1
|
Sun J, Sha M, Zhou J, Huang Y. Quercetin affects apoptosis and autophagy in pediatric acute myeloid leukaemia cells by inhibiting PI3K/AKT signaling pathway activation through regulation of miR-224-3p/PTEN axis. BMC Cancer 2025; 25:318. [PMID: 39984900 PMCID: PMC11843760 DOI: 10.1186/s12885-025-13709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
OBJECTIVE The aim of this study was to investigate the mechanism by which quercetin (Que) affects apoptosis and autophagy in pediatric acute myeloid leukaemia (AML) cells by inhibiting the activation of the PI3K/AKT signaling pathway through the regulation of the miR-224-3p/PTEN axis. METHODS Blood samples were collected from AML children and healthy volunteers. miR-224-3p and PTEN expression levels were measured. AML cells were pre-treated with Que. MiR-224-3p and PTEN expression levels in AML cells were altered via plasmid transfection. After intervention, PI3K/AKT phosphorylation, AML cell proliferation and apoptosis, concentrations of interleukin-1 β (IL-1β) and tumor necrosis factor-α (TNF-α) in AML cell culture supernatant, apoptosis-related genes Bax and Bcl-2, and autophagy markers LC3-I and LC3-II were tested. The targeting relationship between miR-224-3p and PTEN was identified. RESULTS MiR-224-3p expression was elevated in AML children, while PTEN was decreased. Que was available to accelerate AML cell apoptosis and restrain its autophagy. Que inhibited miR-224-3p expression and promoted PTEN expression. Upregulating miR-224-3p or downregulating PTEN weakened the effect of Que on AML cell apoptosis and autophagy. MiR-224-3p negatively modulated PTEN expression. Up-regulation of PTEN reversed the effects of up-regulation of miR-224-3p on apoptosis and autophagy in AML cells. In addition, Que inhibited PI3K/AKT signaling pathway activation, while up-regulation of miR-224-3p or down-regulation of PTEN could attenuate the inhibitory effect of Que on PI3K/AKT signaling pathway. Moreover, up-regulation of PTEN reversed the effect of up-regulation of miR-224-3p on the PI3K/AKT signaling pathway. CONCLUSION Que affects apoptosis and autophagy in pediatric AML cells by inhibiting PI3K/AKT signaling pathway activation through regulation of miR-224-3p/PTEN axis.
Collapse
MESH Headings
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- PTEN Phosphohydrolase/metabolism
- PTEN Phosphohydrolase/genetics
- Autophagy/drug effects
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Apoptosis/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction/drug effects
- Child
- Quercetin/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Male
- Female
- Child, Preschool
- Cell Proliferation/drug effects
- Cell Line, Tumor
Collapse
Affiliation(s)
- Jing Sun
- Department of Pediatrics, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, No.366, Taihu Road, Medical Hi-Tech Zone, Taizhou, Jiangsu, 225316, China.
| | - Min Sha
- Department of Central Laboratory, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, Taizhou, Jiangsu, 225316, China
| | - Jing Zhou
- Department of Oncology, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, Taizhou, Jiangsu, 225316, China
| | - Yun Huang
- Department of Pediatrics, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, No.366, Taihu Road, Medical Hi-Tech Zone, Taizhou, Jiangsu, 225316, China
| |
Collapse
|
2
|
Ghofrani-Shahpar M, Pakravan K, Razmara E, Amooie F, Mahmoudian M, Heshmati M, Babashah S. Cancer-associated fibroblasts drive colorectal cancer cell progression through exosomal miR-20a-5p-mediated targeting of PTEN and stimulating interleukin-6 production. BMC Cancer 2024; 24:400. [PMID: 38561726 PMCID: PMC10983759 DOI: 10.1186/s12885-024-12190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND This study evaluated the clinical relevance of a set of five serum-derived circulating microRNAs (miRNAs) in colorectal cancer (CRC). Additionally, we investigated the role of miR-20a-5p released by exosomes derived from cancer-associated fibroblasts (CAFs) in the context of CRC. METHODS The expression levels of five circulating serum-derived miRNAs (miR-20a-5p, miR-122-5p, miR-139-3p, miR-143-5p, and miR-193a-5p) were quantified by real-time quantitative PCR (RT-qPCR), and their associations with clinicopathological characteristics in CRC patients were assessed. The diagnostic accuracy of these miRNAs was determined through Receiver Operating Characteristic (ROC) curve analysis. CAFs and normal fibroblasts (NFs) were isolated from tissue samples, and subsequently, exosomes derived from these cells were isolated and meticulously characterized using electron microscopy and Western blotting. The cellular internalization of fluorescent-labeled exosomes was visualized by confocal microscopy. Gain- and loss-of-function experiments were conducted to elucidate the oncogenic role of miR-20a-5p transferred by exosomes derived from CAFs in CRC progression. The underlying mechanisms were uncovered through luciferase reporter assay, Western blotting, enzyme-linked immunosorbent assays, as well as proliferation and migration assays. RESULTS The expression levels of serum-derived circulating miR-20a-5p and miR-122-5p were significantly higher in CRC and were positively correlated with advanced stages of tumorigenesis and lymph node metastasis (LNM). In contrast, circulating miR-139-3p, miR-143-5p, and miR-193a-5p were down-regulated in CRC and associated with early tumorigenesis. Except for miR-139-3p, they showed a negative correlation with LNM status. Among the candidate miRNAs, significantly elevated levels of miR-20a-5p were observed in both cellular and exosomal fractions of CAFs. Our findings indicated that miR-20a-5p induces the expression of EMT markers, partly by targeting PTEN. Exosomal miR-20a secreted by CAFs emerged as a key factor enhancing the proliferation and migration of CRC cells. The inhibition of miR-20a impaired the proliferative and migratory potential of CAF-derived exosomes in SW480 CRC cells, suggesting that the oncogenic effects of CAF-derived exosomes are mediated through the exosomal transfer of miR-20a. Furthermore, exosomes originating from CAFs induced increased nuclear translocation of the NF-kB p65 transcription factor in SW480 CRC cells, leading to increased interleukin-6 (IL-6) production. CONCLUSIONS We established a set of five circulating miRNAs as a non-invasive biomarker for CRC diagnosis. Additionally, our findings shed light on the intricate mechanisms underpinning the oncogenic impacts of CAF-derived exosomes and underscore the pivotal role of miR-20a-5p in CRC progression.
Collapse
Affiliation(s)
- Mahsa Ghofrani-Shahpar
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Faezeh Amooie
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Mojdeh Mahmoudian
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Heshmati
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Manoochehrabadi S, Talebi M, Pashaiefar H, Ghafouri-Fard S, Vaezi M, Omrani MD, Ahmadvand M. Upregulation of lnc-FOXD2-AS1, CDC45, and CDK1 in patients with primary non-M3 AML is associated with a worse prognosis. Blood Res 2024; 59:4. [PMID: 38485838 PMCID: PMC10903518 DOI: 10.1007/s44313-024-00002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/03/2024] [Indexed: 03/18/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy with an unfavorable outcome. The present research aimed to identify novel biological targets for AML diagnosis and treatment. In this study, we performed an in-silico method to identify antisense RNAs (AS-RNAs) and their related co-expression genes. GSE68172 was selected from the AML database of the Gene Expression Omnibus and compared using the GEO2R tool to find DEGs. Antisense RNAs were selected from all the genes that had significant expression and a survival plot was drawn for them in the GEPIA database, FOXD2-AS1 was chosen for further investigation based on predetermined criteria (logFC ≥|1| and P < 0.05) and its noteworthy association between elevated expression level and a marked reduction in the overall survival (OS) in patients diagnosed with AML. The GEPIA database was utilized to investigate FOXD2-AS1-related co-expression and similar genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and gene ontology (GO) function analysis of the mentioned gene lists were performed using the DAVID database. The protein-protein interaction (PPI) network was then constructed using the STRING database. Hub genes were screened using Cytoscape software. Pearson correlation analysis was conducted using the GEPIA database to explore the relationship between FOXD2-AS1 and the hub genes. The transcription of the selected coding and non-coding genes, including FOXD2-AS1, CDC45, CDC20, CDK1, and CCNB1, was validated in 150 samples, including 100 primary AML non-M3 blood samples and 50 granulocyte colony stimulating factor (G-CSF)-mobilized healthy donors, using quantitative Real-Time PCR (qRT-PCR). qRT-PCR results displayed significant upregulation of lnc-FOXD2-AS1, CDC45, and CDK1 in primary AML non-M3 blood samples compared to healthy blood samples (P = 0.0032, P = 0.0078, and P = 0.0117, respectively). The expression levels of CDC20 and CCNB1 were not statistically different between the two sets of samples (P = 0.8315 and P = 0.2788, respectively). We identified that AML patients with upregulation of FOXD2-AS1, CDK1, and CDC45 had shorter overall survival (OS) and Relapse-free survival (RFS) compared those with low expression of FOXD2-AS1, CDK1, and CDC45. Furthermore, the receiver operating characteristic (ROC) curve showed the potential biomarkers of lnc -FOXD2-AS1, CDC45, and CDK1 in primary AML non-M3 blood samples. This research proposed that the dysregulation of lnc-FOXD2-AS1, CDC45, and CDK1 can contribute to both disease state and diagnosis as well as treatment. The present study proposes the future evolution of the functional role of lnc-FOXD2-AS1, CDC45, and CDK1 in AML development.
Collapse
Affiliation(s)
- Saba Manoochehrabadi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Talebi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Pashaiefar
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Hematology and Cell Therapy, Research Institute for Oncology, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Hematology and Cell Therapy, Research Institute for Oncology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Hematology and Cell Therapy, Research Institute for Oncology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
An Updated Review of Contribution of Long Noncoding RNA-NEAT1 to the Progression of Human Cancers. Pathol Res Pract 2023; 245:154380. [PMID: 37043964 DOI: 10.1016/j.prp.2023.154380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
Long non-coding RNAs (lncRNAs) present pivotal roles in cancer tumorigenesis and progression. Recently, nuclear paraspeckle assembly transcript 1 (NEAT1) as a lncRNA has been shown to mediate cell proliferation, migration, and EMT in tumor cells. NEAT1 by targeting several miRNAs/mRNA axes could regulate cancer cell behavior. Therefore, NEAT1 may function as a potent biomarker for the prediction and treatment of some human cancers. In this review, we summarized various NEAT1-related signaling pathways that are critical in cancer initiation and progression.
