1
|
Inamdar A, Gurupadayya B, Halagali P, Nandakumar S, Pathak R, Singh H, Sharma H. Cutting-edge Strategies for Overcoming Therapeutic Barriers in Alzheimer's Disease. Curr Pharm Des 2025; 31:598-618. [PMID: 39492772 DOI: 10.2174/0113816128344571241018154506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) remains one of the hardest neurodegenerative diseases to treat due to its enduring cognitive deterioration and memory loss. Despite extensive research, few viable treatment approaches have been found; these are mostly due to several barriers, such as the disease's complex biology, limited pharmaceutical efficacy, and the BBB. This presentation discusses current strategies for addressing these therapeutic barriers to enhance AD treatment. Innovative drug delivery methods including liposomes, exosomes, and nanoparticles may be able to pass the blood-brain barrier and allow medicine to enter specific brain regions. These innovative strategies of medicine distribution reduce systemic side effects by improving absorption. Moreover, the development of disease-modifying treatments that target tau protein tangles, amyloid-beta plaques, and neuroinflammation offers the chance to influence the course of the illness rather than only treat its symptoms. Furthermore, gene therapy and CRISPR-Cas9 technologies have surfaced as potentially groundbreaking methods for addressing the underlying genetic defects associated with AD. Furthermore, novel approaches to patient care may involve the utilization of existing medications having neuroprotective properties, such as those for diabetes and cardiovascular conditions. Furthermore, biomarker research and personalized medicine have made individualized therapy approaches possible, ensuring that patients receive the best care possible based on their unique genetic and molecular profiles.
Collapse
Affiliation(s)
- Aparna Inamdar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Prashant Halagali
- Department of Pharmaceutical Quality Assurance, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India
| | - S Nandakumar
- Associate Scientist, Corteva Agriscience, Hyderabad 500081, Telangana, India
| | - Rashmi Pathak
- Department of Pharmacy, Invertis University, Bareilly (UP) 243123, India
| | - Himalaya Singh
- Department of Medicine, Government Institute of Medical Sciences, Greater Noida (UP) 201312, India
| | - Himanshu Sharma
- Department of Pharmacy, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad (UP) 244001, India
| |
Collapse
|
2
|
Lee S, Hecker J, Hahn G, Mullin K, Lutz SM, Tanzi RE, Lange C, Prokopenko D. On the effect heterogeneity of established disease susceptibility loci for Alzheimer's disease across different genetic ancestries. Alzheimers Dement 2024; 20:3397-3405. [PMID: 38563508 PMCID: PMC11095441 DOI: 10.1002/alz.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Genome-wide association studies have identified numerous disease susceptibility loci (DSLs) for Alzheimer's disease (AD). However, only a limited number of studies have investigated the dependence of the genetic effect size of established DSLs on genetic ancestry. METHODS We utilized the whole genome sequencing data from the Alzheimer's Disease Sequencing Project (ADSP) including 35,569 participants. A total of 25,459 subjects in four distinct populations (African ancestry, non-Hispanic White, admixed Hispanic, and Asian) were analyzed. RESULTS We found that nine DSLs showed significant heterogeneity across populations. Single nucleotide polymorphism (SNP) rs2075650 in translocase of outer mitochondrial membrane 40 (TOMM40) showed the largest heterogeneity (Cochran's Q = 0.00, I2 = 90.08), followed by other SNPs in apolipoprotein C1 (APOC1) and apolipoprotein E (APOE). Two additional loci, signal-induced proliferation-associated 1 like 2 (SIPA1L2) and solute carrier 24 member 4 (SLC24A4), showed significant heterogeneity across populations. DISCUSSION We observed substantial heterogeneity for the APOE-harboring 19q13.32 region with TOMM40/APOE/APOC1 genes. The largest risk effect was seen among African Americans, while Asians showed a surprisingly small risk effect.
