1
|
Barden CJ, Wu F, Fernandez-Murray JP, Lu E, Sun S, Taylor MM, Rushton AL, Williams J, Tavasoli M, Meek A, Reddy AS, Doyle LM, Sagamanova I, Sivamuthuraman K, Boudreau RTM, Byers DM, Weaver DF, McMaster CR. Computer-aided drug design to generate a unique antibiotic family. Nat Commun 2024; 15:8317. [PMID: 39333560 PMCID: PMC11436758 DOI: 10.1038/s41467-024-52797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/23/2024] [Indexed: 09/29/2024] Open
Abstract
The World Health Organization has identified antibiotic resistance as one of the three greatest threats to human health. The need for antibiotics is a pressing matter that requires immediate attention. Here, computer-aided drug design is used to develop a structurally unique antibiotic family targeting holo-acyl carrier protein synthase (AcpS). AcpS is a highly conserved enzyme essential for bacterial survival that catalyzes the first step in lipid synthesis. To the best of our knowledge, there are no current antibiotics targeting AcpS making this drug development program of high interest. We synthesize a library of > 700 novel compounds targeting AcpS, from which 33 inhibit bacterial growth in vitro at ≤ 2 μg/mL. We demonstrate that compounds from this class have stand-alone activity against a broad spectrum of Gram-positive organisms and synergize with colistin to enable coverage of Gram-negative species. We demonstrate efficacy against clinically relevant multi-drug resistant strains in vitro and in animal models of infection in vivo including a difficult-to-treat ischemic infection exemplified by diabetic foot ulcer infections in humans. This antibiotic family could form the basis for several multi-drug-resistant antimicrobial programs.
Collapse
Affiliation(s)
- Christopher J Barden
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Fan Wu
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | | | - Erhu Lu
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Shengguo Sun
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Marcia M Taylor
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Annette L Rushton
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Jason Williams
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Mahtab Tavasoli
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Autumn Meek
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Alla Siva Reddy
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Lisa M Doyle
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Irina Sagamanova
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | | | | | - David M Byers
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
2
|
Jalil AT, Alrawe RTA, Al-Saffar MA, Shaghnab ML, Merza MS, Abosaooda M, Latef R. The use of combination therapy for the improvement of colistin activity against bacterial biofilm. Braz J Microbiol 2024; 55:411-427. [PMID: 38030866 PMCID: PMC10920569 DOI: 10.1007/s42770-023-01189-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Colistin is used as a last resort for the management of infections caused by multi-drug resistant (MDR) bacteria. However, the use of this antibiotic could lead to different side effects, such as nephrotoxicity, in most patients, and the high prevalence of colistin-resistant strains restricts the use of colistin in the clinical setting. Additionally, colistin could induce resistance through the increased formation of biofilm; biofilm-embedded cells are highly resistant to antibiotics, and as with other antibiotics, colistin is impaired by bacteria in the biofilm community. In this regard, the researchers used combination therapy for the enhancement of colistin activity against bacterial biofilm, especially MDR bacteria. Different antibacterial agents, such as antimicrobial peptides, bacteriophages, natural compounds, antibiotics from different families, N-acetylcysteine, and quorum-sensing inhibitors, showed promising results when combined with colistin. Additionally, the use of different drug platforms could also boost the efficacy of this antibiotic against biofilm. The mentioned colistin-based combination therapy not only could suppress the formation of biofilm but also could destroy the established biofilm. These kinds of treatments also avoided the emergence of colistin-resistant subpopulations, reduced the required dosage of colistin for inhibition of biofilm, and finally enhanced the dosage of this antibiotic at the site of infection. However, the exact interaction of colistin with other antibacterial agents has not been elucidated yet; therefore, further studies are required to identify the precise mechanism underlying the efficient removal of biofilms by colistin-based combination therapy.
Collapse
Affiliation(s)
| | | | - Montaha A Al-Saffar
- Community Health Department, Institute of Medical Technology/Baghdad, Middle Technical University, Baghdad, Iraq
| | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Munther Abosaooda
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Rahim Latef
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
3
|
Idris N, Leong KH, Wong EH, Abdul Rahim N. Unveiling synergism of polymyxin B with chloramphenicol derivatives against multidrug-resistant (MDR) Klebsiella pneumoniae. J Antibiot (Tokyo) 2023; 76:711-719. [PMID: 37821539 DOI: 10.1038/s41429-023-00659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Polymyxins are last-line antibiotics against multidrug-resistant Klebsiella pneumoniae but using polymyxins alone may not be effective due to emerging resistance. A previous study found that combining polymyxin B with chloramphenicol effectively kills MDR K. pneumoniae, although the bone marrow toxicity of chloramphenicol is concerning. The aim of this study is to assess the antibacterial efficacy and cytotoxicity of polymyxin B when combined with chloramphenicol and its derivatives, namely thiamphenicol and florfenicol (reported to have lesser toxicity compared to chloramphenicol). The antibacterial activity was evaluated with antimicrobial susceptibility testing using broth microdilution and time-kill assays, while the cytotoxic effect on normal bone marrow cell line, HS-5 was evaluated using the MTT assay. All bacterial isolates tested were found to be susceptible to polymyxin B, but resistant to chloramphenicol, thiamphenicol, and florfenicol when used alone. The use of polymyxin B alone showed bacterial regrowth for all isolates at 24 h. The combination of polymyxin B and florfenicol demonstrated additive and synergistic effects against all isolates (≥ 2 log10 cfu ml-1 reduction) at 4 and 24 h, respectively, while the combination of polymyxin B and thiamphenicol resulted in synergistic killing at 24 h against ATCC BAA-2146. Furthermore, the combination of polymyxin B with florfenicol had the lowest cytotoxic effect on the HS-5 cells compared to polymyxin B combination with chloramphenicol and thiamphenicol. Overall, the combination of polymyxin B with florfenicol enhanced bacterial killing against MDR K. pneumoniae and exerted minimal cytotoxic effect on HS-5 cell line.
Collapse
Affiliation(s)
- Nurulain Idris
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Kok Hoong Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Malaysia
| | - Nusaibah Abdul Rahim
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Ardebili A, Izanloo A, Rastegar M. Polymyxin combination therapy for multidrug-resistant, extensively-drug resistant, and difficult-to-treat drug-resistant gram-negative infections: is it superior to polymyxin monotherapy? Expert Rev Anti Infect Ther 2023; 21:387-429. [PMID: 36820511 DOI: 10.1080/14787210.2023.2184346] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION The increasing prevalence of infections with multidrug-resistant (MDR), extensively-drug resistant (XDR) or difficult-to-treat drug resistant (DTR) Gram-negative bacilli (GNB), including Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter species, and Escherichia coli poses a severe challenge. AREAS COVERED The rapid growing of multi-resistant GNB as well as the considerable deceleration in development of new anti-infective agents have made polymyxins (e.g. polymyxin B and colistin) a mainstay in clinical practices as either monotherapy or combination therapy. However, whether the polymyxin-based combinations lead to better outcomes remains unknown. This review mainly focuses on the effect of polymyxin combination therapy versus monotherapy on treating GNB-related infections. We also provide several factors in designing studies and their impact on optimizing polymyxin combinations. EXPERT OPINION An abundance of recent in vitro and preclinical in vivo data suggest clinical benefit for polymyxin-drug combination therapies, especially colistin plus meropenem and colistin plus rifampicin, with synergistic killing against MDR, XDR, and DTR P. aeruginosa, K. pneumoniae and A. baumannii. The beneficial effects of polymyxin-drug combinations (e.g. colistin or polymyxin B + carbapenem against carbapenem-resistant K. pneumoniae and carbapenem-resistant A. baumannii, polymyxin B + carbapenem + rifampin against carbapenem-resistant K. pneumoniae, and colistin + ceftolozan/tazobactam + rifampin against PDR-P. aeruginosa) have often been shown in clinical setting by retrospective studies. However, high-certainty evidence from large randomized controlled trials is necessary. These clinical trials should incorporate careful attention to patient's sample size, characteristics of patient's groups, PK/PD relationships and dosing, rapid detection of resistance, MIC determinations, and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Abdollah Ardebili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahdieh Izanloo
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Mostafa Rastegar
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
5
|
Sharma J, Sharma D, Singh A, Sunita K. Colistin Resistance and Management of Drug Resistant Infections. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:4315030. [PMID: 36536900 PMCID: PMC9759378 DOI: 10.1155/2022/4315030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 09/19/2023]
Abstract
Colistin resistance is a globalized sensible issue because it has been considered a drug of the last-line resort to treat drug-resistant bacterial infections. The product of the mobilized colistin resistance (mcr) gene and its variants are the significant causes of colistin resistance, which is emerging due to the frequent colistin use in veterinary, and these genes circulate among the bacterial community. Apart from mcr genes, some other intrinsic genes and proteins are also involved in colistin resistance. Researchers focus on the most advanced genomics (whole genome sequencing), proteomics, and bioinformatics approaches to explore the question of colistin resistance. To combat colistin resistance, researchers developed various strategies such as the development of newer drugs, the repurposing of existing drugs, combinatorial treatment by colistin with other drugs, a nano-based approach, photodynamic therapy, a CRISPRi-based strategy, and a phage-based strategy. In this timeline review, we have discussed the development of colistin resistance and its management in developing countries.
