1
|
Teng D, Liu D, Khashaveh A, Lv B, Sun P, Geng T, Cui H, Wang Y, Zhang Y. Engineering DMNT emission in cotton enhances direct and indirect defense against mirid bugs. J Adv Res 2025; 71:29-41. [PMID: 38806097 DOI: 10.1016/j.jare.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
INTRODUCTION As an important herbivore-induced plant volatile, (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) is known for its defensive role against multiple insect pests, including attracting natural enemies. A terpene synthase (GhTPS14) and two cytochrome P450 (GhCYP82L1, GhCYP82L2) enzymes are involved in the de novo synthesis of DMNT in cotton. We conducted a study to test the potential of manipulating DMNT-synthesizing enzymes to enhance plant resistance to insects. OBJECTIVES To manipulate DMNT emissions in cotton and generate cotton lines with increased resistance to mirid bug Apolygus lucorum. METHODS Biosynthesis and emission of DMNT by cotton plants were altered using CRISPR/Cas9 and overexpression approaches. Dynamic headspace sampling and GC-MS analysis were used to collect, identify and quantify volatiles. The attractiveness and suitability of cotton lines against mirid bug and its parasitoid Peristenus spretus were evaluated through various assays. RESULTS No DMNT emission was detected in knockout CAS-L1L2 line, where both GhCYP82L1 and GhCYP82L2 were knocked out. In contrast, gene-overexpressed lines released higher amounts of DMNT when infested by A. lucorum. At the flowering stage, L114 (co-overexpressing GhCYP82L1 and GhTPS14) emitted 10-15-fold higher amounts than controls. DMNT emission in overexpressed transgenic lines could be triggered by methyl jasmonate (MeJA) treatment. Apolygus lucorum and its parasitoid were far less attracted to the double edited CAS-L1L2 plants, however, co-overexpressed line L114 significantly attracted bugs and female wasps. A high dose of DMNT, comparable to the emission of L114, significantly inhibited the growth of A. lucorum, and further resulted in higher mortalities. CONCLUSION Turning down DMNT emission attenuated the behavioral preferences of A. lucorum to cotton. Genetically modified cotton plants with elevated DMNT emission not only recruited parasitoids to enhance indirect defense, but also formed an ecological trap to kill the bugs. Therefore, manipulation of DMNT biosynthesis and emission in plants presents a promising strategy for controlling mirid bugs.
Collapse
Affiliation(s)
- Dong Teng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Danfeng Liu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Beibei Lv
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, China
| | - Peiyao Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ting Geng
- National Plant Protection Scientific Observation and Experiment Station, Langfang 065000, China
| | - Hongzhi Cui
- Biocentury Transgene (China) Co. Ltd., Shenzhen 518117, China
| | - Yi Wang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Russavage EM, Helms AM, Thompson MN, Szczepaniec A, Rooney WL, Kerns DL, Eubanks MD. Indirect plant defense may provide economically important pest suppression in sorghum. PEST MANAGEMENT SCIENCE 2025. [PMID: 40202043 DOI: 10.1002/ps.8813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND A promising strategy to optimize biological control of insect pests is selecting crop varieties with indirect defense traits. Indirect plant defenses recruit natural enemies to kill pests and include chemical attractants like herbivore-induced plant volatiles. In prior laboratory assays, we found sorghum (Sorghum bicolor L.) cultivar ATx3409/RTx436 infested with sorghum aphid (Melanaphis sorghi Theobald) was attractive to natural enemies and emitted more chemical attractants than two other cultivars. In this field study, we manually infested 9-week-old sorghum plants with aphids and quantified differences in natural enemy and aphid densities among cultivars throughout the growing season. We also used field cages to control access of natural enemies to plants and estimate their effects on aphid suppression. RESULTS We found strong evidence that indirect plant defenses confer economically relevant control of aphid pest populations and that laboratory assays can accurately predict natural enemy recruitment in the field. In 2022, there were three times more lady beetles (Coleoptera: Coccinellidae), lacewings (Neuroptera: Chrysopidae and Hemerobiidae), hover flies (Diptera: Syrphidae), and parasitoids (Hymenoptera: Braconidae and Aphelinidae) per aphid on ATx3409/RTx436 than on the other two cultivars. In the field cage experiment, natural enemies reduced aphid densities by up to 83% one week after aphid infestation. ATx3409/RTx436 was the only cultivar to remain below the economic threshold throughout the growing season, indicating that this cultivar would not require any pesticide applications to control aphids. In 2023, there were similar abundances of natural enemies and aphid densities across cultivars, the latter of which remained near zero throughout the growing season, likely due to extremely hot temperatures and drought that may have contributed to aphid mortality. CONCLUSION Our findings demonstrate that indirect plant defenses enhance biological control and deliver economically important pest suppression. Cultivar screening and selection for indirect defense traits provides a promising avenue to improve crop protection and breeding for resistance. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Emily M Russavage
- Department of Entomology, Texas A&M University, College Station, TX, USA
- USDA-ARS, Sugarbeet Research Unit, Fargo, ND, USA
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Morgan N Thompson
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Adrianna Szczepaniec
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - William L Rooney
- Department of Soil and Crop Science, Texas A&M University, College Station, TX, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Micky D Eubanks
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
3
|
Borges DJV, Souza RAC, de Oliveira A, de Sousa RMF, Venâncio H, Demetrio GR, Ambrogi BG, Santos JC. Green Lacewing Chrysoperla externa Is Attracted to Volatile Organic Compounds and Essential Oils Extracted from Eucalyptus urograndis Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:2192. [PMID: 39204628 PMCID: PMC11360061 DOI: 10.3390/plants13162192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Plant herbivore interactions have long been recognized as a complex interplay influenced by various factors, including plant volatile emissions. Understanding the role of these volatiles in mediating plant predator interactions is crucial for developing sustainable pest management strategies. This study investigated the olfactory preferences of Chrysoperla externa larvae for volatiles emitted by Eucalyptus urograndis leaves, focusing on both seedlings and essential oils (EOs). We used Y-tube olfactometry to compare larval preferences between the clean air and various plant treatments, including undamaged and herbivore-damaged leaves. Chemical analysis of EOs revealed higher concentrations of oxygenated monoterpenes and sesquiterpenes in young and damaged leaves, particularly linalool, which has been implicated in insect attraction. Our results showed a significant preference for volatiles emitted by young damaged leaves over clean air for both seedlings (χ2 = 11.03, p = 0.001) and EOs (χ2 = 9.76, p = 0.002). Chrysoperla externa larvae are significantly attracted to specific volatiles from damaged E. urograndis leaves, suggesting these compounds could serve as cues for natural enemy foraging. Our findings enhance the understanding of plant-predator dynamics and suggest potential applications of eucalyptus plantations to sustain C. externa populations for biocontrol purposes.