Collapse
Affiliation(s)
- Sanghun Lee
- Department of Medical ConsilienceDivision of MedicineGraduate schoolDankook UniversityYongin‐siGyeonggi‐doSouth Korea
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMassachusettsUSA
- Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Julian Hecker
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Georg Hahn
- Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Kristina Mullin
- Genetics and Aging Unit and McCance Center for Brain HealthDepartment of NeurologyMassachusetts General HospitalCharlestownMassachusettsUSA
| | | | - Sharon M. Lutz
- Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Healthcare InstituteBostonMassachusettsUSA
| | - Rudolph E. Tanzi
- Genetics and Aging Unit and McCance Center for Brain HealthDepartment of NeurologyMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Christoph Lange
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMassachusettsUSA
- Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Dmitry Prokopenko
- Genetics and Aging Unit and McCance Center for Brain HealthDepartment of NeurologyMassachusetts General HospitalCharlestownMassachusettsUSA
| |
Collapse
|
3
|
Bradshaw WJ, Kennedy EC, Moreira T, Smith LA, Chalk R, Katis VL, Benesch JLP, Brennan PE, Murphy EJ, Gileadi O. Regulation of inositol 5-phosphatase activity by the C2 domain of SHIP1 and SHIP2. Structure 2024; 32:453-466.e6. [PMID: 38309262 PMCID: PMC10997489 DOI: 10.1016/j.str.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
SHIP1, an inositol 5-phosphatase, plays a central role in cellular signaling. As such, it has been implicated in many conditions. Exploiting SHIP1 as a drug target will require structural knowledge and the design of selective small molecules. We have determined apo, and magnesium and phosphate-bound structures of the phosphatase and C2 domains of SHIP1. The C2 domains of SHIP1 and the related SHIP2 modulate the activity of the phosphatase domain. To understand the mechanism, we performed activity assays, hydrogen-deuterium exchange mass spectrometry, and molecular dynamics on SHIP1 and SHIP2. Our findings demonstrate that the influence of the C2 domain is more pronounced for SHIP2 than SHIP1. We determined 91 structures of SHIP1 with fragments bound, with some near the interface between the two domains. We performed a mass spectrometry screen and determined four structures with covalent fragments. These structures could act as starting points for the development of potent, selective probes.
Collapse
Affiliation(s)
- William J Bradshaw
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK.
| | - Emma C Kennedy
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Tiago Moreira
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Luke A Smith
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Rod Chalk
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Vittorio L Katis
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Justin L P Benesch
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Paul E Brennan
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Emma J Murphy
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Opher Gileadi
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|
4
|
Cho JY, Rumschlag JA, Tsvetkov E, Proper DS, Lang H, Berto S, Assali A, Cowan CW. MEF2C Hypofunction in GABAergic Cells Alters Sociability and Prefrontal Cortex Inhibitory Synaptic Transmission in a Sex-Dependent Manner. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100289. [PMID: 38390348 PMCID: PMC10881314 DOI: 10.1016/j.bpsgos.2024.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 02/24/2024] Open
Abstract
Background Heterozygous mutations or deletions of MEF2C cause a neurodevelopmental disorder termed MEF2C haploinsufficiency syndrome (MCHS), characterized by autism spectrum disorder and neurological symptoms. In mice, global Mef2c heterozygosity has produced multiple MCHS-like phenotypes. MEF2C is highly expressed in multiple cell types of the developing brain, including GABAergic (gamma-aminobutyric acidergic) inhibitory neurons, but the influence of MEF2C hypofunction in GABAergic neurons on MCHS-like phenotypes remains unclear. Methods We employed GABAergic cell type-specific manipulations to study mouse Mef2c heterozygosity in a battery of MCHS-like behaviors. We also performed electroencephalography, single-cell transcriptomics, and patch-clamp electrophysiology and optogenetics to assess the impact of Mef2c haploinsufficiency on gene expression and prefrontal cortex microcircuits. Results Mef2c heterozygosity in developing GABAergic cells produced female-specific deficits in social preference and altered approach-avoidance behavior. In female, but not male, mice, we observed that Mef2c heterozygosity in developing GABAergic cells produced 1) differentially expressed