Collapse
|
5
|
Ghazimoradi MH, Karimpour-Fard N, Babashah S. The Promising Role of Non-Coding RNAs as Biomarkers and Therapeutic Targets for Leukemia. Genes (Basel) 2023; 14:131. [PMID: 36672872 PMCID: PMC9859176 DOI: 10.3390/genes14010131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Early-stage leukemia identification is crucial for effective disease management and leads to an improvement in the survival of leukemia patients. Approaches based on cutting-edge biomarkers with excellent accuracy in body liquids provide patients with the possibility of early diagnosis with high sensitivity and specificity. Non-coding RNAs have recently received a great deal of interest as possible biomarkers in leukemia due to their participation in crucial oncogenic processes such as proliferation, differentiation, invasion, apoptosis, and their availability in body fluids. Recent studies have revealed a strong correlation between leukemia and the deregulated non-coding RNAs. On this basis, these RNAs are also great therapeutic targets. Based on these advantages, we tried to review the role of non-coding RNAs in leukemia. Here, the significance of several non-coding RNA types in leukemia is highlighted, and their potential roles as diagnostic, prognostic, and therapeutic targets are covered.
Collapse
Affiliation(s)
- Mohammad H. Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Naeim Karimpour-Fard
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| |
Collapse
|
6
|
Rafiee R, Razmara E, Motavaf M, Mossahebi-Mohammadi M, Khajehsharifi S, Rouhollah F, Babashah S. Circulating serum miR-1246 and miR-1229 as diagnostic biomarkers in colorectal carcinoma. J Cancer Res Ther 2022; 18:S383-S390. [PMID: 36510992 DOI: 10.4103/jcrt.jcrt_752_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers worldwide. Although colonoscopy is considered as the "Gold Standard" technique to detect CRC, its application is invasive and cost incurred. Thus, noninvasive or minimally invasive approaches are of utmost importance. The aberrant expression of some microRNAs (miRNAs, miRs) has been suggested in association with CRC pathogenesis. This study aimed to validate if circulating serum miR-1229 and miR-1246 are diagnostic biomarkers for CRC. Materials and Methods Serum samples were isolated from 45 CRC patients and also 45 healthy controls (HC). The expression levels of circulating serum-derived miR-1229 and miR-1246 were evaluated by quantitative real-time polymerase chain reaction. Receiver operating characteristic (ROC) curves were constructed to evaluate the CRC diagnostic accuracy of selected miRNAs. Furthermore, the association of candidate miRNAs and clinicopathological characteristics were evaluated. Functional enrichment of the candidate miRNAs was applied using in silico tools. Results The expression of miR-1229 and miR-1246 was significantly higher in CRC patients than HC (P < 0.0001) and also was found in association with lymph node metastasis (P < 0.05). We demonstrated a significant up-regulation of serum-derived miR-1246 in advanced tumor-node-metastasis stage III of CRC patients (P < 0.05). Areas under the ROC curve of miR-1229 and miR-1246 were 0.81 and 0.84, respectively (P < 0.0001). Conclusion We confirmed the capability of circulating serum miR-1229 and miR-1246 as novel diagnostic biomarkers for CRC.
Collapse
Affiliation(s)
- Reihaneh Rafiee
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, TarbiatModares University, Tehran, Iran
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Mossahebi-Mohammadi
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | | | - Fatemeh Rouhollah
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Lin J, Yang Z, Wang L, Xing D, Lin J. Global research trends in extracellular vesicles based on stem cells from 1991 to 2021: A bibliometric and visualized study. Front Bioeng Biotechnol 2022; 10:956058. [PMID: 36110319 PMCID: PMC9468424 DOI: 10.3389/fbioe.2022.956058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: With the development of extracellular vesicles (EVs) based on stem cells research all over the world, our present study was aiming to discover the global trends in this field. Methods: All publications related to EVs based on stem cells from 1991 to 2021 were collected from the Science Citation Index-Expanded of Web of Science Subsequently, the data were evaluated using the bibliometric methodology. In terms of visualized study, the VOS viewer software was performed to investigate the bibliographic coupling, co-citation, co-authorship, and co-occurrence trends, and last for the publication's trends involved in the field of EVs based on stem cells. Results: A total of 8,208 publications were retrieved and the relative number of global publications and research interests were increasing every year especially in recent 5 years. China rank top one in terms of total publications, prolific authors, and funds, whereas the USA made the greatest contributions with the most total citations and highest H-index to the global research. Stem cell research therapy contributed the highest publications, whereas the journal of PLOS ONE showed the best total link strength. The Shanghai Jiao Tong University, University of California System, and Harvard University were the most contributive institutions. The global studies could be divided into six clusters as follows: cancer research, musculoskeletal system research, respiratory system research, urinary system and endocrine system research, nerve system research, and cardiovascular system research. All the directions were predicted to still hotspots in near future researches in this field. Conclusion: The total number of publications about EVs based stem cells would be increasing according to the current global trends. China and the USA was the largest contributors in this field. Further efforts should be put in the directions of cancer research, musculoskeletal system research, respiratory system research, urinary system and endocrine system research, nerve system research, as well was cardiovascular system research in this field of EVs based stem cells.
Collapse
Affiliation(s)
- Jianjing Lin
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhen Yang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| | - Li Wang
- Department of Biomedical Engineering, Institute of Future Technology, Peking University, Beijing, China
| | - Dan Xing
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| | - Jianhao Lin
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| |
Collapse
|
8
|
Khashkhashi Moghadam S, Bakhshinejad B, Khalafizadeh A, Mahmud Hussen B, Babashah S. Non-coding RNA-associated competitive endogenous RNA regulatory networks: Novel diagnostic and therapeutic opportunities for hepatocellular carcinoma. J Cell Mol Med 2021; 26:287-305. [PMID: 34907642 PMCID: PMC8743668 DOI: 10.1111/jcmm.17126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC), as the most prevalent liver malignancy, is annually diagnosed in more than half a million people worldwide. HCC is strongly associated with hepatitis B and C viral infections as well as alcohol abuse. Obesity and nonalcoholic fatty liver disease (NAFLD) also significantly enhance the risk of liver cancer. Despite recent improvements in therapeutic approaches, patients diagnosed in advanced stages show poor prognosis. Accumulating evidence provides support for the regulatory role of non-coding RNAs (ncRNAs) in cancer. There are a variety of reports indicating the regulatory role of microRNAs (miRNAs) in different stages of HCC. Long non-coding RNAs (LncRNAs) exert their effects by sponging miRNAs and controlling the expression of miRNA-targeted genes. Circular RNAs (circRNAs) perform their biological functions by acting as transcriptional regulators, miRNA sponges and protein templates. Diverse studies have illustrated that dysregulation of competing endogenous RNA networks (ceRNETs) is remarkably correlated with HCC-causing diseases such as chronic viral infections, nonalcoholic steatohepatitis and liver fibrosis/cirrhosis. The aim of the current article was to provide an overview of the role and molecular mechanisms underlying the function of ceRNETs that modulate the characteristics of HCC such as uncontrolled cell proliferation, resistance to cell death, metabolic reprogramming, immune escape, angiogenesis and metastasis. The current knowledge highlights the potential of these regulatory RNA molecules as novel diagnostic biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Sadegh Babashah
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.,Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Rahnama S, Bakhshinejad B, Farzam F, Bitaraf A, Ghazimoradi MH, Babashah S. Identification of dysregulated competing endogenous RNA networks in glioblastoma: A way toward improved therapeutic opportunities. Life Sci 2021; 277:119488. [PMID: 33862117 DOI: 10.1016/j.lfs.2021.119488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022]
Abstract
Glioblastoma is recognized as one of the leading causes of death worldwide. Although there have been considerable advancements in understanding the causative molecular mechanisms of this malignancy, effective therapeutic strategies are still in limited use. It has been revealed that non-coding RNAs (ncRNAs) play critical roles in glioblastoma development, while interactions between the regulatory molecules such as long ncRNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs) remain to be fully deciphered. Over the recent years, researchers have discovered a new category of RNA molecules called competing endogenous RNA (ceRNA). This kind of RNA can contribute to molecular interactions in the form of ceRNA networks (ceRNETs). Multiple lines of evidence have demonstrated that dysregulation of various ceRNA networks is involved in glioblastoma development. Therefore, gaining insights into these dysregulations might offer potential for the early diagnosis of glioblastoma patients and identification of efficient therapeutic targets. In this review, we provide an overview of recent discoveries on ceRNA networks and the involvement of dysregulated networks in posing limitations to temozolomide therapy. We also describe signaling pathways relevant to the progression of glioblastoma.
Collapse
Affiliation(s)
- Saghar Rahnama
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Mahdloo T, Sahami P, Ramezani R, Jafarinia M, Goudarzi H, Babashah S. Up-regulation of miR-155 potentiates CD34+ CML stem/progenitor cells to escape from the growth-inhibitory effects of TGF-ß1 and BMP signaling. EXCLI JOURNAL 2021; 20:748-763. [PMID: 33907541 PMCID: PMC8073837 DOI: 10.17179/excli2021-3404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
microRNAs (miRNAs or miRs) play key roles in different stages of chronic myeloid leukemia (CML) pathogenesis. The present study aimed to demonstrate whether miR-155 enables CD34+ CML cells to escape from the growth-inhibitory effects of TGF-β1 and bone morphogenetic protein (BMP) signaling. Among differentially expressed miRNAs in CD34+ CML cells, miR-155 was highly up-regulated. QRT-PCR revealed an inverse correlation between miR-155 and two key members of the TGF-β pathway-TGF-βR2 and SMAD5. Results showed that SMAD5 is not only up-regulated through BMPs treatment, but recombinant TGF-β1 can also induce SMAD5 in CML cells. We also demonstrated that TGF-β1-mediated phosphorylation of SMAD1/5 was abolished by pre-treatment with the blocking TGF-βR2 antibody, suggesting a possible involvement of TGF-βR2. Additionally, overexpression of miR-155 significantly promoted the proliferation rate of CD34+ CML cells. Results showed that siRNA-mediated knockdown of SMAD5 had a promoting effect on CD34+ CML cell proliferation, suggesting that SMAD5 knock-down recapitulates the proliferative effects of miR-155. Importantly, TGF-β1 and BMP2/4 treatment had inhibitory effects on cell proliferation; however, miR-155 overexpression enabled CD34+ CML cells to evade the anti-proliferative effects of TGF-β1 and BMPs. Consistently, down-regulation of miR-155 augmented the promoting effects of TGF-β1 and BMP signaling on inducing apoptosis in CD34+ CML stem cells. Our findings demonstrated that targeting of SMAD5 and TGF-βR2 links miR-155 to TGF-β signaling in CML. Overexpression of miR-155 enables CD34+ CML cells to evade growth-inhibitory effects of the TGF-β1 and BMP signaling, providing new perspectives for miR-155 as a therapeutic target for CML.