Collapse
Affiliation(s)
- David Jackson Vieira Borges
- Pos-Graduate Program in Ecology, Conservation and Biodiversity, Federal University of Uberlandia, Uberlandia 38405-240, Minas Gerais, Brazil;
| | - Rafael Aparecido Carvalho Souza
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil; (R.A.C.S.); (A.d.O.); (R.M.F.d.S.)
| | - Alberto de Oliveira
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil; (R.A.C.S.); (A.d.O.); (R.M.F.d.S.)
| | - Raquel Maria Ferreira de Sousa
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil; (R.A.C.S.); (A.d.O.); (R.M.F.d.S.)
| | - Henrique Venâncio
- Pos-Graduate Program in Ecology and Conservation, Federal University of Sergipe, São Cristóvão 49107-230, Sergipe, Brazil;
| | - Guilherme Ramos Demetrio
- Laboratory of Plant Ecology, U. E. Penedo, Campus Arapiraca, Federal University of Alagoas, Penedo 57200-000, Alagoas, Brazil;
| | - Bianca Giuliano Ambrogi
- Department of Ecology, Federal University of Sergipe, São Cristóvão 49107-230, Sergipe, Brazil;
| | - Jean Carlos Santos
- Department of Ecology, Federal University of Sergipe, São Cristóvão 49107-230, Sergipe, Brazil;
| |
Collapse
|
4
|
Russavage EM, Hewlett JA, Grunseich JM, Szczepaniec A, Rooney WL, Helms AM, Eubanks MD. Aphid-Induced Volatiles and Subsequent Attraction of Natural Enemies Varies among Sorghum Cultivars. J Chem Ecol 2024; 50:262-275. [PMID: 38647585 DOI: 10.1007/s10886-024-01493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
The production of herbivore-induced plant volatiles (HIPVs) is a type of indirect defense used by plants to attract natural enemies and reduce herbivory by insect pests. In many crops little is known about genotypic variation in HIPV production or how this may affect natural enemy attraction. In this study, we identified and quantified HIPVs produced by 10 sorghum (Sorghum bicolor) cultivars infested with a prominent aphid pest, the sorghum aphid (Melanaphis sorghi Theobald). Volatiles were collected using dynamic headspace sampling techniques and identified and quantified using GC-MS. The total amounts of volatiles induced by the aphids did not differ among the 10 cultivars, but overall blends of volatiles differed significantly in composition. Most notably, aphid herbivory induced higher levels of methyl salicylate (MeSA) emission in two cultivars, whereas in four cultivars, the volatile emissions did not change in response to aphid infestation. Dual-choice olfactometer assays were used to determine preference of the aphid parasitoid, Aphelinus nigritus, and predator, Chrysoperla rufilabris, between plants of the same cultivar that were un-infested or infested with aphids. Two aphid-infested cultivars were preferred by natural enemies, while four other cultivars were more attractive to natural enemies when they were free of aphids. The remaining four cultivars elicited no response from parasitoids. Our work suggests that genetic variation in HIPV emissions greatly affects parasitoid and predator attraction to aphid-infested sorghum and that screening crop cultivars for specific predator and parasitoid attractants has the potential to improve the efficacy of biological control.
Collapse
Affiliation(s)
- Emily M Russavage
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, 77843, TX, USA.
| | - Jeremy A Hewlett
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, 77843, TX, USA
| | - John M Grunseich
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, 77843, TX, USA
| | - Adrianna Szczepaniec
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - William L Rooney
- Department of Soil and Crop Science, Texas A&M University, 405 Turk Rd, College Station, TX, 77843, USA
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, 77843, TX, USA
| | - Micky D Eubanks
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, 77843, TX, USA
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| |
Collapse
|
5
|
Mattedi A, Sabbi E, Farda B, Djebaili R, Mitra D, Ercole C, Cacchio P, Del Gallo M, Pellegrini M. Solid-State Fermentation: Applications and Future Perspectives for Biostimulant and Biopesticides Production. Microorganisms 2023; 11:1408. [PMID: 37374910 PMCID: PMC10304952 DOI: 10.3390/microorganisms11061408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
With the expansion of the green products market and the worldwide policies and strategies directed toward a green revolution and ecological transition, the demand for innovative approaches is always on the rise. Among the sustainable agricultural approaches, microbial-based products are emerging over time as effective and feasible alternatives to agrochemicals. However, the production, formulation, and commercialization of some products can be challenging. Among the main challenges are the industrial production processes that ensure the quality of the product and its cost on the market. In the context of a circular economy, solid-state fermentation (SSF) might represent a smart approach to obtaining valuable products from waste and by-products. SSF enables the growth of various microorganisms on solid surfaces in the absence or near absence of free-flowing water. It is a valuable and practical method and is used in the food, pharmaceutical, energy, and chemical industries. Nevertheless, the application of this technology in the production of formulations useful in agriculture is still limited. This review summarizes the literature dealing with SSF agricultural applications and the future perspective of its use in sustainable agriculture. The survey showed good potential for SSF to produce biostimulants and biopesticides useful in agriculture.
Collapse
Affiliation(s)
- Alessandro Mattedi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Enrico Sabbi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Beatrice Farda
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj 733134, India;
| | - Claudia Ercole
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Paola Cacchio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Maddalena Del Gallo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| |
Collapse
|
6
|
Ali MY, Naseem T, Holopainen JK, Liu T, Zhang J, Zhang F. Tritrophic Interactions among Arthropod Natural Enemies, Herbivores and Plants Considering Volatile Blends at Different Scale Levels. Cells 2023; 12:251. [PMID: 36672186 PMCID: PMC9856403 DOI: 10.3390/cells12020251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Herbivore-induced plant volatiles (HIPVs) are released by plants upon damaged or disturbance by phytophagous insects. Plants emit HIPV signals not merely in reaction to tissue damage, but also in response to herbivore salivary secretions, oviposition, and excrement. Although certain volatile chemicals are retained in plant tissues and released rapidly upon damaged, others are synthesized de novo in response to herbivore feeding and emitted not only from damaged tissue but also from nearby by undamaged leaves. HIPVs can be used by predators and parasitoids to locate herbivores at different spatial scales. The HIPV-emitting spatial pattern is dynamic and heterogeneous in nature and influenced by the concentration, chemical makeup, breakdown of the emitted mixes and environmental elements (e.g., turbulence, wind and vegetation) which affect the foraging of biocontrol agents. In addition, sensory capability to detect volatiles and the physical ability to move towards the source were also different between natural enemy individuals. The impacts of HIPVs on arthropod natural enemies have been partially studied at spatial scales, that is why the functions of HIPVs is still subject under much debate. In this review, we summarized the current knowledge and loopholes regarding the role of HIPVs in tritrophic interactions at multiple scale levels. Therefore, we contend that closing these loopholes will make it much easier to use HIPVs for sustainable pest management in agriculture.