genes in multiple cell types, including parvalbumin-expressing GABAergic neurons, 2) baseline and social-related frontocortical network activity alterations, and 3) reductions in parvalbumin cell intrinsic excitability and inhibitory synaptic transmission onto deep-layer pyramidal neurons. Conclusions MEF2C hypofunction in female, but not male, developing GABAergic cells is important for typical sociability and approach-avoidance behaviors and normal parvalbumin inhibitory neuron function in the prefrontal cortex of mice. While there is no apparent sex bias in autism spectrum disorder symptoms of MCHS, our findings suggest that GABAergic cell-specific dysfunction in females with MCHS may contribute disproportionately to sociability symptoms.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, South Carolina
| | - Jeffrey A. Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Divya S. Proper
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Ahlem Assali
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Christopher W. Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
5
|
Michno W, Bowman A, Jha D, Minta K, Ge J, Koutarapu S, Zetterberg H, Blennow K, Lashley T, Heeren RMA, Hanrieder J. Spatial Neurolipidomics at the Single Amyloid-β Plaque Level in Postmortem Human Alzheimer's Disease Brain. ACS Chem Neurosci 2024; 15:877-888. [PMID: 38299453 PMCID: PMC10885149 DOI: 10.1021/acschemneuro.4c00006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Lipid dysregulations have been critically implicated in Alzheimer's disease (AD) pathology. Chemical analysis of amyloid-β (Aβ) plaque pathology in transgenic AD mouse models has demonstrated alterations in the microenvironment in the direct proximity of Aβ plaque pathology. In mouse studies, differences in lipid patterns linked to structural polymorphism among Aβ pathology, such as diffuse, immature, and mature fibrillary aggregates, have also been reported. To date, no comprehensive analysis of neuronal lipid microenvironment changes in human AD tissue has been performed. Here, for the first time, we leverage matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) through a high-speed and spatial resolution commercial time-of-light instrument, as well as a high-mass-resolution in-house-developed orbitrap system to characterize the lipid microenvironment in postmortem human brain tissue from AD patients carrying Presenilin 1 mutations (PSEN1) that lead to familial forms of AD (fAD). Interrogation of the spatially resolved MSI data on a single Aβ plaque allowed us to verify nearly 40 sphingolipid and phospholipid species from diverse subclasses being enriched and depleted, in relation to the Aβ deposits. This included monosialo-gangliosides (GM), ceramide monohexosides (HexCer), ceramide-1-phosphates (CerP), ceramide phosphoethanolamine conjugates (PE-Cer), sulfatides (ST), as well as phosphatidylinositols (PI), phosphatidylethanolamines (PE), and phosphatidic acid (PA) species (including Lyso-forms). Indeed, many of the sphingolipid species overlap with the species previously seen in transgenic AD mouse models. Interestingly, in comparison to the animal studies, we observed an increased level of localization of PE and PI species containing arachidonic acid (AA). These findings are highly relevant, demonstrating for the first time Aβ plaque pathology-related alteration in the lipid microenvironment in humans. They provide a basis for the development of potential lipid biomarkers for AD characterization and insight into human-specific molecular pathway alterations.
Collapse
Affiliation(s)
- Wojciech Michno
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal 43180, Sweden
- Department
of Neuroscience, Physiology and Pharmacology, University College London, London WC1E6BT, United
Kingdom
- Department
of Public Health and Caring Sciences, Uppsala
University, Uppsala 75237, Sweden
- Science
for Life Laboratory (SciLife), Uppsala University, Uppsala 75237, Sweden
| | - Andrew Bowman
- Maastricht
MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Durga Jha
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal 43180, Sweden
| | - Karolina Minta
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal 43180, Sweden
| | - Junyue Ge
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal 43180, Sweden
| | - Srinivas Koutarapu
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal 43180, Sweden
| | - Henrik Zetterberg
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal 43180, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital, Mölndal 43180, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United
Kingdom
- UK
Dementia Research Institute at UCL, London WC1E 6BT, United Kingdom
- Hong
Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong 999077, China
- Wisconsin
Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University
of Wisconsin-Madison, Madison, Wisconsin 53726, United States
| | - Kaj Blennow
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal 43180, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital, Mölndal 43180, Sweden
- Paris Brain
Institute, ICM, Pitié-Salpêtrière
Hospital, Sorbonne University, Paris 75005, France
- Neurodegenerative
Disorder Research Center, Division of Life Sciences
and Medicine, Department of Neurology, Institute on Aging and Brain
Disorders, University of Science and Technology
of China and First Affiliated Hospital of USTC, Hefei 230001, P. R. China
| | - Tammaryn Lashley
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United
Kingdom
- Queen Square Brain Bank for Neurological
Disorders, Department of
Clinical and Movement Neurosciences, Institute of Neurology, University College London, London WC1N 1PJ, United Kingdom
| | - Ron M. A. Heeren
- Maastricht
MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal 43180, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital, Mölndal 43180, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United
Kingdom
- Science for Life
Laboratory (SciLife), University of Gothenburg, Gothenburg 40530, Sweden
| |
Collapse
|
6
|
Nystuen KL, McNamee SM, Akula M, Holton KM, DeAngelis MM, Haider NB. Alzheimer's Disease: Models and Molecular Mechanisms Informing Disease and Treatments. Bioengineering (Basel) 2024; 11:45. [PMID: 38247923 PMCID: PMC10813760 DOI: 10.3390/bioengineering11010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's Disease (AD) is a complex neurodegenerative disease resulting in progressive loss of memory, language and motor abilities caused by cortical and hippocampal degeneration. This review captures the landscape of understanding of AD pathology, diagnostics, and current therapies. Two major mechanisms direct AD pathology: (1) accumulation of amyloid β (Aβ) plaque and (2) tau-derived neurofibrillary tangles (NFT). The most common variants in the Aβ pathway in APP, PSEN1, and PSEN2 are largely responsible for early-onset AD (EOAD), while MAPT, APOE, TREM2 and ABCA7 have a modifying effect on late-onset AD (LOAD). More recent studies implicate chaperone proteins and Aβ degrading proteins in AD. Several tests, such as cognitive function, brain imaging, and cerebral spinal fluid (CSF) and blood tests, are used for AD diagnosis. Additionally, several biomarkers seem to have a unique AD specific combination of expression and could potentially be used in improved, less invasive diagnostics. In addition to genetic perturbations, environmental influences, such as altered gut microbiome signatures, affect AD. Effective AD treatments have been challenging to develop. Currently, there are several FDA approved drugs (cholinesterase inhibitors, Aß-targeting antibodies and an NMDA antagonist) that could mitigate AD rate of decline and symptoms of distress.
Collapse
Affiliation(s)
- Kaden L. Nystuen
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shannon M. McNamee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Monica Akula
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Kristina M. Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Margaret M. DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B. Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Khaled M, Al-Jamal H, Tajer L, El-Mir R. Alzheimer's Disease in Lebanon: Exploring Genetic and Environmental Risk Factors-A Comprehensive Review. J Alzheimers Dis 2024; 99:21-40. [PMID: 38640157 DOI: 10.3233/jad-231432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that displays a high prevalence in Lebanon causing a local burden in healthcare and socio-economic sectors. Unfortunately, the lack of prevalence studies and clinical trials in Lebanon minimizes the improvement of AD patient health status. In this review, we include over 155 articles to cover the different aspects of AD ranging from mechanisms to possible treatment and management tools. We highlight some important modifiable and non-modifiable risk factors of the disease including genetics, age, cardiovascular diseases, smoking, etc. Finally, we propose a hypothetical genetic synergy model between APOE4 and TREM2 genes which constitutes a potential early diagnostic tool that helps in reducing the risk of AD based on preventative measures decades before cognitive decline. The studies on AD in Lebanon and the Middle East are scarce. This review points out the importance of genetic mapping in the understanding of disease pathology which is crucial for the emergence of novel diagnostic tools. Hence, we establish a rigid basis for further research to identify the most influential genetic and environmental risk factors for the purpose of using more specific diagnostic tools and possibly adopting a local management protocol.
