1
|
Liu J, Ruan M, Liu Y, Hong X, Zhang L, Zhang Q. Identification of 3-(9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acids as promising DNMT1 inhibitors. Eur J Med Chem 2024; 274:116538. [PMID: 38823264 DOI: 10.1016/j.ejmech.2024.116538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
DNA methyltransferase 1 (DNMT1) is the primary enzyme responsible for maintaining DNA methylation patterns during cellular division, crucial for cancer development by suppressing tumor suppressor genes. In this study, we retained the phthalimide structure of N-phthaloyl-l-tryptophan (RG108) and substituted its indole ring with nitrogen-containing aromatic rings of varying sizes. We synthesized 3-(9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acids and confirmed them as DNMT1 inhibitors through protein affinity testing, radiometric method using tritium labeled SAM, and MTT assay. Preliminary structure-activity relationship analysis revealed that introducing substituents on the carbazole ring could enhance inhibitory activity, with S-configuration isomers showing greater activity than R-configuration ones. Notably, S-3-(3,6-di-tert-butyl-9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acid (7r-S) and S-3-(1,3,6-trichloro-9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acid (7t-S) exhibited significant DNMT1 enzyme inhibition activity, with IC50 values of 8.147 μM and 0.777 μM, respectively (compared to RG108 with an IC50 above 250 μM). Moreover, they demonstrated potential anti-proliferative activity on various tumor cell lines including A2780, HeLa, K562, and SiHa. Transcriptome analysis and KEGG pathway enrichment of K562 cells treated with 7r-S and 7t-S identified differentially expressed genes (DEGs) related to apoptosis and cell cycle pathways. Flow cytometry assays further indicated that 7r-S and 7t-S induce apoptosis in K562 cells and arrest them in the G0/G1 phase in a concentration-dependent manner. Molecular docking revealed that 7t-S may bind to the methyl donor S-adenosyl-l-methionine (SAM) site in DNMT1 with an orientation opposite to RG108, suggesting potential for deeper penetration into the DNMT1 pocket and laying the groundwork for further modifications.
Collapse
Affiliation(s)
- Jingyi Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Minli Ruan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yueqin Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xiaoqian Hong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
2
|
Fu M, Deng F, Chen J, Fu L, Lei J, Xu T, Chen Y, Zhou J, Gao Q, Ding H. Current data and future perspectives on DNA methylation in ovarian cancer (Review). Int J Oncol 2024; 64:62. [PMID: 38757340 PMCID: PMC11095605 DOI: 10.3892/ijo.2024.5650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Ovarian cancer (OC) represents the most prevalent malignancy of the female reproductive system. Its distinguishing features include a high aggressiveness, substantial morbidity and mortality, and a lack of apparent symptoms, which collectively pose significant challenges for early detection. Given that aberrant DNA methylation events leading to altered gene expression are characteristic of numerous tumor types, there has been extensive research into epigenetic mechanisms, particularly DNA methylation, in human cancers. In the context of OC, DNA methylation is often associated with the regulation of critical genes, such as BRCA1/2 and Ras‑association domain family 1A. Methylation modifications within the promoter regions of these genes not only contribute to the pathogenesis of OC, but also induce medication resistance and influence the prognosis of patients with OC. As such, a more in‑depth understanding of DNA methylation underpinning carcinogenesis could potentially facilitate the development of more effective therapeutic approaches for this intricate disease. The present review focuses on classical tumor suppressor genes, oncogenes, signaling pathways and associated microRNAs in an aim to elucidate the influence of DNA methylation on the development and progression of OC. The advantages and limitations of employing DNA methylation in the diagnosis, treatment and prevention of OC are also discussed. On the whole, the present literature review indicates that the DNA methylation of specific genes could potentially serve as a prognostic biomarker for OC and a therapeutic target for personalized treatment strategies. Further investigations in this field may yield more efficacious diagnostic and therapeutic alternatives for patients with OC.
Collapse
Affiliation(s)
- Mengyu Fu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fengying Deng
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jie Chen
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Li Fu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiahui Lei
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ting Xu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Department of Gynecology and Obstetrics, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215100, P.R. China
| | - Youguo Chen
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jinhua Zhou
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qinqin Gao
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hongmei Ding
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
3
|
Chen C, Zhu Y, Zhang H, Xiao L. Prognostic Effects of RASSF1A, BRCA1, APC, and p16 Promoter Methylation in Ovarian Cancer: A Meta-Analysis. Gynecol Obstet Invest 2024; 89:363-375. [PMID: 38615670 DOI: 10.1159/000538673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION DNA methylation plays an important role in the carcinogenesis, progression, and prognosis of various human cancers. RASSF1A, BRCA1, APC, and p16 are the frequently methylated genes among patients with ovarian cancer. Therefore, our study aimed to better determine the prognostic and cancer characteristics effects of RASSF1A, BRCA1, APC, and p16 promoter methylation in ovarian cancer patients. METHODS Databases such as PubMed, Web of Science, EMBASE, CNKI, and WanFang were searched for published studies up to March 4, 2024. The outcomes are shown as OR and HR with their 95% CIs. Then, the random or fixed-effect model was performed to evaluate the effect sizes. RESULTS Finally, 27 articles were included in this meta-analysis. No significant relationships were observed between RASSF1A, BRCA1, and APC promoter methylation and the clinical prognostic (including overall survival and progression-free survival) and cancer characteristics (including ascites, lymph node metastasis, and pelvic peritoneal metastasis) in ovarian cancer. p16 promoter methylation was significantly related to poor progression-free survival (PFS) (HR = 1.52, 95% CI = 1.14-2.04) and overall survival (OS) (HR = 1.39, 95% CI = 1.06, to 1.83) in univariate and poor PFS in multivariate Cox regression models (HR = 1.42, 95% CI = 1.05-1.92). Besides, our results indicated that the clinical stage was associated with inferior OS while there was no significant association between tumor grade and OS. CONCLUSION RASSF1A, BRCA1, and APC promoter methylation were not significantly associated with clinical prognostic and cancer characteristics. p16 may be a useful biomarker for predicting PFS in ovarian cancer. Furthermore, the clinical stage was significantly associated with OS. In further research, more prospective and multicenter validation studies remain needed.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Zhu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haibo Zhang
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lan Xiao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Song K, Artibani M. The role of DNA methylation in ovarian cancer chemoresistance: A narrative review. Health Sci Rep 2023; 6:e1235. [PMID: 37123549 PMCID: PMC10140645 DOI: 10.1002/hsr2.1235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Background and Aims Ovarian cancer (OC) is the most lethal gynecological cancer. In 2018, it was responsible for over 180,000 deaths worldwide. The high mortality rate is the culmination of a lack of early diagnosis and high rates of chemotherapy resistance, which is synonymous with disease recurrence. Over the last two decades, an increasingly significant role of epigenetic mechanisms, in particular DNA methylation, has emerged. This review will discuss several of the most significant genes whose hypo/hypermethylation profiles are associated with chemoresistance. Aside from functionally elucidating and evaluating these epimutations, this review will discuss recent trials of DNA methyltransferase inhibitors (DNMTi). Finally, we will propose future directions that could enhance the feasibility of utilizing these candidate epimutations as clinical biomarkers. Methods To perform this review, a comprehensive literature search based on our keywords was conducted across the online databases PubMed and Google Scholar for identifying relevant studies published up until August 2022. Results Epimutations affecting MLH1, MSH2, and Ras-association domain family 1 isoform A (DNA damage repair and apoptosis); ATP-binding cassette subfamily B member 1 and methylation-controlled J (drug export); secreted frizzled-related proteins (Wnt/β-catenin signaling), neurocalcin delta (calcium and G protein-coupled receptor signaling), and zinc finger protein 671 all have potential as biomarkers for chemoresistance. However, specific uncertainties relating to these epimutations include histotype-specific differences, intrinsic versus acquired chemoresistance, and the interplay with complete surgical debulking. DNMTi for chemoresistant OC patients has shown some promise; however, issues surrounding their efficacy and dose-limiting toxicities remain; a personalized approach is required to maximize their effectiveness. Conclusion Establishing a panel of aberrantly methylated chemoresistance-related genes to predict chemoresponsiveness and patients' suitability to DNMTi could significantly reduce OC recurrence, while improving DNMTi therapy viability. To achieve this, a large-scale prospective genome-wide DNA methylation profile study that spans different histotypes, includes paired samples (before and after chemotherapy), and integrates transcriptomic and methylomic analysis, is warranted.