Collapse
Affiliation(s)
- Muhammad Yasir Ali
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| | - Tayyaba Naseem
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Jarmo K. Holopainen
- Department of Environmental Science, University of Eastern Finland, 77100 Kuopio, Finland
| | - Tongxian Liu
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinping Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| | - Feng Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| |
Collapse
|
7
|
Foba CN, Shi JH, An QQ, Liu L, Hu XJ, Hegab MAMS, Liu H, Zhao PM, Wang MQ. Volatile-mediated tritrophic defense and priming in neighboring maize against Ostrinia furnacalis and Mythimna separata. PEST MANAGEMENT SCIENCE 2023; 79:105-113. [PMID: 36088646 DOI: 10.1002/ps.7178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/19/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plants respond to attackers by triggering phytohormones signaling associated metabolites, including herbivore-induced plant volatiles (HIPVs). HIPVs can indirectly act against herbivory by recruitment of natural enemies and priming of neighboring plants. Ostrinia furnacalis and Mythimna separata are important insect herbivores of maize plants that have a devastating influence on yield. However, little is known about how maize temporally reconfigures its defense systems against these herbivores and variation of neighboring plant resistance. RESULTS This study investigated the effects of HIPVs on the behavior of the dominant predatory beetle Harmonia axyridis and priming in neighboring maize defense against O. furnacalis and M. separata over time. The results showed that maize damaged by either O. furnacalis or M. separata enhanced the release of volatiles including terpenes, aldehydes, alkanes and an ester, which elicited an increased attractive response to H. axyridis after 3 and 12 h, respectively. O. furnacalis damage resulted in accumulations of leaf jasmonic acid (JA) and salicylic acid in maize after 6 and 3 h, respectively, while M. separata damage only raised the JA level after 3 h. Furthermore, HIPVs were able to prime neighboring plants through the accumulation of JA after 24 h. Both larvae showed a significant decrease in weight accumulation after 48 h of feeding on the third leaves of the primed plant. CONCLUSION Taken together, the findings provide a dynamic overview of how attacked maize reconfigures its volatiles and phytohormones to defend against herbivores, as well as priming of neighboring plants against oncoming attacks. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Caroline Ngichop Foba
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei Province, P. R. China
- Lincoln University, College of Agriculture, Environmental and Human Sciences, Cooperative Extension, 65101, Jefferson City, MO, USA
| | - Jin-Hua Shi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei Province, P. R. China
| | - Qing-Qing An
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei Province, P. R. China
| | - Le Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei Province, P. R. China
| | - Xin-Jun Hu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei Province, P. R. China
| | - Mahmoud Ali Morse Soliman Hegab
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei Province, P. R. China
- Department of Entomology, Faculty of Agriculture, Damietta University, Damietta, Damietta El-Gadeeda City, Kafr Saad, Damietta Governorate, 34511, Egypt
| | - Hao Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei Province, P. R. China
| | - Pei-Min Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei Province, P. R. China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, Hubei Province, P. R. China
| |
Collapse
|
8
|
Peng P, Li R, Chen ZH, Wang Y. Stomata at the crossroad of molecular interaction between biotic and abiotic stress responses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1031891. [PMID: 36311113 PMCID: PMC9614343 DOI: 10.3389/fpls.2022.1031891] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Increasing global food production is threatened by harsh environmental conditions along with biotic stresses, requiring massive new research into integrated stress resistance in plants. Stomata play a pivotal role in response to many biotic and abiotic stresses, but their orchestrated interactions at the molecular, physiological, and biochemical levels were less investigated. Here, we reviewed the influence of drought, pathogen, and insect herbivory on stomata to provide a comprehensive overview in the context of stomatal regulation. We also summarized the molecular mechanisms of stomatal response triggered by these stresses. To further investigate the effect of stomata-herbivore interaction at a transcriptional level, integrated transcriptome studies from different plant species attacked by different pests revealed evidence of the crosstalk between abiotic and biotic stress. Comprehensive understanding of the involvement of stomata in some plant-herbivore interactions may be an essential step towards herbivores' manipulation of plants, which provides insights for the development of integrated pest management strategies. Moreover, we proposed that stomata can function as important modulators of plant response to stress combination, representing an exciting frontier of plant science with a broad and precise view of plant biotic interactions.
Collapse
Affiliation(s)
- Pengshuai Peng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rui Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Yuanyuan Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Huang ZY, Liu ZJ, Wang XY, Zhang ZL, Lu W, Zheng XL. Electroantennographic and olfactory responses of Quadrastichus mendeli to eucalyptus volatiles induced by the gall-forming insect Leptocybe invasa. PEST MANAGEMENT SCIENCE 2022; 78:2405-2416. [PMID: 35289069 DOI: 10.1002/ps.6869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/19/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Although parasitoids can precisely locate hidden gall-inducing insects, the host location mechanism is unknown. In this study, our aim was to clarify the olfactory responses of the parasitoid Quadrastichus mendeli to eucalyptus volatiles induced by the gall wasp Leptocybe invasa. RESULTS Q. mendeli preferred volatiles from gall-damaged plants compared with those produced by mechanically damaged and undamaged plants. Coupled gas chromatographic-electroantennographic detection results demonstrated that 3-carene, decanal, d-limonene, ethanone,1-(4-ethylphenyl)-, p-cymene and benzene,1-methyl-4-(1-methylpropyl)- from DH 201-2 (Eucalyptus grandis × Eucalyptus tereticornis) elicited significant antennal responses in Q. mendeli in all treatments. Q. mendeli was repelled by decanal and d-limonene and was attracted to 3-carene, benzene,1-methyl-4-(1-methylpropyl)-, ethanone,1-(4-ethylphenyl) and p-cymene. Quaternary blends containing 3-carene, p-cymene, benzene,1-methyl-4-(1-methylpropyl)- and ethanone,1-(4-ethylphenyl)- at a ratio of 1:1:1:1 were attractive to Q. mendeli. However, quaternary blends with added decanal and d-limonene alone or both together induced significant repellence in Q. mendeli. CONCLUSION Our report is the first to demonstrate that volatiles produced by galls induced by L. invasa are attractive to Q. mendeli, which suggests that this parasitoid could utilize herbivore-induced plant volatiles to locate its host. The results are beneficial for understanding the function of plant volatiles in host searching by parasitoids of gall-forming insect pests. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zong-You Huang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Zuo-Jun Liu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Zhi-Lin Zhang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
10
|
Shaltiel-Harpaz L, Yahyaa M, Nawade B, Dudareva N, Ibdah M. Identification of a wild carrot as carrot psylla (Bactericera trigonica) attractant and host plant chemistry. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:111011. [PMID: 34482913 DOI: 10.1016/j.plantsci.2021.111011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Carrot psylla is one of the devastating pests of carrot throughout northern Europe and the Mediterranean basin. Here we characterized the behavioral response of psylla females towards different carrot germplasm and identified the chemical cues involved in the host selection of psylla females by oviposition choice experiments and metabolic profiling of leaf volatiles. In choice assays, carrot psylla displayed differential responses to tested 14 germplasm. Among germplasm, wild accessions 21793 and 20465 were highly preferred by carrot psylla, while wild accessions 20465 and the orange cultivar Nairobi were less. In non-choice experiments conducted only with this four-germplasm revealed that the carrot psylla females gave higher preference to the Nairobi and wild accession 20465, indicating the vicinity to other host plants in the same area might affect female preference. Moreover, the nymph development and survival experiments showed the lowest nymphs survival rate on the wild accessions 21793 and 20497. Furthermore, the volatile emissions among different carrot cultivars infested with psylla showed qualitative and quantitative differences versus intact plants. Among these volatiles, apiol, β-asarone, myristicin, and sabinene showed a relationship with psyllas growth and survival. We also showed that myristicin and sabinene exogenous applications caused a dramatic reduction in the number of eggs laid by psylla and subsequent nymph survival. This is an initial study of the volatiles that mediate attraction and oviposition preference of carrot psylla in response to its host plant. The results from this study provide baseline information for the development of new control strategies against carrot psylla.