Collapse
Affiliation(s)
- Juhi Sharma
- School of Life Science, Jaipur National University, Jaipur, India
| | - Divakar Sharma
- Department of Microbiology, Maulana Azad Medical College, Delhi, India
- Department of Microbiology, Lady Hardinge Medical College, Delhi, India
| | - Amit Singh
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, Delhi, India
- Department of Microbiology, Central University of Punjab, Bathinda, India
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
6
|
Wu YP, Liu DM, Liang MH, Huang YY, Lin J, Xiao LF. Genome-guided purification and characterization of polymyxin A1 from Paenibacillus thiaminolyticus SY20: A rarely explored member of polymyxins. Front Microbiol 2022; 13:962507. [DOI: 10.3389/fmicb.2022.962507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Polymyxin A1 was a rarely investigated member in the polymyxins family produced by Bacillus aerosporus. As a cyclic non-ribosomal lipopeptide, it was purified from Paenibacillus thiaminolyticus for the first time. The producing strain SY20 was screened from Chinese natural fermented bamboo shoots and identified as P. thiaminolyticus SY20 using 16S rRNA homology along with whole genome sequencing. The optimum incubation time was 32 h by the growth kinetics of antimicrobial agent production. The proteinaceous nature of antimicrobial agents was characterized according to the physicochemical properties of the cell-free supernatant. Subsequently, the active antimicrobial agent was purified from the supernatant using ammonium sulfate–graded precipitation, ion-exchange chromatography, and C18-H chromatography. The active agent was identified as polymyxin A1 with a molecular weight 1156.7 Da and antimicrobial activity mainly against Gram-negative bacteria. The molecular structure, a cyclic heptapeptide and a tripeptide side chain acylated by a fatty acid at the amino terminus, was elucidated using the combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS), matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), amino acid analysis, and whole genome mining tool. Meanwhile, the biosynthetic gene cluster of polymyxin A1 including five open reading frames (ORFs) was demonstrated in the genome. The compound should be further explored for its efficacy and toxicity in vivo to develop its application.
Collapse
|
7
|
do V Barroso M, da Silva JS, Moreira SM, Sabino YNV, Rocha GC, Moreira MAS, Bazzolli DMS, Mantovani HC. Selection of Multidrug-Resistant Enterobacteria in Weaned Pigs and Its Association With In-feed Subtherapeutic Combination of Colistin and Tylosin. Curr Microbiol 2022; 79:349. [PMID: 36209304 DOI: 10.1007/s00284-022-03053-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/22/2022] [Indexed: 11/03/2022]
Abstract
In-feed antibiotics are administered to piglets to improve performance and production efficiency. However, the use of growth promoters in the swine industry can select for multidrug-resistant (MDR) bacteria. Here, we evaluate the resistance profile of enterobacteria isolated from fecal samples of weaned pigs (21-35 days) fed or not with antibiotics (colistin and tylosin) and investigated the piglets gut microbiota in both groups. Six hundred and eighteen bacterial cultures were isolated from the control group (CON; n = 384) and antibiotic-fed pigs (ATB; n = 234). All isolates were tested for resistance to 12 antibiotics belonging to six distinct antibiotic classes. Isolates were highly resistant to ampicillin (90%; n = 553), amoxicillin (85%; n = 525), and tetracycline (81%; n = 498). A significant increase (P < 0.05) in resistance to cephalexin, kanamycin, doxycycline, and colistin was observed for bacteria from the ATB group. Piglets allocated in the ATB and CON groups shared similar intestinal microbiota, as revealed by alpha- and beta-diversity analyses. Our findings demonstrate that colistin and tylosin contribute to select MDR enterobacteria in weaned piglets. The high frequency of antibiotic resistance among isolates from the CON group suggests that environmental sources (e.g., fecal contents, aerosols, soil, water, food) also represent a potential reservoir of multidrug-resistant enterobacteria in pig production systems.
Collapse
Affiliation(s)
- Marlon do V Barroso
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Juliana S da Silva
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Sofia M Moreira
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Yasmin N V Sabino
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Gabriel C Rocha
- Departamento de Zootecnia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Maria A S Moreira
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Denise M S Bazzolli
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Hilário C Mantovani
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil. .,Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
8
|
Bian X, Liu X, Feng M, Bergen PJ, Li J, Chen Y, Zheng H, Song S, Zhang J. Enhanced bacterial killing with colistin/sulbactam combination against carbapenem-resistant Acinetobacter baumannii. Int J Antimicrob Agents 2020; 57:106271. [PMID: 33352235 DOI: 10.1016/j.ijantimicag.2020.106271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/05/2020] [Accepted: 12/13/2020] [Indexed: 12/26/2022]
Abstract
AIMS Polymyxin-based combination therapy is often used to treat carbapenem-resistant Acinetobacter baumannii (A. baumannii) infections. Although sulbactam is intrinsically active against A. baumannii, few studies have investigated colistin/sulbactam combinations against carbapenem-resistant A. baumannii. METHODS Whole genome sequencing was undertaken on eight carbapenem-resistant (colistin-susceptible) isolates of A. baumannii from Chinese patients. Bacterial killing of colistin and sulbactam, alone and in combination, was examined with checkerboard (all isolates) and static and dynamic time-kill studies (three isolates). In the dynamic studies, antibiotics were administered in various clinically-relevant dosing regimens that mimicked patient pharmacokinetics. RESULTS The eight isolates consisted of ST195, ST191 and ST208 belonging to clonal complex 208, which is the most epidemic clonal type of A. baumannii globally. All isolates possessed Acinetobacter-derived cephalosporinase (ADC-61 or ADC-78) and seven of eight isolates contained the carbapenem-resistance gene blaOXA-23. The colistin/sulbactam combination was synergistic against two of eight isolates in checkerboard studies. In time-kill studies, rapid bacterial killing of ca. 3-6 log10 CFU/mL was observed with colistin monotherapy, followed by steady regrowth. Sulbactam monotherapy was generally ineffective. Substantially enhanced bacterial killing was observed with colistin/sulbactam combinations in both static and dynamic models, especially with the higher sulbactam concentration (2 g) and/or longer sulbactam infusion time (2 hours) in the dynamic model. CONCLUSIONS This study was the first to use a pharmacokinetics/pharmacodynamics model to investigate synergistic activity of colistin/sulbactam combinations against A. baumannii. It showed that clinically-relevant dosing regimens of colistin combined with sulbactam may substantially improve bacterial killing of multidrug-resistant and carbapenem-resistant A. baumannii.