Collapse
Affiliation(s)
- Kaiyang Song
- Green Templeton CollegeUniversity of OxfordOxfordUK
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Nuffield Department of Women's & Reproductive HealthUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Xu T, Ding H, Chen J, Lei J, Zhao M, Ji B, Chen Y, Qin S, Gao Q. Research Progress of DNA Methylation in Endometrial Cancer. Biomolecules 2022; 12:938. [PMID: 35883495 PMCID: PMC9312849 DOI: 10.3390/biom12070938] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Endometrial cancer (EC)) is one of the most common malignant tumors of the female genital system, with an increasing incidence and mortality, worldwide. Although the therapeutic strategy of EC is still complicated and challenging, further understanding of carcinogenesis from a gene perspective would allow an effort to improve therapeutic precision in this complex malignancy. DNA methylation is the most widely studied epigenetic alteration in human tumors. Aberrant DNA methylation events, resulting in altered gene expression, are features of many tumor types. In this review, we provide an update on evidence about the roles of aberrant DNA methylation within some classical tumor suppressor genes and oncogenes in endometrial carcinogenesis, and report on recent advances in the understanding of the contribution of aberrant DNA methylation to EC, as well as opportunities and challenges of DNA methylation in EC management and prevention.
Collapse
Affiliation(s)
- Ting Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (T.X.); (J.L.); (M.Z.); (B.J.)
| | - Hongmei Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (H.D.); (J.C.)
| | - Jie Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (H.D.); (J.C.)
| | - Jiahui Lei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (T.X.); (J.L.); (M.Z.); (B.J.)
| | - Meng Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (T.X.); (J.L.); (M.Z.); (B.J.)
| | - Bingyu Ji
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (T.X.); (J.L.); (M.Z.); (B.J.)
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (H.D.); (J.C.)
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qinqin Gao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (T.X.); (J.L.); (M.Z.); (B.J.)
| |
Collapse
|
6
|
Targeting Wnt Signaling in Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13102351. [PMID: 34068065 PMCID: PMC8152465 DOI: 10.3390/cancers13102351] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Wnt has diverse regulatory roles at multiple cellular levels and numerous targeting points, and aberrant Wnt signaling has crucial roles in carcinogenesis, metastasis, cancer recurrence, and chemotherapy resistance; based on these facts, Wnt represents an appealing therapeutic target for cancer treatment. Although preclinical data supports a role for the Wnt signaling pathway in uterine carcinogenesis, this area remains understudied. In this review, we identify the functions of several oncogenes of the Wnt/β-catenin signaling pathway in tumorigenesis and address the translation approach with potent Wnt inhibitors that have already been established or are being investigated to target key components of the pathway. Further research is likely to expand the potential for both biomarker and cancer drug development. There is a scarcity of treatment choices for advanced and recurrent endometrial cancer; investigating the sophisticated connections of Wnt signaling networks in endometrial cancer could address the unmet need for new therapeutic targets. Abstract This review presents new findings on Wnt signaling in endometrial carcinoma and implications for possible future treatments. The Wnt proteins are essential mediators in cell signaling during vertebrate embryo development. Recent biochemical and genetic studies have provided significant insight into Wnt signaling, in particular in cell cycle regulation, inflammation, and cancer. The role of Wnt signaling is well established in gastrointestinal and breast cancers, but its function in gynecologic cancers, especially in endometrial cancers, has not been well elucidated. Development of a subset of endometrial carcinomas has been attributed to activation of the APC/β-catenin signaling pathway (due to β-catenin mutations) and downregulation of Wnt antagonists by epigenetic silencing. The Wnt pathway also appears to be linked to estrogen and progesterone, and new findings implicate it in mTOR and Hedgehog signaling. Therapeutic interference of Wnt signaling remains a significant challenge. Herein, we discuss the Wnt-activating mechanisms in endometrial cancer and review the current advances and challenges in drug discovery.
Collapse
|
7
|
Zhu L, Li X, Yuan Y, Dong C, Yang M. APC Promoter Methylation in Gastrointestinal Cancer. Front Oncol 2021; 11:653222. [PMID: 33968756 PMCID: PMC8103321 DOI: 10.3389/fonc.2021.653222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/30/2021] [Indexed: 12/30/2022] Open
Abstract
The adenomatous polyposis coli (APC) gene, known as tumor suppressor gene, has the two promoters 1A and 1B. Researches on APC have usually focused on its loss-of-function variants causing familial adenomatous polyposis. Hypermethylation, however, which is one of the key epigenetic alterations of the APC CpG sequence, is also associated with carcinogenesis in various cancers. Accumulating studies have successively explored the role of APC hypermethylation in gastrointestinal (GI) tumors, such as in esophageal, colorectal, gastric, pancreatic, and hepatic cancer. In sporadic colorectal cancer, the hypermethylation of CpG island in APC is even considered as one of the primary causative factors. In this review, we systematically summarized the distribution of APC gene methylation in various GI tumors, and attempted to provide an improved general understanding of DNA methylation in GI tumors. In addition, we included a robust overview of demethylating agents available for both basic and clinical researches. Finally, we elaborated our findings and perspectives on the overall situation of APC gene methylation in GI tumors, aiming to explore the potential research directions and clinical values.
Collapse
Affiliation(s)
- Lila Zhu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyu Li
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caixia Dong
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyuan Yang
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
S SK, Swamy SN, Premalatha CS, Pallavi VR, Gawari R. Aberrant Promoter Hypermethylation of RASSF1a and BRCA1 in Circulating Cell-Free Tumor DNA Serves as a Biomarker of Ovarian Carcinoma. Asian Pac J Cancer Prev 2019; 20:3001-3005. [PMID: 31653147 PMCID: PMC6982682 DOI: 10.31557/apjcp.2019.20.10.3001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 12/04/2022] Open
Abstract
Objective: Ovarian cancer is one of the leading causes of cancer deaths in women. Ovarian cancer is diagnosed at the late stages and generally relapses within 12-14 months of cytoreductive surgery. This is attributed to lack of precise molecular detection methodologies to detect and track the disease. Epigenetic alteration such as aberrant promoter hypermethylation is an important early event that occurs during cancer development and progression. This study focuses on development of a minimally invasive methylation marker that could be used for detection and prognosis of ovarian cancer patients. Methods: Aberrant promoter hypermethylation of RASSF1a and BRCA1 was assessed in circulating DNA of 72 EOC patients using methylation-specific PCR. The findings were correlated with various clinicopathological parameters. Statistical analysis was done using the Fisher exact test and chi-square test. Results: The aberrant methylation patterns of RASSF1a and BRCA1 was identified to be present in the cancerous samples. A total of 31.9 % and 56.9% methylation was observed for RASSF1a and BRCA1 respectively. A striking 50% methylation of BRCA1 was identified in the benign sample cohort, which marks the significance of assessing the hypermethylation pattern to detect cancer at its early stages. Methylation of the two tumor suppressor genes was evident across various stages and grades of ovarian tumors suggesting that this could also help as a prognostic marker. Conclusion: The results of the current study hold significance since the hypermethylation patterns can be identified in the cell-free circulating tumor DNA from a small volume of blood plasma and is a simple and minimally-invasive method. Assessment of hypermethylation patterns of a panel of TSG along with the existing screening markers could aid in better diagnosis and management of the disease. It could also aid in designing specifically tailored treatment strategies to fight the disease.
Collapse
Affiliation(s)
- Sandeep Kumar S
- Department of Biochemistry, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Shalini N Swamy
- Department of Biochemistry, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - C S Premalatha
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - V R Pallavi
- Department of Gynaeconcology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Ramesh Gawari
- Department of Biochemistry, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| |
Collapse
|
9
|
The role of circulating tumour cells and nucleic acids in blood for the detection of bladder cancer: A systematic review. Cancer Treat Rev 2018; 66:56-63. [PMID: 29684744 DOI: 10.1016/j.ctrv.2018.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Blood-based biomarkers are a neglected resource in bladder cancer, where the mainstay of focus has been on urinary biomarkers. However, blood-based biomarkers are gaining popularity in other solid cancers, particularly circulating tumour cells (CTCs) and circulating nucleic acids. In this systematic review, we identify and discuss the diagnostic value of CTC, cell-free DNA and RNA based biomarkers in bladder cancer. METHODS A MEDLINE/Pubmed systematic search was performed using the following keywords: (bladder cancer) AND (blood OR plasma OR serum) AND biomarker AND (DNA OR RNA OR cfDNA OR cell-free DNA OR RNA OR CTC). All studies including blood-based biomarkers based on DNA, RNA and CTCs were reviewed. Of the included studies, studies reporting sensitivity, specificity and/or AUC/ROC values were further described. RESULTS Systematic searched yielded 47 studies that were eligible, of which 21, 19 and 3 studies reported DNA, RNA and CTC biomarkers respectively. 15 of these studies included sensitivity, specificity and/or AUC/ROC values. Biomarkers sensitivity and specificity ranged widely at 2.4-97.6% and 43.3-100% respectively. Median number of patients recruited in the studies was 56 (IQR 41-90). Only 3 studies included an independent validation cohort. The highest sensitivity and specificity pairing achieved in the validation cohort was 80.0% and 89.1% respectively. CONCLUSIONS This systematic review provides a comprehensive overview of the blood-based CTC and nucleic acid biomarkers that have been investigated. An overlap in interest of targets between studies suggests that these could be promising biomarkers, but few biomarkers achieve high sensitivity and specificity, and fewer still have been validated independently.
Collapse
|
10
|
Wang H, Cui M, Zhang S, He J, Song L, Chen Y. Relationship between RAS Association Domain Family Protein 1A Promoter Methylation and the Clinicopathological Characteristics in Patients with Ovarian Cancer: A Systematic Meta-Analysis. Gynecol Obstet Invest 2017; 83:349-357. [PMID: 29130987 DOI: 10.1159/000484245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/13/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND To investigate the relationship between RAS association domain family protein 1A (RASSF1A) promoter methylation and the clinical features, and the survival of ovarian cancer patients. METHODS A comprehensive literature search was conducted in the PubMed, Embase, EBSCO, and Cochrane Library databases. The overall ORs with their 95% CIs were calculated in this meta-analysis. RESULTS Finally 17 relevant publications with 1,108 ovarian cancer samples were available for the current meta-analysis. RASSF1A promoter methylation had a significantly higher level in ovarian cancer than in low malignant potential (LMP) tumors. No significant relationship was observed between RASSF1A promoter methylation and the clinicopathological characteristics in ovarian cancer. Two studies reported that RASSF1A promoter methylation was not correlated with the survival of patients with ovarian cancer. CONCLUSIONS Our findings suggest that the use of RASSF1A promoter methylation could distinguish ovarian cancer and LMP tumors. -RASSF1A promoter methylation may not be correlated with the clinical features and the survival of ovarian cancer patients. More studies with large sample sizes are essential in the future.
Collapse
Affiliation(s)
- Hong Wang
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Beihua University, Jilin, China
| | - Manhua Cui
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuangli Zhang
- Department of Obstetrics and Gynaecology, 307 Hospital of the people's Liberation Army, Beijing, China
| | - Jie He
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Beihua University, Jilin, China
| | - Li Song
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Beihua University, Jilin, China
| | - Ying Chen
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Beihua University, Jilin, China
| |
Collapse
|
11
|
Rezk NA, Mohamed RH, Alnemr AA, Harira M. Promoter Methylation of RASSF1A Gene in Egyptian Patients with Ovarian Cancer. Appl Biochem Biotechnol 2017; 185:153-162. [PMID: 29098560 DOI: 10.1007/s12010-017-2648-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022]
Abstract
Ovarian malignancy is diagnosed in nearly a fourth of a million women internationally every year. Methylation of RASSF1A tumor suppressor gene prompts its inactivation in diseases. In this study, the RASSF1A promoter methylation was detected by methylated-specific PCR and investigated serum RASSF1A protein level through enzyme-linked immunosorbant assay in 160 Egyptian patients with ovarian cancer and 160 healthy controls. The present work proved that there was a higher frequency of RASSF1A methylation and a decrease in its serum level in patients with ovarian cancer compared to controls as well as in the high-grade tumor patients compared to low grade ones and also in advanced ovarian tumor stage compared to early stages. Our study exhibited that RASSF1A promoter hypermethylation and its protein levels may be a reliable and sensitive tool for diagnosing and monitoring of ovarian malignancy patients.
Collapse
Affiliation(s)
- Noha A Rezk
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Rasha H Mohamed
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Amr AbdAlmohsen Alnemr
- Obstetrics and Gynecology Departments, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mervat Harira
- Obstetrics and Gynecology Departments, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Giannopoulou L, Chebouti I, Pavlakis K, Kasimir-Bauer S, Lianidou ES. RASSF1A promoter methylation in high-grade serous ovarian cancer: A direct comparison study in primary tumors, adjacent morphologically tumor cell-free tissues and paired circulating tumor DNA. Oncotarget 2017; 8:21429-21443. [PMID: 28206954 PMCID: PMC5400595 DOI: 10.18632/oncotarget.15249] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022] Open
Abstract
The RASSF1A promoter is frequently methylated in high-grade serous ovarian cancer (HGSC). We examined RASSF1A promoter methylation in primary tumors, adjacent morphologically tumor cell-free tissues and corresponding circulating tumor DNA (ctDNA) samples of patients with HGSC, using a real-time methylation specific PCR (real-time MSP) and a methylation-sensitive high-resolution melting analysis (MS-HRMA) assay for the detection and semi-quantitative estimation of methylation, respectively. Two groups of primary HGSC tumor FFPE samples were recruited (Group A n=67 and Group B n=61), along with matched adjacent morphologically tumor cell-free tissues (n=58) and corresponding plasma samples (n=59) for group B. Using both assays, RASSF1A promoter was found highly methylated in primary tumors of both groups, and at lower percentages in the adjacent morphologically tumor cell-free tissues. Interestingly, RASSF1A promoter methylation was also observed in ctDNA by real-time MSP. Overall survival (OS) was significantly associated with RASSF1A promoter methylation in primary tumor samples using MS-HRMA (P=0.023). Our results clearly indicate that RASSF1A promoter is methylated in adjacent tissue surrounding the tumor in HGSC patients. We report for the first time that RASSF1A promoter methylation provides significant prognostic information in HGSC patients.
Collapse
Affiliation(s)
- Lydia Giannopoulou
- Analysis of Circulating Tumor Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens, 15771, Greece
| | - Issam Chebouti
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Essen, D-45122, Germany
| | - Kitty Pavlakis
- Pathology Department, IASO Women's Hospital, 15123, Marousi, Athens, Greece
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Essen, D-45122, Germany
| | - Evi S Lianidou
- Analysis of Circulating Tumor Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens, 15771, Greece
| |
Collapse
|
13
|
Pabalan N, Kunjantarachot A, Ruangpratheep C, Jarjanazi H, Christofolini DM, Barbosa CP, Bianco B. Potential of RASSF1A promoter methylation as biomarker for endometrial cancer: A systematic review and meta-analysis. Gynecol Oncol 2017; 146:603-608. [PMID: 28669560 DOI: 10.1016/j.ygyno.2017.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND An epigenetic approach to explaining endometrial carcinogenesis necessitates good understanding of Ras association domain family 1 isoform A (RASSF1A) promoter methylation data from primary studies. AIMS Differential magnitude of reported associations between RASSF1A promoter methylation and endometrial cancer (EC) prompted a meta-analysis to obtain more precise estimates. METHODS Literature search yielded eight included articles. We calculated pooled odds ratios (OR) and 95% confidence intervals and subgrouped the data by race. Sources of heterogeneity were investigated with outlier analysis. RESULTS The pooled ORs indicated increased risk, mostly significant. The overall effect (OR 11.46) was reflected in the European outcome (OR 15.07). However, both findings were heterogeneous (I2=57-70%) which when subjected to outlier treatment, erased heterogeneity (I2=0%) and retained significance (OR 9.85-12.66). Significance of these pre- and post-outlier outcomes were pegged at P≤0.0001. Only the Asian pre-outlier (OR 6.85) and heterogeneous (I2=82%) outcome was not significant (P=0.12) but when subjected to outlier treatment, erased heterogeneity (I2=0%) and generated significance (OR 23.74, P≤0.0001). CONCLUSIONS Consistent increased risk associations underpinned by significance and robustness render RASSF1A with good biomarker potential for EC.
Collapse
Affiliation(s)
- Noel Pabalan
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand.
| | | | | | - Hamdi Jarjanazi
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Toronto, Ontario, Canada
| | - Denise Maria Christofolini
- Human Reproduction and Genetics Center, Department of Collective Health, Faculdade de Medicina do ABC, Santo André/SP, Brazil
| | - Caio Parente Barbosa
- Human Reproduction and Genetics Center, Department of Collective Health, Faculdade de Medicina do ABC, Santo André/SP, Brazil
| | - Bianca Bianco
- Human Reproduction and Genetics Center, Department of Collective Health, Faculdade de Medicina do ABC, Santo André/SP, Brazil
| |
Collapse
|
14
|
El Bairi K, Kandhro AH, Gouri A, Mahfoud W, Louanjli N, Saadani B, Afqir S, Amrani M. Emerging diagnostic, prognostic and therapeutic biomarkers for ovarian cancer. Cell Oncol (Dordr) 2017; 40:105-118. [PMID: 27981507 DOI: 10.1007/s13402-016-0309-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In spite of various treatment options currently available, ovarian cancer (OC) still remains a leading cause of death in women world-wide. Diagnosis at an early stage is one of the most important factors that determines survival. Current clinical diagnostic tools have, however, a limited efficacy in early OC detection. Therefore, there is a critical need for new (early) diagnostic biomarkers and tools. Through advances in genomic, proteomic and metabolomic techniques, several novel molecular OC biomarkers have recently been identified. These biomarkers are currently subject to validation. In addition, integration of genomic, proteomic and metabolomic data, in conjunction with epidemiologic and clinical data, is considered essential for obtaining useful results. Interesting recent work has already shown that specific diagnostic biomarkers, such as BRCA mutations, may have profound therapeutic implications. Here, we review the current state of OC research through literature and database searches, with a focus on various recently identified biomarkers via different technologies for the (early) diagnosis, prognosis and treatment of OC. CONCLUSIONS Multi-biomarker panels accompanied by a meticulous determination of their sensitivity and specificity, as well their validation, using multivariate analyses will be critical for its clinical application, including early OC detection and tailor-made OC treatment.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and Pharmacy, Oujda, Morocco.
- Independent Research Team in Cancer Biology and Bioactive Compounds, Mohammed 1st University, Oujda, Morocco.
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Wafaa Mahfoud
- Laboratory of Biology and Health, URAC-34, Faculty of Science Ben Msik, University Hassan II, Mohammedia, Casablanca, Morocco
| | | | - Brahim Saadani
- IVF center IRIFIV, Clinique des Iris, Casablanca, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohamed 1st University Hospital, Oujda, Morocco
| | - Mariam Amrani
- Equipe de Recherche ONCOGYMA, Faculty of Medicine, Pathology Department, National Institute of Oncology, Université Mohamed V, Rabat, Morocco
| |
Collapse
|
15
|
El Bairi K, Kandhro AH, Gouri A, Mahfoud W, Louanjli N, Saadani B, Afqir S, Amrani M. Emerging diagnostic, prognostic and therapeutic biomarkers for ovarian cancer. CELLULAR ONCOLOGY (DORDRECHT) 2016. [PMID: 27981507 DOI: 10.1007/s13402-016-0309-1] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND In spite of various treatment options currently available, ovarian cancer (OC) still remains a leading cause of death in women world-wide. Diagnosis at an early stage is one of the most important factors that determines survival. Current clinical diagnostic tools have, however, a limited efficacy in early OC detection. Therefore, there is a critical need for new (early) diagnostic biomarkers and tools. Through advances in genomic, proteomic and metabolomic techniques, several novel molecular OC biomarkers have recently been identified. These biomarkers are currently subject to validation. In addition, integration of genomic, proteomic and metabolomic data, in conjunction with epidemiologic and clinical data, is considered essential for obtaining useful results. Interesting recent work has already shown that specific diagnostic biomarkers, such as BRCA mutations, may have profound therapeutic implications. Here, we review the current state of OC research through literature and database searches, with a focus on various recently identified biomarkers via different technologies for the (early) diagnosis, prognosis and treatment of OC. CONCLUSIONS Multi-biomarker panels accompanied by a meticulous determination of their sensitivity and specificity, as well their validation, using multivariate analyses will be critical for its clinical application, including early OC detection and tailor-made OC treatment.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and Pharmacy, Oujda, Morocco. .,Independent Research Team in Cancer Biology and Bioactive Compounds, Mohammed 1st University, Oujda, Morocco.
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Wafaa Mahfoud
- Laboratory of Biology and Health, URAC-34, Faculty of Science Ben Msik, University Hassan II, Mohammedia, Casablanca, Morocco
| | | | - Brahim Saadani
- IVF center IRIFIV, Clinique des Iris, Casablanca, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohamed 1st University Hospital, Oujda, Morocco
| | - Mariam Amrani
- Equipe de Recherche ONCOGYMA, Faculty of Medicine, Pathology Department, National Institute of Oncology, Université Mohamed V, Rabat, Morocco
| |
Collapse
|
16
|
El Bairi K, Kandhro AH, Gouri A, Mahfoud W, Louanjli N, Saadani B, Afqir S, Amrani M. Emerging diagnostic, prognostic and therapeutic biomarkers for ovarian cancer. CELLULAR ONCOLOGY (DORDRECHT) 2016. [PMID: 27981507 DOI: 10.1007/s13402-016-0309-1]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND In spite of various treatment options currently available, ovarian cancer (OC) still remains a leading cause of death in women world-wide. Diagnosis at an early stage is one of the most important factors that determines survival. Current clinical diagnostic tools have, however, a limited efficacy in early OC detection. Therefore, there is a critical need for new (early) diagnostic biomarkers and tools. Through advances in genomic, proteomic and metabolomic techniques, several novel molecular OC biomarkers have recently been identified. These biomarkers are currently subject to validation. In addition, integration of genomic, proteomic and metabolomic data, in conjunction with epidemiologic and clinical data, is considered essential for obtaining useful results. Interesting recent work has already shown that specific diagnostic biomarkers, such as BRCA mutations, may have profound therapeutic implications. Here, we review the current state of OC research through literature and database searches, with a focus on various recently identified biomarkers via different technologies for the (early) diagnosis, prognosis and treatment of OC. CONCLUSIONS Multi-biomarker panels accompanied by a meticulous determination of their sensitivity and specificity, as well their validation, using multivariate analyses will be critical for its clinical application, including early OC detection and tailor-made OC treatment.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and Pharmacy, Oujda, Morocco. .,Independent Research Team in Cancer Biology and Bioactive Compounds, Mohammed 1st University, Oujda, Morocco.
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Wafaa Mahfoud
- Laboratory of Biology and Health, URAC-34, Faculty of Science Ben Msik, University Hassan II, Mohammedia, Casablanca, Morocco
| | | | - Brahim Saadani
- IVF center IRIFIV, Clinique des Iris, Casablanca, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohamed 1st University Hospital, Oujda, Morocco
| | - Mariam Amrani
- Equipe de Recherche ONCOGYMA, Faculty of Medicine, Pathology Department, National Institute of Oncology, Université Mohamed V, Rabat, Morocco
| |
Collapse
|
17
|
Shen C, Sheng Q, Zhang X, Fu Y, Zhu K. Hypermethylated APC in serous carcinoma based on a meta-analysis of ovarian cancer. J Ovarian Res 2016; 9:60. [PMID: 27670526 PMCID: PMC5037906 DOI: 10.1186/s13048-016-0271-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022] Open
Abstract
Background The reduced expression of the Adenomatous polyposis coli (APC) gene, a tumor suppressor gene, through promoter hypermethylation has been reported to play a key role in the carcinogenesis. However, the correlation between APC promoter hypermethylation and ovarian cancer (OC) remains to be clarified. Methods A comprehensive literature search was carried out in related research databases. The overall odds ratio (OR) and corresponding 95 % confidence interval (CI) were used to evaluate the effects of APC promoter hypermethylation on OC and clinicopathological characteristics. Results Ultimately, 12 eligible studies were used in our study, including 806 OC samples, 429 normal controls, 109 benign lesions and 75 LMP samples. The pooled OR showed that APC promoter hypermethylation was significantly higher in OC than in normal and benign controls (OR = 6.18 and OR = 3.26, respectively). No significant correlation was observed between OC and low malignant potential (LMP) tumors (P = 0.436). In the comparison of OC and normal controls, subgroup analysis based on race showed that the overall OR of APC promoter hypermethylation was significant and similar in Asians and Caucasians (OR = 8.34 and OR = 5.39, respectively). A subgroup analysis based on sample type found that the pooled OR was significantly higher in blood than in tissue (OR = 18.71 and OR = 5.74, respectively). A significant association was not observed between APC promoter hypermethylation and tumor grade or tumor stage. The pooled OR indicated that APC promoter hypermethylation was significantly lower in serous carcinoma than in non-serous carcinoma (OR = 0.56, P = 0.02). No obvious publication bias was detected by Egger’s test (all P > 0.05). Conclusions APC promoter hypermethylation may be linked to the increased risk of OC. It was associated with histological type, but not with tumor grade or tumor stage. Moreover, hypermethylated APC may be a noninvasive biomarker using blood samples. Future studies are required to validate these results.
Collapse
Affiliation(s)
- Chunyan Shen
- Obstetrics and Gynecology Department, The No. 2 Hospital of Yinzhou, Ningbo, 315040, Zhejiang, China
| | - Qifang Sheng
- Obstetrics and Gynecology Department, The No. 2 Hospital of Yinzhou, Ningbo, 315040, Zhejiang, China.
| | - Xiaojie Zhang
- Obstetrics and Gynecology Department, The No. 2 Hospital of Yinzhou, Ningbo, 315040, Zhejiang, China.
| | - Yuling Fu
- Obstetrics and Gynecology Department, The No. 2 Hospital of Yinzhou, Ningbo, 315040, Zhejiang, China
| | - Kemiao Zhu
- Obstetrics and Gynecology Department, The No. 2 Hospital of Yinzhou, Ningbo, 315040, Zhejiang, China
| |
Collapse
|
18
|
|
19
|
Yan B, Yin F, Wang QI, Zhang W, Li LI. Integration and bioinformatics analysis of DNA-methylated genes associated with drug resistance in ovarian cancer. Oncol Lett 2016; 12:157-166. [PMID: 27347118 DOI: 10.3892/ol.2016.4608] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 11/27/2015] [Indexed: 12/25/2022] Open
Abstract
The main obstacle to the successful treatment of ovarian cancer is the development of drug resistance to combined chemotherapy. Among all the factors associated with drug resistance, DNA methylation apparently plays a critical role. In this study, we performed an integrative analysis of the 26 DNA-methylated genes associated with drug resistance in ovarian cancer, and the genes were further evaluated by comprehensive bioinformatics analysis including gene/protein interaction, biological process enrichment and annotation. The results from the protein interaction analyses revealed that at least 20 of these 26 methylated genes are present in the protein interaction network, indicating that they interact with each other, have a correlation in function, and may participate as a whole in the regulation of ovarian cancer drug resistance. There is a direct interaction between the phosphatase and tensin homolog (PTEN) gene and at least half of the other genes, indicating that PTEN may possess core regulatory functions among these genes. Biological process enrichment and annotation demonstrated that most of these methylated genes were significantly associated with apoptosis, which is possibly an essential way for these genes to be involved in the regulation of multidrug resistance in ovarian cancer. In addition, a comprehensive analysis of clinical factors revealed that the methylation level of genes that are associated with the regulation of drug resistance in ovarian cancer was significantly correlated with the prognosis of ovarian cancer. Overall, this study preliminarily explains the potential correlation between the genes with DNA methylation and drug resistance in ovarian cancer. This finding has significance for our understanding of the regulation of resistant ovarian cancer by methylated genes, the treatment of ovarian cancer, and improvement of the prognosis of ovarian cancer.
Collapse
Affiliation(s)
- Bingbing Yan
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Fuqiang Yin
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China; Key Laboratory of High-Incidence Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Q I Wang
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wei Zhang
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - L I Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China; Key Laboratory of High-Incidence Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
20
|
Martín-Sánchez E, Pernaut-Leza E, Mendaza S, Cordoba A, Vicente-Garcia F, Monreal-Santesteban I, Vizcaino JP, De Cerio MJD, Perez-Janices N, Blanco-Luquin I, Escors D, Ulazia-Garmendia A, Guerrero-Setas D. Gene promoter hypermethylation is found in sentinel lymph nodes of breast cancer patients, in samples identified as positive by one-step nucleic acid amplification of cytokeratin 19 mRNA. Virchows Arch 2016; 469:51-9. [DOI: 10.1007/s00428-016-1941-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/09/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
|
21
|
Tumor suppressor genes and their underlying interactions in paclitaxel resistance in cancer therapy. Cancer Cell Int 2016; 16:13. [PMID: 26900348 PMCID: PMC4761208 DOI: 10.1186/s12935-016-0290-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 02/12/2016] [Indexed: 01/01/2023] Open
Abstract
Objectives Paclitaxel (PTX) is frequently used in the clinical treatment of solid tumors. But the PTX-resistance is a great obstacle in cancer treatment. Exploration of the mechanisms of drug resistance suggests that tumor suppressor genes (TSGs) play a key role in the response of chemotherapeutic drugs. TSGs, a set of genes that are often inactivated in cancers, can regulate various biological processes. In this study, an overview of the contribution of TSGs to PTX resistance and their underlying relationship in cancers are reported by using GeneMANIA, a web-based tool for gene/protein function prediction. Methods Using PubMed online database and Google web site, the terms “paclitaxel resistance” or “taxol resistance” or “drug resistance” or “chemotherapy resistance”, and “cancer” or “carcinoma”, and “tumor suppressor genes” or “TSGs” or “negative regulated protein” or “antioncogenes” were searched and analyzed. GeneMANIA data base was used to predict gene/protein interactions and functions. Results We identified 22 TSGs involved in PTX resistance, including BRCA1, TP53, PTEN, APC, CDKN1A, CDKN2A, HIN-1, RASSF1, YAP, ING4, PLK2, FBW7, BLU, LZTS1, REST, FADD, PDCD4, TGFBI, ING1, Bax, PinX1 and hEx. The TSGs were found to have direct and indirect relationships with each other, and thus they could contribute to PTX resistance as a group. The varied expression status and regulation function of the TSGs on cell cycle in different cancers might play an important role in PTX resistance. Conclusion A further understanding of the roles of tumor suppressor genes in drug resistance is an important step to overcome chemotherapy tolerance. Tumor suppressor gene therapy targets the altered genes and signaling pathways and can be a new strategy to reverse chemotherapy resistance.
Collapse
|
22
|
Wu Y, Zhang X, Lin L, Ma XP, Ma YC, Liu PS. Aberrant methylation of RASSF2A in tumors and plasma of patients with epithelial ovarian cancer. Asian Pac J Cancer Prev 2014; 15:1171-6. [PMID: 24606436 DOI: 10.7314/apjcp.2014.15.3.1171] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The tumor suppressor gene, Ras-association domain family (RASSF)2A, is inactivated by promoter hypermethylation in many cancers. The current study was performed to evaluate the methylation status of RASSF2A in epithelial ovarian cancer (EOC) tissues and plasma, and correlations with gene expression and clinicopathologic characteristics. METHOD We detected methylation of the RASSF2A gene in tissues and corresponding plasma samples from 47 EOC patients and 14 patients with benign ovarian tumors and 10 with normal ovarian tissues. The methylation status was determined by methylation-specific PCR while gene expression of mRNA was examined by RT-PCR. The EOC cell line, SKOV3, was treated with 5-aza-2'-deoxycytidine (5-aza- dC). RESULTS RASSF2A mRNA expression was significantly low in EOC tissues. The frequency of aberrant methylation of RASSF2A was 51.1% in EOC tissues and 36.2% in corresponding plasma samples, whereas such hypermethylation was not detected in the benign ovarial tumors and normal ovarian samples. The expression of RASSF2A mRNA was significantly down-regulated or lost in the methylated group compared to the unmethylated group (p<0.05). After treatment with 5-aza-dC, RASSF2A mRNA expression was significantly restored in the Skov3 cell line. CONCLUSION Epigenetic inactivation of RASSF2A through aberrant promoter methylation may play an important role in the pathogenesis of EOC. Methylation of the RASSF2A gene in plasma may be a valuable molecular marker for the early detection of EOC.
Collapse
Affiliation(s)
- Yu Wu
- Department of Gynecology and Obstetrics, Qilu Hospital, Shandong University, Jinan, China E-mail :
| | | | | | | | | | | |
Collapse
|
23
|
Fleischer T, Frigessi A, Johnson KC, Edvardsen H, Touleimat N, Klajic J, Riis ML, Haakensen VD, Wärnberg F, Naume B, Helland A, Børresen-Dale AL, Tost J, Christensen BC, Kristensen VN. Genome-wide DNA methylation profiles in progression to in situ and invasive carcinoma of the breast with impact on gene transcription and prognosis. Genome Biol 2014. [PMID: 25146004 PMCID: PMC4165906 DOI: 10.1186/s13059-014-0435-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) of the breast is a precursor of invasive breast carcinoma. DNA methylation alterations are thought to be an early event in progression of cancer, and may prove valuable as a tool in clinical decision making and for understanding neoplastic development. RESULTS We generate genome-wide DNA methylation profiles of 285 breast tissue samples representing progression of cancer, and validate methylation changes between normal and DCIS in an independent dataset of 15 normal and 40 DCIS samples. We also validate a prognostic signature on 583 breast cancer samples from The Cancer Genome Atlas. Our analysis reveals that DNA methylation profiles of DCIS are radically altered compared to normal breast tissue, involving more than 5,000 genes. Changes between DCIS and invasive breast carcinoma involve around 1,000 genes. In tumors, DNA methylation is associated with gene expression of almost 3,000 genes, including both negative and positive correlations. A prognostic signature based on methylation level of 18 CpGs is associated with survival of breast cancer patients with invasive tumors, as well as with survival of patients with DCIS and mixed lesions of DCIS and invasive breast carcinoma. CONCLUSIONS This work demonstrates that changes in the epigenome occur early in the neoplastic progression, provides evidence for the possible utilization of DNA methylation-based markers of progression in the clinic, and highlights the importance of epigenetic changes in carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Vessela N Kristensen
- Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Montebello, Oslo, 0310, Norway.
| |
Collapse
|
24
|
Fleischer T, Frigessi A, Johnson KC, Edvardsen H, Touleimat N, Klajic J, Riis ML, Haakensen VD, Wärnberg F, Naume B, Helland A, Børresen-Dale AL, Tost J, Christensen BC, Kristensen VN. Genome-wide DNA methylation profiles in progression to in situ and invasive carcinoma of the breast with impact on gene transcription and prognosis. Genome Biol 2014; 15:435. [PMID: 25146004 DOI: 10.1186/preaccept-2333349012841587] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/08/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) of the breast is a precursor of invasive breast carcinoma. DNA methylation alterations are thought to be an early event in progression of cancer, and may prove valuable as a tool in clinical decision making and for understanding neoplastic development. RESULTS We generate genome-wide DNA methylation profiles of 285 breast tissue samples representing progression of cancer, and validate methylation changes between normal and DCIS in an independent dataset of 15 normal and 40 DCIS samples. We also validate a prognostic signature on 583 breast cancer samples from The Cancer Genome Atlas. Our analysis reveals that DNA methylation profiles of DCIS are radically altered compared to normal breast tissue, involving more than 5,000 genes. Changes between DCIS and invasive breast carcinoma involve around 1,000 genes. In tumors, DNA methylation is associated with gene expression of almost 3,000 genes, including both negative and positive correlations. A prognostic signature based on methylation level of 18 CpGs is associated with survival of breast cancer patients with invasive tumors, as well as with survival of patients with DCIS and mixed lesions of DCIS and invasive breast carcinoma. CONCLUSIONS This work demonstrates that changes in the epigenome occur early in the neoplastic progression, provides evidence for the possible utilization of DNA methylation-based markers of progression in the clinic, and highlights the importance of epigenetic changes in carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Vessela N Kristensen
- Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Montebello, Oslo, 0310, Norway.
| |
Collapse
|
25
|
Bhagat R, Kumar SS, Vaderhobli S, Premalata CS, Pallavi VR, Ramesh G, Krishnamoorthy L. Epigenetic alteration of p16 and retinoic acid receptor beta genes in the development of epithelial ovarian carcinoma. Tumour Biol 2014; 35:9069-78. [PMID: 24913706 DOI: 10.1007/s13277-014-2136-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/21/2014] [Indexed: 11/28/2022] Open
Abstract
Silencing of tumor suppressor and tumor-related genes by promoter hypermethylation is one of the major events in ovarian carcinogenesis. In this study, we analyzed aberrant promoter methylation of p16 and RAR-β genes in 134 epithelial ovarian carcinomas (EOCs), 23 low malignant potential (LMP) tumors, 26 benign cystadenomas, and 15 normal ovarian tissues. Methylation was investigated by methylation-specific PCR (MSP), and the results were confirmed by bisulfite DNA sequencing. Relative gene expression of p16 and RAR-β was done using quantitative reverse transcriptase PCR (qRT-PCR) on 51 EOC cases, 9 LMP tumors, and 7 benign cystadenomas with 5 normal ovarian tissues. Aberrant methylation for p16 and RAR-β was present in 43 % (58/134) and 31 % (41/134) in carcinoma cases, 22 % (05/23) and 52 % (12/23) in LMP tumors, and 42 % (11/26) and 69 % (18/26) in benign cystadenomas. No methylation was observed in any of the normal ovarian tissues. The mRNA expression level of p16 and RAR-β was significantly downregulated in EOC and LMP tumors than the corresponding normal tissues whereas the expression level was normal in benign cystadenomas for p16 and slightly reduced for RAR-β. A significant correlation of p16 promoter methylation was observed with reduced gene expression in EOC. For RAR-β, no significant correlation was observed between promoter methylation and gene expression. Our results suggest that epigenetic alterations of p16 and RAR-β have an important role in ovarian carcinogenesis and that mechanism along with methylation plays a significant role in downregulation of RAR-β gene in ovarian cancer.
Collapse
Affiliation(s)
- Rahul Bhagat
- Department of Biochemistry, Kidwai Memorial Institute of Oncology, Dr. M.H. Marigowda Road, Bangalore, 560029, India,
| | | | | | | | | | | | | |
Collapse
|
26
|
Bilgrami SM, Qureshi SA, Pervez S, Abbas F. Promoter hypermethylation of tumor suppressor genes correlates with tumor grade and invasiveness in patients with urothelial bladder cancer. SPRINGERPLUS 2014; 3:178. [PMID: 24790823 PMCID: PMC4000596 DOI: 10.1186/2193-1801-3-178] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 02/24/2014] [Indexed: 01/15/2023]
Abstract
Purpose To investigate the promoter methylation status at selected loci which encode for key proteins involved in apoptosis, DNA repair, cell cycle control and progression in urothelial cell carcinoma of bladder and compare the findings from tissue samples with that of plasma. Methods Total genomic DNA was isolated from 43 non-muscle invasive (low grade) and 33 muscle invasive (high grade) urothelial bladder cancer samples along with 10 control cases of normal bladder mucosa. Promoter methylation status was investigated for RASSF1A, APC, MGMT, CDKN2A and CDKN2B genes using real-time methylation-specific PCR with SYBR® green. Plasma samples from 16 patients with muscle invasive high grade bladder cancer were also subjected to similar analyses. Results Promoter hypermethylation was frequently observed in RASSF1A, APC and MGMT gene promoters (p-value < 0.001). The methylation was more prominent in the muscle invasive high grade bladder cancer when compared to non-muscle invasive low grade group (p-value < 0.001) and normal bladder mucosa (p-value < 0.05). The RNA expression of RASSF1A, APC and MGMT was also found to be decreased in the muscle-invasive high grade bladder cancer when compared to the non muscle invasive low grade group (p-value < 0.05). RASSF1A, MGMT and CDKN2A showed comparable results when data from 16 plasma samples was compared to the corresponding tissue samples. Conclusion Our results suggest that epigenetic silencing of RASSF1A, APC and MGMT genes is strongly associated with invasive high grade urothelial bladder cancer. Thus, status of promoter methylation has the potential to serve as valuable tool for assessing aggressiveness of urothelial cell carcinoma of bladder. Electronic supplementary material The online version of this article (doi:10.1186/2193-1801-3-178) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shumaila M Bilgrami
- Office of Research and Graduate Studies, Aga Khan University, Stadium Road, Karachi, 74800 Pakistan
| | - Sohail A Qureshi
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Sector-U, D.H.A., Lahore, 54792 Pakistan
| | - Shahid Pervez
- Department of Microbiology and Pathology, Aga Khan University, Stadium Road, Karachi, 74800 Pakistan
| | - Farhat Abbas
- Department of Surgery, Aga Khan University, Stadium Road, Karachi, 74800 Pakistan
| |
Collapse
|
27
|
Si JG, Su YY, Han YH, Chen RH. Role of RASSF1A promoter methylation in the pathogenesis of ovarian cancer: a meta-analysis. Genet Test Mol Biomarkers 2014; 18:394-402. [PMID: 24665911 DOI: 10.1089/gtmb.2014.0022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The aim of the current meta-analysis was to comprehensively assess the role of RASSF1A promoter methylation in the pathogenesis of ovarian cancer. METHOD A range of electronic databases were searched: Web of Science (1945-2013), the Cochrane Library Database (Issue 12, 2013), PubMed (1966-2013), EMBASE (1980-2013), CINAHL (1982-2013), and the Chinese Biomedical Database (1982-2013) without language restrictions. Meta-analysis was conducted using the STATA 12.0 software. The crude odds ratio (OR) with its corresponding 95% confidence interval (CI) was calculated. RESULTS Twelve clinical cohort studies with a total of 739 ovarian cancer patients were included in the current meta-analysis. The results of our meta-analysis suggested that the frequency of RASSF1A promoter methylation in cancer tissues was higher compared with benign, adjacent, and normal tissues (cancer tissues vs. benign tissues: OR=9.92, 95% CI: 7.67-12.82, p<0.001; cancer tissues vs. adjacent tissues: OR=68.15, 95% CI: 39.30-118.18, p<0.001; cancer tissues vs. normal tissues: OR=30.71, 95% CI: 23.12-40.80, p<0.001; respectively). Subgroup analysis based on ethnicity and sample types revealed that RASSF1A gene methylation was closely associated with the pathogenesis of ovarian cancer in all subgroups (all p<0.05). CONCLUSION Our findings indicated that abnormal RASSF1A promoter methylation may be strongly correlated with the pathogenesis of ovarian cancer.
Collapse
Affiliation(s)
- Jin-Ge Si
- Department of Obstetrics and Gynecology, The People's Hospital of Zhongshan City , Zhongshan, People's Republic of China
| | | | | | | |
Collapse
|
28
|
Shi H, Li Y, Wang X, Lu C, Yang L, Gu C, Xiong J, Huang Y, Wang S, Lu M. Association between RASSF1A promoter methylation and ovarian cancer: a meta-analysis. PLoS One 2013; 8:e76787. [PMID: 24116157 PMCID: PMC3792894 DOI: 10.1371/journal.pone.0076787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/03/2013] [Indexed: 11/23/2022] Open
Abstract
Background The RAS association domain family protein 1a gene (RASSF1A) is one of the tumor suppressor genes (TSG). Inactivation of RASSF1A is critical to the pathogenesis of cancer. Aberrant TSG methylation was considered an important epigenetic silencing mechanism in the progression of ovarian cancer. A number of studies have discussed association between RASSF1A promoter methylation and ovarian cancer. However, they were mostly based on a small number of samples and showed inconsist results, Therefore, we conducted a meta-analysis to better identify the association. Methods Eligible studies were identified by searching the PubMed, EMBASE, Web of Science, and CNKI databases using a systematic searching strategy. We pooled the odds ratio (ORs) from individual studies using a fixed-effects model. We performed heterogeneity and publication bias analysis simultaneously. Results Thirteen studies, with 763 ovarian cancer patients and 438 controls were included in the meta-analysis. The frequencies of RASSF1A promoter methylation ranged from 30% to 58% (median is 48%) in the cancer group and 0 to 21% (median is 0) in the control group. The frequencies of RASSF1A promoter methylation in the cancer group were significantly higher than those in the control group. The pooled odds ratio was 11.17 (95% CI = 7.51–16.61) in the cancer group versus the corresponding control group under the fixed-effects model. Conclusion The results suggested that RASSF1A promoter methylation had a strong association with ovarian cancer.
Collapse
Affiliation(s)
- Hao Shi
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ya Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Cheng Lu
- Department of Anatomy, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Lilan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Changmei Gu
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangxin Huang
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meixia Lu
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
29
|
Cao D, Chen Y, Tang Y, Peng XC, Dong H, Li LH, Cheng K, Ge J, Liu JY. Loss of RASSF1A expression in colorectal cancer and its association with K-ras status. BIOMED RESEARCH INTERNATIONAL 2013; 2013:976765. [PMID: 23865079 PMCID: PMC3705944 DOI: 10.1155/2013/976765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 05/29/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND The RAS-association domain family 1 A (RASSF1A) is a classical member of RAS effectors regulating cell proliferation and apoptosis. Loss of RASSF1A expression may shift the balance towards a growth-promoting effect without the necessity of activating K-ras mutations. Its potential association with K-ras mutations in colorectal cancer (CRC) is unclear. METHODS RASSF1A expression was examined in normal mucosa, adenoma, and tumor tissues of colon and rectum, respectively. We examined the association of RASSF1A expression, mutations of K-ras, and EGFR status in 76 primary CRCs. The relationship between clinicopathological characteristics and RASSF1A expression was also analyzed. RESULTS RASSF1A expression level decreased progressively in normal mucosa, adenoma and, tumor tissues, and the loss of RASSF1A expression occurred more frequently in tumor tissues. Of 76 primary CRCs, loss of RASSF1A expression and/or K-ras mutations were detected in 77% cases. Loss of RASSF1A expression was more frequent in K-ras wild-type than in mutation cases (63% versus 32%, P = 0.011). CONCLUSIONS Our study indicates that loss of RASSF1A may be involved in pathogenesis of CRC, its expression was found predominantly in K-ras wild-type CRCs, suggesting that it may be another way of affecting RAS signaling, in addition to K-ras mutations.
Collapse
Affiliation(s)
- Dan Cao
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Ye Chen
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Yuan Tang
- Department of Pathology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xing-Chen Peng
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Hang Dong
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Long-Hao Li
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Ke Cheng
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Jun Ge
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Ji-Yan Liu
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| |
Collapse
|