Collapse
Affiliation(s)
- Touba Mahdloo
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Marvdasht, Iran
| | - Pantea Sahami
- Department of Biomedical Sciences, Women Research Center, University of Alzahra, Tehran, Iran
| | - Reihaneh Ramezani
- Department of Biomedical Sciences, Women Research Center, University of Alzahra, Tehran, Iran
| | - Mojtaba Jafarinia
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Marvdasht, Iran
| | - Hamedreza Goudarzi
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Marvdasht, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
11
|
Non-coding RNAs underlying chemoresistance in gastric cancer. Cell Oncol (Dordr) 2020; 43:961-988. [PMID: 32495294 DOI: 10.1007/s13402-020-00528-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major health issue in the Western world. Current clinical imperatives for this disease include the identification of more effective biomarkers to detect GC at early stages and enhance the prevention and treatment of metastatic and chemoresistant GC. The advent of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long-non coding RNAs (lncRNAs), has led to a better understanding of the mechanisms by which GC cells acquire features of therapy resistance. ncRNAs play critical roles in normal physiology, but their dysregulation has been detected in a variety of cancers, including GC. A subset of ncRNAs is GC-specific, implying their potential application as biomarkers and/or therapeutic targets. Hence, evaluating the specific functions of ncRNAs will help to expand novel treatment options for GC. CONCLUSIONS In this review, we summarize some of the well-known ncRNAs that play a role in the development and progression of GC. We also review the application of such ncRNAs in clinical diagnostics and trials as potential biomarkers. Obviously, a deeper understanding of the biology and function of ncRNAs underlying chemoresistance can broaden horizons toward the development of personalized therapy against GC.
Collapse
|
12
|
Rahmani A, Saleki K, Javanmehr N, Khodaparast J, Saadat P, Nouri HR. Mesenchymal stem cell-derived extracellular vesicle-based therapies protect against coupled degeneration of the central nervous and vascular systems in stroke. Ageing Res Rev 2020; 62:101106. [PMID: 32565329 DOI: 10.1016/j.arr.2020.101106] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
Stem cell-based treatments have been suggested as promising candidates for stroke. Recently, mesenchymal stem cells (MSCs) have been reported as potential therapeutics for a wide range of diseases. In particular, clinical trial studies have suggested MSCs for stroke therapy. The focus of MSC treatments has been directed towards cell replacement. However, recent research has lately highlighted their paracrine actions. The secretion of extracellular vesicles (EVs) is offered to be the main therapeutic mechanism of MSC therapy. However, EV-based treatments may provide a wider therapeutic window compared to tissue plasminogen activator (tPA), the traditional treatment for stroke. Exosomes are nano-sized EVs secreted by most cell types, and can be isolated from conditioned cell media or body fluids such as plasma, urine, and cerebrospinal fluid (CSF). Exosomes apply their effects through targeting their cargos such as microRNAs (miRs), DNAs, messenger RNAs, and proteins at the host cells, which leads to a shift in the behavior of the recipient cells. It has been indicated that exosomes, in particular their functional cargoes, play a significant role in the coupled pathogenesis and recovery of stroke through affecting the neurovascular unit (NVU). Therefore, it seems that exosomes could be utilized as diagnostic and therapeutic tools in stroke treatment. The miRs are small endogenous non-coding RNA molecules which serve as the main functional cargo of exosomes, and apply their effects as epigenetic regulators. These versatile non-coding RNA molecules are involved in various stages of stroke and affect stroke-related factors. Moreover, the involvement of aging-induced changes to specific miRs profile in stroke further highlights the role of miRs. Thus, miRs could be utilized as diagnostic, prognostic, and therapeutic tools in stroke. In this review, we discuss the roles of stem cells, exosomes, and their application in stroke therapy. We also highlight the usage of miRs as a therapeutic choice in stroke therapy.
Collapse
|
13
|
Masoumi-Dehghi S, Babashah S, Sadeghizadeh M. microRNA-141-3p-containing small extracellular vesicles derived from epithelial ovarian cancer cells promote endothelial cell angiogenesis through activating the JAK/STAT3 and NF-κB signaling pathways. J Cell Commun Signal 2020; 14:233-244. [PMID: 32034654 DOI: 10.1007/s12079-020-00548-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Paracrine signaling between tumor and surrounding stromal cells is critical for the maintenance of tumor microenvironment during ovarian cancer progression. Small extracellular vesicles (sEVs; exosomes in particular) are nano-sized vesicles secreted actively by many cells including tumor cells and are found to have fundamental roles in intercellular communication through shuttling functional RNAs. Although microRNAs (also called miRNAs or miRs), small non-coding RNAs regulating gene expression, are selectively accumulated in tumor sEVs and can mediate intercellular communication, the exact biological mechanisms underlying the functions of exosomal miRNAs in ovarian tumor angiogenesis remain unclear. In this study, sEVs were isolated from conditioned medium of the human ovarian carcinoma cell line SKOV-3 using ExoQuick Exosome Precipitation Solution, and characterized by scanning electron microscopy, dynamic light scattering, and immunoblotting. To elucidate the possible paracrine effects on ovarian tumor cell-derived sEVs (TD-sEVs), we investigated the angiogenesis-related signaling events triggered by TD-sEVs in endothelial cells. Due to the possible role in ovarian tumor pathogenesis, we focused on miR-141-3p which was detected to be enriched in TD-sEVs compared with their corresponding donor cells. We identified that sEV transfer of miR-141-3p considerably reduced the expression levels of cytokine-inducible suppressors of cytokine signaling (SOCS)-5 leading to up-regulated JAK-STAT3 pathway in endothelial cells. We also observed that sEV-shuttled miR-141-3p may up-regulate the expression of VEGFR-2 in endothelial cells which leads to promoting endothelial cell migration and angiogenesis. The putative role of miR-141-3p shuttled by TD-sEVs in regulating VEGFR-2 expression was demonstrated by the ability of anti-miR-141-3p to rescue the promoting effects of TD-sEVs on the expression of VEGFR-2 in endothelial cells. Our results also revealed that TD-sEVs trigger the intracellular reactive oxygen species (ROS)-dependent activation of NF-κB signaling in endothelial cells. Taken together, our findings propose a novel model in which sEV transfer of epithelial ovarian cancer-secreted miR-141-3p plays as a significant mediator of intercellular communication, promoting endothelial cell angiogenesis.
Collapse
Affiliation(s)
- Sajjad Masoumi-Dehghi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
14
|
Bitaraf A, Babashah S, Garshasbi M. Aberrant expression of a five-microRNA signature in breast carcinoma as a promising biomarker for diagnosis. J Clin Lab Anal 2020; 34:e23063. [PMID: 31595567 PMCID: PMC7031575 DOI: 10.1002/jcla.23063] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignancy among females with dismal quality of life in patients. It has been proven that epigenetic factors, especially microRNAs, are involved in breast carcinogenesis and progression. This study aimed to assess the expression and clinical performances of a five-microRNA signature (miR-127-3p, miR-133a-3p, miR-155-5p, miR-199b-5p, and miR-342-5p) in breast cancer and adjacent normal tissues to identify a potential biomarker for BC and investigate the relationship between their expression and clinicopathological features of BC patients as well. METHODS In this case-control investigation, we recruited 50 pairs of tumor and matched non-tumor surgical specimens from patients diagnosed with BC. Expression levels of miR-127-3p, miR-133a-3p, miR-155-5p, miR-199b-5p, and miR-342-5p were measured in BC and adjacent normal tissues by RT-qPCR. RESULTS We found that miR-127-3p, miR-133a-3p, miR-199b-5p, and miR-342-5p were significantly down-regulated, while miR-155-5p was significantly up-regulated in BC tumor tissues compared with the corresponding adjacent normal tissues. The decreased expression of miR-127-3p, miR-133a-3p, miR-342-5p, and up-regulation of miR-155-5p showed a significant correlation with disease stage. We also found a significant down-regulation of miR-127-3p, miR-199b-5p, and miR-342-5p compared in HER-2-negative patients. Our results indicated that miR-155-5p had a higher expression level in HER-2-positive patients. Receiver operating characteristic (ROC) curve analysis demonstrated that all these five microRNAs can serve as potential biomarkers to distinguish between tumor and non-tumor breast tissue samples. CONCLUSIONS The present findings suggested that dysregulation of this five-miRNA signature might be considered as a promising and functional biomarker for BC diagnosis.
Collapse
Affiliation(s)
- Amirreza Bitaraf
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Masoud Garshasbi
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
15
|
Rawoof A, Swaminathan G, Tiwari S, Nair RA, Dinesh Kumar L. LeukmiR: a database for miRNAs and their targets in acute lymphoblastic leukemia. Database (Oxford) 2020; 2020:baz151. [PMID: 32128558 PMCID: PMC7054207 DOI: 10.1093/database/baz151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/16/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is one of the most common hematological malignancies in children. Recent studies suggest the involvement of multiple microRNAs in the tumorigenesis of various leukemias. However, until now, no comprehensive database exists for miRNAs and their cognate target genes involved specifically in ALL. Therefore, we developed 'LeukmiR' a dynamic database comprising in silico predicted microRNAs, and experimentally validated miRNAs along with the target genes they regulate in mouse and human. LeukmiR is a user-friendly platform with search strings for ALL-associated microRNAs, their sequences, description of target genes, their location on the chromosomes and the corresponding deregulated signaling pathways. For the user query, different search modules exist where either quick search can be carried out using any fuzzy term or by providing exact terms in specific modules. All entries for both human and mouse genomes can be retrieved through multiple options such as miRNA ID, their accession number, sequence, target genes, Ensemble-ID or Entrez-ID. User can also access miRNA: mRNA interaction networks in different signaling pathways, the genomic location of the targeted regions such as 3'UTR, 5'UTR and exons with their gene ontology and disease ontology information in both human and mouse systems. Herein, we also report 51 novel microRNAs which are not described earlier for ALL. Thus, LeukmiR database will be a valuable source of information for researchers to understand and investigate miRNAs and their targets with diagnostic and therapeutic potential in ALL. Database URL: http://tdb.ccmb.res.in/LeukmiR/.