Collapse
Affiliation(s)
| | - Hadi Al-Jamal
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| | - Layla Tajer
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| | - Reem El-Mir
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| |
Collapse
|
8
|
Moon SW, Zhao L, Matloff W, Hobel S, Berger R, Kwon D, Kim J, Toga AW, Dinov ID. Brain structure and allelic associations in Alzheimer's disease. CNS Neurosci Ther 2023; 29:1034-1048. [PMID: 36575854 PMCID: PMC10018103 DOI: 10.1111/cns.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most prevalent form of dementia, affects 6.5 million Americans and over 50 million people globally. Clinical, genetic, and phenotypic studies of dementia provide some insights of the observed progressive neurodegenerative processes, however, the mechanisms underlying AD onset remain enigmatic. AIMS This paper examines late-onset dementia-related cognitive impairment utilizing neuroimaging-genetics biomarker associations. MATERIALS AND METHODS The participants, ages 65-85, included 266 healthy controls (HC), 572 volunteers with mild cognitive impairment (MCI), and 188 Alzheimer's disease (AD) patients. Genotype dosage data for AD-associated single nucleotide polymorphisms (SNPs) were extracted from the imputed ADNI genetics archive using sample-major additive coding. Such 29 SNPs were selected, representing a subset of independent SNPs reported to be highly associated with AD in a recent AD meta-GWAS study by Jansen and colleagues. RESULTS We identified the significant correlations between the 29 genomic markers (GMs) and the 200 neuroimaging markers (NIMs). The odds ratios and relative risks for AD and MCI (relative to HC) were predicted using multinomial linear models. DISCUSSION In the HC and MCI cohorts, mainly cortical thickness measures were associated with GMs, whereas the AD cohort exhibited different GM-NIM relations. Network patterns within the HC and AD groups were distinct in cortical thickness, volume, and proportion of White to Gray Matter (pct), but not in the MCI cohort. Multinomial linear models of clinical diagnosis showed precisely the specific NIMs and GMs that were most impactful in discriminating between AD and HC, and between MCI and HC. CONCLUSION This study suggests that advanced analytics provide mechanisms for exploring the interrelations between morphometric indicators and GMs. The findings may facilitate further clinical investigations of phenotypic associations that support deep systematic understanding of AD pathogenesis.
Collapse
Affiliation(s)
- Seok Woo Moon
- Department of Neuropsychiatry, Research Institute of Medical ScienceKonkuk University School of MedicineSeoulKorea
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - Lu Zhao
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - William Matloff
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - Sam Hobel
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - Ryan Berger
- Microbiology & ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Daehong Kwon
- Department of Biomedical Science and EngineeringKonkuk UniversitySeoulKorea
| | - Jaebum Kim
- Department of Biomedical Science and EngineeringKonkuk UniversitySeoulKorea
| | - Arthur W. Toga
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
| | - Ivo D. Dinov
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCCaliforniaLos AngelesUSA
- Department of Health Behavior and Biological Sciences, Statistics Online Computational Resource (SOCR), Michigan Institute for Data Science (MIDAS)University of MichiganAnn ArborMichiganUSA
- Department of StatisticsUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | |
Collapse
|
9
|
Padhy B, Kapuganti RS, Hayat B, Mohanty PP, Alone DP. Wide-spread enhancer effect of SNP rs2279590 on regulating epoxide hydrolase-2 and protein tyrosine kinase 2-beta gene expression. Gene 2023; 854:147096. [PMID: 36470481 DOI: 10.1016/j.gene.2022.147096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Polymorphisms in the PTK2B-CLU locus have been associated with various neurodegenerative disorders including pseudoexfoliation glaucoma, Alzheimer's and Parkinson's. Many of these genomic variants are within enhancer elements and modulate genes associated with the disease pathogenesis. However, mechanisms by which they control the gene expression is unknown. Previously, we have shown that clusterin enhancer element surrounding rs2279590 intronic variant, a risk factor in the pathogenesis of pseudoexfoliation glaucoma modulates gene expression of clusterin (CLU), protein tyrosine kinase 2 beta (PTK2B) and epoxide hydrolase 2 (EPHX2). Here, we explored the mechanism by which rs2279590 enhancer regulates their gene expression through chromosome conformation capture assays. 3C assays revealed a strong enhancer-promoter chromatin interaction between rs2279590 enhancer and promoters of genes CLU, PTK2B and EPHX2 in the HEK293 wild type cells. Moreover, genomic knockout of rs2279590 element significantly decreases the chromatin-chromatin cross-linking frequency suggesting gene regulation at transcriptional level through formation of chromatin loop. In addition, molecular assays showed a significantly decreased expression of EPHX2 but not PTK2B at both mRNA and protein level in the lens capsule of pseudoexfoliation affected patients in comparison to control subjects implying a role of EPHX2 in the pathogenesis of pseudoexfoliation.