Collapse
Affiliation(s)
- Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Meiqing Feng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Phillip J Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Yuancheng Chen
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - Huajun Zheng
- Chinese National Human Genome Center, Shanghai, China
| | - Sichao Song
- Chinese National Human Genome Center, Shanghai, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Colistin Update on Its Mechanism of Action and Resistance, Present and Future Challenges. Microorganisms 2020; 8:microorganisms8111716. [PMID: 33147701 PMCID: PMC7692639 DOI: 10.3390/microorganisms8111716] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023] Open
Abstract
Colistin has been extensively used since the middle of the last century in animals, particularly in swine, for the control of enteric infections. Colistin is presently considered the last line of defense against human infections caused by multidrug-resistant Gram-negative organisms such as carbapenemase-producer Enterobacterales, Acinetobacter baumanni, and Pseudomonas aeruginosa. Transferable bacterial resistance like mcr-genes was reported in isolates from both humans and animals. Researchers actively seek strategies to reduce colistin resistance. The definition of guidelines for colistin therapy in veterinary and human medicine is thus crucial. The ban of colistin use in swine as a growth promoter and for prophylactic purposes, and the implementation of sustainable measures in farm animals for the prevention of infections, would help to avoid resistance and should be encouraged. Colistin resistance in the human-animal-environment interface stresses the relevance of the One Health approach to achieve its effective control. Such measures should be addressed in a cooperative way, with efforts from multiple disciplines and with consensus among doctors, veterinary surgeons, and environment professionals. A revision of the mechanism of colistin action, resistance, animal and human use, as well as colistin susceptibility evaluation is debated here.
Collapse
|
10
|
Magana M, Pushpanathan M, Santos AL, Leanse L, Fernandez M, Ioannidis A, Giulianotti MA, Apidianakis Y, Bradfute S, Ferguson AL, Cherkasov A, Seleem MN, Pinilla C, de la Fuente-Nunez C, Lazaridis T, Dai T, Houghten RA, Hancock REW, Tegos GP. The value of antimicrobial peptides in the age of resistance. THE LANCET. INFECTIOUS DISEASES 2020; 20:e216-e230. [PMID: 32653070 DOI: 10.1016/s1473-3099(20)30327-3] [Citation(s) in RCA: 674] [Impact Index Per Article: 134.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/29/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Accelerating growth and global expansion of antimicrobial resistance has deepened the need for discovery of novel antimicrobial agents. Antimicrobial peptides have clear advantages over conventional antibiotics which include slower emergence of resistance, broad-spectrum antibiofilm activity, and the ability to favourably modulate the host immune response. Broad bacterial susceptibility to antimicrobial peptides offers an additional tool to expand knowledge about the evolution of antimicrobial resistance. Structural and functional limitations, combined with a stricter regulatory environment, have hampered the clinical translation of antimicrobial peptides as potential therapeutic agents. Existing computational and experimental tools attempt to ease the preclinical and clinical development of antimicrobial peptides as novel therapeutics. This Review identifies the benefits, challenges, and opportunities of using antimicrobial peptides against multidrug-resistant pathogens, highlights advances in the deployment of novel promising antimicrobial peptides, and underlines the needs and priorities in designing focused development strategies taking into account the most advanced tools available.
Collapse
Affiliation(s)
- Maria Magana
- Department of Biopathology and Clinical Microbiology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Ana L Santos
- Department of Chemistry, Rice University, Houston, TX, USA; Investigación Sanitaria de las Islas Baleares, Palma, Spain
| | - Leon Leanse
- Department of Dermatology, Harvard Medical School, Boston, MA, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Fernandez
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | - Steven Bradfute
- Department of Internal Medicine, Center for Global Health, University of New Mexico, Albuquerque, NM, USA
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Artem Cherkasov
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - Clemencia Pinilla
- Torrey Pines Institute for Molecular Studies, Port St Lucie, FL, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Themis Lazaridis
- Department of Chemistry, The City College of New York, New York, NY, USA; Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, NY, USA
| | - Tianhong Dai
- Department of Dermatology, Harvard Medical School, Boston, MA, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Robert E W Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - George P Tegos
- Reading Hospital, Tower Health, West Reading, PA, USA; Micromoria, Venture X Marlborough, Marlborough, MA, USA.
| |
Collapse
|
11
|
Vázquez-López R, Solano-Gálvez SG, Juárez Vignon-Whaley JJ, Abello Vaamonde JA, Padró Alonzo LA, Rivera Reséndiz A, Muleiro Álvarez M, Vega López EN, Franyuti-Kelly G, Álvarez-Hernández DA, Moncaleano Guzmán V, Juárez Bañuelos JE, Marcos Felix J, González Barrios JA, Barrientos Fortes T. Acinetobacter baumannii Resistance: A Real Challenge for Clinicians. Antibiotics (Basel) 2020; 9:antibiotics9040205. [PMID: 32340386 PMCID: PMC7235888 DOI: 10.3390/antibiotics9040205] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
Acinetobacter baumannii (named in honor of the American bacteriologists Paul and Linda Baumann) is a Gram-negative, multidrug-resistant (MDR) pathogen that causes nosocomial infections, especially in intensive care units (ICUs) and immunocompromised patients with central venous catheters. A. baumannii has developed a broad spectrum of antimicrobial resistance, associated with a higher mortality rate among infected patients compared with other non-baumannii species. In terms of clinical impact, resistant strains are associated with increases in both in-hospital length of stay and mortality. A. baumannii can cause a variety of infections; most involve the respiratory tract, especially ventilator-associated pneumonia, but bacteremia and skin wound infections have also been reported, the latter of which has been prominently observed in the context of war-related trauma. Cases of meningitis associated with A. baumannii have been documented. The most common risk factor for the acquisition of MDR A baumannii is previous antibiotic use, following by mechanical ventilation, length of ICU/hospital stay, severity of illness, and use of medical devices. Current efforts focus on addressing all the antimicrobial resistance mechanisms described in A. baumannii, with the objective of identifying the most promising therapeutic scheme. Bacteriophage- and artilysin-based therapeutic approaches have been described as effective, but further research into their clinical use is required.
Collapse
Affiliation(s)
- Rosalino Vázquez-López
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
- Correspondence: or ; Tel.: +52-56-270210 (ext. 7302)
| | - Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Juan José Juárez Vignon-Whaley
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Jorge Andrés Abello Vaamonde
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Luis Andrés Padró Alonzo
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Andrés Rivera Reséndiz
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Mauricio Muleiro Álvarez
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Eunice Nabil Vega López
- Medical IMPACT, Infectious Diseases Department, Mexico City 53900, Mexico; (E.N.V.L.); (G.F.-K.)
| | - Giorgio Franyuti-Kelly
- Medical IMPACT, Infectious Diseases Department, Mexico City 53900, Mexico; (E.N.V.L.); (G.F.-K.)
| | - Diego Abelardo Álvarez-Hernández
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Valentina Moncaleano Guzmán
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Jorge Ernesto Juárez Bañuelos
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - José Marcos Felix
- Coordinación Ciclos Clínicos Medicina, FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico;
| | - Juan Antonio González Barrios
- Laboratorio de Medicina Genómica, Hospital Regional “1º de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de Mexico 07300, Mexico;
| | - Tomás Barrientos Fortes
- Dirección Sistema Universitario de Salud de la Universidad Anáhuac México (SUSA), Huixquilucan 52786, Mexico;
| |
Collapse
|
12
|
Comparative Antibiofilm Efficacy of Meropenem Alone and in Combination with Colistin in an In Vitro Pharmacodynamic Model by Extended-Spectrum-β-Lactamase-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2019; 63:AAC.01230-19. [PMID: 31481437 DOI: 10.1128/aac.01230-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/22/2019] [Indexed: 11/20/2022] Open
Abstract
We compared the efficacies of meropenem alone and in combination with colistin against two strains of extended-spectrum-β-lactamase-producing Klebsiella pneumoniae, using an in vitro pharmacodynamic model that mimicked two different biofilm conditions. Meropenem monotherapy achieved remarkable efficacy (even a bactericidal effect) under all conditions, whereas colistin was almost inactive and resistance emerged. The addition of colistin to meropenem produced no relevant benefits, in contrast to experiences with other microorganisms.
Collapse
|
13
|
Peri AM, Doi Y, Potoski BA, Harris PNA, Paterson DL, Righi E. Antimicrobial treatment challenges in the era of carbapenem resistance. Diagn Microbiol Infect Dis 2019; 94:413-425. [PMID: 30905487 DOI: 10.1016/j.diagmicrobio.2019.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Infections due to carbapenem-resistant Gram-negative bacteria are burdened by high mortality and represent an urgent threat to address. Clinicians are currently at a dawn of a new era in which antibiotic resistance in Gram-negative bacilli is being dealt with by the availability of the first new antibiotics in this field for many years. Although new antibiotics have shown promising results in clinical trials, there is still uncertainty over whether their use will improve clinical outcomes in real world practice. Some observational studies have reported a survival benefit in carbapenem-resistant Enterobacteriaceae bloodstream infections using combination therapy, often including "old" antibiotics such as colistin, aminoglycosides, tigecycline, and carbapenems. These regimens, however, are linked to increased risk of antimicrobial resistance, and their efficacy has yet to be compared to new antimicrobial options. While awaiting more definitive evidence, antibiotic stewards need clear direction on how to optimize the use of old and novel antibiotic options. Furthermore, carbapenem-sparing regimens should be carefully considered as a potential tool to reduce selective antimicrobial pressure.
Collapse
Affiliation(s)
- Anna Maria Peri
- Infectious Diseases Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy; The University of Queensland Centre for Clinical Research (UQCCR), Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian A Potoski
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, PA, USA
| | - Patrick N A Harris
- The University of Queensland Centre for Clinical Research (UQCCR), Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - David L Paterson
- The University of Queensland Centre for Clinical Research (UQCCR), Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Elda Righi
- The University of Queensland Centre for Clinical Research (UQCCR), Royal Brisbane and Women's Hospital, Herston, QLD, Australia; Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Italy.
| |
Collapse
|
14
|
Torrens G, Barceló IM, Pérez-Gallego M, Escobar-Salom M, Tur-Gracia S, Munar-Bestard M, González-Nicolau MDM, Cabrera-Venegas YJ, Rigo-Rumbos EN, Cabot G, López-Causapé C, Rojo-Molinero E, Oliver A, Juan C. Profiling the susceptibility of Pseudomonas aeruginosa strains from acute and chronic infections to cell-wall-targeting immune proteins. Sci Rep 2019; 9:3575. [PMID: 30837659 PMCID: PMC6401076 DOI: 10.1038/s41598-019-40440-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
In the current scenario of high antibiotic resistance, the search for therapeutic options against Pseudomonas aeruginosa must be approached from different perspectives: cell-wall biology as source of bacterial weak points and our immune system as source of weapons. Our recent study suggests that once the permeability barrier has been overcome, the activity of our cell-wall-targeting immune proteins is notably enhanced, more in mutants with impaired peptidoglycan recycling. The present work aims at analyzing the activity of these proteins [lysozyme and Peptidoglycan-Recognition-Proteins (PGLYRPs)], alone or with a permeabilizer (subinhibitory colistin) in clinical strains, along with other features related to the cell-wall. We compared the most relevant and complementary scenarios: acute (bacteremia) and chronic infections [early/late isolates from lungs of cystic fibrosis (CF) patients]. Although a low activity of lysozyme/PGLYRPs per se (except punctual highly susceptible strains) was found, the colistin addition significantly increased their activity regardless of the strains’ colistin resistance levels. Our results show increased susceptibility in late CF isolates, suggesting that CF adaptation renders P. aeruginosa more vulnerable to proteins targeting the cell-wall. Thus, our work suggests that attacking some P. aeruginosa cell-wall biology-related elements to increase the activity of our innate weapons could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Isabel M Barceló
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Marcelo Pérez-Gallego
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Maria Escobar-Salom
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Sara Tur-Gracia
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Marta Munar-Bestard
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - María Del Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Yoandy José Cabrera-Venegas
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Estefany Nayarith Rigo-Rumbos
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Gabriel Cabot
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Carla López-Causapé
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Estrella Rojo-Molinero
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain.
| |
Collapse
|
15
|
Brunati C, Thomsen TT, Gaspari E, Maffioli S, Sosio M, Jabes D, Løbner-Olesen A, Donadio S. Expanding the potential of NAI-107 for treating serious ESKAPE pathogens: synergistic combinations against Gram-negatives and bactericidal activity against non-dividing cells. J Antimicrob Chemother 2019; 73:414-424. [PMID: 29092042 PMCID: PMC5890740 DOI: 10.1093/jac/dkx395] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/27/2017] [Indexed: 11/12/2022] Open
Abstract
Objectives To characterize NAI-107 and related lantibiotics for their in vitro activity against Gram-negative pathogens, alone or in combination with polymyxin, and against non-dividing cells or biofilms of Staphylococcus aureus. NAI-107 was also evaluated for its propensity to select or induce self-resistance in Gram-positive bacteria. Methods We used MIC determinations and chequerboard experiments to establish the antibacterial activity of the examined compounds against target microorganisms. Time-kill assays were used to evaluate killing of exponential and stationary-phase cells. The effects on biofilms (growth inhibition and biofilm eradication) were evaluated using biofilm-coated pegs. The frequency of spontaneous resistant mutants was evaluated by either direct plating or by continuous sub-culturing at 0.5 × MIC levels, followed by population analysis profiles. Results The results showed that NAI-107 and its brominated variant are highly active against Neisseria gonorrhoeae and some other fastidious Gram-negative pathogens. Furthermore, all compounds strongly synergized with polymyxin against Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, and showed bactericidal activity. Surprisingly, NAI-107 alone was bactericidal against non-dividing A. baumannii cells. Against S. aureus, NAI-107 and related lantibiotics showed strong bactericidal activity against dividing and non-dividing cells. Activity was also observed against S. aureus biofilms. As expected for a lipid II binder, no significant resistance to NAI-107 was observed by direct plating or serial passages. Conclusions Overall, the results of the current work, along with previously published results on the efficacy of NAI-107 in experimental models of infection, indicate that this lantibiotic represents a promising option in addressing the serious threat of antibiotic resistance.
Collapse
Affiliation(s)
- Cristina Brunati
- NAICONS Srl, Viale Ortles 22/4, 20139 Milano, Italy.,KtedoGen Srl, Viale Ortles 22/4, 20139 Milano, Italy
| | - Thomas T Thomsen
- Department of Biology, University of Copenhagen, Ole Maaløe's Vej 5, 2200 Copenhagen, Denmark
| | | | | | - Margherita Sosio
- NAICONS Srl, Viale Ortles 22/4, 20139 Milano, Italy.,KtedoGen Srl, Viale Ortles 22/4, 20139 Milano, Italy
| | | | - Anders Løbner-Olesen
- Department of Biology, University of Copenhagen, Ole Maaløe's Vej 5, 2200 Copenhagen, Denmark
| | - Stefano Donadio
- NAICONS Srl, Viale Ortles 22/4, 20139 Milano, Italy.,KtedoGen Srl, Viale Ortles 22/4, 20139 Milano, Italy
| |
Collapse
|
16
|
da Silveira F, Nedel WL, Cassol R, Pereira PR, Deutschendorf C, Lisboa T. Acinetobacter etiology respiratory tract infections associated with mechanical ventilation: what impacts on the prognosis? A retrospective cohort study. J Crit Care 2019; 49:124-128. [PMID: 30419545 DOI: 10.1016/j.jcrc.2018.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/27/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Acinetobacter species treatment often represents a challenge. The main objective of this study is identify predictors of ICU mortality in patients submitted to mechanical ventilation (MV). MATERIALS AND METHODS Retrospective cohort study. Patients with MV > 48 h who developed a respiratory tract positive culture for Acinetobacter were included, and distinguished among colonized, ventilator-associated pneumonia (VAP) or ventilator-associated tracheobronchitis (VAT) patients. Primary outcome was ICU mortality. RESULTS 153 patients were in MV and presented positive culture for Acinetobacter calcoaceticus-baumanii complex, 70 of them with VAP, 59 with VAT and 24 patients were colonized. The factors related to ICU mortality were VAP (OR 2.2, 95% CI 1.1-4.5) and shock at the time of diagnosis (OR 4.8, 95% CI 1.8-2.3). In multivariate analysis, only SOFA score at the time of diagnosis (OR 1.06, 95% CI 1.03-1.09) was related with ICU mortality. A paired-matched analysis was performed to assess effect of dual therapy on outcomes, and no effect was found in terms of clinical cure, ICU or hospital mortality or duration of antimicrobial therapy. CONCLUSIONS Previous comorbidities and degree of associated organic injury seem to be more important factors in the prognosis than double antibiotic therapy in patients with Acinetobacter-related respiratory infection.
Collapse
Affiliation(s)
| | - Wagner Luis Nedel
- Intensive Care Unit, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil; Post-graduate program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Intensive Care Unit, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Renato Cassol
- Infection Control Unit, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | | | | | - Thiago Lisboa
- Intensive Care Unit, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil; Infection Control Unit, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Efficacy of ceftolozane/tazobactam, alone and in combination with colistin, against multidrug-resistant Pseudomonas aeruginosa in an in vitro biofilm pharmacodynamic model. Int J Antimicrob Agents 2019; 53:612-619. [PMID: 30682497 DOI: 10.1016/j.ijantimicag.2019.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Ceftolozane/tazobactam is a potential tool for infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa (P. aeruginosa), but its efficacy against some difficult-to-treat infections has not been well defined. METHODS Using an in vitro pharmacodynamic biofilm model, this study evaluated the comparative efficacy of ceftolozane/tazobactam against MDR/extensively drug-resistant (XDR) P. aeruginosa strains, alone and in combination with colistin. Simulated regimens of ceftolozane/tazobactam (2 g/1 g every 8 h), meropenem (2 g every 8 h) and ceftazidime (2 g every 8 h), alone and in combination with colistin (continuous infusion) were evaluated against three colistin-susceptible and ceftazidime-resistant strains: MDR-HUB1, ceftolozane/tazobactam-susceptible and meropenem-susceptible; XDR-HUB2, ceftolozane/tazobactam-susceptible and meropenem-resistant; MDR-HUB3, ceftolozane/tazobactam-resistant and meropenem-susceptible. Antibiotic efficacy was evaluated by decreases in bacterial counts (Δlog CFU/mL) from biofilm-embedded bacteria over 54 h. Resistance emergence was screened. RESULTS Among monotherapies, ceftolozane/tazobactam had low killing but no resistance appeared, ceftazidime was ineffective, colistin was initially effective but regrowth and resistance occurred, and meropenem was bactericidal against carbapenem-susceptible strains. Ceftolozane/tazobactam plus colistin was the most effective combination against the meropenem-resistant XDR-HUB2 strain (Δlog CFU/mL 54-0 h = -4.42 vs. -3.54 for meropenem-colistin; P = 0.002), whereas this combination against MDR-HUB1 (-4.36) was less effective than meropenem-colistin (-6.25; P < 0.001). Ceftolozane/tazobactam plus colistin was ineffective against the ceftolozane/tazobactam-resistant strain; meropenem plus colistin was the most bactericidal therapy (-6.37; P < 0.001 vs. others). Combinations of active beta-lactams plus colistin prevented the emergence of colistin-resistant strains. CONCLUSIONS Combinations of colistin plus ceftolozane/tazobactam and meropenem were the most appropriate treatments for biofilm-related infections caused by XDR and MDR P. aeruginosa strains, respectively. These combinations could be considered as potential treatment options for these difficult to treat infections.
Collapse
|
18
|
Mattos KPH, Gouvêa IR, Quintanilha JCF, Cursino MA, Vasconcelos PENS, Moriel P. Polymyxin B clinical outcomes: A prospective study of patients undergoing intravenous treatment. J Clin Pharm Ther 2019; 44:415-419. [PMID: 30666679 DOI: 10.1111/jcpt.12801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/11/2018] [Accepted: 12/24/2018] [Indexed: 11/26/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Polymyxins, especially polymyxin B, has become the last line of therapy against Gram-negative pathogens' carbapenemase producers. However, given increasing use of polymyxin B in clinical settings its therapeutic value has been evaluated worldwide due to its toxic effects. The aim of this study was to assess the efficacy and safety of antimicrobial therapy with polymyxin B in patients with multidrug-resistant bacteria in Brazil. METHODS This was a prospective cohort study in a 403-bed academic tertiary care centre, located in the countryside of Brazil. Patients receiving polymyxin B intravenous treatment for at least 72 hours were eligible for the study. Antimicrobial susceptibility, adverse reactions and clinical outcomes were submitted for descriptive analysis. Main outcomes measure the following: Patients' conditions following treatment (Treatment Success, Mortality, Treatment Failure, Inadequate Empiric Treatment or Indeterminate Response) and toxicities induced by polymyxin B (nephrotoxicity and skin hyperpigmentation). RESULTS AND DISCUSSION Among 247 patients, treatment success was achieved in 25.1%, while mortality was observed in 32.8%. Empirical therapy was prescribed for 26.3% of the patients. Nephrotoxicity was reported in 40.5%. The carbapenemase producer, Klebsiella pneumonia, was the bacterium most associated with mortality (22.2%). CONCLUSIONS Even though polymyxin B is currently the main therapy against carbapenemase producers, its use demands robust criteria to lead to positive clinical outcomes.
Collapse
Affiliation(s)
- Karen P H Mattos
- Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Isabela R Gouvêa
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Maria A Cursino
- Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Patricia Moriel
- Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
19
|
Hussein M, Han ML, Zhu Y, Schneider-Futschik EK, Hu X, Zhou QT, Lin YW, Anderson D, Creek DJ, Hoyer D, Li J, Velkov T. Mechanistic Insights From Global Metabolomics Studies into Synergistic Bactericidal Effect of a Polymyxin B Combination With Tamoxifen Against Cystic Fibrosis MDR Pseudomonas aeruginosa. Comput Struct Biotechnol J 2018; 16:587-599. [PMID: 30546859 PMCID: PMC6280556 DOI: 10.1016/j.csbj.2018.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/04/2023] Open
Abstract
Polymyxins are amongst the most important antibiotics in modern medicine, in recent times their clinical utility has been overshadowed by nosocomial outbreaks of polymyxin resistant MDR Gram-negative 'superbugs'. An effective strategy to surmount polymyxin resistance is combination therapy with FDA-approved non-antibiotic drugs. Herein we used untargeted metabolomics to investigate the mechanism(s) of synergy between polymyxin B and the selective estrogen receptor modulator (SERM) tamoxifen against a polymyxin-resistant MDR cystic fibrosis (CF) Pseudomonas aeruginosa FADDI-PA006 isolate (polymyxin B MIC=8 mg/L , it is an MDR polymyxin resistant P. aeruginosa isolated from the lungs of a CF patient). The metabolome of FADDI-PA006 was profiled at 15 min, 1 and 4 h following treatment with polymyxin B (2 mg/L), tamoxifen (8 mg/L) either as monotherapy or in combination. At 15 min, the combination treatment induced a marked decrease in lipids, primarily fatty acid and glycerophospholipid metabolites that are involved in the biosynthesis of bacterial membranes. In line with the polymyxin-resistant status of this strain, at 1 h, both polymyxin B and tamoxifen monotherapies produced little effect on bacterial metabolism. In contrast to the combination which induced extensive reduction (≥ 1.0-log2-fold, p ≤ 0.05; FDR ≤ 0.05) in the levels of essential intermediates involved in cell envelope biosynthesis. Overall, these novel findings demonstrate that the primary mechanisms underlying the synergistic bactericidal effect of the combination against the polymyxin-resistant P. aeruginosa CF isolate FADDI-PA006 involves a disruption of the cell envelope biogenesis and an inhibition of aminoarabinose LPS modifications that confer polymyxin resistance.
Collapse
Affiliation(s)
- Maytham Hussein
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Mei-Ling Han
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Yan Zhu
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Elena K. Schneider-Futschik
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Xiaohan Hu
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Daniel Hoyer
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville 3052, VIC, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla 92037, CA, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville 3010, VIC, Australia
| |
Collapse
|
20
|
Ramos PIP, Fernández Do Porto D, Lanzarotti E, Sosa EJ, Burguener G, Pardo AM, Klein CC, Sagot MF, de Vasconcelos ATR, Gales AC, Marti M, Turjanski AG, Nicolás MF. An integrative, multi-omics approach towards the prioritization of Klebsiella pneumoniae drug targets. Sci Rep 2018; 8:10755. [PMID: 30018343 PMCID: PMC6050338 DOI: 10.1038/s41598-018-28916-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
Klebsiella pneumoniae (Kp) is a globally disseminated opportunistic pathogen that can cause life-threatening infections. It has been found as the culprit of many infection outbreaks in hospital environments, being particularly aggressive towards newborns and adults under intensive care. Many Kp strains produce extended-spectrum β-lactamases, enzymes that promote resistance against antibiotics used to fight these infections. The presence of other resistance determinants leading to multidrug-resistance also limit therapeutic options, and the use of 'last-resort' drugs, such as polymyxins, is not uncommon. The global emergence and spread of resistant strains underline the need for novel antimicrobials against Kp and related bacterial pathogens. To tackle this great challenge, we generated multiple layers of 'omics' data related to Kp and prioritized proteins that could serve as attractive targets for antimicrobial development. Genomics, transcriptomics, structuromic and metabolic information were integrated in order to prioritize candidate targets, and this data compendium is freely available as a web server. Twenty-nine proteins with desirable characteristics from a drug development perspective were shortlisted, which participate in important processes such as lipid synthesis, cofactor production, and core metabolism. Collectively, our results point towards novel targets for the control of Kp and related bacterial pathogens.
Collapse
Affiliation(s)
- Pablo Ivan Pereira Ramos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Darío Fernández Do Porto
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Esteban Lanzarotti
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Ezequiel J Sosa
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Germán Burguener
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustín M Pardo
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Cecilia C Klein
- Inria Grenoble Rhône-Alpes, Grenoble, France
- Université Claude Bernard Lyon 1, Lyon, France
- Centre for Genomic Regulation (CRG), Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marie-France Sagot
- Inria Grenoble Rhône-Alpes, Grenoble, France
- Université Claude Bernard Lyon 1, Lyon, France
| | | | - Ana Cristina Gales
- Laboratório Alerta. Division of Infectious Diseases, Department of Internal Medicine. Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo Marti
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Adrián G Turjanski
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina.
| | - Marisa F Nicolás
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
|
22
|
Porreca AM, Sullivan KV, Gallagher JC. The Epidemiology, Evolution, and Treatment of KPC-Producing Organisms. Curr Infect Dis Rep 2018; 20:13. [PMID: 29730830 DOI: 10.1007/s11908-018-0617-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to investigate the evolution and epidemiology of Klebsiella pneumoniae carbapenemase (KPC)-producing organisms and the current and future treatment options for infections caused by KPC-producing isolates. RECENT FINDINGS The emergence of resistance in Enterobacteriaceae producing carbapenemases globally has increased the challenges in treating infections caused by these organisms. One of the prominent mechanisms of resistance is the production of KPC enzymes. Infections caused by organisms producing KPCs have limited treatment options and are associated with poor clinical outcomes. The rapid rise of KPC-producing organisms necessitated the use of drugs with pharmacokinetic and toxicity limitations, including polymyxins, tigecycline, fosfomycin, and aminoglycosides. The availability of new beta-lactamase inhibitor combinations that are effective against KPC-producing organisms represent an advance in safety and efficacy. Several agents are currently being studied that have activity against KPC-producing organisms and appear to represent promising additions to our armamentarium. KPC-producing organisms cause infections with high morbidity and mortality. Limited treatment options are available, though new therapies have been developed. Pipeline agents are likely to have a place in therapy for the treatment of infections caused by KPC-producing isolates.
Collapse
Affiliation(s)
- Ann Marie Porreca
- Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, PA, USA
| | - Kaede V Sullivan
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jason C Gallagher
- Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Efficacy of Human-Simulated Exposures of Ceftolozane-Tazobactam Alone and in Combination with Amikacin or Colistin against Multidrug-Resistant Pseudomonas aeruginosa in an In Vitro Pharmacodynamic Model. Antimicrob Agents Chemother 2018; 62:AAC.02384-17. [PMID: 29483119 DOI: 10.1128/aac.02384-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/17/2018] [Indexed: 12/23/2022] Open
Abstract
Combination therapy is an attractive option for the treatment of multidrug-resistant (MDR) Pseudomonas aeruginosa infections; however, limited data are available on combinations with ceftolozane-tazobactam (C-T). The in vitro pharmacodynamic chemostat model was employed to compare human-simulated exposures of C-T at 3 g every 8 h alone or in combination with amikacin at 25 mg/kg of body weight daily or colistin at 360 mg daily against four MDR P. aeruginosa isolates. C-T alone resulted in 24-h changes in the number of CFU of -0.02 ± 0.21, -1.81 ± 0.55, -1.44 ± 0.40, and +0.62 ± 0.05 log10 CFU/ml against isolates with C-T MICs of 4, 4, 8, and 16 μg/ml, respectively. Amikacin and colistin monotherapy displayed various results. The addition of amikacin to C-T resulted in -2.00 ± 0.23 (P < 0.001, additive)-, -1.50 ± 0.83 (P = 0.687, indifferent)-, -2.84 ± 0.08 (P = 0.079, indifferent)-, and -2.67 ± 0.54 (P < 0.001, synergy)-log10 CFU/ml reductions, respectively. The addition of colistin to C-T resulted in -3.02 ± 0.22 (P < 0.001, additive)-, -3.21 ± 0.24 (P > 0.05, indifferent)-, -4.6 ± 0.11 (P = 0.002, synergy)-, and -3.01 ± 0.28 (P < 0.001, synergy)-log10 CFU/ml reductions, respectively, against the MDR P. aeruginosa isolates with these MICs. Greater overall reductions in bacterial burden, including additive or synergistic interactions at 24 h, with C-T plus amikacin or colistin were observed against 3 out of 4 MDR P. aeruginosa strains tested, particularly those strains that were intermediate or resistant to C-T. Further studies assessing combination regimens containing C-T against MDR P. aeruginosa are warranted.