Collapse
Affiliation(s)
- Abdul Rawoof
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Guruprasadh Swaminathan
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Shrish Tiwari
- Bioinformatics, CSIR-Centre for Cellular and Molecular Biology, (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Rekha A Nair
- Department of Pathology, Regional Cancer Centre (RCC), Medical College Campus, Trivandrum, 695011, India
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB), Uppal Road, Hyderabad, 500007, India
| |
Collapse
|
16
|
Zamanian Azodi M, Rezaei-Tavirani M, Rezaei-Tavirani M, Robati RM. Gestational Diabetes Mellitus Regulatory Network Identifies hsa-miR-145-5p and hsa-miR-875-5p as Potential Biomarkers. Int J Endocrinol Metab 2019; 17:e86640. [PMID: 31497041 PMCID: PMC6678685 DOI: 10.5812/ijem.86640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/14/2019] [Accepted: 04/17/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is pregnancy-related diabetes with vital risks for both mother and the fetus. Molecular studies represent one of the popular approaches for investigating mechanisms associated with the disease nature. One of which is through interaction network analysis via Cytoscape V. 3.6.1. METHODS In this study, the microRNA (miRNA) expression array of GSE98043 from gene expression omnibus (GEO) database was retrieved and screened. We identified 12 differentially expressed (DE) miRNAs (P ≤ 0.05) and nine target hub-bottleneck genes (disease score > 1) for GDM based on miRNA-target interactions created via plugin ClueGO + Cluepedia + STRING. RESULTS MiRNA-target information showed that the miRNAs are mostly up-regulated and hsa-miR-145-5p and hsa-miR-875-5p targets the most genes. Among target genes, IL6, GCG, APOB, and ALB have the highest associations with DE-miRNAs. Gene ontology analysis based on biological processes identification via ClueGO + CluePedia, in addition, showed that target hub-bottlenecks are mainly related to metabolism functions and any changes in this regulatory network could impose fundamental alterations in these processes. CONCLUSIONS It can be concluded that via these introduced miRNAs and their targets, the molecular tests for diagnosis and treatment of GDM can be improved after applying validation approaches.
Collapse
Affiliation(s)
- Mona Zamanian Azodi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Reza Mahmoud Robati
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Fu L, Qi J, Gao X, Zhang N, Zhang H, Wang R, Xu L, Yao Y, Niu M, Xu K. High expression of miR‐338 is associated with poor prognosis in acute myeloid leukemia undergoing chemotherapy. J Cell Physiol 2019; 234:20704-20712. [PMID: 30997674 DOI: 10.1002/jcp.28676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Lin Fu
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
- Department of Hematology Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
- Department of Hematology The Second Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Translational Medicine Center The Second Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Jialei Qi
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
- Department of Hematology Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| | - Xiang Gao
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
- Department of Hematology Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| | - Ninghan Zhang
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
| | - Huihui Zhang
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
| | - Rong Wang
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
| | - Linyan Xu
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
- Department of Hematology Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| | - Yao Yao
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
- Department of Hematology Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| | - Mingshan Niu
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
- Department of Hematology Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| | - Kailin Xu
- Blood Diseases Institute Affiliated Hospital of Xuzhou Medical University Xuzhou Medical University Xuzhou Jiangsu China
- Department of Hematology Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China
| |
Collapse
|
18
|
Lavrov AV, Chelysheva EY, Adilgereeva EP, Shukhov OA, Smirnikhina SA, Kochergin-Nikitsky KS, Yakushina VD, Tsaur GA, Mordanov SV, Turkina AG, Kutsev SI. Exome, transcriptome and miRNA analysis don't reveal any molecular markers of TKI efficacy in primary CML patients. BMC Med Genomics 2019; 12:37. [PMID: 30871622 PMCID: PMC6416830 DOI: 10.1186/s12920-019-0481-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Approximately 5-20% of chronic myeloid leukemia (CML) patients demonstrate primary resistance or intolerance to imatinib. None of the existing predictive scores gives a good prognosis of TKI efficacy. Gene polymorphisms, expression and microRNAs are known to be involved in the pathogenesis of TKI resistance in CML. The aim of our study is to find new molecular markers of TKI therapy efficacy in CML patients. METHODS Newly diagnosed patients with Ph+ CML in chronic phase were included in this study. Optimal and non-optimal responses to TKI were estimated according to ELN 2013 recommendation. We performed genotyping of selected polymorphisms in 62 blood samples of CML patients, expression profiling of 33 RNA samples extracted from blood and miRNA profiling of 800 miRNA in 12 blood samples of CML patients. RESULTS The frequencies of genotypes at the studied loci did not differ between groups of patients with an optimal and non-optimal response to TKI therapy. Analysis of the expression of 34,681 genes revealed 26 differently expressed genes (p < 0.05) in groups of patients with different TKI responses, but differences were very small and were not confirmed by qPCR. Finally, we did not find difference in miRNA expression between the groups. CONCLUSIONS Using modern high-throughput methods such as whole-exome sequencing, transcriptome and miRNA analysis, we could not find reliable molecular markers for early prediction of TKI efficiency in Ph+ CML patients.
Collapse
Affiliation(s)
- Alexander V Lavrov
- Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, Moscow, Russian Federation, 115522. .,Department of Molecular and Cellular Genetics, State Budgetary Educational Institution of Higher Professional Education "Russian National Research Medical University named after N.I. Pirogov" of Ministry of Health of the Russian Federation, Ostrovityanova str., 1, Moscow, Russian Federation, 117997.
| | - Ekaterina Yu Chelysheva
- Scientific and Advisory Department of Chemotherapy of Myeloproliferative disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Novy Zykovki proezd, 4, Moscow, Russian Federation, 125167
| | - Elmira P Adilgereeva
- Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, Moscow, Russian Federation, 115522
| | - Oleg A Shukhov
- Scientific and Advisory Department of Chemotherapy of Myeloproliferative disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Novy Zykovki proezd, 4, Moscow, Russian Federation, 125167
| | - Svetlana A Smirnikhina
- Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, Moscow, Russian Federation, 115522
| | - Konstantin S Kochergin-Nikitsky
- Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, Moscow, Russian Federation, 115522
| | - Valentina D Yakushina
- Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, Moscow, Russian Federation, 115522
| | - Grigory A Tsaur
- Regional Children Hospital 1, S. Deryabinoy str., 32, Ekaterinburg, Russian Federation, 620149.,Research Institute of Medical Cell Technologies, Soboleva str., 25, Ekaterinburg, Russian Federation, 620905.,Federal State Budgetary Educational Institution of Higher Education, Urals State Medical University of the Ministry of Healthcare of the Russian Federation, Repina str., 3, Ekaterinburg, Russian Federation, 620028
| | - Sergey V Mordanov
- Laboratory of Medical Genetics, The Rostov State Medical University, Nahichevansky av., 29, Rostov-on-Don, Russian Federation, 344022
| | - Anna G Turkina
- Scientific and Advisory Department of Chemotherapy of Myeloproliferative disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Novy Zykovki proezd, 4, Moscow, Russian Federation, 125167
| | - Sergey I Kutsev
- Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, Moscow, Russian Federation, 115522.,Department of Molecular and Cellular Genetics, State Budgetary Educational Institution of Higher Professional Education "Russian National Research Medical University named after N.I. Pirogov" of Ministry of Health of the Russian Federation, Ostrovityanova str., 1, Moscow, Russian Federation, 117997
| |
Collapse
|
19
|
Liu Y, Lei P, Qiao H, Sun K, Lu X, Bao F, Yu R, Lian C, Li Y, Chen W, Xue F. miR-9 Enhances the Chemosensitivity of AML Cells to Daunorubicin by Targeting the EIF5A2/MCL-1 Axis. Int J Biol Sci 2019; 15:579-586. [PMID: 30745844 PMCID: PMC6367593 DOI: 10.7150/ijbs.29775] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022] Open
Abstract
Daunorubicin (Dnr) is at the forefront of acute myeloid leukemia (AML) therapy, but drug resistance poses a major threat to treatment success. MicroRNA (miR)-9 has been shown to have a pivotal role in AML development. However, little is known about the role of miR-9 in Dnr resistance in AML. We explored the potential role of miR-9 in Dnr resistance in AML cells and its mechanism of action. AML cell lines with high half-maximal inhibitory concentration to Dnr in vivo had significantly low miR-9 expression. miR-9 overexpresssion sensitized AML cells to Dnr, inhibited cell proliferation, and enhanced the ability of Dnr to induce apoptosis; miR-9 knockdown had the opposite effects. Mechanistic studies demonstrated that eukaryotic translation initiation factor 5A-2 (EIF5A2) was a putative target of miR-9, which was inversely correlated with the expression and role of miR-9 in AML cells. miR-9 improved the anti-tumor effects of Dnr by inhibiting myeloid cell leukemia-1 (MCL-1) expression, which was dependent on downregulation of EIF5A2 expression. These results suggest that miR-9 has an essential role in Dnr resistance in AML cells through inhibition of the EIF5A2/MCL-1 axis in AML cells. Our data highlight the potential application of miR-9 in chemotherapy for AML patients.
Collapse
Affiliation(s)
- Yanhui Liu
- Department of Hemotology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| | - Pingchong Lei
- Department of Hemotology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| | - Hong Qiao
- Baoying Hospital of traditional Chinese Medicine, Yangzhou, Jiangsu, 225800,China
| | - Kai Sun
- Department of Hemotology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| | - Xiling Lu
- Department of Hemotology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| | - Fengchang Bao
- Department of Hemotology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| | - Runhong Yu
- Department of Hemotology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| | - Cheng Lian
- Department of Hemotology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| | - Yao Li
- Department of Hemotology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| | - Wei Chen
- Cancer Institute of Integrated traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Fei Xue
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, PR China
| |
Collapse
|
20
|
Ranjbar R, Karimian A, Aghaie Fard A, Tourani M, Majidinia M, Jadidi-Niaragh F, Yousefi B. The importance of miRNAs and epigenetics in acute lymphoblastic leukemia prognosis. J Cell Physiol 2018; 234:3216-3230. [PMID: 29384211 DOI: 10.1002/jcp.26510] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/25/2018] [Indexed: 12/19/2022]
Abstract
Acute lymphoblastic leukemia (ALL), one of the most common malignant human disorders, originates in different important genetic lesions in T-cell or B-cell progenitors. ALL is a malignant lymphoid progenitor with peak prevalence in children (2-5 years). The rate of survival when one is suffering from ALL depends on various agents including the age of the patient, responses to anti-leukemic therapy, and cell biology. miRNAs and epigenetics are important regulatory factors in the expression of genes. miRNAs are noncoding RNA with inhibitory effectors on specific mRNA. Patterns of DNA methylation are profoundly changed in ALL by epigenetic mechanisms. The deciphering of miRNA and the epigenetic pathogenesis in ALL could revolutionize response to the therapy and outcome, and create an enormous promise for novel approaches to reduce the toxic side-effects of intensive leukemia. Hence, pathogenetic miRNAs and epigenetics leading to the initiation and the progression of ALL are summarized in this review.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Arad Aghaie Fard
- Faculty of Medical Science, Department of Hematology, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Tourani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Zhang R, Tang P, Wang F, Xing Y, Jiang Z, Chen S, Meng X, Liu L, Cao W, Zhao H, Ma P, Chen Y, An C, Sun L. Tumor suppressor miR‐139‐5p targets Tspan3 and regulates the progression of acute myeloid leukemia through the PI3K/Akt pathway. J Cell Biochem 2018; 120:4423-4432. [PMID: 30367526 DOI: 10.1002/jcb.27728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ronghui Zhang
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Ping Tang
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Fang Wang
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Ying Xing
- Academy of Medical Sciences, Zhengzhou University Zhengzhou China
| | - Zhongxing Jiang
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Shaoqian Chen
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Xiaoli Meng
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Linxiang Liu
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Weijie Cao
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Huayan Zhao
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Ping Ma
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Yanli Chen
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Chao An
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Ling Sun
- Department of Hematology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
22
|
Differential expression profiles of miRNAs and correlation with clinical outcomes in acute myeloid leukemia. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Zhang Y, Li L, Yu C, Senyuk V, Li F, Quigley JG, Zhu T, Qian Z. miR-9 upregulation leads to inhibition of erythropoiesis by repressing FoxO3. Sci Rep 2018; 8:6519. [PMID: 29695725 PMCID: PMC5916915 DOI: 10.1038/s41598-018-24628-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are emerging as critical regulators of normal and malignant hematopoiesis. In previous studies of acute myeloid leukemia miR-9 overexpression was commonly observed. Here, we show that ectopic expression of miR-9 in vitro and in vivo significantly blocks differentiation of erythroid progenitor cells with an increase in reactive oxygen species (ROS) production. Consistent with this observation, ROS scavenging enzymes, including superoxide dismutase (Sod2), Catalase (Cat), and glutathine peroxidase (Gpx1), are down-regulated by miR-9. In addition, miR-9 suppresses expression of the erythroid transcriptional regulator FoxO3, and its down-stream targets Btg1 and Cited 2 in erythroid progenitor cells, while expression of a constitutively active form of FoxO3 (FoxO3-3A) reverses miR-9-induced suppression of erythroid differentiation, and inhibits miR-9-induced ROS production. Thus, our findings indicate that aberrant expression of miR-9 blocks erythropoiesis by deregulating FoxO3-mediated pathways, which may contribute to the ineffective erythropoiesis observed in patients with hematological malignancies.
Collapse
Affiliation(s)
- Yunyuan Zhang
- Department of Clinical laboratory, The Affiliated Hospital of Qingdao University Medical College, Qingdao, 266003, China
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Liping Li
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
- Fudan University ZhongShan Hospital, Shanghai, China
| | - Chunjie Yu
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Vitalyi Senyuk
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Fuxing Li
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - John G Quigley
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Tongyu Zhu
- Fudan University ZhongShan Hospital, Shanghai, China
| | - Zhijian Qian
- Department of Medicine and Cancer Research Center, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA.
| |
Collapse
|
24
|
Gong L, Bao Q, Hu C, Wang J, Zhou Q, Wei L, Tong L, Zhang W, Shen Y. Exosomal miR-675 from metastatic osteosarcoma promotes cell migration and invasion by targeting CALN1. Biochem Biophys Res Commun 2018; 500:170-176. [PMID: 29626470 DOI: 10.1016/j.bbrc.2018.04.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
Exosomal microRNAs(miRNAs) transfer from tumor to stromal cells is reportedly associated with cancer progression and metastasis in various epithelial cancers. However, the role of exosomal miRNA in the metastasis of osteosarcoma(OS) -the most common bone malignancy-still largely remains unknown. In this study, we purified exosomes with a median size close to 100 nm from cell culture media as well as patient serum, and proved that exosomes derived from the metastatic, but not the non-metastatic OS cells increase the migration and invasion of non-malignant fibroblast cells (hFOB1.19) in vitro. Furthermore, the differential miRNA cargo between metastatic and non-metastatic OS is identified by small RNA sequencing and RT-PCR validation, we found a highly expression of exosomal, but not cellular miR-675 level in the metastatic OS cell-lines compared with non-metastatic counterparts. Meanwhile, we also found that exosomal miR-675 could down-regulate CALN1 expression in recipient cell, which may influence the invasion and migration of hFOB1.19. Finally, the up regulation serum exosomal miR-675 and down regulation of CALN1 in tumor specimen was also found to be associated with the metastatic phenotype in OS patients. Our findings indicate that the exosomal miR-675 is a gene associated with OS and serum exosomal miR-675 expression may serve as a novel biomarker for the metastasis of OS.
Collapse
Affiliation(s)
- Liangzhi Gong
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, PR China
| | - Qiyuan Bao
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, PR China
| | - Chuanzhen Hu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, PR China
| | - Jun Wang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Shanghai, 200025, PR China
| | - Qi Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Shanghai, 200025, PR China
| | - Li Wei
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Shanghai, 200025, PR China
| | - Lei Tong
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, PR China
| | - Weibin Zhang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, PR China.
| | - Yuhui Shen
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
25
|
Pashaiefar H, Izadifard M, Yaghmaie M, Montazeri M, Gheisari E, Ahmadvand M, Momeny M, Ghaffari SH, Kasaeian A, Alimoghaddam K, Ghavamzadeh A. Low Expression of Long Noncoding RNA IRAIN Is Associated with Poor Prognosis in Non-M3 Acute Myeloid Leukemia Patients. Genet Test Mol Biomarkers 2018; 22:288-294. [PMID: 29634410 DOI: 10.1089/gtmb.2017.0281] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Deregulation of the long noncoding RNA IRAIN has been identified in several cancers. However, the expression pattern of IRAIN and its clinical implication in acute myeloid leukemia (AML) are unknown. The purpose of this study was to investigate the expression status of IRAIN and its clinical significance in non-M3 AML patients. METHODS Quantitative reverse transcription-polymerase chain reaction was performed to examine IRAIN transcript levels in 64 de novo non-M3 AML patients and 51 healthy controls. The association of IRAIN expression with clinicopathological factors was statistically analyzed. RESULTS Compared with the controls, IRAIN was significantly downregulated in non-M3 AML patients (p < 0.001). The median of IRAIN expression divided the non-M3 AML patients into IRAIN low-expressing (IRAINlow) and IRAIN high-expressing (IRAINhigh) groups. The IRAINlow group tended to have higher white blood cell count and blast counts and had markedly shorter overall survival (OS) and relapse-free survival (RFS) (p = 0.044 and 0.009, respectively). In addition, patients with refractory response to chemotherapies and those with subsequent relapse had lower initial IRAIN expression. Multivariate analysis further identified IRAIN transcript levels as an independent prognostic factor for both RFS and OS. CONCLUSIONS Our finding suggests that IRAIN transcript levels may be a useful biomarker for the prognosis of non-M3 AML patients.
Collapse
Affiliation(s)
- Hossein Pashaiefar
- 1 Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Marzieh Izadifard
- 2 Department of Genetics, Payame Noor University of Rey , Tehran, Iran
| | - Marjan Yaghmaie
- 1 Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Maryam Montazeri
- 1 Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Elahe Gheisari
- 1 Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Mohammad Ahmadvand
- 1 Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Majid Momeny
- 1 Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Seyed Hamid Ghaffari
- 1 Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Amir Kasaeian
- 1 Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Kamran Alimoghaddam
- 1 Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Ardeshir Ghavamzadeh
- 1 Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
26
|
Khodadi E, Asnafi AA, Mohammadi-Asl J, Hosseini SA, Malehi AS, Saki N. Evaluation of miR-21 and miR-150 expression in immune thrombocytopenic purpura pathogenesis: a case-control study. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-017-1466-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Cobll1 is linked to drug resistance and blastic transformation in chronic myeloid leukemia. Leukemia 2017; 31:1532-1539. [DOI: 10.1038/leu.2017.72] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/12/2022]
|
28
|
Asnafi AA, Khodadi E, Golchin N, Alghasi A, Tavakolifar Y, Saki N. Association between microRNA-21, microRNA-150, and micro-RNA-451 expression and clinical outcome of patients with acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-016-1437-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Russo A, Caltabiano R, Longo A, Avitabile T, Franco LM, Bonfiglio V, Puzzo L, Reibaldi M. Increased Levels of miRNA-146a in Serum and Histologic Samples of Patients with Uveal Melanoma. Front Pharmacol 2016; 7:424. [PMID: 27895580 PMCID: PMC5108814 DOI: 10.3389/fphar.2016.00424] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022] Open
Abstract
Purpose: To analyze MiRs expression in serum of UM patients, respect to healthy donors, and to compare this data with MiRs expressed in formalin-fixed, paraffin-embedded UM samples. Methods: Expression profile of 754 miRNAs was performed in serum of patients with uveal melanoma who underwent primary enucleation. The level of miRNAs increased in serum was individually analyzed on FFPE UM samples and compared to choroidal melanocytes from unaffected eyes. Results: Fourteen patients with uveal melanoma were included in the study. We found 8 serum miRNAs differentially expressed compared to normal controls: 2 upregulated miRNAs (miRNA-146a, miR-523); 6 downregulated miRNAs (miR-19a, miR-30d, miR-127, miR-451, miR-518f, miR-1274B). When data on upregulated miRNAs were singularly validated only a significant overexpression of miRNA-146a was found. A statistically significant upregulation of miRNA-146a was also found on FFPE UM samples, compared to choroidal melanocytes from unaffected eyes. Conclusions: miRNA-146a is increased in serum of patients with UM and in FFPE tumor samples. Further studies will show if it could be considered a potential marker of UM in the blood.
Collapse
Affiliation(s)
- Andrea Russo
- Department of Ophthalmology, University of Catania Catania, Italy
| | - Rosario Caltabiano
- Unità di Anatomia Patologica, Department Gian Filippo Ingrassia, University of Catania Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, University of Catania Catania, Italy
| | | | - Livio M Franco
- Department of Ophthalmology, University of Catania Catania, Italy
| | | | - Lidia Puzzo
- Unità di Anatomia Patologica, Department Gian Filippo Ingrassia, University of Catania Catania, Italy
| | - Michele Reibaldi
- Department of Ophthalmology, University of Catania Catania, Italy
| |
Collapse
|
30
|
LIN XIAOCONG, XU YONG, SUN GUOPING, WEN JINLI, LI NING, ZHANG YUMING, YANG ZHIGANG, ZHANG HAITAO, DAI YONG. Molecular dysfunctions in acute myeloid leukemia revealed by integrated analysis of microRNA and transcription factor. Int J Oncol 2016; 48:2367-80. [DOI: 10.3892/ijo.2016.3489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 01/19/2016] [Indexed: 11/05/2022] Open
|
31
|
Taucher V, Mangge H, Haybaeck J. Non-coding RNAs in pancreatic cancer: challenges and opportunities for clinical application. Cell Oncol (Dordr) 2016; 39:295-318. [DOI: 10.1007/s13402-016-0275-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2016] [Indexed: 01/17/2023] Open
|
32
|
Wang X, Gardiner EJ, Cairns MJ. Optimal consistency in microRNA expression analysis using reference-gene-based normalization. MOLECULAR BIOSYSTEMS 2016; 11:1235-40. [PMID: 25797570 DOI: 10.1039/c4mb00711e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Normalization of high-throughput molecular expression profiles secures differential expression analysis between samples of different phenotypes or biological conditions, and facilitates comparison between experimental batches. While the same general principles apply to microRNA (miRNA) normalization, there is mounting evidence that global shifts in their expression patterns occur in specific circumstances, which pose a challenge for normalizing miRNA expression data. As an alternative to global normalization, which has the propensity to flatten large trends, normalization against constitutively expressed reference genes presents an advantage through their relative independence. Here we investigated the performance of reference-gene-based (RGB) normalization for differential miRNA expression analysis of microarray expression data, and compared the results with other normalization methods, including: quantile, variance stabilization, robust spline, simple scaling, rank invariant, and Loess regression. The comparative analyses were executed using miRNA expression in tissue samples derived from subjects with schizophrenia and non-psychiatric controls. We proposed a consistency criterion for evaluating methods by examining the overlapping of differentially expressed miRNAs detected using different partitions of the whole data. Based on this criterion, we found that RGB normalization generally outperformed global normalization methods. Thus we recommend the application of RGB normalization for miRNA expression data sets, and believe that this will yield a more consistent and useful readout of differentially expressed miRNAs, particularly in biological conditions characterized by large shifts in miRNA expression.
Collapse
Affiliation(s)
- Xi Wang
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, NSW 2308, Australia.
| | | | | |
Collapse
|
33
|
Gong XC, Xu YQ, Jiang Y, Guan H, Liu HL. Onco-microRNA miR-130b promoting cell growth in children APL by targeting PTEN. ASIAN PAC J TROP MED 2016; 9:265-8. [PMID: 26972399 DOI: 10.1016/j.apjtm.2016.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 12/20/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To study the expression of microRNA-130b (miR-130b) in children acute promyelocytic leukemia (APL) and its role for regulating PTEN expression. METHODS A total of 50 children APL marrow tissues and 15 normal marrow tissues between January and December in 2012 were collected into our study. The expression of miR-130b in APL and normal marrow tissues were detected by quantitative real-time polymerase chain reaction. MiR-130b inhibitor was transfected into HL-60 cells. Cell Counting Kit-8 assay and flow cytometry were used to measure cell proliferation and apoptosis, respectively. The expression of PTEN, a potential target of miR-130b, and its downstream genes, Bcl-2 and Bax, in transformed cells were detected by quantitative real-time polymerase chain reaction and western-blot. RESULTS The expression of miR-130b was significantly higher in children APL marrow tissues than in normal marrow tissues (P < 0.05). Down-regulation of miR-130b could significantly suppress cell proliferation and induce apoptosis in HL-60 cells (P < 0.05). PTEN expression was upregulated when miR-130b was knocking-down (P < 0.05). As downstream genes of PTEN, the expression of Bcl-2 and Bax were regulated as well. CONCLUSIONS MiR-130b is overexpressed in children APL marrow tissues and associated with cell growth. MiR-130b may promote children APL progression by inducing cell proliferation and inhibiting apoptosis.
Collapse
Affiliation(s)
- Xiang-Cui Gong
- Department of Hematology, Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong, 266034, China
| | - Yuan-Qin Xu
- Department of Hematology, Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong, 266034, China
| | - Yan Jiang
- Department of Hematology, Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong, 266034, China
| | - Hui Guan
- Department of Hematology, Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong, 266034, China
| | - Hua-Lin Liu
- Department of Hematology, Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong, 266034, China.
| |
Collapse
|
34
|
Liu L, Chen R, Zhang Y, Fan W, Xiao F, Yan X. Low expression of circulating microRNA-328 is associated with poor prognosis in patients with acute myeloid leukemia. Diagn Pathol 2015; 10:109. [PMID: 26185105 PMCID: PMC4504459 DOI: 10.1186/s13000-015-0345-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 07/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dysregulation of circulating miR-328 has been identified in several tumors and is associated with prognosis of patients. However, the expression pattern of miR-328 and the impact on prognosis has not yet been studied in acute myeloid leukemia (AML). The purpose of this study is to investigate the expression status of miR-328 and its clinical significance in AML patients. METHODS RNA was extracted from plasma of 176 patients with newly diagnosed AML and 70 healthy volunteers. The miR-328 expression was examined by Realtime quantitative PCR. The association of circulating miR-328 expression with clinicopathological factors and prognosis of AML patients was statistically analyzed. RESULTS The expression of miR-328 was significantly downregulated in AML patients (median value 22.99, range: 3.63-242.0) compared with those of healthy controls (median value 89.17, range: 12.05-397.7; P < 0.001), and miR-328 expression was markedly increased in patients after treatment than before (23.40 ± 1.76 vs. 46.61 ± 3.83, P < 0.001). Moreover, low levels of miR-328 were associated with a higher white blood cell count and BM blast count (P = 0.026 and P = 0.003, respectively), and lower hemoglobin and platelet count (P = 0.004 and P = 0.022, respectively). Patients with low miR-328 expression had a relatively poor overall survival (P = 0.022) and shorter relapse-free survival (P = 0.008) than those with high miR-328 expression. In addition, low miR-328 expression was an independent prognostic factors for both OS (P = 0.017) and RFS (P = 0.023). CONCLUSIONS Circulating miR-328 downregulation is a common event and is associated with poor clinical outcome in AML patients.
Collapse
Affiliation(s)
- Li Liu
- Department of Haematology, Tangdu Hospital, Fourth Military Medical University, No.1, Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China.
| | - Ren'an Chen
- Department of Haematology, Tangdu Hospital, Fourth Military Medical University, No.1, Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Yangping Zhang
- Department of Haematology, Tangdu Hospital, Fourth Military Medical University, No.1, Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Wen Fan
- Department of Haematology, Tangdu Hospital, Fourth Military Medical University, No.1, Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Fang Xiao
- Department of Haematology, Tangdu Hospital, Fourth Military Medical University, No.1, Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Xueqian Yan
- Department of Haematology, Tangdu Hospital, Fourth Military Medical University, No.1, Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
| |
Collapse
|
35
|
Immunophenotype, microRNA expression and cytogenetic characterization of acute leukemias of ambiguous lineage. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s00580-015-2134-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Abstract
The 2014 joint meeting of the International Society for Cellular Oncology (ISCO) and the European Workshop on Cytogenetics and Molecular Genetics of Solid Tumors (EWCMST), organized by Nick Gilbert, Juan Cigudosa and Bauke Ylstra, was held from 11 to 14 May in Malaga, Spain. Since the previous meeting in 2012, the ever increasing availability of new sequencing technologies has enabled the analysis of cancer genomes at an increasingly greater detail. In addition to structural changes in the genome (i.e., translocations, deletions, amplifications), frequent mutations in important regulatory genes have been found to occur, as also frequent alterations in a large number of epigenetic factors. The challenge now is to relate structural changes in cancer genomes to the underlying disease mechanisms and to reveal opportunities for the design of novel (targeted) therapies. During the meeting, various topics related to these challenges and opportunities were addressed, including those dealing with functional genomics, genome instability, biomarkers and diagnostics, cancer genetics and epigenomics. Special attention was paid to therapy-driven cancer evolution (keynote lecture) and relationships between DNA repair, cancer and ageing (Prof. Ploem lecture). Based on the information presented at the meeting, several aspects of the cancer genome and its functional implications are provided in this report.
Collapse
|
37
|
Shahjahani M, Khodadi E, Seghatoleslami M, Asl JM, Golchin N, Zaieri ZD, Saki N. Rare Cytogenetic Abnormalities and Alteration of microRNAs in Acute Myeloid Leukemia and Response to Therapy. Oncol Rev 2015; 9:261. [PMID: 26779308 PMCID: PMC4698590 DOI: 10.4081/oncol.2015.261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/06/2014] [Accepted: 11/29/2014] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults, which is heterogeneous in terms of morphological, cytogenetic and clinical features. Cytogenetic abnormalities, including karyotype aberrations, gene mutations and gene expression abnormalities are the most important diagnostic tools in diagnosis, classification and prognosis in acute myeloid leukemias. Based on World Health Organization (WHO) classification, acute myeloid leukemias can be divided to four groups. Due to the heterogeneous nature of AML and since most therapeutic protocols in AML are based on genetic alterations, gathering further information in the field of rare disorders as well as common cytogenetic abnormalities would be helpful in determining the prognosis and treatment in this group of diseases. Recently, the role of microRNAs (miRNAs) in both normal hematopoiesis and myeloid leukemic cell differentiation in myeloid lineage has been specified. miRNAs can be used instead of genes for AML diagnosis and classification in the future, and can also play a decisive role in the evaluation of relapse as well as response to treatment in the patients. Therefore, their use in clinical trials can affect treatment protocols and play a role in therapeutic strategies for these patients. In this review, we have examined rare cytogenetic abnormalities in different groups of acute myeloid leukemias according to WHO classification, and the role of miRNA expression in classification, diagnosis and response to treatment of these disorders has also been dealt with.