Collapse
Affiliation(s)
- Biswajit Padhy
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ramani Shyam Kapuganti
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Bushra Hayat
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | | | - Debasmita Pankaj Alone
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
10
|
Bartolo ND, Mortimer N, Manter MA, Sanchez N, Riley M, O'Malley TT, Hooker JM. Identification and Prioritization of PET Neuroimaging Targets for Microglial Phenotypes Associated with Microglial Activity in Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3641-3660. [PMID: 36473177 DOI: 10.1021/acschemneuro.2c00607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activation of microglial cells accompanies the progression of many neurodegenerative disorders, including Alzheimer's disease (AD). Development of molecular imaging tools specific to microglia can help elucidate the mechanism through which microglia contribute to the pathogenesis and progression of neurodegenerative disorders. Through analysis of published genetic, transcriptomic, and proteomic data sets, we identified 19 genes with microglia-specific expression that we then ranked based on association with the AD characteristics, change in expression, and potential druggability of the target. We believe that the process we used to identify and rank microglia-specific genes is broadly applicable to the identification and evaluation of targets in other disease areas and for applications beyond molecular imaging.
Collapse
Affiliation(s)
- Nicole D Bartolo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Niall Mortimer
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Mariah A Manter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Nicholas Sanchez
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Misha Riley
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Tiernan T O'Malley
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
11
|
Romero-Molina C, Garretti F, Andrews SJ, Marcora E, Goate AM. Microglial efferocytosis: Diving into the Alzheimer's disease gene pool. Neuron 2022; 110:3513-3533. [PMID: 36327897 DOI: 10.1016/j.neuron.2022.10.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Genome-wide association studies and functional genomics studies have linked specific cell types, genes, and pathways to Alzheimer's disease (AD) risk. In particular, AD risk alleles primarily affect the abundance or structure, and thus the activity, of genes expressed in macrophages, strongly implicating microglia (the brain-resident macrophages) in the etiology of AD. These genes converge on pathways (endocytosis/phagocytosis, cholesterol metabolism, and immune response) with critical roles in core macrophage functions such as efferocytosis. Here, we review these pathways, highlighting relevant genes identified in the latest AD genetics and genomics studies, and describe how they may contribute to AD pathogenesis. Investigating the functional impact of AD-associated variants and genes in microglia is essential for elucidating disease risk mechanisms and developing effective therapeutic approaches.
Collapse
Affiliation(s)
- Carmen Romero-Molina
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Garretti
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shea J Andrews
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Claes C, England WE, Danhash EP, Kiani Shabestari S, Jairaman A, Chadarevian JP, Hasselmann J, Tsai AP, Coburn MA, Sanchez J, Lim TE, Hidalgo JLS, Tu C, Cahalan MD, Lamb BT, Landreth GE, Spitale RC, Blurton‐Jones M, Davtyan H. The P522R protective variant of PLCG2 promotes the expression of antigen presentation genes by human microglia in an Alzheimer's disease mouse model. Alzheimers Dement 2022; 18:1765-1778. [PMID: 35142046 PMCID: PMC9360195 DOI: 10.1002/alz.12577] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/28/2023]
Abstract
The P522R variant of PLCG2, expressed by microglia, is associated with reduced risk of Alzheimer's disease (AD). Yet, the impact of this protective mutation on microglial responses to AD pathology remains unknown. Chimeric AD and wild-type mice were generated by transplanting PLCG2-P522R or isogenic wild-type human induced pluripotent stem cell microglia. At 7 months of age, single-cell and bulk RNA sequencing, and histological analyses were performed. The PLCG2-P522R variant induced a significant increase in microglial human leukocyte antigen (HLA) expression and the induction of antigen presentation, chemokine signaling, and T cell proliferation pathways. Examination of immune-intact AD mice further demonstrated that the PLCG2-P522R variant promotes the recruitment of CD8+ T cells to the brain. These data provide the first evidence that the PLCG2-P522R variant increases the capacity of microglia to recruit T cells and present antigens, promoting a microglial transcriptional state that has recently been shown to be reduced in AD patient brains.