Collapse
Affiliation(s)
- Liora Shaltiel-Harpaz
- Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona, 11016, Israel; Tel Hai College, Environmental Sciences Department, Upper Galilee, 12210, Israel
| | - Mosaab Yahyaa
- Newe Yaar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Bhagwat Nawade
- Newe Yaar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Natalia Dudareva
- Purdue University, Department of Biochemistry, 175 S. University Street, West Lafayette, IN, 47907-2063, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| |
Collapse
|
11
|
Ayelo PM, Pirk CWW, Yusuf AA, Chailleux A, Mohamed SA, Deletre E. Exploring the Kairomone-Based Foraging Behaviour of Natural Enemies to Enhance Biological Control: A Review. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.641974] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kairomones are chemical signals that mediate interspecific interactions beneficial to organisms that detect the cues. These attractants can be individual compounds or mixtures of herbivore-induced plant volatiles (HIPVs) or herbivore chemicals such as pheromones, i.e., chemicals mediating intraspecific communication between herbivores. Natural enemies eavesdrop on kairomones during their foraging behaviour, i.e., location of oviposition sites and feeding resources in nature. Kairomone mixtures are likely to elicit stronger olfactory responses in natural enemies than single kairomones. Kairomone-based lures are used to enhance biological control strategies via the attraction and retention of natural enemies to reduce insect pest populations and crop damage in an environmentally friendly way. In this review, we focus on ways to improve the efficiency of kairomone use in crop fields. First, we highlight kairomone sources in tri-trophic systems and discuss how these attractants are used by natural enemies searching for hosts or prey. Then we summarise examples of field application of kairomones (pheromones vs. HIPVs) in recruiting natural enemies. We highlight the need for future field studies to focus on the application of kairomone blends rather than single kairomones which currently dominate the literature on field attractants for natural enemies. We further discuss ways for improving kairomone use through attract and reward technique, olfactory associative learning, and optimisation of kairomone lure formulations. Finally, we discuss why the effectiveness of kairomone use for enhancing biological control strategies should move from demonstration of increase in the number of attracted natural enemies, to reducing pest populations and crop damage below economic threshold levels and increasing crop yield.
Collapse
|
12
|
The Role of Trialeurodes vaporariorum-Infested Tomato Plant Volatiles in the Attraction of Encarsia formosa (Hymenoptera: Aphelinidae). J Chem Ecol 2021; 47:192-203. [PMID: 33452961 DOI: 10.1007/s10886-021-01245-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Natural enemies locate their herbivorous host and prey through kairomones emitted by host plants and herbivores. These kairomones could be exploited to attract and retain natural enemies in crop fields for insect pest control. The parasitoid Encarsia formosa preferentially parasitises its whitefly host, Trialeurodes vaporariorum, a major pest of tomato Solanum lycopersicum, thus offering an effective way to improve whitefly control. However, little is known about the chemical interactions that occur in E. formosa-T. vaporariorum-S. lycopersicum tritrophic system. Using behavioural assays and chemical analyses, we investigated the kairomones mediating attraction of the parasitoid to host-infested tomato plants. In Y-tube olfactometer bioassays, unlike volatiles of healthy tomato plants, those of T. vaporariorum-infested tomato plants attracted E. formosa, and this response varied with host infestation density. Coupled gas chromatography/mass spectrometric analyses revealed that host infestation densities induced varying qualitative and quantitative differences in volatile compositions between healthy and T. vaporariorum adult-infested tomato plants. Bioassays using synthetic chemicals revealed the attractiveness of 3-carene, β-ocimene, β-myrcene and α-phellandrene to the parasitoid, and the blend of the four compounds elicited the greatest attraction. Our results suggest that these terpenes could be used as an attractant lure to recruit the parasitoid E. formosa for the control of whiteflies in tomato crop fields.
Collapse
|
13
|
Mas F, Horner R, Cazères S, Alavi M, Suckling DM. Odorant-Based Detection and Discrimination of Two Economic Pests in Export Apples. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:134-143. [PMID: 31588516 DOI: 10.1093/jee/toz254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Indexed: 06/10/2023]
Abstract
Detection of pest infestations in fresh produce traded internationally could offer improved prospects for reducing the movement of unwanted pests. Because immature stages of some pests can be difficult to find visually, other cues such as herbivore-induced volatiles that can potentially be detected at the early stages of infestation are worth investigating. In this study, we artificially infested postharvested apples (Malus × domestica 'Royal Gala') with two economic apple pests, the specialist codling moth (CM, Cydia pomonella Linnaeus, Lepidoptera: Tortricidae) and the generalist Queensland fruit fly (QFF, Bactrocera tryoni, Froggatt, Diptera: Tephritidae) and collected volatile organic compounds (VOCs) over time (days 0, 6, and 14-15). In both infestation experiments, we found a strong and significant interaction between time and treatment. Apples infested with the QFF emitted lower total amounts of VOCs than uninfested apples, whereas apples infested with the CM released similar total amounts of VOCs. Apples infested with CM had increases in several hexyl and butyl esters, which were particularly noticeable after 15 d. In contrast, changes in ethyl esters were characteristics of QFF infestation and could be detected from day 6. Our multilevel and multivariate statistical analysis identified specific volatile biomarkers for each species at each sampling time that can be used to design a new tool for remote detection and surveillance of these invasive pests in harvested apples. Nevertheless, other information such as the cultivar as well as the storage condition needs to be taken into consideration to increase accuracy of future odorant-based sensors for pest identification.
Collapse
Affiliation(s)
- Flore Mas
- The New Zealand Institute for Plant and Food Research Limited, Biosecurity Group, PB, Christchurch, New Zealand
- Better Border Biosecurity (B3) (http://b3nz.org)
| | - Rachael Horner
- The New Zealand Institute for Plant and Food Research Limited, Biosecurity Group, PB, Christchurch, New Zealand
- Better Border Biosecurity (B3) (http://b3nz.org)
| | - Sylvie Cazères
- Institut Agronomique néo-Calédonien, Laboratoire d'Entomologie Appliquée, Station de Recherches Fruitières de Pocquereux, La Foa, New Caledonia, France
| | - Maryam Alavi
- The New Zealand Institute for Plant and Food Research Limited, Biosecurity Group, PB, Christchurch, New Zealand
| | - David Maxwell Suckling
- The New Zealand Institute for Plant and Food Research Limited, Biosecurity Group, PB, Christchurch, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Better Border Biosecurity (B3) (http://b3nz.org)
| |
Collapse
|
14
|
Salamanca J, Souza B, Kyryczenko-Roth V, Rodriguez-Saona C. Methyl Salicylate Increases Attraction and Function of Beneficial Arthropods in Cranberries. INSECTS 2019; 10:E423. [PMID: 31775223 PMCID: PMC6955811 DOI: 10.3390/insects10120423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022]
Abstract
Methyl salicylate (MeSA) is an herbivore-induced plant volatile (HIPV) known to attract the natural enemies of herbivores in agro-ecosystems; however, whether this attraction leads to an increase in natural enemy functioning, i.e., predation, remains largely unknown. Here, we monitored for 2 years (2011-2012) the response of herbivores and natural enemies to MeSA lures (PredaLure) by using sticky and pitfall traps in cranberry bogs. In addition, European corn borer, Ostrinia nubilalis, egg masses were used to determine whether natural enemy attraction to MeSA leads to higher predation. In both years, MeSA increased adult hoverfly captures on sticky traps and augmented predation of O. nubilalis eggs. However, MeSA also attracted more phytophagous thrips and, in 2012, more plant bugs (Miridae) to sticky traps. Furthermore, we used surveillance cameras to record the identity of natural enemies attracted to MeSA and measure their predation rate. Video recordings showed that MeSA lures increase visitation by adult lady beetles, adult hoverflies, and predatory mites to sentinel eggs, and predation of these eggs doubled compared to no-lure controls. Our data indicate that MeSA lures increase predator attraction, resulting in increased predation; thus, we provide evidence that attraction to HIPVs can increase natural enemy functioning in an agro-ecosystem.
Collapse
Affiliation(s)
- Jordano Salamanca
- Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente (ECAPMA), Universidad Nacional Abierta y a Distancia (UNAD), Bogotá 110111, Colombia
| | - Brígida Souza
- Departamento de Entomologia, Universidade Federal de Lavras, Lavras 37200-000, Minas Gerais, Brasil;
| | - Vera Kyryczenko-Roth
- P.E. Marucci Center for Blueberry & Cranberry Research, Rutgers University, Chatsworth, NJ 08019, USA; (V.K.-R.); (C.R.-S.)
| | - Cesar Rodriguez-Saona
- P.E. Marucci Center for Blueberry & Cranberry Research, Rutgers University, Chatsworth, NJ 08019, USA; (V.K.-R.); (C.R.-S.)
| |
Collapse
|
15
|
Dalbó J, Filgueiras LA, Mendes AN. Effects of pesticides on rural workers: haematological parameters and symptomalogical reports. CIENCIA & SAUDE COLETIVA 2019; 24:2569-2582. [DOI: 10.1590/1413-81232018247.19282017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/28/2017] [Indexed: 11/21/2022] Open
Abstract
Abstract Exposure to pesticides by the rural population is increasing worldwide. Pesticides can induce the development of different diseases such as cancer and diseases of the central nervous system. This study analysed the clinical symptoms and haematological changes of a rural population in Conceição do Castelo, Espirito Santo, Brazil. For evaluation of symptomatology exposure to pesticides, 142 rural workers were interviewed. Of these, 22 workers were selected for haematological tests randomly as to evaluate haematological changes during the period of exposure to pesticides. Haematological analyses showed that erythrocytes, haemoglobin, haematocrit, mean corpuscular (VCM) volume, mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC) are in accordance with the reference intervals in haematology. Variations in the concentrations of rods and neutrophils indicates that exposure to pesticides increases the amount of those cells. Haematological disorders in rural workers exposed to pesticides can be correlated with reported symptoms. The results described in this study are relevant to the health public and reinforce the concern about the indiscriminate use of pesticides.
Collapse
|
16
|
Aboubakar Souna D, Bokonon-Ganta AH, Dannon EA, Imorou N, Agui B, Cusumano A, Srinivasan R, Pittendrigh BR, Volkoff AN, Tamò M. Volatiles from Maruca vitrata (Lepidoptera, Crambidae) host plants influence olfactory responses of the parasitoid Therophilus javanus (Hymenoptera, Braconidae, Agathidinae). BIOLOGICAL CONTROL : THEORY AND APPLICATIONS IN PEST MANAGEMENT 2019; 130:104-109. [PMID: 30828225 PMCID: PMC6365886 DOI: 10.1016/j.biocontrol.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Plants damaged by herbivores are known to release odors attracting parasitoids. However, there is currently no information how leguminous plants damaged by the pod borer Maruca vitrata attract the exotic larval parasitoid Therophilus javanus, which was imported into Benin from the putative area of origin of the pod borer in tropical Asia for assessing its potential as a biological control agent. In this study, we used Y-tube olfactometer bioassays to investigate T. javanus response towards odors emitted by four M. vitrata-damaged host plants: cowpea Vigna unguiculata, the most important cultivated host, and the naturally occurring legumes Lonchocarpus sericeus, Sesbania rostrata and Tephrosia platycarpa. Olfactory attraction of T. javanus was influenced by the species of plant damaged by the pod borer. Moreover, odors released from M. vitrata-infested host plant organs (flowers and pods) were discriminated over non-infested organs in cowpea and T. platycarpa, respectively. These results are discussed in the context of the possible impact of M. vitrata host plants on T. javanus foraging activity and subsequent establishment in natural environments following experimental releases.
Collapse
Affiliation(s)
- Djibril Aboubakar Souna
- UMR DGIMI 1333 INRA, UM, Case Courrier 101, Place Eugène Bataillon, 34 095 Montpellier, France
- International Institute of Tropical Agriculture, Benin Research Station (IITA-Benin), 08 BP 0932 Tri Postal, Cotonou, Benin
- Department of Crop Production, Faculty of Agronomic Sciences (FSA), University of Abomey-Calavi (UAC), 03 BP 2819 Cotonou, Benin
| | - Aimé Hippolyte Bokonon-Ganta
- Department of Crop Production, Faculty of Agronomic Sciences (FSA), University of Abomey-Calavi (UAC), 03 BP 2819 Cotonou, Benin
| | - Elie Ayitondji Dannon
- International Institute of Tropical Agriculture, Benin Research Station (IITA-Benin), 08 BP 0932 Tri Postal, Cotonou, Benin
| | - Nazyhatou Imorou
- International Institute of Tropical Agriculture, Benin Research Station (IITA-Benin), 08 BP 0932 Tri Postal, Cotonou, Benin
| | - Benjamin Agui
- International Institute of Tropical Agriculture, Benin Research Station (IITA-Benin), 08 BP 0932 Tri Postal, Cotonou, Benin
| | - Antonino Cusumano
- UMR DGIMI 1333 INRA, UM, Case Courrier 101, Place Eugène Bataillon, 34 095 Montpellier, France
| | | | | | - Anne-Nathalie Volkoff
- UMR DGIMI 1333 INRA, UM, Case Courrier 101, Place Eugène Bataillon, 34 095 Montpellier, France
| | - Manuele Tamò
- International Institute of Tropical Agriculture, Benin Research Station (IITA-Benin), 08 BP 0932 Tri Postal, Cotonou, Benin
| |
Collapse
|
17
|
Pålsson J, Thöming G, Silva R, Porcel M, Dekker T, Tasin M. Recruiting on the Spot: A Biodegradable Formulation for Lacewings to Trigger Biological Control of Aphids. INSECTS 2019; 10:insects10010006. [PMID: 30621292 PMCID: PMC6358976 DOI: 10.3390/insects10010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/25/2018] [Accepted: 12/29/2018] [Indexed: 12/18/2022]
Abstract
Upon herbivory, plants release herbivore-induced plant volatiles (HIPVs), which induce chemical defenses in the plant as well as recruit natural enemies. However, whether synthetic HIPVs can be employed to enhance biological control in a cultivated crop in the field is yet to be explored. Here we show that a biodegradable formulation loaded with induced and food-signaling volatiles can selectively recruit the common green lacewing, Chrysoperla carnea, and reduce pest population under field conditions. In apple orchards, the new formulation attracted lacewing adults over a 4-week period, which correlated well with independent assessments of the longevity of the slow-release matrix measured through chemical analyses. In barley, lacewing eggs and larvae were significantly more abundant in treated plots, whereas a significant reduction of two aphid species was measured (98.9% and 93.6% of population reduction, for Sitobion avenae and Rhopalosiphum padi, respectively). Results show the potential for semiochemical-based targeted recruitment of lacewings to enhance biological control of aphids in a field setting. Further research should enhance selective recruitment by rewarding attracted natural enemies and by optimizing the application technique.
Collapse
Affiliation(s)
- Joakim Pålsson
- Department of Plant Protection Biology, Swedish University of Agricultural Science, 230 53 Alnarp, Sweden.
| | - Gunda Thöming
- NIBIO, Norwegian Institute of Bioeconomy Research, Postbox 115, NO-1431 Ås, Norway.
| | - Rodrigo Silva
- Isca Technologies Inc., 1230 Spring St., Riverside, CA 92507, USA.
| | - Mario Porcel
- Department of Plant Protection Biology, Swedish University of Agricultural Science, 230 53 Alnarp, Sweden.
| | - Teun Dekker
- Department of Plant Protection Biology, Swedish University of Agricultural Science, 230 53 Alnarp, Sweden.
| | - Marco Tasin
- Department of Plant Protection Biology, Swedish University of Agricultural Science, 230 53 Alnarp, Sweden.
| |
Collapse
|
18
|
De Lange ES, Salamanca J, Polashock J, Rodriguez-Saona C. Genotypic Variation and Phenotypic Plasticity in Gene Expression and Emissions of Herbivore-Induced Volatiles, and their Potential Tritrophic Implications, in Cranberries. J Chem Ecol 2019; 45:298-312. [PMID: 30607684 DOI: 10.1007/s10886-018-1043-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/28/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
Herbivorous insects are important problems in cranberry (Vaccinium macrocarpon Ait.) production. The use of chemical pesticides is common practice, but beneficial insects such as natural enemies of herbivores (e.g. predators and parasitoids) could be affected as well. Therefore, we studied the defensive mechanisms that cranberry plants use to combat pests, focusing on herbivore-induced plant volatiles (HIPVs), which can be used to recruit predators and parasitoids foraging for prey or hosts. Then, we used synthetic HIPVs to test the attraction of natural enemies. In a greenhouse, we assessed nine cranberry genotypes for expression of genes involved in HIPV biosynthesis and/or emission of HIPVs. In an experimental field, we assessed whether baiting traps with individual or combinations of HIPVs increased attractiveness to natural enemies. The results showed that different cranberry genotypes vary in their emission of monoterpenes and sesquiterpenes but not in their expression of two genes associated with terpene biosynthesis, α-humulene/β-caryophyllene synthase and (3S,6E)-nerolidol/R-linalool synthase. Induction with methyl jasmonate or herbivore (gypsy moth, Lymantria dispar L.) feeding increased the expression of these genes and emission of HIPVs. The HIPV methyl salicylate (MeSA), alone or in combination with other HIPVs, increased syrphid attraction by 6-fold in the field, while (Z)-3-hexenyl acetate and MeSA repelled ladybeetles and megaspilids, respectively. Linalool and β-caryophyllene elicited no behavioral responses of natural enemies. Elucidating the mechanisms of pest resistance, as well as experimentally augmenting plant defenses such as HIPVs, may contribute to the development of more sustainable pest management practices in crops, including cranberries.
Collapse
Affiliation(s)
- Elvira S De Lange
- Department of Entomology and Nematology, University of California Davis, 1 Shields Avenue, 367 Briggs Hall, Davis, CA, 95616, USA.
| | - Jordano Salamanca
- Escuela de Ciencias Agrícolas, Pecuarias y de Medio Ambiente (ECAPMA), Universidad Nacional Abierta y a Distancia (UNAD), Bogotá, Colombia
| | - James Polashock
- Genetic Improvement of Fruits and Vegetables Laboratory, United States Department of Agriculture-Agricultural Research Service, 125A Lake Oswego Road, Chatsworth, NJ, 08019, USA
| | - Cesar Rodriguez-Saona
- Department of Entomology, Philip E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, 125A Lake Oswego Road, Chatsworth, NJ, 08019, USA
| |
Collapse
|
19
|
Volatiles from Aquilaria sinensis damaged by Heortia vitessoides larvae deter the conspecific gravid adults and attract its predator Cantheconidea concinna. Sci Rep 2018; 8:15067. [PMID: 30305665 PMCID: PMC6180080 DOI: 10.1038/s41598-018-33404-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 09/27/2018] [Indexed: 01/20/2023] Open
Abstract
The effects of induced plant responses on herbivores are categorised as direct, by reducing herbivore development, or indirect, by affecting the performance of natural enemies. Here, we investigated a tritrophic system, which included the herbivore Heortia vitessoides, its host plant Aquilaria sinensis, and its predator Cantheconidea concinna. Herbivore-damaged A. sinensis plants released significantly greater amounts of volatiles than undamaged and mechanically damaged plants, with an obvious temporal trend. One day after initial herbivore damage, A. sinensis plants released large amounts of volatile compounds. Volatile compounds release gradually decreased over the next 3 d. The composition and relative concentrations of the electroantennographic detection (EAD)-active compounds, emitted after herbivore damage, varied significantly over the 4-d measurement period. In wind tunnel bioassays, mated H. vitessoides females showed a preference for undamaged plants over herbivore and mechanically damaged A. sinensis plants. In Y-tube bioassays, C. concinna preferred odours from herbivore-damaged plants to those from undamaged plants, especially after the early stages of insect attack. Our results indicate that the herbivore-induced compounds produced in response to attack by H. vitessoides larvae on A. sinensis plants could be used by both the herbivores themselves and their natural enemies to locate suitable host plants and prey, respectively.
Collapse
|
20
|
Aartsma Y, Leroy B, van der Werf W, Dicke M, Poelman EH, Bianchi FJJA. Intraspecific variation in herbivore-induced plant volatiles influences the spatial range of plant-parasitoid interactions. OIKOS 2018. [DOI: 10.1111/oik.05151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yavanna Aartsma
- Farming Systems Ecology, Wageningen Univ; Wageningen the Netherlands
- Laboratory of Entomology, Wageningen Univ; Wageningen the Netherlands
- Centre for Crop Systems Analysis, Wageningen Univ; Wageningen the Netherlands
| | - Benjamin Leroy
- Farming Systems Ecology, Wageningen Univ; Wageningen the Netherlands
- Dept of Agroecology and Environment, ISARA Lyon; Lyon France
| | - Wopke van der Werf
- Centre for Crop Systems Analysis, Wageningen Univ; Wageningen the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen Univ; Wageningen the Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology, Wageningen Univ; Wageningen the Netherlands
| | | |
Collapse
|
21
|
Llandres AL, Almohamad R, Brévault T, Renou A, Téréta I, Jean J, Goebel FR. Plant training for induced defense against insect pests: a promising tool for integrated pest management in cotton. PEST MANAGEMENT SCIENCE 2018; 74:2004-2012. [PMID: 29667361 DOI: 10.1002/ps.5039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Enhancing cotton pest management using plant natural defenses has been described as a promising way to improve the management of crop pests. We here reviewed various studies on cotton growing systems to illustrate how an ancient technique called plant training, which includes plant topping and pruning, may contribute to this goal. Using examples from cotton crops, we show how trained plants can be brought to a state of enhanced defense that causes faster and more robust activation of their defense responses. We revisit the agricultural benefits associated with this technique in cotton crops, with a focus on its potential as a supplementary tool for integrated pest management (IPM). In particular, we examine its role in mediating plant interactions with conspecific neighboring plants, pests and associated natural enemies. We propose a new IPM tool, plant training for induced defense, which involves inducing plant defense through artificial injury. Experimental evidence from various studies shows that cotton training is a promising technique, particularly for smallholders, which can be used as part of an IPM program to significantly reduce insecticide use and to improve productivity in cotton farming. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana L Llandres
- CIRAD, Persyst Department, UPR AIDA, Montpellier, France
| | - Raki Almohamad
- CIRAD, Persyst Department, UPR AIDA, Montpellier, France
| | - Thierry Brévault
- CIRAD, Persyst Department, UPR AIDA, Montpellier, France
- BIOPASS, ISRA-UCAD-IRD, Dakar, Senegal
| | - Alain Renou
- CIRAD, Persyst Department, UPR AIDA, Montpellier, France
- CIRAD, BP, Bamako, Mali
| | | | - Janine Jean
- CIRAD, Persyst Department, UPR AIDA, Montpellier, France
| | | |
Collapse
|
22
|
Dong YJ, Hwang SY. Cucumber Plants Baited with Methyl Salicylate Accelerates Scymnus (Pullus) sodalis (Coleoptera: Coccinellidae) Visiting to Reduce Cotton Aphid (Hemiptera: Aphididae) Infestation. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2092-2099. [PMID: 28961975 DOI: 10.1093/jee/tox240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 06/07/2023]
Abstract
The cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae), is a major pest of many crops worldwide and a major cucumber plant pest in Taiwan. Because cotton aphids rapidly develop insecticide resistance and because of the insecticide residue problem, a safe and sustainable method is required to replace conventional chemical control methods. Methyl salicylate (MeSA), a herbivore-induced plant volatile, has been shown to affect aphids' behavior and attract the natural enemies of aphids for reducing their population. Therefore, this study examined the direct effects of MeSA on cotton aphids' settling preference, population development, and attractiveness to natural enemies. The efficiency of using MeSA and the commercial insecticide pymetrozine for reducing the cotton aphid population in laboratory and outdoor cucumber plant pot was also examined. The results showed no difference in winged aphids' settling preference and population development between the MeSA and blank treatments. Cucumber plants infested with cotton aphids and baited with 0.1% or 10% MeSA contained significantly higher numbers of the natural enemy of cotton aphids, namely Scymnus (Pullus) sodalis (Weise) (Coleoptera: Coccinellidae), and MeSA-treated cucumber plants contained a lower number of aphids. Significantly lower cotton aphid numbers were found on cucumber plants within a 10-m range of MeSA application. In addition, fruit yield showed no difference between the MeSA and pymetrozine treatments. According to our findings, 0.1% MeSA application can replace insecticides as a cotton aphid control tool. However, large-scale experiments are necessary to confirm its efficiency and related conservation biological control strategies before further use.
Collapse
Affiliation(s)
- Y J Dong
- Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, 189 Zhongzheng Road, Wufeng District, Taichung City 41362, Taiwan (R.O.C.)
| | - S Y Hwang
- Department of Entomology, National Chung Hsing University, 145 Xingda Road, South District, Taichung City 40227, Taiwan (R.O.C.)
| |
Collapse
|
23
|
Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq. Funct Integr Genomics 2016; 16:383-98. [DOI: 10.1007/s10142-016-0491-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/05/2016] [Accepted: 03/29/2016] [Indexed: 12/31/2022]
|
24
|
Rowen E, Kaplan I. Eco-evolutionary factors drive induced plant volatiles: a meta-analysis. THE NEW PHYTOLOGIST 2016; 210:284-94. [PMID: 26725245 DOI: 10.1111/nph.13804] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/11/2015] [Indexed: 05/18/2023]
Abstract
Herbivore-induced plant volatiles (HIPVs) mediate critical ecological functions, but no studies have quantitatively synthesized data published on HIPVs to evaluate broad patterns. We tested three hypotheses that use eco-evolutionary theory to predict volatile induction: feeding guild (chewing arthropods > sap feeders), diet breadth (specialist herbivores > generalists), and selection history (domesticated plants < wild species). To test these hypotheses, we extracted data from 236 experiments that report volatiles produced by herbivore-damaged and undamaged plants. These data were subjected to meta-analysis, including effects on total volatiles and major biochemical classes. Overall, we found that chewers induced more volatiles than sap feeders, for both total volatiles and most volatile classes (e.g. green leaf volatiles, monoterpenes). Although specialist herbivores induced more total volatiles than generalists, this was inconsistent across chemical classes. Contrary to our expectation, domesticated species induced stronger volatile responses than wild species, even when controlling for plant taxonomy. Surprisingly, this is the first quantitative synthesis of published studies on HIPVs. Our analysis provides support for perceptions in the published literature (chewers > sap feeders), while challenging other commonly held notions (wild > crop). Despite the large number of experiments, we identified several gaps in the existing literature that should guide future investigations.
Collapse
Affiliation(s)
- Elizabeth Rowen
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802-3508, USA
| | - Ian Kaplan
- Department of Entomology, Purdue University, 901 W. State Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
25
|
Rosenkranz M, Pugh TAM, Schnitzler JP, Arneth A. Effect of land-use change and management on biogenic volatile organic compound emissions--selecting climate-smart cultivars. PLANT, CELL & ENVIRONMENT 2015; 38:1896-1912. [PMID: 25255900 DOI: 10.1111/pce.12453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
Land-use change (LUC) has fundamentally altered the form and function of the terrestrial biosphere. Increasing human population, the drive for higher living standards and the potential challenges of mitigating and adapting to global environmental change mean that further changes in LUC are unavoidable. LUC has direct consequences on climate not only via emissions of greenhouse gases and changing the surface energy balance but also by affecting the emission of biogenic volatile organic compounds (BVOCs). Isoprenoids, which dominate global BVOC emissions, are highly reactive and strongly modify atmospheric composition. The effects of LUC on BVOC emissions and related atmospheric chemistry have been largely ignored so far. However, compared with natural ecosystems, most tree species used in bioenergy plantations are strong BVOC emitters, whereas intensively cultivated crops typically emit less BVOCs. Here, we summarize the current knowledge on LUC-driven BVOC emissions and how these might affect atmospheric composition and climate. We further discuss land management and plant-breeding strategies, which could be taken to move towards climate-friendly BVOC emissions while simultaneously maintaining or improving key ecosystem functions such as crop yield under a changing environment.
Collapse
Affiliation(s)
- Maaria Rosenkranz
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Thomas A M Pugh
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| | - Jörg-Peter Schnitzler
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Almut Arneth
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| |
Collapse
|
26
|
Rezk A, Nolzen J, Schepker H, Albach DC, Brix K, Ullrich MS. Phylogenetic spectrum and analysis of antibacterial activities of leaf extracts from plants of the genus Rhododendron. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:67. [PMID: 25879877 PMCID: PMC4367927 DOI: 10.1186/s12906-015-0596-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/28/2015] [Indexed: 12/02/2022]
Abstract
BACKGROUND Plants are traditionally used for medicinal treatment of numerous human disorders including infectious diseases caused by microorganisms. Due to the increasing resistance of many pathogens to commonly used antimicrobial agents, there is an urgent need for novel antimicrobial compounds. Plants of the genus Rhododendron belong to the woody representatives of the family Ericaceae, which are typically used in a range of ethno-medical applications. There are more than one thousand Rhododendron species worldwide. The Rhododendron-Park Bremen grows plants representing approximately 600 of the known Rhododendron species, and thus enables research involving almost two thirds of all known Rhododendron species. METHODS Twenty-six bacterial species representing different taxonomic clades have been used to study the antimicrobial potential of Rhododendron leaf extracts. Agar diffusion assay were conducted using 80% methanol crude extracts derived from 120 Rhododendron species. Data were analyzed using principal component analysis and the plant-borne antibacterial activities grouped according the first and second principal components. RESULTS The leaf extracts of 17 Rhododendron species exhibited significant growth-inhibiting activities against Gram-positive bacteria. In contrast, only very few of the leaf extracts affected the growth of Gram-negative bacteria. All leaf extracts with antimicrobial bioactivity were extracted from representatives of the subgenus Rhododendron, with 15 from the sub-section Rhododendron and two belonging to the section Pogonanthum. The use of bacterial multidrug efflux pump mutants revealed remarkable differences in the susceptibility towards Rhododendron leaf extract treatment. CONCLUSIONS For the first time, our comprehensive study demonstrated that compounds with antimicrobial activities accumulate in the leaves of certain Rhododendron species, which mainly belong to a particular subgenus. The results suggested that common genetic traits are responsible for the production of bioactive secondary metabolite(s) which act primarily on Gram-positive organisms, and which may affect Gram-negative bacteria in dependence of the activity of multidrug efflux pumps in their cell envelope.
Collapse
Affiliation(s)
- Ahmed Rezk
- Molecular Life Science Research Center, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany.
| | - Jennifer Nolzen
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Strasse 9-11, Oldenburg, 26111, Germany.
| | - Hartwig Schepker
- Stiftung Bremer Rhododendronpark, Deliusweg 40, Bremen, 28359, Germany.
| | - Dirk C Albach
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Strasse 9-11, Oldenburg, 26111, Germany.
| | - Klaudia Brix
- Molecular Life Science Research Center, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany.
| | - Matthias S Ullrich
- Molecular Life Science Research Center, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany.
| |
Collapse
|
27
|
Beck JJ, Smith L, Baig N. An overview of plant volatile metabolomics, sample treatment and reporting considerations with emphasis on mechanical damage and biological control of weeds. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:331-41. [PMID: 24347157 DOI: 10.1002/pca.2486] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 05/12/2023]
Abstract
INTRODUCTION The technology for the collection and analysis of plant-emitted volatiles for understanding chemical cues of plant-plant, plant-insect or plant-microbe interactions has increased over the years. Consequently, the in situ collection, analysis and identification of volatiles are considered integral to elucidation of complex plant communications. Due to the complexity and range of emissions the conditions for consistent emission of volatiles are difficult to standardise. OBJECTIVE To discuss: evaluation of emitted volatile metabolites as a means of screening potential target- and non-target weeds/plants for insect biological control agents; plant volatile metabolomics to analyse resultant data; importance of considering volatiles from damaged plants; and use of a database for reporting experimental conditions and results. METHOD Recent literature relating to plant volatiles and plant volatile metabolomics are summarised to provide a basic understanding of how metabolomics can be applied to the study of plant volatiles. RESULTS An overview of plant secondary metabolites, plant volatile metabolomics, analysis of plant volatile metabolomics data and the subsequent input into a database, the roles of plant volatiles, volatile emission as a function of treatment, and the application of plant volatile metabolomics to biological control of invasive weeds. CONCLUSION It is recommended that in addition to a non-damaged treatment, plants be damaged prior to collecting volatiles to provide the greatest diversity of odours. For the model system provided, optimal volatile emission occurred when the leaf was punctured with a needle. Results stored in a database should include basic environmental conditions or treatments.
Collapse
Affiliation(s)
- John J Beck
- Foodborne Toxin Detection and Prevention, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, California, USA
| | | | | |
Collapse
|