Collapse
|
24
|
Smith NM, Bulman ZP, Sieron AO, Bulitta JB, Holden PN, Nation RL, Li J, Wright GD, Tsuji BT. Pharmacodynamics of dose-escalated 'front-loading' polymyxin B regimens against polymyxin-resistant mcr-1-harbouring Escherichia coli. J Antimicrob Chemother 2018; 72:2297-2303. [PMID: 28505268 DOI: 10.1093/jac/dkx121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/24/2017] [Indexed: 01/09/2023] Open
Abstract
Objectives Gram-negative bacteria harbouring the mcr-1 plasmid are resistant to the 'last-line' polymyxins and have been reported worldwide. Our objective was to define the impact of increasing the initial polymyxin B dose intensity against an mcr-1 -harbouring strain to delineate the impact of plasmid-mediated polymyxin resistance on the dynamics of bacterial killing and resistance. Methods A hollow fibre infection model (HFIM) was used to simulate polymyxin B regimens against an mcr-1 -harbouring Escherichia coli (MIC 8 mg/L) over 10 days. Four escalating polymyxin B 'front-loading' regimens (3.33, 6.66, 13.3 or 26.6 mg/kg for one dose followed by 1.43 mg/kg every 12 h starting 12 h later) simulating human pharmacokinetics were utilized in the HFIM. A mechanism-based, mathematical model was developed using S-ADAPT to characterize bacterial killing. Results The 3.33 mg/kg 'front-loading' regimen resulted in regrowth mirroring the growth control. The 6.66, 13.3 and 26.6 mg/kg 'front-loading' regimens resulted in maximal bacterial reductions of 1.91, 3.79 and 6.14 log 10 cfu/mL, respectively. Irrespective of the early polymyxin B exposure (24 h AUC), population analysis profiles showed similar growth of polymyxin B-resistant subpopulations. The HFIM data were well described by the mechanism-based model integrating three subpopulations (susceptible, intermediate and resistant). Compared with the susceptible subpopulation of mcr-1 -harbouring E. coli , the resistant subpopulation had an approximately 10-fold lower rate of killing due to polymyxin B treatment. Conclusions Manipulating initial dose intensity of polymyxin B was not able to overcome plasmid-mediated resistance due to mcr-1 in E. coli . This reinforces the need to develop new combinatorial strategies to combat these highly resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Nicholas M Smith
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.,New York State Center of Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | - Zackery P Bulman
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.,New York State Center of Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | - Arthur O Sieron
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario, Canada
| | - Jürgen B Bulitta
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Patricia N Holden
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.,New York State Center of Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Gerard D Wright
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario, Canada
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.,New York State Center of Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| |
Collapse
|
25
|
Lin Z, Cai X, Chen M, Ye L, Wu Y, Wang X, Lv Z, Shang Y, Qu D. Virulence and Stress Responses of Shigella flexneri Regulated by PhoP/PhoQ. Front Microbiol 2018; 8:2689. [PMID: 29379483 PMCID: PMC5775216 DOI: 10.3389/fmicb.2017.02689] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/26/2017] [Indexed: 12/31/2022] Open
Abstract
The two-component signal transduction system PhoP/PhoQ is an important regulator for stress responses and virulence in most Gram-negative bacteria, but characterization of PhoP/PhoQ in Shigella has not been thoroughly investigated. In the present study, we found that deletion of phoPQ (ΔphoPQ) from Shigella flexneri 2a 301 (Sf301) resulted in a significant decline (reduced by more than 15-fold) in invasion of HeLa cells and Caco-2 cells, and less inflammation (− or +) compared to Sf301 (+++) in the guinea pig Sereny test. In low Mg2+ (10 μM) medium or pH 5 medium, the ΔphoPQ strain exhibited a growth deficiency compared to Sf301. The ΔphoPQ strain was more sensitive than Sf301 to polymyxin B, an important antimicrobial agent for treating multi-resistant Gram-negative infections. By comparing the transcriptional profiles of ΔphoPQ and Sf301 using DNA microarrays, 117 differentially expressed genes (DEGs) were identified, which were involved in Mg2+ transport, lipopolysaccharide modification, acid resistance, bacterial virulence, respiratory, and energy metabolism. Based on the reported PhoP box motif [(T/G) GTTTA-5nt-(T/G) GTTTA], we screened 38 suspected PhoP target operons in S. flexneri, and 11 of them (phoPQ, mgtA, slyB, yoaE, yrbL, icsA, yhiWX, rstA, hdeAB, pagP, and shf–rfbU-virK-msbB2) were demonstrated to be PhoP-regulated genes based on electrophoretic mobility shift assays and β-galactosidase assays. One of these PhoP-regulated genes, icsA, is a well-known virulence factor in S. flexneri. In conclusion, our data suggest that the PhoP/PhoQ system modulates S. flexneri virulence (in an icsA-dependent manner) and stress responses of Mg2+, pH and antibacterial peptides.
Collapse
Affiliation(s)
- Zhiwei Lin
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xia Cai
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Mingliang Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lina Ye
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaofei Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhihui Lv
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yongpeng Shang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
26
|
Synergistic Antimicrobial Activity Between the Broad Spectrum Bacteriocin Garvicin KS and Nisin, Farnesol and Polymyxin B Against Gram-Positive and Gram-Negative Bacteria. Curr Microbiol 2017; 75:272-277. [PMID: 29058043 PMCID: PMC5809525 DOI: 10.1007/s00284-017-1375-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/12/2017] [Indexed: 01/18/2023]
Abstract
The increasing emergence of antibiotics resistance is of global concern. Finding novel antimicrobial agents and strategies based on synergistic combinations are essential to combat resistant bacteria. We evaluated the activity of garvicin KS, a new bacteriocin produced by Lactococcus garvieae. The bacteriocin has a broad inhibitory spectrum, inhibiting members of all the 19 species of Gram-positive bacteria tested. Unlike other bacteriocins from Gram-positive bacteria, garvicin KS inhibits Acinetobacter but not other Gram-negative bacteria. Garvicin KS was tested in combination with other antimicrobial agents. We demonstrated synergy with polymyxin B against Acinetobacter spp. and Escherichia coli, but not against Pseudomonas aeruginosa. Similar effects were seen with mixtures of nisin and polymyxin B. The synergistic mixtures of all three components caused rapid killing and full eradication of Acinetobacter spp. and E. coli. In addition, garvicin KS and nisin also acted synergistically against Staphylococcus aureus, indicating different in modes of action between the two bacteriocins. Both bacteriocins showed synergy with farnesol, and the combination of low concentrations of garvicin KS, nisin and farnesol caused rapid eradication of all the S. aureus strains tested. Its broad inhibitory spectrum, rapid killing, and synergy with other antimicrobials makes garvicin KS a promising antimicrobial.
Collapse
|
27
|
Santos DES, Pol-Fachin L, Lins RD, Soares TA. Polymyxin Binding to the Bacterial Outer Membrane Reveals Cation Displacement and Increasing Membrane Curvature in Susceptible but Not in Resistant Lipopolysaccharide Chemotypes. J Chem Inf Model 2017; 57:2181-2193. [DOI: 10.1021/acs.jcim.7b00271] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Denys E. S. Santos
- Department
of Fundamental Chemistry, Federal University of Pernambuco, 50740-560 Recife, Brazil
| | - Laércio Pol-Fachin
- Department
of Fundamental Chemistry, Federal University of Pernambuco, 50740-560 Recife, Brazil
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50740-465 Recife, Brazil
| | - Roberto D. Lins
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50740-465 Recife, Brazil
| | - Thereza A. Soares
- Department
of Fundamental Chemistry, Federal University of Pernambuco, 50740-560 Recife, Brazil
- Department
of Chemistry, Umeå Center for Microbial Research, Umeå University, 90.187 Umeå, Sweden
| |
Collapse
|
28
|
Abdelraouf K, Linder KE, Nailor MD, Nicolau DP. Predicting and preventing antimicrobial resistance utilizing pharmacodynamics: part II Gram-negative bacteria. Expert Opin Drug Metab Toxicol 2017; 13:705-714. [PMID: 28486001 DOI: 10.1080/17425255.2017.1329417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Antimicrobial resistance is a serious health threat worldwide. Better understanding of exposure targets that could suppress resistance amplification is necessary to guide the dosing of currently available agents as well as new therapies in the drug development process. Areas covered: This review will discuss studies that focused on predicting development of resistance using the pharmacokinetic-pharmacodynamic approach and how to design dosing regimens that can successfully suppress resistance emergence in Gram-negative bacteria. Expert opinion: Pharmacokinetic-pharmacodynamic targets could provide useful insights to guide antimicrobial dosing to prevent resistance emergence. Exposure targets required for resistance suppression are higher than those for efficacy and might not be clinically feasible. Combination therapy is a possible approach to improve the efficacy and minimize the resistance emergence for difficult-to-treat infections.
Collapse
Affiliation(s)
- Kamilia Abdelraouf
- a Center for Anti-Infective Research and Development , Hartford Hospital , Hartford , CT , USA
| | - Kristin E Linder
- b Department of Pharmacy , Hartford Hospital , Hartford , CT , USA
| | - Michael D Nailor
- b Department of Pharmacy , Hartford Hospital , Hartford , CT , USA.,c Department of Pharmacy Practice , University of Connecticut School of Pharmacy , Storrs , CT , USA
| | - David P Nicolau
- a Center for Anti-Infective Research and Development , Hartford Hospital , Hartford , CT , USA.,d Division of Infectious Diseases , Hartford Hospital , Hartford , CT , USA
| |
Collapse
|
29
|
Neuner EA, Gallagher JC. Pharmacodynamic and pharmacokinetic considerations in the treatment of critically Ill patients infected with carbapenem-resistant Enterobacteriaceae. Virulence 2017; 8:440-452. [PMID: 27589330 PMCID: PMC5477717 DOI: 10.1080/21505594.2016.1221021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 01/20/2023] Open
Abstract
Carbapenem-Resistant Enterobacteriaceae (CRE) are an emerging healthcare crisis. Infections due to CRE are associated with high morbidity and mortality, especially in critically ill patients. Due to the multi-drug resistant nature of these infections only limited treatment options are available. Antimicrobials that have been described for the treatment of CRE infections include carbapenems, polymyxins, fosfomycin, tigecycline, aminoglycosides, and ceftazidime-avibactam. Given the limited treatment options it is imperative the pharmacokinetic and pharmacodynamics (PK-PD) characteristics of these agents are considered to optimize treatment regimens. This review will focus on the PK-PD challenges of the current treatment options for CRE infections.
Collapse
Affiliation(s)
| | - Jason C. Gallagher
- Department of Pharmacy Practice, Infectious Diseases, Temple University, Philadelphia, PA, USA
| |
Collapse
|
30
|
Soares DDS, Reis ADF, Silva Junior GBD, Leite TT, Parente Filho SLA, Rocha CVDO, Daher EDF. Polymyxin-B and vancomycin-associated acute kidney injury in critically ill patients. Pathog Glob Health 2017; 111:137-142. [PMID: 28353411 PMCID: PMC5445639 DOI: 10.1080/20477724.2017.1309338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND This study aims to investigate renal toxicities of Polymyxin B and Vancomycin among critically ill patients and risk factors for acute kidney injury (AKI). METHODS This is a cross-sectional study conducted with patients admitted to an intensive care unit (ICU) of a tertiary hospital in Brazil. Patients were divided into two groups: those who used association of Polymyxin B + Vancomycin (Group I) and those who used only Polymyxin B (Group II). Risk factors for AKI were also analyzed. RESULTS A total of 115 patients were included. Mean age was 59.2 ± 16.1 years, and 52.2% were males. Group I presented higher GFR (117.1 ± 70.5 vs. 91.5 ± 50 ml/min/1.73 m², p = 0.02) as well as lower creatinine (0.9 ± 0.82 vs. 1.0 ± 0.59 mg/dL, p = 0.014) and urea (51.8 ± 23.7 vs. 94.5 ± 4.9 mg/dL, p = 0.006) than group II on admission. Group I also manifested significantly higher incidence of AKI than group II (62.7% vs. 28.5%, p = 0.005), even when stratified according to RIFLE criteria ('Risk' 33.9% vs. 10.7%; 'Injury' 10.2% vs. 8.9%; 'Failure' 18.6% vs. 8.9%; p = 0.03). Accumulated Polymyxin B dose > 10 million IU was an independent predictor for AKI (OR = 2.72, 95% CI = 1.13-6.51, p = 0.024). CONCLUSIONS Although patients who received Polymyxin B plus vancomycin had more favorable clinical profile and higher previous GFR, they presented a higher AKI incidence than those patients who received Polymyxin B alone. Cumulative Polymyxin B dose > 10 million IU was independently associated to AKI.
Collapse
Affiliation(s)
- Douglas de Sousa Soares
- a Department of Internal Medicine, School of Medicine, Post-Graduation Program in Medical Sciences , Federal University of Ceará , Fortaleza , Brazil
| | | | - Geraldo Bezerra da Silva Junior
- c School of Medicine, Post-Graduation Program in Collective Health, Health Sciences Center , University of Fortaleza , Fortaleza , Brazil
| | - Tacyano Tavares Leite
- a Department of Internal Medicine, School of Medicine, Post-Graduation Program in Medical Sciences , Federal University of Ceará , Fortaleza , Brazil
| | - Sérgio Luiz Arruda Parente Filho
- a Department of Internal Medicine, School of Medicine, Post-Graduation Program in Medical Sciences , Federal University of Ceará , Fortaleza , Brazil
| | - Carina Vieira de Oliveira Rocha
- a Department of Internal Medicine, School of Medicine, Post-Graduation Program in Medical Sciences , Federal University of Ceará , Fortaleza , Brazil
| | - Elizabeth De Francesco Daher
- a Department of Internal Medicine, School of Medicine, Post-Graduation Program in Medical Sciences , Federal University of Ceará , Fortaleza , Brazil
- b Division of Nephrology , Fortaleza General Hospital , Fortaleza , Brazil
| |
Collapse
|
31
|
Rhouma M, Beaudry F, Thériault W, Letellier A. Colistin in Pig Production: Chemistry, Mechanism of Antibacterial Action, Microbial Resistance Emergence, and One Health Perspectives. Front Microbiol 2016; 7:1789. [PMID: 27891118 PMCID: PMC5104958 DOI: 10.3389/fmicb.2016.01789] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/25/2016] [Indexed: 01/08/2023] Open
Abstract
Colistin (Polymyxin E) is one of the few cationic antimicrobial peptides commercialized in both human and veterinary medicine. For several years now, colistin has been considered the last line of defense against infections caused by multidrug-resistant Gram-negative such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Colistin has been extensively used orally since the 1960s in food animals and particularly in swine for the control of Enterobacteriaceae infections. However, with the recent discovery of plasmid-mediated colistin resistance encoded by the mcr-1 gene and the higher prevalence of samples harboring this gene in animal isolates compared to other origins, livestock has been singled out as the principal reservoir for colistin resistance amplification and spread. Co-localization of the mcr-1 gene and Extended-Spectrum-β-Lactamase genes on a unique plasmid has been also identified in many isolates from animal origin. The use of colistin in pigs as a growth promoter and for prophylaxis purposes should be banned, and the implantation of sustainable measures in pig farms for microbial infection prevention should be actively encouraged and financed. The scientific research should be encouraged in swine medicine to generate data helping to reduce the exacerbation of colistin resistance in pigs and in manure. The establishment of guidelines ensuring a judicious therapeutic use of colistin in pigs, in countries where this drug is approved, is of crucial importance. The implementation of a microbiological withdrawal period that could reduce the potential contamination of consumers with colistin resistant bacteria of porcine origin should be encouraged. Moreover, the management of colistin resistance at the human-pig-environment interface requires the urgent use of the One Health approach for effective control and prevention. This approach needs the collaborative effort of multiple disciplines and close cooperation between physicians, veterinarians, and other scientific health and environmental professionals. This review is an update on the chemistry of colistin, its applications and antibacterial mechanism of action, and on Enterobacteriaceae resistance to colistin in pigs. We also detail and discuss the One Health approach and propose guidelines for colistin resistance management.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Chaire de Recherche Industrielle du CRSNG en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
| | - Francis Beaudry
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche en Pharmacologie Animale du Québec, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
| | - William Thériault
- Chaire de Recherche Industrielle du CRSNG en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
| | - Ann Letellier
- Chaire de Recherche Industrielle du CRSNG en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche en Pharmacologie Animale du Québec, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
| |
Collapse
|
32
|
Karaiskos I, Souli M, Galani I, Giamarellou H. Colistin: still a lifesaver for the 21st century? Expert Opin Drug Metab Toxicol 2016; 13:59-71. [DOI: 10.1080/17425255.2017.1230200] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|