Collapse
Affiliation(s)
- Christel Claes
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
| | - Whitney E. England
- Department of Pharmaceutical Sciences University of CaliforniaIrvineCaliforniaUSA
| | - Emma P. Danhash
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
| | - Sepideh Kiani Shabestari
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Amit Jairaman
- Department of Physiology and BiophysicsUniversity of California IrvineIrvineCaliforniaUSA
| | - Jean Paul Chadarevian
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Jonathan Hasselmann
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Andy P. Tsai
- Stark Neurosciences Research InstituteIUSMIndianapolisIndianaUSA
| | - Morgan A. Coburn
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Jessica Sanchez
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Tau En Lim
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
| | - Jorge L. S. Hidalgo
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
| | - Christina Tu
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
| | - Michael D. Cahalan
- Department of Physiology and BiophysicsUniversity of California IrvineIrvineCaliforniaUSA
| | - Bruce T. Lamb
- Stark Neurosciences Research InstituteIUSMIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIUSMIndianapolisIndianaUSA
| | - Gary E. Landreth
- Stark Neurosciences Research InstituteIUSMIndianapolisIndianaUSA
- Department of Anatomy and Cell BiologyIUSMIndianapolisIndianaUSA
| | - Robert C. Spitale
- Department of Pharmaceutical Sciences University of CaliforniaIrvineCaliforniaUSA
| | - Mathew Blurton‐Jones
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCaliforniaUSA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCaliforniaUSA
| |
Collapse
|
13
|
Eid A, Mhatre-Winters I, Sammoura FM, Edler MK, von Stein R, Hossain MM, Han Y, Lisci M, Carney K, Konsolaki M, Hart RP, Bennett JW, Richardson JR. Effects of DDT on Amyloid Precursor Protein Levels and Amyloid Beta Pathology: Mechanistic Links to Alzheimer's Disease Risk. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:87005. [PMID: 35946953 PMCID: PMC9364816 DOI: 10.1289/ehp10576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND The interaction of aging-related, genetic, and environmental factors is thought to contribute to the etiology of late-onset, sporadic Alzheimer's disease (AD). We previously reported that serum levels of p,p'-dichlorodiphenyldichloroethylene (DDE), a long-lasting metabolite of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT), were significantly elevated in patients with AD and associated with the risk of AD diagnosis. However, the mechanism by which DDT may contribute to AD pathogenesis is unknown. OBJECTIVES This study sought to assess effects of DDT exposure on the amyloid pathway in multiple in vitro and in vivo models. METHODS Cultured cells (SH-SY5Y and primary neurons), transgenic flies overexpressing amyloid beta (Aβ), and C57BL/6J and 3xTG-AD mice were treated with DDT to assess impacts on the amyloid pathway. Real time quantitative polymerase chain reaction, multiplex assay, western immunoblotting and immunohistochemical methods were used to assess the effects of DDT on amyloid precursor protein (APP) and other contributors to amyloid processing and deposition. RESULTS Exposure to DDT revealed significantly higher APP mRNA and protein levels in immortalized and primary neurons, as well as in wild-type and AD-models. This was accompanied by higher levels of secreted Aβ in SH-SY5Y cells, an effect abolished by the sodium channel antagonist tetrodotoxin. Transgenic flies and 3xTG-AD mice had more Aβ pathology following DDT exposure. Furthermore, loss of the synaptic markers synaptophysin and PSD95 were observed in the cortex of the brains of 3xTG-AD mice. DISCUSSION Sporadic Alzheimer's disease risk involves contributions from genetic and environmental factors. Here, we used multiple model systems, including primary neurons, transgenic flies, and mice to demonstrate the effects of DDT on APP and its pathological product Aβ. These data, combined with our previous epidemiological findings, provide a mechanistic framework by which DDT exposure may contribute to increased risk of AD by impacting the amyloid pathway. https://doi.org/10.1289/EHP10576.
Collapse
Affiliation(s)
- Aseel Eid
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Isha Mhatre-Winters
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Ferass M. Sammoura
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Melissa K. Edler
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Richard von Stein
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Muhammad M. Hossain
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Yoonhee Han
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Miriam Lisci
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Kristina Carney
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Mary Konsolaki
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Joan W. Bennett
- Department of Plant Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Jason R. Richardson
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
- Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
14
|
Cencini F, Catania M, Di Fede G, