra Rakshasa-Loots A, Whalley HC, Vera JH, Cox SR. Neuroinflammation in HIV-associated depression: evidence and future perspectives. Mol Psychiatry 2022; 27:3619-3632. [PMID: 35618889 PMCID: PMC9708589 DOI: 10.1038/s41380-022-01619-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
People living with HIV face a high risk of mental illness, especially depression. We do not yet know the precise neurobiological mechanisms underlying HIV-associated depression. Depression severity in the general population has been linked to acute and chronic markers of systemic inflammation. Given the associations between depression and peripheral inflammation, and since HIV infection in the brain elicits a neuroinflammatory response, it is possible that neuroinflammation contributes to the high prevalence of depression amongst people living with HIV. The purpose of this review was to synthesise existing evidence for associations between inflammation, depression, and HIV. While there is strong evidence for independent associations between these three conditions, few preclinical or clinical studies have attempted to characterise their interrelationship, representing a major gap in the literature. This review identifies key areas of debate in the field and offers perspectives for future investigations of the pathophysiology of HIV-associated depression. Reproducing findings across diverse populations will be crucial in obtaining robust and generalisable results to elucidate the precise role of neuroinflammation in this pathophysiology.
Collapse
Affiliation(s)
- Arish Mudra Rakshasa-Loots
- Edinburgh Neuroscience, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK.
| | - Heather C Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, Royal Edinburgh Hospital, The University of Edinburgh, Edinburgh, UK
| | - Jaime H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Simon R Cox
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
20
|
Hagberg L, Edén A, Zetterberg H, Price RW, Gisslén M. Blood biomarkers for HIV infection with focus on neurologic complications-A review. Acta Neurol Scand 2022; 146:56-60. [PMID: 35470863 PMCID: PMC9324809 DOI: 10.1111/ane.13629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Although clinical examinations, neuroimaging, and cerebrospinal fluid analyses are the most important ways to evaluate the impact of HIV infection on the brain and in diagnosis of opportunistic infections, several blood biomarkers including HIV RNA concentrations, CD4 +T-cell count, and neurofilament light chain protein (NfL) concentration, along with tests for opportunistic infections can provide important information for clinical decisions.
Collapse
Affiliation(s)
- Lars Hagberg
- Department of Infectious Diseases Institute of Biomedicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Arvid Edén
- Department of Infectious Diseases Institute of Biomedicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Henrik Zetterberg
- Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Mölndal Sweden
- Department of Neurodegenerative Disease UCL Institute of Neurology London UK
- UK Dementia Research Institute at UCL London UK
- Hong Kong Center for Neurodegenerative Diseases Hong Kong China
| | - Richard W. Price
- Department of Neurology University of California San Francisco San Francisco California USA
| | - Magnus Gisslén
- Department of Infectious Diseases Institute of Biomedicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
| |
Collapse
|
21
|
van der Post J, van Genderen JG, Heijst JA, Blokhuis C, Teunissen CE, Pajkrt D. Plasma Neurofilament Light Is Not Associated with Ongoing Neuroaxonal Injury or Cognitive Decline in Perinatally HIV Infected Adolescents: A Brief Report. Viruses 2022; 14:v14040671. [PMID: 35458401 PMCID: PMC9030750 DOI: 10.3390/v14040671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022] Open
Abstract
Despite combination antiretroviral therapy (cART), adolescents with perinatally acquired human immunodeficiency virus (PHIV) exhibit cerebral injury and cognitive impairment. Plasma neurofilament light (pNfL) is a biomarker identified as a promising marker associated with neuroaxonal injury and cognitive impairment. To investigate whether cerebral injury in cART-treated PHIV adolescents is persistent, we longitudinally measured pNfL. We included 21 PHIV adolescents and 23 controls, matched for age, sex, ethnic origin and socio-economic status. We measured pNfL in both groups and CSF NfL in PHIV adolescents using a highly sensitive Single Molecule Array (Simoa) immunoassay. We compared pNfL between groups over time with a mean follow-up time of 4.6 years and assessed its association with MRI outcomes, cognitive function and HIV-related characteristics using linear mixed models. The median age was 17.5 years (15.5–20.7) and 16.4 years (15.8–19.6) at the second assessment for PHIV adolescents and controls, respectively. We found comparable pNfL (PHIV vs. controls) at the first (2.9 pg/mL (IQR 2.0–3.8) and 3.0 pg/mL (IQR 2.3–3.5), p = 0.499) and second assessment (3.3 pg/mL (IQR 2.5–4.1) and 3.0 pg/mL (IQR 2.5–3.7), p = 0.658) and observed no longitudinal change (coefficient; −0.19, 95% −0.5 to 0.1, p = 0.244). No significant associations were found between pNfL and HIV- or cART-related variables, MRI outcomes or cognitive function. We observed low CSF NfL concentrations at the baseline in PHIV adolescents (100.8 pg/mL, SD = 47.5). Our results suggest that there is no ongoing neuroaxonal injury in cART-treated PHIV adolescents and that the neuroaxonal injury is acquired in the past, emphasizing the importance of early cART to mitigate HIV-related neuroaxonal damage.
Collapse
Affiliation(s)
- Julie van der Post
- Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 Amsterdam, The Netherlands; (J.G.v.G.); (C.B.); (D.P.)
- Correspondence: ; Tel.: +31-630-595-488
| | - Jason G. van Genderen
- Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 Amsterdam, The Netherlands; (J.G.v.G.); (C.B.); (D.P.)
| | - Johannes A. Heijst
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1117 Amsterdam, The Netherlands; (J.A.H.); (C.E.T.)
| | - Charlotte Blokhuis
- Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 Amsterdam, The Netherlands; (J.G.v.G.); (C.B.); (D.P.)
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1117 Amsterdam, The Netherlands; (J.A.H.); (C.E.T.)
| | - Dasja Pajkrt
- Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 Amsterdam, The Netherlands; (J.G.v.G.); (C.B.); (D.P.)
| |
Collapse
|
22
|
Harp C, Thanei GA, Jia X, Kuhle J, Leppert D, Schaedelin S, Benkert P, von Büdingen HC, Hendricks R, Herman A. Development of an age-adjusted model for blood neurofilament light chain. Ann Clin Transl Neurol 2022; 9:444-453. [PMID: 35229997 PMCID: PMC8994974 DOI: 10.1002/acn3.51524] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/16/2021] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To develop an age-adjustment model for neurofilament light chain (NfL), an emerging injury marker in patients with a range of neurologic conditions including multiple sclerosis (MS). METHODS Serum and plasma samples were collected from a healthy donor (HD) cohort of 118 individuals aged 24 to 66 years, 90 patients with relapsing MS (RMS) and 22 patients with progressive MS (PMS). Serum and plasma samples were assessed for NfL using the SIMOA assay (Quanterix NfL Advantage Kit™). A log-linear model was used to evaluate the relationship between NfL and age and to calculate age-adjusted NfL levels. RESULTS Higher serum and plasma NfL levels were significantly associated with increasing HD age. Log-transformation of blood NfL levels reduced heteroscedasticity and skewness. A log-linear model enabled adjustment for age-related increase in serum and plasma NfL levels (2.3% [95% CI, 1.6-2.9] and 2.6% [95% CI, 1.3-3.3] per year, respectively). Following age adjustment, NfL did not show significant association with HD sex or ethnicity. While unadjusted serum NfL levels were elevated in patients with PMS (mean age 56 years) compared with those with RMS (mean age 37 years), age-adjusted NfL levels did not differ. INTERPRETATION A log-linear, age adjustment model was developed to enable comparison of NfL levels across populations with different ages. While additional data and evidence are needed for patient-level adoption, this could be a valuable tool for interpreting NfL levels across a range of patient groups with neurologic conditions.
Collapse
Affiliation(s)
| | | | - Xiaoming Jia
- Genentech, Inc., South San Francisco, California, USA
| | - Jens Kuhle
- Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Leppert
- Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sabine Schaedelin
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | | | - Ann Herman
- Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
23
|
Anderson AM, Ma Q, Letendre SL, Iudicello J. Soluble Biomarkers of Cognition and Depression in Adults with HIV Infection in the Combination Therapy Era. Curr HIV/AIDS Rep 2021; 18:558-568. [PMID: 34780037 PMCID: PMC8860504 DOI: 10.1007/s11904-021-00581-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Cognitive impairment and depression continue to be common among people with HIV (PWH) in the combination antiretroviral therapy (ART) era. A better understanding of the biological mechanisms that may underpin these disorders is needed. The purpose of this review is to describe published findings on soluble biomarkers from blood and cerebrospinal fluid (CSF) that have been associated with either cognition or depression among PWH in the setting of ART. RECENT FINDINGS Several biomarkers, including those that reflect viral persistence, monocyte/macrophage activation, and other processes, are associated with cognition and depressive symptoms. Some but not all results have been consistent across multiple studies. More research has been published on biomarkers of cognition relative to biomarkers of depression (particularly from CSF). More studies are needed that investigate multiple biomarkers to understand the role of distinct but additive pathways in these disorders and to guide the development of new therapies.
Collapse
Affiliation(s)
- Albert M Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 341 Ponce de Leon Avenue, Atlanta, GA, 30308, USA.
| | - Qing Ma
- University at Buffalo, Buffalo, NY, USA
| | - Scott L Letendre
- Departments of Medicine and Psychiatry, University of California at San Diego, San Diego, CA, USA
| | - Jennifer Iudicello
- Departments of Medicine and Psychiatry, University of California at San Diego, San Diego, CA, USA
| |
Collapse
|
24
|
Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci 2021; 15:689938. [PMID: 34646114 PMCID: PMC8503617 DOI: 10.3389/fnins.2021.689938] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
- Department of Cell Biology, New York University Grossman School of Medicine, (NYU), Neuroscience Institute, New York, NY, United States
| |
Collapse
|
25
|
Abstract
Long-term effective use of antiretroviral therapy (ART) among people with HIV (PWH) has significantly reduced the burden of disease, yet a cure for HIV has not been universally achieved, likely due to the persistence of an HIV reservoir. The central nervous system (CNS) is an understudied HIV sanctuary. Importantly, due to viral persistence in the brain, cognitive disturbances persist to various degrees at high rates in PWH despite suppressive ART. Given the complexity and accessibility of the CNS compartment and that it is a physiologically and anatomically unique immune site, human studies to reveal molecular mechanisms of viral entry, reservoir establishment, and the cellular and structural interactions leading to viral persistence and brain injury to advance a cure and either prevent or limit cognitive impairments in PWH remain challenging. Recent advances in human brain organoids show that they can mimic the intercellular dynamics of the human brain and may recapitulate many of the events involved in HIV infection of the brain (neuroHIV). Human brain organoids can be produced, spontaneously or with addition of growth factors and at immature or mature states, and have become stronger models to study neurovirulent viral infections of the CNS. While organoids provide opportunities to study neuroHIV, obstacles such as the need to incorporate microglia need to be overcome to fully utilize this model. Here, we review the current achievements in brain organoid biology and their relevance to neuroHIV research efforts.
Collapse
|
26
|
Hou YC, Huang CL, Lu CL, Zheng CM, Lin YF, Lu KC, Chung YL, Chen RM. The Role of Plasma Neurofilament Light Protein for Assessing Cognitive Impairment in Patients With End-Stage Renal Disease. Front Aging Neurosci 2021; 13:657794. [PMID: 34122041 PMCID: PMC8192845 DOI: 10.3389/fnagi.2021.657794] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/03/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction: End-stage renal disease (ESRD) is defined as the irreversible loss of renal function, necessitating renal replacement therapy. Patients with ESRD tend to have more risk factors for cognitive impairment than the general population, including hypertension, accumulative uremic toxin, anemia, and old age. The association between these risk factors and the pathologic protein was lacking. Blood-based assays for detecting pathologic protein, such as amyloid beta (Aβ), total tau protein, and neurofilament light chain (NfL), have the advantages of being less invasive and more cost-effective for diagnosing patients with cognitive impairment. The aim of the study is to validate if the common neurologic biomarkers were different in ESRD patients and to differentiate if the specific biomarkers could correlate with specific correctable risk factors. Methods: In total, 67 participants aged >45 years were enrolled. The definition of ESRD was receiving maintenance hemodialysis for >3 months. Cognitive impairment was defined as a Mini-Mental State Examination score of <24. The participants were divided into groups for ESRD with and without cognitive impairment. The blood-based biomarkers (tau protein, Aβ1/40, Aβ1/42, and NfL) were analyzed through immunomagnetic reduction assay. Other biochemical and hematologic data were obtained simultaneously. Summary of results: The study enrolled 43 patients with ESRD who did not have cognitive impairment and 24 patients with ESRD who had cognitive impairment [Mini-Mental State Examination (MMSE): 27.60 ± 1.80 vs. 16.84 ± 6.40, p < 0.05]. Among the blood-based biomarkers, NfL was marginally higher in the ESRD with cognitive impairment group than in the ESRD without cognitive impairment group (10.41 ± 3.26 vs. 8.74 ± 2.81 pg/mL, p = 0.037). The concentrations of tau protein, amyloid β 1/42, and amyloid β 1/40 (p = 0.504, 0.393, and 0.952, respectively) were similar between the two groups. The area under the curve of NfL to distinguish cognitively impaired and unimpaired ESRD patients was 0.687 (95% confidence interval: 0.548-0.825, p = 0.034). There was no correlation between the concentration of NfL and MMSE among total population (r = -0.153, p = 0.277), patients with (r = 0.137, p = 0.583) or without cognitive impairment (r = 0.155, p = 0.333). Conclusion: Patients with ESRD who had cognitive impairment had marginally higher plasma NfL concentrations. NfL concentration was not correlated with the biochemical parameters, total MMSE among total population or individual groups with or without cognitive impairment. The concentrations of Aβ1/40, Aβ1/42, and tau were similar between the groups.
Collapse
Affiliation(s)
- Yi-Chou Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chuen-Lin Huang
- Department of Medical Research, Cardinal Tien Hospital, New Taipei City, Taiwan.,Department of Physiology and Biophysics, National Defense Medical Center, Graduate Institute of Physiology, Taipei, Taiwan
| | - Chien-Lin Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Nephrology, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan.,National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan
| | - Kuo-Cheng Lu
- Department of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Ya-Lin Chung
- Department of Medical Laboratory, Cardinal-Tien Hospital, New Taipei City, Taiwan
| | - Ruei-Ming Chen
- TMU Research Center of Cancer Translational Medicine, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
27
|
Cognitive and Neuronal Link With Inflammation: A Longitudinal Study in People With and Without HIV Infection. J Acquir Immune Defic Syndr 2021; 85:617-625. [PMID: 32932412 DOI: 10.1097/qai.0000000000002484] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Across many settings, lack of virologic control remains common in people with HIV (PWH) because of late presentation and lack of retention in care. This contributes to neuronal damage and neurocognitive impairment, which remains prevalent. More evidence is needed to understand these outcomes in both PWH and people without HIV (PWOH). METHODS We recruited PWH initiating antiretroviral therapy and PWOH at 2 sites in the United States. One hundred eight adults were enrolled (56 PWOH and 52 PWH), most of whom had a second assessment at least 24 weeks later (193 total assessments). Tumor necrosis factor alpha, monocyte chemotactic protein-1 (MCP-1), neopterin, soluble CD14, and neurofilament light chain protein (NFL) were measured in plasma and cerebrospinal fluid (CSF). Using multivariate models including Bayesian model averaging, we analyzed factors associated with global neuropsychological performance (NPT-9) and CSF NFL at baseline and over time. RESULTS At baseline, higher CSF MCP-1 and plasma sCD14 were associated with worse NPT-9 in PWH, while CSF HIV RNA decrease was the only marker associated with improved NPT-9 over time. Among PWH, higher CSF neopterin was most closely associated with higher NFL. Among PWOH, higher CSF MCP-1 was most closely associated with higher NFL. After antiretroviral therapy initiation, decrease in CSF MCP-1 was most closely associated with NFL decrease. CONCLUSION Monocyte-associated CSF biomarkers are highly associated with neuronal damage in both PWH and PWOH. More research is needed to evaluate whether therapies targeting monocyte-associated inflammation may ameliorate HIV-associated neurobehavioral diseases.
Collapse
|
28
|
Anteraper SA, Gopinath K, Hoch MJ, Waldrop-Valverde D, Franklin D, Letendre SL, Whitfield-Gabrieli S, Anderson AM. A comprehensive data-driven analysis framework for detecting impairments in brain function networks with resting state fMRI in HIV-infected individuals on cART. J Neurovirol 2021; 27:239-248. [PMID: 33666883 DOI: 10.1007/s13365-021-00943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Central nervous system (CNS) sequelae continue to be common in HIV-infected individuals despite combination antiretroviral therapy (cART). These sequelae include HIV-associated neurocognitive disorder (HAND) and virologic persistence in the CNS. Resting state functional magnetic resonance imaging (rsfMRI) is a widely used tool to examine the integrity of brain function and pathology. In this study, we examined 16 HIV-positive (HIV+) subjects and 12 age, sex, and race matched HIV seronegative controls (HIV-) whole-brain high-resolution rsfMRI along with a battery of neurocognitive tests. A comprehensive data-driven analysis of rsfMRI revealed impaired functional connectivity, with very large effect sizes in executive function, language, and multisensory processing networks in HIV+ subjects. These results indicate the potential of high-resolution rsfMRI in combination with advanced data analysis techniques to yield biomarkers of neural impairment in HIV.
Collapse
Affiliation(s)
| | | | | | | | - Donald Franklin
- University of California At San Diego School of Medicine, La Jolla, San Diego, CA, USA
| | - Scott L Letendre
- University of California At San Diego School of Medicine, La Jolla, San Diego, CA, USA
| | | | | |
Collapse
|
29
|
Differential longitudinal changes of neuronal and glial damage markers in anorexia nervosa after partial weight restoration. Transl Psychiatry 2021; 11:86. [PMID: 33558486 PMCID: PMC7870648 DOI: 10.1038/s41398-021-01209-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Atrophic brain changes in acute anorexia nervosa (AN) are often visible to the naked eye on computed tomography or magnetic resonance imaging scans, but it remains unclear what is driving these effects. In neurological diseases, neurofilament light (NF-L) and tau protein have been linked to axonal damage. Glial fibrillary acidic protein (GFAP) has been associated with astroglial injury. In an attempt to shed new light on factors potentially underlying past findings of structural brain alterations in AN, the current study investigated serum NF-L, tau protein, and GFAP levels longitudinally in AN patients undergoing weight restoration. Blood samples were obtained from 54 acutely underweight, predominantly adolescent female AN patients and 54 age-matched healthy control participants. AN patients were studied in the severely underweight state and again after short-term partial weight restoration. Group comparisons revealed higher levels of NF-L, tau protein, and GFAP in acutely underweight patients with AN compared to healthy control participants. Longitudinally, a decrease in NF-L and GFAP but not in tau protein levels was observed in AN patients upon short-term partial weight restoration. These results may be indicative of ongoing neuronal and astroglial injury during the underweight phase of AN. Normalization of NF-L and GFAP but not tau protein levels may indicate an only partial restoration of neuronal and astroglial integrity upon weight gain after initial AN-associated cell damage processes.
Collapse
|
30
|
Ramani S, Berard JA, Walker LAS. The relationship between neurofilament light chain and cognition in neurological disorders: A scoping review. J Neurol Sci 2021; 420:117229. [PMID: 33243431 DOI: 10.1016/j.jns.2020.117229] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/29/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
Neurofilament light chain (NfL) is an emerging biomarker of neural degeneration. NfL is an integral component of axons and is released into the bloodstream and cerebrospinal fluid during neurodegeneration; hence it can be used to monitor disease progression. Given that several neurological disorders are accompanied by cognitive decline, recent literature has investigated the relationship between NfL levels and cognition. The objective of this scoping review was to determine whether a consistent relationship between NfL and cognition exists in the context of variable degrees of neurodegeneration present across several neurological disorders. Four electronic databases were searched for relevant articles and 160 articles were initially identified. After article screening, 37 studies met the final inclusion criteria. Studies were then qualitatively synthesized to determine the relationship between NfL and cognition across a variety of neurological disorders. The large majority of studies found that NfL levels are inversely correlated with cognition, such that higher NfL levels are associated with poorer cognition. This relationship was not universal, however, and this discrepancy was speculated to be due to the nature of the neurological disorder, individual differences between participants, or methodological inconsistencies. Further study is required, and associated recommendations were proposed for the design of future investigations.
Collapse
Affiliation(s)
| | | | - Lisa A S Walker
- The Ottawa Hospital Research Institute, Ottawa, Canada; The University of Ottawa Brain and Mind Research Institute, Ottawa, Canada; Carleton University, Ottawa, Canada
| |
Collapse
|
31
|
DeKosky ST, Kochanek PM, Valadka AB, Clark RS, Chou SHY, Au AK, Horvat C, Jha RM, Mannix R, Wisniewski SR, Wintermark M, Rowell SE, Welch RD, Lewis L, House S, Tanzi RE, Smith DR, Vittor AY, Denslow ND, Davis MD, Glushakova OY, Hayes RL. Blood Biomarkers for Detection of Brain Injury in COVID-19 Patients. J Neurotrauma 2021; 38:1-43. [PMID: 33115334 PMCID: PMC7757533 DOI: 10.1089/neu.2020.7332] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus attacks multiple organs of coronavirus disease 2019 (COVID-19) patients, including the brain. There are worldwide descriptions of neurological deficits in COVID-19 patients. Central nervous system (CNS) symptoms can be present early in the course of the disease. As many as 55% of hospitalized COVID-19 patients have been reported to have neurological disturbances three months after infection by SARS-CoV-2. The mutability of the SARS-COV-2 virus and its potential to directly affect the CNS highlight the urgency of developing technology to diagnose, manage, and treat brain injury in COVID-19 patients. The pathobiology of CNS infection by SARS-CoV-2 and the associated neurological sequelae of this infection remain poorly understood. In this review, we outline the rationale for the use of blood biomarkers (BBs) for diagnosis of brain injury in COVID-19 patients, the research needed to incorporate their use into clinical practice, and the improvements in patient management and outcomes that can result. BBs of brain injury could potentially provide tools for detection of brain injury in COVID-19 patients. Elevations of BBs have been reported in cerebrospinal fluid (CSF) and blood of COVID-19 patients. BB proteins have been analyzed in CSF to detect CNS involvement in patients with infectious diseases, including human immunodeficiency virus and tuberculous meningitis. BBs are approved by the U.S. Food and Drug Administration for diagnosis of mild versus moderate traumatic brain injury and have identified brain injury after stroke, cardiac arrest, hypoxia, and epilepsy. BBs, integrated with other diagnostic tools, could enhance understanding of viral mechanisms of brain injury, predict severity of neurological deficits, guide triage of patients and assignment to appropriate medical pathways, and assess efficacy of therapeutic interventions in COVID-19 patients.
Collapse
Affiliation(s)
- Steven T. DeKosky
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, Department of Anesthesiology, Pediatrics, Bioengineering, and Clinical and Translational Science, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alex B. Valadka
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Robert S.B. Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sherry H.-Y. Chou
- Department of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alicia K. Au
- University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christopher Horvat
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Division of Pediatric Critical Care, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruchira M. Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, Clinical and Translational Science Institute, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebekah Mannix
- Department of Pediatrics and Emergency Medicine, Harvard Medical School, Department of Medicine, Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Max Wintermark
- Department of Neuroradiology, Stanford University, Stanford, California, USA
| | - Susan E. Rowell
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert D. Welch
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit Receiving Hospital/University Health Center, Detroit, Michigan, USA
| | - Lawrence Lewis
- Department of Emergency Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Stacey House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Massachusetts General Hospital, McCance Center for Brain Health, Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Department of Neurology (Research), Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Darci R. Smith
- Immunodiagnostics Department, Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick, Maryland, USA
| | - Amy Y. Vittor
- Division of Infectious Disease and Global Medicine, University of Florida, Emerging Pathogens Institute, Gainesville, Florida, USA
| | - Nancy D. Denslow
- Departments of Physiological Sciences and Biochemistry and Molecular Biology, University of Florida, Center for Environmental and Human Toxicology, Gainesville, Florida
| | - Michael D. Davis
- Department of Pediatrics, Wells Center for Pediatric Research/Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children at Indiana University, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
32
|
Hakkers CS, Hermans AM, van Maarseveen EM, Teunissen CE, Verberk IMW, Arends JE, Hoepelman AIM. High efavirenz levels but not neurofilament light plasma levels are associated with poor neurocognitive functioning in asymptomatic HIV patients. J Neurovirol 2020; 26:572-580. [PMID: 32524424 PMCID: PMC7438296 DOI: 10.1007/s13365-020-00860-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 11/29/2022]
Abstract
The aim of this study is to assess the effect of efavirenz exposure on neurocognitive functioning and investigate plasma neurofilament light (Nfl) as a biomarker for neurocognitive damage. Sub-analysis of the ESCAPE-study, a randomised controlled trial where virologically suppressed, cognitively asymptomatic HIV patients were randomised (2:1) to switch to rilpivirine or continue on efavirenz. At baseline and week 12, patients underwent an extensive neuropsychological assessment (NPA), and serum efavirenz concentration and plasma Nfl levels were measured. Subgroups of elevated (≥ 4.0 mg/L) and therapeutic (0.74 to< 4.0 mg/L) baseline efavirenz concentration were made. Differences between these groups in baseline NPA Z-scores and in delta scores after efavirenz discontinuation were assessed. Nfl level was measured using an ELISA analysis using single molecule array (Simoa) technology. Correlation of plasma NFL with NPA Z-scores was evaluated using a linear mixed model. The elevated group consisted of 6 patients and the therapeutic group of 48. At baseline, the elevated group showed lower composite Z-scores (median - 1.03; IQR 0.87 versus 0.27; 0.79. p 0.02). This effect was also seen on the subdomains verbal (p 0.01), executive functioning (p 0.02), attention (p < 0.01) and speed (p 0.01). In the switch group, the elevated group improved more on composite scores after discontinuing efavirenz (mean 0.58; SD 0.32 versus 0.22; 0.54, p 0.15). No association between plasma Nfl and composite Z-score was found. High efavirenz exposure is associated with worse cognitive functioning compared with patients with therapeutic concentrations. Plasma Nfl is not a suitable biomarker to measure cognitive damage in this group.
Collapse
Affiliation(s)
- Charlotte S Hakkers
- Department of Internal Medicine, section Infectious Diseases, University Medical Center (UMC) Utrecht, Utrecht University, PO Box 85500, 3508, GA, Utrecht, the Netherlands.
| | - Anne Marie Hermans
- Department of Internal Medicine, section Infectious Diseases, University Medical Center (UMC) Utrecht, Utrecht University, PO Box 85500, 3508, GA, Utrecht, the Netherlands
| | - Erik M van Maarseveen
- Division of Laboratory and Pharmacy, Clinical Pharmacy, University Medical Center (UMC) Utrecht, Utrecht, the Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, Amsterdam Neuroscience Neurochemistry laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Inge M W Verberk
- Department of Clinical Chemistry, Amsterdam Neuroscience Neurochemistry laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Joop E Arends
- Department of Internal Medicine, section Infectious Diseases, University Medical Center (UMC) Utrecht, Utrecht University, PO Box 85500, 3508, GA, Utrecht, the Netherlands
| | - Andy I M Hoepelman
- Department of Internal Medicine, section Infectious Diseases, University Medical Center (UMC) Utrecht, Utrecht University, PO Box 85500, 3508, GA, Utrecht, the Netherlands
| |
Collapse
|
33
|
Mattioli F, Bellomi F, Stampatori C, Mariotto S, Ferrari S, Monaco S, Mancinelli C, Capra R. Longitudinal serum neurofilament light chain (sNfL) concentration relates to cognitive function in multiple sclerosis patients. J Neurol 2020; 267:2245-2251. [DOI: 10.1007/s00415-020-09832-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 11/28/2022]
|
34
|
Gordon BA. Neurofilaments in disease: what do we know? Curr Opin Neurobiol 2020; 61:105-115. [PMID: 32151970 PMCID: PMC7198337 DOI: 10.1016/j.conb.2020.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Neurofilaments are proteins selectively expressed in the cytoskeleton of neurons, and increased levels are a marker of damage. Elevated neurofilament levels can serve as a marker of ongoing disease activity as well as a tool to measure response to therapeutic intervention. The potential utility of neurofilaments has drastically increased as recent advances have made it possible to measure levels in both the cerebrospinal fluid and blood. There is mounting evidence that neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (NfH) are abnormal in a host of neurodegenerative diseases. In this review we examine how both of these proteins behave across diseases and what we know about how these biomarkers relate to in vivo white matter pathology and each other.
Collapse
Affiliation(s)
- Brian A Gordon
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA; Psychological & Brain Sciences, Washington University in St. Louis, MO, USA.
| |
Collapse
|
35
|
Wu C, Maley AM, Walt DR. Single-molecule measurements in microwells for clinical applications. Crit Rev Clin Lab Sci 2019:1-21. [PMID: 31865834 DOI: 10.1080/10408363.2019.1700903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to detect and analyze proteins, nucleic acids, and other biomolecules is critical for clinical diagnostics and for understanding the underlying mechanisms of disease. Current detection methods in clinical and research laboratories rely upon bulk measurement techniques such as immunoassays, polymerase chain reaction, and mass spectrometry to detect these biomarkers. However, many potentially useful protein or nucleic acid biomarkers in blood, saliva, or other biofluids exist at concentrations well below the detection limits of current methods, necessitating the development of more sensitive technologies. Single-molecule measurements are poised to address this challenge, vastly improving sensitivity for detecting low abundance biomarkers and rare events within a population. Microwell arrays have emerged as a powerful tool for single-molecule measurements, enabling ultrasensitive detection of disease-relevant biomolecules in easily accessible biofluids. This review discusses the development, fundamentals, and clinical applications of microwell-based single-molecule methods, as well as challenges and future directions for translating these methods to the clinic.
Collapse
Affiliation(s)
- Connie Wu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Adam M Maley
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David R Walt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
36
|
Hermansson L, Yilmaz A, Price RW, Nilsson S, McCallister S, Makadzange T, Das M, Zetterberg H, Blennow K, Gisslen M. Plasma concentration of neurofilament light chain protein decreases after switching from tenofovir disoproxil fumarate to tenofovir alafenamide fumarate. PLoS One 2019; 14:e0226276. [PMID: 31826005 PMCID: PMC6905536 DOI: 10.1371/journal.pone.0226276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/18/2019] [Indexed: 01/05/2023] Open
Abstract
Background Because tenofovir alafenamide (TAF) leads to significantly lower plasma tenofovir concentrations than tenofovir disoproxil fumarate (TDF) and is a stronger substrate for P-glycoprotein (P-gp) than TDF, TAF could lead to decreased central nervous system (CNS) tenofovir exposure than TDF. We aimed to determine if switching from TDF to TAF increases the risk of neuronal injury, by quantifying plasma levels of neurofilament light protein (NfL), a sensitive marker of neuronal injury in HIV CNS infection. Methods Plasma NfL concentration was measured at baseline, week 24, and week 84 in stored plasma samples from 416 participants (272 switching to elvitegravir (E)/cobicistat (C)/emtricitabine (F)/TAF and 144 continuing E/C/F/TDF) enrolled in the randomized, active-controlled, multicenter, open-label, noninferiority Gilead GS-US-292-0109 trial. Results While plasma NfL levels in both groups were within the normal range, we found a small but significant decrease in the E/C/F/TAF arm after 84 weeks from a geometric mean of 9.3 to 8.8 pg/mL (5.4% decline, 95% CI 2.0–8.4, p = 0.002). This change was significantly different (p = 0.001) from that of the E/C/F/TDF arm, in which plasma NfL concentration changed from 9.7 pg/mL at baseline to 10.2 pg/mL at week 84 (5.8% increase, 95% CI -0.8–12.9, p = 0.085). This increase is in line with what could be expected in normal ageing. Plasma NfL concentrations significantly correlated with age. No correlation was found between plasma NfL and serum creatinine. Conclusions We found no biomarker evidence of CNS injury when switching from TDF to TAF. It is unclear whether the small decrease in plasma NfL found after switch to TAF is of any clinical relevance, particularly with plasma NfL levels in both arms remaining within the limits found in HIV-negative controls. These results indicate that switching from TDF to TAF appears safe with regard to neuronal injury.
Collapse
Affiliation(s)
- Linn Hermansson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Richard W. Price
- Department of Neurology, University of California, San Francisco, United States of America
| | - Staffan Nilsson
- Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Scott McCallister
- Gilead Sciences Inc, Institute of Neuroscience and Physiology, Foster City, California, United States of America
| | - Tariro Makadzange
- Gilead Sciences Inc, Institute of Neuroscience and Physiology, Foster City, California, United States of America
| | - Moupali Das
- Gilead Sciences Inc, Institute of Neuroscience and Physiology, Foster City, California, United States of America
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute, UCL, London, United Kingdom
| | - Kaj Blennow
- Gilead Sciences Inc, Institute of Neuroscience and Physiology, Foster City, California, United States of America
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
37
|
Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer's disease. J Neurovirol 2019. [PMID: 30610738 DOI: 10.1007/s13365-018-0695-4/figures/3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Fluid biomarkers for cognitive impairment have the advantage of being relatively noninvasive and capable of monitoring neuronal and other brain cell health in real time. Biomarkers can predict the onset of dementing illness, but also correlate with cognition in a dynamic way allowing us to follow treatment responses and determine brain recovery. Chronic HIV infection causes cognitive impairment in a subset of individuals suggesting "premature aging." Exosomes are small extracellular vesicles that are shed from all cells. They are important in normal cell-to-cell communication as they contain cellular proteins, mRNA transcripts, and miRNAs. Exosome cargo varies depending on the health of the cell and pathological state; specific proteins/mRNAs and/or miRNAs are present and may serve as biomarkers. Exosomes of variable cellular origin can be isolated from peripheral blood by various methods. Neuron-derived exosomes (NDEs) can be isolated using a precipitation/immunoaffinity approach using antibodies against neuronal cell adhesion molecule L1CAM and the contents queried for central nervous system (CNS) disorders including HIV-associated neurological disorders (HAND) and Alzheimer's disease (AD). As these studies are recent, numerous questions arise including which neuronal proteins are in NDEs and whether their contents differ in different CNS pathologies or with age. In addition, can the NDE cargo predict as well as diagnose cognitive impairment and could exosomal contents be used as therapeutic biomarkers, or theramarkers, of neuronal recovery from effective treatment? This mini-review will show some new data and review recent studies on NDE from individuals with HIV infection and AD. HIV-associated neurocognitive disorders (HAND) are pathologies seen in a subset of individuals with chronic HIV infection. They belong to the spectrum of neurodegenerative diseases that result in death or dysfunction of neurons with similarities to Alzheimer disease (AD) but also distinctive differences (reviewed (Canet et al., Front Cell Neurosci 12: 307, 2018)). Both disorders are difficult to diagnose without neuropsychological testing and both need new biomarkers to judge progression as well as recovery with treatment. Both disorders involve neuroinflammation and several common targets. AD is associated with aging and HIV is thought to initiate premature aging. In HIV infection, amyloid beta (Aβ), which is deposited in "plaques" in AD, is soluble and its relevance to HIV-associated cognitive impairment is controversial (Achim et al., J Neuroimmune Pharmacol 4: 190-199, 2009; Rempel and Pulliam, AIDS 19: 127-135, 2005). Aβ deposition is required for AD pathological diagnosis, but is not necessarily causative (Barage and Sonawane, Neuropeptides 52: 1-18, 2015; Hardy and Selkoe, Science 297: 353-356, 2002; Morris et al., Acta Neuropathol Commun 2: 135, 2014). Neurofilament light (NF-L) is a surrogate marker in plasma and cerebrospinal fluid (CSF) for neurodegeneration (Abu-Rumeileh et al., Alzheimers Res Ther 10: 3, 2018; Mattsson et al., JAMA Neurol 74: 557-566, 2017) but continues to be a controversial biomarker for both HAND and AD (Gisslen et al., EBioMedicine 3: 135-140, 2016; Kovacs et al., Eur J Neurol 24:1326-e77, 2017; Norgren et al., Brain Res 987: 25-31, 2003; Rolstad et al., J Alzheimers Dis 45: 873-881, 2015; Yilmaz et al., Expert Rev Mol Diagn 17: 761-770, 2017). Blood biomarkers are needed to advance both HAND and AD fields, as blood draws are less costly than neuroimaging and are minimally invasive compared to lumbar punctures required for CSF acquisition. Extracellular vesicles (EVs) are nanoscale membranous vesicles shed from all cells including those of the central nervous system (CNS) and found in all biofluids; they are divided into exosomes (30-150 nm) originating from late endosomes/multivesicular bodies and microvesicles (150-1000 nm) produced through budding of the plasma membrane. Both types of vesicles are implicated in the pathogenesis of neurodegenerative diseases and may provide biomarkers (Bellingham et al., Front Physiol 3: 124, 2012). In this report, we call the vesicles exosomes, since they are the predominant vesicles in our preparations. They are involved in cell-to-cell communication in normal homeostasis and can be carriers of toxic proteins (Aβ, tau) (Sardar Sinha et al., Acta Neuropathol 136: 41-56, 2018) shed by cells as waste or actively secreted in a degenerative process (review Gupta and Pulliam, J Neuroinflammation 11: 68, 2014). The idea that exosomes originating from a specific cell can be recovered in the plasma using cellular surface markers of interest is intriguing. Neuron derived exosomes (NDEs) were first described in 2015 and isolated using antibodies against neural cell adhesion molecules NCAM or L1CAM, after total plasma exosome isolation (Fiandaca et al., Alzheimers Dement 11: 600-607 e1, 2015). Characterization of NDEs follows guidelines endorsed by the International Society for Extracellular Vesicles and includes Nanoparticle Tracking Analysis (NTA) to determine EV concentration and average diameter; Western Blots for EV markers; ELISAs for neuronal proteins and transmission EM for visualization (Sun et al., AIDS 31: F9-F17, 2017; Tang et al., FASEB J 30: 3097-106, 2016). This innovative isolation of an exosome sub-population has generated interest in using NDE as biomarkers for neurodegenerative diseases like AD, HAND, traumatic brain injury, posttraumatic stress disorder and more (reviews Agoston et al., Brain Inj 31: 1195-1203, 2017; Gupta and Pulliam, J Neuroinflammation 11: 68, 2014; Hu et al., Cell Death Dis 7: e2481, 2016; Karnati et al., J Neurotrauma, 2018; Osier et al., Mol Neurobiol, 2018). Several biomarkers from plasma NDEs were recently reported by the Pulliam lab to be elevated in general cognitive impairment (Sun et al., AIDS 31: F9-F17, 2017). We review our collective data here on HAND and AD and add to the characterization of plasma NDEs as exciting biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Lynn Pulliam
- Departments of Laboratory Medicine and Medicine, University of California, San Francisco, CA, USA.
- Veterans Affairs Medical Center, San Francisco, CA, USA.
| | - Bing Sun
- Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Maja Mustapic
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Bethesda, USA
| | - Sahil Chawla
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Bethesda, USA
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Bethesda, USA.
| |
Collapse
|
38
|
Bandera A, Taramasso L, Bozzi G, Muscatello A, Robinson JA, Burdo TH, Gori A. HIV-Associated Neurocognitive Impairment in the Modern ART Era: Are We Close to Discovering Reliable Biomarkers in the Setting of Virological Suppression? Front Aging Neurosci 2019; 11:187. [PMID: 31427955 PMCID: PMC6687760 DOI: 10.3389/fnagi.2019.00187] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/10/2019] [Indexed: 11/24/2022] Open
Abstract
The prevalence of the most severe forms of HIV-associated neurocognitive disorders (HAND) is decreasing due to worldwide availability and high efficacy of antiretroviral treatment (ART). However, several grades of HIV-related cognitive impairment persist with effective ART and remain a clinical concern for people with HIV (PWH). The pathogenesis of these cognitive impairments has yet to be fully understood and probably multifactorial. In PWH with undetectable peripheral HIV-RNA, the presence of viral escapes in cerebrospinal fluid (CSF) might explain a proportion of cases, but not all. Many other mechanisms have been hypothesized to be involved in disease progression, in order to identify possible therapeutic targets. As potential indicators of disease staging and progression, numerous biomarkers have been used to characterize and implicate chronic inflammation in the pathogenesis of neuronal injuries, such as certain phenotypes of activated monocytes/macrophages, in the context of persistent immune activation. Despite none of them being disease-specific, the correlation of several CSF cellular biomarkers to HIV-induced neuronal damage has been investigated. Furthermore, recent studies have been evaluating specific microRNA (miRNA) profiles in the CSF of PWH with neurocognitive impairment (NCI). The aim of the present study is to review the body of evidence on different biomarkers use in research and clinical settings, focusing on PWH on ART with undetectable plasma HIV-RNA.
Collapse
Affiliation(s)
- Alessandra Bandera
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Lucia Taramasso
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Infectious Diseases Clinic, Department of Health Sciences, School of Medical and Pharmaceutical Sciences, Policlinico Hospital San Martino, University of Genova (DISSAL), Genova, Italy
| | - Giorgio Bozzi
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Muscatello
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jake A Robinson
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Tricia H Burdo
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Andrea Gori
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| |
Collapse
|
39
|
Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer's disease. J Neurovirol 2019; 25:702-709. [PMID: 30610738 DOI: 10.1007/s13365-018-0695-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022]
Abstract
Fluid biomarkers for cognitive impairment have the advantage of being relatively noninvasive and capable of monitoring neuronal and other brain cell health in real time. Biomarkers can predict the onset of dementing illness, but also correlate with cognition in a dynamic way allowing us to follow treatment responses and determine brain recovery. Chronic HIV infection causes cognitive impairment in a subset of individuals suggesting "premature aging." Exosomes are small extracellular vesicles that are shed from all cells. They are important in normal cell-to-cell communication as they contain cellular proteins, mRNA transcripts, and miRNAs. Exosome cargo varies depending on the health of the cell and pathological state; specific proteins/mRNAs and/or miRNAs are present and may serve as biomarkers. Exosomes of variable cellular origin can be isolated from peripheral blood by various methods. Neuron-derived exosomes (NDEs) can be isolated using a precipitation/immunoaffinity approach using antibodies against neuronal cell adhesion molecule L1CAM and the contents queried for central nervous system (CNS) disorders including HIV-associated neurological disorders (HAND) and Alzheimer's disease (AD). As these studies are recent, numerous questions arise including which neuronal proteins are in NDEs and whether their contents differ in different CNS pathologies or with age. In addition, can the NDE cargo predict as well as diagnose cognitive impairment and could exosomal contents be used as therapeutic biomarkers, or theramarkers, of neuronal recovery from effective treatment? This mini-review will show some new data and review recent studies on NDE from individuals with HIV infection and AD. HIV-associated neurocognitive disorders (HAND) are pathologies seen in a subset of individuals with chronic HIV infection. They belong to the spectrum of neurodegenerative diseases that result in death or dysfunction of neurons with similarities to Alzheimer disease (AD) but also distinctive differences (reviewed (Canet et al., Front Cell Neurosci 12: 307, 2018)). Both disorders are difficult to diagnose without neuropsychological testing and both need new biomarkers to judge progression as well as recovery with treatment. Both disorders involve neuroinflammation and several common targets. AD is associated with aging and HIV is thought to initiate premature aging. In HIV infection, amyloid beta (Aβ), which is deposited in "plaques" in AD, is soluble and its relevance to HIV-associated cognitive impairment is controversial (Achim et al., J Neuroimmune Pharmacol 4: 190-199, 2009; Rempel and Pulliam, AIDS 19: 127-135, 2005). Aβ deposition is required for AD pathological diagnosis, but is not necessarily causative (Barage and Sonawane, Neuropeptides 52: 1-18, 2015; Hardy and