Collapse
Affiliation(s)
- Mohammad Shahjahani
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elahe Khodadi
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Seghatoleslami
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Javad Mohammadi Asl
- Department of Medical Genetics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Golchin
- Noor Clinical & Specialty Laboratory, Ahvaz, Iran
| | - Zeynab Deris Zaieri
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
38
|
Butrym A, Rybka J, Baczyńska D, Tukiendorf A, Kuliczkowski K, Mazur G. Expression of microRNA-331 can be used as a predictor for response to therapy and survival in acute myeloid leukemia patients. Biomark Med 2015; 9:453-60. [PMID: 25620533 DOI: 10.2217/bmm.14.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIM Aberrant expression of microRNAs (miRs) has been proved to have a role in acute myeloid leukemias (AML), but there is no information on miR-331 in AML. MATERIALS & METHODS miR-331 expression has been analyzed using reverse-transcription polymerase chain reaction (RT-PCR) in 95 bone marrow specimens from newly diagnosed AML patients in comparison with 20 healthy subjects. RESULTS miR-331 was upregulated in AML patients and its expression seemed to influence remission achieving and death risk. The time of remission duration in patients with complete remission was longer in subjects with miR-331 downregulation after induction chemotherapy. CONCLUSION we showed for the first time that miR-331 higher expression appears to be correlated with worse response to therapy and shorter survival of AML patients.
Collapse
Affiliation(s)
- Aleksandra Butrym
- 2Department of Physiology, Wroclaw Medical University, Chałubinski 10 Str, 50-368 Wroclaw, Poland
| | | | - Dagmara Baczyńska
- 3Department of Forensic Medicine, Molecular Techniques Unit, Wroclaw Medical University, Curie-Sklodowskiej 52 Str, 50-369 Wroclaw, Poland
| | - Andrzej Tukiendorf
- 4Department of Epidemiology, Cancer Center-Institute of Oncology, Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland
| | | | | |
Collapse
|
39
|
Shahjahani M, Mohammadiasl J, Noroozi F, Seghatoleslami M, Shahrabi S, Saba F, Saki N. Molecular basis of chronic lymphocytic leukemia diagnosis and prognosis. Cell Oncol (Dordr) 2015; 38:93-109. [PMID: 25563586 DOI: 10.1007/s13402-014-0215-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUNDS Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in adults and is characterized by a clonal accumulation of mature apoptosis-resistant neoplastic cells. It is also a heterogeneous disease with a variable clinical outcome. Here, we present a review of currently known (epi)genetic alterations that are related to the etiology, progression and chemo-refractoriness of CLL. Relevant literature was identified through a PubMed search (1994-2014) of English-language papers using the terms CLL, signaling pathway, cytogenetic abnormality, somatic mutation, epigenetic alteration and micro-RNA. RESULTS CLL is characterized by the presence of gross chromosomal abnormalities, epigenetic alterations, micro-RNA expression alterations, immunoglobulin heavy chain gene mutations and other genetic lesions. The expression of unmutated immunoglobulin heavy chain variable region (IGHV) genes, ZAP-70 and CD38 proteins, the occurrence of chromosomal abnormalities such as 17p and 11q deletions and mutations of the NOTCH1, SF3B1 and BIRC3 genes have been associated with a poor prognosis. In addition, mutations in tumor suppressor genes, such as TP53 and ATM, have been associated with refractoriness to conventional chemotherapeutic agents. Micro-RNA expression alterations and aberrant methylation patterns in genes that are specifically deregulated in CLL, including the BCL-2, TCL1 and ZAP-70 genes, have also been encountered and linked to distinct clinical parameters. CONCLUSIONS Specific chromosomal abnormalities and gene mutations may serve as diagnostic and prognostic indicators for disease progression and survival. The identification of these anomalies by state-of-the-art molecular (cyto)genetic techniques such as fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), single nucleotide polymorphism (SNP) microarray-based genomic profiling and next-generation sequencing (NGS) can be of paramount help for the clinical management of these patients, including optimal treatment design. The efficacy of novel therapeutics should to be tested according to the presence of these molecular lesions in CLL patients.
Collapse
Affiliation(s)
- Mohammad Shahjahani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
40
|
Cell-free microRNAs as cancer biomarkers: the odyssey of miRNAs through body fluids. Med Oncol 2014; 31:295. [PMID: 25362261 DOI: 10.1007/s12032-014-0295-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/16/2014] [Indexed: 12/13/2022]
Abstract
Cell-free microRNAs (cfmiRNAs), also known as extracellular or secretory microRNAs, are an emerging class of miRNAs that are released or secreted by cells. These miRNAs are transferred through various body fluids. A growing body of research has recently revealed that cancer cells also secrete their distinctive cfmiRNAs to the extracellular environment highlighting the contribution of cfmiRNAs to cancer progression. CfmiRNAs show high stability in the body fluids. Three pathways have been proposed for their entry into the body fluids: passive release from broken, injured and dead cells; active secretion through microvesicles; and active secretion via microvesicle-free protein-dependent route. Active pathways seem to play leading roles in the delivery of miRNAs. Detection of cfmiRNAs is of particular relevance to their translation into the clinic. Much effort has been devoted to the development of highly sensitive and efficient approaches for detection purposes. Nevertheless, some barriers such as finding a unique internal control for all cancer types remain to be bypassed. This review aims to provide an insight into the promises represented by cfmiRNAs as cancer biomarkers and describes advances made in the identification of numerous types of extracellular miRNAs that have potential for use in the diagnosis of a variety of cancers.
Collapse
|
41
|
Dzikiewicz-Krawczyk A. MicroRNA polymorphisms as markers of risk, prognosis and treatment response in hematological malignancies. Crit Rev Oncol Hematol 2014; 93:1-17. [PMID: 25217091 DOI: 10.1016/j.critrevonc.2014.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022] Open
Abstract
MicroRNA dysregulation is a common event in hematological malignancies. Apart from genomic and epigenetic alterations, miRNA networks may be disturbed by polymorphisms in the miRNA regulatory pathway (miRSNPs). In this review we provide an overview of three categories of miRSNPs: (1) SNPs in genes involved in miRNA biogenesis and processing; (2) SNPs in miRNA genes; and (3) SNPs in miRNA binding sites in target genes and discuss their potential role as markers of disease risk, prognosis and treatment response in hematological cancers. Although so far only the tip of the iceberg has been touched, studies of polymorphisms in the miRNA regulatory pathways have already provided some clues for the mechanisms of miRNA dysregulation in cancer and open new perspectives in the management of hematological malignancies.
Collapse
|
42
|
A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell Oncol (Dordr) 2014; 37:331-8. [PMID: 25156495 DOI: 10.1007/s13402-014-0188-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2014] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are known to play an important role in cancer development by post-transcriptionally affecting the expression of critical genes. The aims of this study were two-fold: (i) to develop a robust method to isolate miRNAs from small volumes of saliva and (ii) to develop a panel of saliva-based diagnostic biomarkers for the detection of head and neck squamous cell carcinoma (HNSCC). METHODS Five differentially expressed miRNAs were selected from miScript™ miRNA microarray data generated using saliva from five HNSCC patients and five healthy controls. Their differential expression was subsequently confirmed by RT-qPCR using saliva samples from healthy controls (n = 56) and HNSCC patients (n = 56). These samples were divided into two different cohorts, i.e., a first confirmatory cohort (n = 21) and a second independent validation cohort (n = 35), to narrow down the miRNA diagnostic panel to three miRNAs: miR-9, miR-134 and miR-191. This diagnostic panel was independently validated using HNSCC miRNA expression data from The Cancer Genome Atlas (TCGA), encompassing 334 tumours and 39 adjacent normal tissues. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic capacity of the panel. RESULTS On average 60 ng/μL miRNA was isolated from 200 μL of saliva. Overall a good correlation was observed between the microarray data and the RT-qPCR data. We found that miR-9 (P <0.0001), miR-134 (P <0.0001) and miR-191 (P <0.001) were differentially expressed between saliva from HNSCC patients and healthy controls, and that these miRNAs provided a good discriminative capacity with area under the curve (AUC) values of 0.85 (P <0.0001), 0.74 (P < 0.001) and 0.98 (P < 0.0001), respectively. In addition, we found that the salivary miRNA data showed a good correlation with the TCGA miRNA data, thereby providing an independent validation. CONCLUSIONS We show that we have developed a reliable method to isolate miRNAs from small volumes of saliva, and that the saliva-derived miRNAs miR-9, miR-134 and miR-191 may serve as novel biomarkers to reliably detect HNSCC.
Collapse
|
43
|
Yiannakopoulou E. Targeting epigenetic mechanisms and microRNAs by aspirin and other non steroidal anti-inflammatory agents - implications for cancer treatment and chemoprevention. Cell Oncol (Dordr) 2014; 37:167-78. [DOI: 10.1007/s13402-014-0175-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2014] [Indexed: 12/21/2022] Open
|
44
|
Dzikiewicz-Krawczyk A, Macieja A, Mały E, Januszkiewicz-Lewandowska D, Mosor M, Fichna M, Strauss E, Nowak J. Polymorphisms in microRNA target sites modulate risk of lymphoblastic and myeloid leukemias and affect microRNA binding. J Hematol Oncol 2014; 7:43. [PMID: 24886876 PMCID: PMC4059877 DOI: 10.1186/1756-8722-7-43] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/27/2014] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND MicroRNA dysregulation is a common event in leukemia. Polymorphisms in microRNA-binding sites (miRSNPs) in target genes may alter the strength of microRNA interaction with target transcripts thereby affecting protein levels. In this study we aimed at identifying miRSNPs associated with leukemia risk and assessing impact of these miRSNPs on miRNA binding to target transcripts. METHODS We analyzed with specialized algorithms the 3' untranslated regions of 137 leukemia-associated genes and identified 111 putative miRSNPs, of which 10 were chosen for further investigation. We genotyped patients with acute myeloid leukemia (AML, n = 87), chronic myeloid leukemia (CML, n = 140), childhood acute lymphoblastic leukemia (ALL, n = 101) and healthy controls (n = 471). Association between SNPs and leukemia risk was calculated by estimating odds ratios in the multivariate logistic regression analysis. For miRSNPs that were associated with leukemia risk we performed luciferase reporter assays to examine whether they influence miRNA binding. RESULTS Here we show that variant alleles of TLX1_rs2742038 and ETV6_rs1573613 were associated with increased risk of childhood ALL (OR (95% CI) = 3.97 (1.43-11.02) and 1.9 (1.16-3.11), respectively), while PML_rs9479 was associated with decreased ALL risk (OR = 0.55 (0.36-0.86). In adult myeloid leukemias we found significant associations between the variant allele of PML_rs9479 and decreased AML risk (OR = 0.61 (0.38-0.97), and between variant alleles of IRF8_ rs10514611 and ARHGAP26_rs187729 and increased CML risk (OR = 2.4 (1.12-5.15) and 1.63 (1.07-2.47), respectively). Moreover, we observed a significant trend for an increasing ALL and CML risk with the growing number of risk genotypes with OR = 13.91 (4.38-44.11) for carriers of ≥3 risk genotypes in ALL and OR = 4.9 (1.27-18.85) for carriers of 2 risk genotypes in CML. Luciferase reporter assays revealed that the C allele of ARHGAP26_rs187729 creates an illegitimate binding site for miR-18a-3p, while the A allele of PML_rs9479 enhances binding of miR-510-5p and the C allele of ETV6_rs1573613 weakens binding of miR-34c-5p and miR-449b-5p. CONCLUSIONS Our study implicates that microRNA-binding site polymorphisms modulate leukemia risk by interfering with the miRNA-mediated regulation. Our findings underscore the significance of variability in 3' untranslated regions in leukemia.
Collapse
Affiliation(s)
| | - Anna Macieja
- Faculty of Biology and Environmental Protection, University of Łódź, Pilarskiego 14/16, 90-231 Łódź, Poland
| | - Ewa Mały
- Department of Medical Diagnostics, Dobra 38, 60-595 Poznań, Poland
| | - Danuta Januszkiewicz-Lewandowska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
- Department of Medical Diagnostics, Dobra 38, 60-595 Poznań, Poland
- Department of Oncology, Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland
| | - Maria Mosor
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Marta Fichna
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
- Department of Endocrinology and Metabolism, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Ewa Strauss
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Jerzy Nowak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| |
Collapse
|
45
|
MicroRNA-520a-5p displays a therapeutic effect upon chronic myelogenous leukemia cells by targeting STAT3 and enhances the anticarcinogenic role of capsaicin. Tumour Biol 2014; 35:8733-42. [PMID: 24870597 DOI: 10.1007/s13277-014-2138-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022] Open
Abstract
Aberrant expression profiles of microRNAs (miRNAs) have been previously demonstrated for having essential roles in a wide range of cancer types including leukemia. Antiproliferative or proapoptotic effects of capsaicin have been reported in several cancers. We aimed to study miRNAs involved in the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway in chronic myeloid leukemia cell model and the effects of the capsaicin treatment on cell proliferation and miRNA regulation. miR-520a-5p expression was extremely downregulated in capsaicin-treated cells. Repressing the level of miR-520a-5p by transient transfection with specific miRNA inhibitor oligonucleotides resulted in induced inhibition of proliferation in leukemic cells. According to bioinformatics analysis, STAT3 messenger RNA was predicted as a putative miR-520a-5p target; which was confirmed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and Western blot analysis. Cell proliferation inhibition was enhanced upon knockdown of STAT3 by RNA interference applications, but when miR-520a-5p inhibitor was additionally transfected onto STAT3 silenced cells, cell viability was dramatically decreased in leukemia cells. Finally, we observed the effects of capsaicin following miR-520a-5p inhibitor transfection upon cell proliferation, apoptosis, and STAT3 expression levels. We determined that, downregulation of miR-520a-5p affected the proliferation inhibition enhanced by capsaicin and reduced STAT3 mRNA and protein expression levels and increased apoptotic cell number. In summary, miR-520a-5p displays a therapeutic effect by targeting STAT3 and impacting the anticancer effects of capsaicin; whereas capsaicin, potentially through the miR-520a-5p/STAT3 interaction, induces apoptosis and inhibits K562 leukemic cell proliferation with need of further investigation.
Collapse
|
46
|
Sharifi M, Salehi R, Gheisari Y, Kazemi M. Inhibition of microRNA miR-92a induces apoptosis and inhibits cell proliferation in human acute promyelocytic leukemia through modulation of p63 expression. Mol Biol Rep 2014; 41:2799-808. [PMID: 24481878 DOI: 10.1007/s11033-014-3134-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 01/11/2014] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs, 19-25 nucleotides in length involved in post-transcriptional regulation of gene expression of great majority of the human protein coding genes. Different aspects of cellular activities like cell growth, proliferation, and differentiation are regulated by miRNAs through their interaction with particular RNA species. In many tumors up or down-regulation of different miRNAs has been reported. Human miR-17-92 gene cluster is located on 13q31.3, rooming several miRNAs including miR-17-5p, miR-17-3p, miR-18, miR-19a, miR-20a and miR-92a. Amplification or overexpression of this cluster has been reported in acute myeloid leukemia, acute lymphoblastic leukemia and several other cancer types. Here, we performed inhibition of miR-92a in an acute promyelocytic leukemia (APL) cell line (HL-60) using locked nucleic acid (LNA) antagomir. In different time points after LNA-anti-miR92a transfection, MTT assay and annexin/propidium iodide staining were performed. These assessments indicate that miR-92a inhibition can extensively decrease the viability of these cells which is mainly due to induction of apoptosis. Western blot analysis of p63 protein also revealed that miR-92a inhibition resulted in p63 expression, hence activation of cellular pathways which are normally controlled by p63 protein are retrieved. These findings could open up a path to the miRNAs based therapeutic approach for treatment of APL.
Collapse
Affiliation(s)
- Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, 81744-176, Isfahan, Iran
| | | | | | | |
Collapse
|
47
|
Bagheri F, Safarian S, Eslaminejad MB, Sheibani N. siRNA-mediated knock-down of DFF45 amplifies doxorubicin therapeutic effects in breast cancer cells. Cell Oncol (Dordr) 2013; 36:515-26. [PMID: 24277473 DOI: 10.1007/s13402-013-0157-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2013] [Indexed: 11/25/2022] Open
Abstract
PURPOSE RNA interference (RNAi) has become a promising tool for cancer therapy. Small interfering RNAs (siRNAs) can synergistically enhance the cell killing effects of drugs used in cancer treatment. Here we examined the effects of siRNA-mediated DNA fragmentation factor 45 (DFF45) gene silencing on breast cancer cell viability, cell cycle arrest, and apoptosis in the presence and absence of doxorubicin. METHODS We designed three siRNAs, which target different regions of the DFF45 mRNA. Gene silencing was confirmed by real time RT-PCR and Western blot analyses. The impact of DFF45 siRNA, doxorubicin, and their combination on the viability, cell cycle and apoptosis of T-47D and MDA-MB-231 breast cancer cells were determined by MTT, PI staining, annexin V binding, caspase-3 activity, DNA laddering, and chromatin condensation assays. RESULTS Based on flow cytometric analyses, we found that silencing of DFF45 alone had little effect on apoptosis, especially in T-47D cells. However, when used in combination with doxorubicin (0.33 μM) a significant increase (P < 0.05) in apoptosis was observed in T-47D and MDA-MB-231 cells, i.e., ~2.5- and 3-fold, respectively. Caspase-3 activity, chromatin condensation, as well as DNA laddering supported increased apoptosis in the combinatorial treatment. Cell cycle arrest in both cell lines occurred at lower levels after siRNA + doxorubicin treatment compared to doxorubicin only. CONCLUSIONS Our data indicate that DFF45 gene silencing, when applied in combination with doxorubicin, may offer a novel therapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Fatemeh Bagheri
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | | | | |
Collapse
|
48
|
Abstract
OBJECTIVES Neoplastic niche is a specific microenvironment for growth and proliferation of malignant cells. Here we review the leukemic niche and its constituent stem cells, signaling pathways and essential chemokines. METHODS Relevant literature was identified by a PubMed search (2000-2013) of English-language literature using the terms neoplastic niche, chemokines, and leukemia. DISCUSSION Leukemia is caused by malignant hematopoietic stem cells and precursors. Important molecules and signals are involved in interactions between leukemic cells and their microenvironment. MicroRNAs (miRNAs) play an important role in expression regulation of oncogenes, transcription factors, signaling molecules and in eventual fate of the cell. It seems necessary to evaluate the relationship between aberrant miRNA expression and malignant transformation of bone marrow niche. CONCLUSIONS Characterizing malignant leukemic cells, activated signaling pathways, and molecules involved in disease progression will result in understanding the causes of drug resistance, relapse factors, and effective treatments.
Collapse
|
49
|
Babashah S, Sadeghizadeh M, Hajifathali A, Tavirani MR, Zomorod MS, Ghadiani M, Soleimani M. Targeting of the signal transducer Smo links microRNA-326 to the oncogenic Hedgehog pathway in CD34+ CML stem/progenitor cells. Int J Cancer 2013; 133:579-589. [PMID: 23341351 DOI: 10.1002/ijc.28043] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 01/08/2013] [Indexed: 12/30/2022]
Abstract
Aberrant expression and function of microRNAs (miRNAs) in leukemia have added a new layer of complexity to the understanding of development and progression of the disease state. However, their targeting of specific signaling pathways responsible for the maintenance and survival properties of leukemic stem cell (LSC) still remains to be further clarified. Hedgehog (Hh) signaling, a highly conserved developmental pathway, has been proven as a functional pathway for LSCs, and loss of this pathway impairs the development of BCR-ABL-induced chronic myeloid leukemia (CML) and depletes CML stem cells. Here, we revealed that upregulation of the Hh smoothened (Smo) signal transducer was associated with reduced expression of miR-326 in the CD34(+) cells from a group of patients with CML at diagnosis. Additionally, overexpression of miR-326 led to downregulation of Smo, resulted in decreased cell proliferation and elevated rate of apoptosis in CML CD34(+) cells. Interestingly, restoration of Smo expression levels reversed the effect of miR-326 and rescued K562 cells from the antiproliferative effects of this miRNA. Thus, Smo appears to be an essential target of miR-326 during the pathogenesis of CML. These findings lead us to suggest that downregulation of miR-326 may be a possible mechanism for unrestricted activation of Smo signal transducer of the oncogenic Hh pathway in CML; therefore, the restoration of miR-326 expression could be of benefit in eradicating CD34(+) CML stem/progenitor cells that represent a potential source of relapse in patients suffering CML.
Collapse
MESH Headings
- Antigens, CD34/analysis
- Apoptosis
- Cell Line, Tumor
- Cell Proliferation
- Down-Regulation
- Genes, abl
- Hedgehog Proteins/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Myeloid Cells
- Neoplastic Stem Cells/metabolism
- RNA Interference
- RNA, Small Interfering
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Smoothened Receptor
- Up-Regulation
Collapse
Affiliation(s)
- Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
50
|
Sionov RV. MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies. ISRN HEMATOLOGY 2013; 2013:348212. [PMID: 23431463 PMCID: PMC3569899 DOI: 10.1155/2013/348212] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
Abstract
The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Ein-Kerem, 91120 Jerusalem, Israel
| |
Collapse
|