Selkoe, Science 297: 353-356, 2002; Morris et al., Acta Neuropathol Commun 2: 135, 2014). Neurofilament light (NF-L) is a surrogate marker in plasma and cerebrospinal fluid (CSF) for neurodegeneration (Abu-Rumeileh et al., Alzheimers Res Ther 10: 3, 2018; Mattsson et al., JAMA Neurol 74: 557-566, 2017) but continues to be a controversial biomarker for both HAND and AD (Gisslen et al., EBioMedicine 3: 135-140, 2016; Kovacs et al., Eur J Neurol 24:1326-e77, 2017; Norgren et al., Brain Res 987: 25-31, 2003; Rolstad et al., J Alzheimers Dis 45: 873-881, 2015; Yilmaz et al., Expert Rev Mol Diagn 17: 761-770, 2017). Blood biomarkers are needed to advance both HAND and AD fields, as blood draws are less costly than neuroimaging and are minimally invasive compared to lumbar punctures required for CSF acquisition. Extracellular vesicles (EVs) are nanoscale membranous vesicles shed from all cells including those of the central nervous system (CNS) and found in all biofluids; they are divided into exosomes (30-150 nm) originating from late endosomes/multivesicular bodies and microvesicles (150-1000 nm) produced through budding of the plasma membrane. Both types of vesicles are implicated in the pathogenesis of neurodegenerative diseases and may provide biomarkers (Bellingham et al., Front Physiol 3: 124, 2012). In this report, we call the vesicles exosomes, since they are the predominant vesicles in our preparations. They are involved in cell-to-cell communication in normal homeostasis and can be carriers of toxic proteins (Aβ, tau) (Sardar Sinha et al., Acta Neuropathol 136: 41-56, 2018) shed by cells as waste or actively secreted in a degenerative process (review Gupta and Pulliam, J Neuroinflammation 11: 68, 2014). The idea that exosomes originating from a specific cell can be recovered in the plasma using cellular surface markers of interest is intriguing. Neuron derived exosomes (NDEs) were first described in 2015 and isolated using antibodies against neural cell adhesion molecules NCAM or L1CAM, after total plasma exosome isolation (Fiandaca et al., Alzheimers Dement 11: 600-607 e1, 2015). Characterization of NDEs follows guidelines endorsed by the International Society for Extracellular Vesicles and includes Nanoparticle Tracking Analysis (NTA) to determine EV concentration and average diameter; Western Blots for EV markers; ELISAs for neuronal proteins and transmission EM for visualization (Sun et al., AIDS 31: F9-F17, 2017; Tang et al., FASEB J 30: 3097-106, 2016). This innovative isolation of an exosome sub-population has generated interest in using NDE as biomarkers for neurodegenerative diseases like AD, HAND, traumatic brain injury, posttraumatic stress disorder and more (reviews Agoston et al., Brain Inj 31: 1195-1203, 2017; Gupta and Pulliam, J Neuroinflammation 11: 68, 2014; Hu et al., Cell Death Dis 7: e2481, 2016; Karnati et al., J Neurotrauma, 2018; Osier et al., Mol Neurobiol, 2018). Several biomarkers from plasma NDEs were recently reported by the Pulliam lab to be elevated in general cognitive impairment (Sun et al., AIDS 31: F9-F17, 2017). We review our collective data here on HAND and AD and add to the characterization of plasma NDEs as exciting biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Lynn Pulliam
- Departments of Laboratory Medicine and Medicine, University of California, San Francisco, CA, USA. .,Veterans Affairs Medical Center, San Francisco, CA, USA.
| | - Bing Sun
- Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Maja Mustapic
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Bethesda, USA
| | - Sahil Chawla
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Bethesda, USA
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Bethesda, USA.
| |
Collapse
|
40
|
Diagnostic and prognostic biomarkers for HAND. J Neurovirol 2019; 25:686-701. [PMID: 30607890 DOI: 10.1007/s13365-018-0705-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Abstract
In 2007, the nosology for HIV-1-associated neurocognitive disorders (HAND) was updated to a primarily neurocognitive disorder. However, currently available diagnostic tools lack the sensitivity and specificity needed for an accurate diagnosis for HAND. Scientists and clinicians, therefore, have been on a quest for an innovative biomarker to diagnose (i.e., diagnostic biomarker) and/or predict (i.e., prognostic biomarker) the progression of HAND in the post-combination antiretroviral therapy (cART) era. The present review examined the utility and challenges of four proposed biomarkers, including neurofilament light (NFL) chain concentration, amyloid (i.e., sAPPα, sAPPβ, amyloid β) and tau proteins (i.e., total tau, phosphorylated tau), resting-state functional magnetic resonance imaging (fMRI), and prepulse inhibition (PPI). Although significant genotypic differences have been observed in NFL chain concentration, sAPPα, sAPPβ, amyloid β, total tau, phosphorylated tau, and resting-state fMRI, inconsistencies and/or assessment limitations (e.g., invasive procedures, lack of disease specificity, cost) challenge their utility as a diagnostic and/or prognostic biomarker for milder forms of neurocognitive impairment (NCI) in the post-cART era. However, critical evaluation of the literature supports the utility of PPI as a powerful diagnostic biomarker with high accuracy (i.e., 86.7-97.1%), sensitivity (i.e., 89.3-100%), and specificity (i.e., 79.5-94.1%). Additionally, the inclusion of multiple CSF and/or plasma markers, rather than a single protein, may provide a more sensitive diagnostic biomarker for HAND; however, a pressing need for additional research remains. Most notably, PPI may serve as a prognostic biomarker for milder forms of NCI, evidenced by its ability to predict later NCI in higher-order cognitive domains with regression coefficients (i.e., r) greater than 0.8. Thus, PPI heralds an opportunity for the development of a brief, noninvasive diagnostic and promising prognostic biomarker for milder forms of NCI in the post-cART era.
Collapse
|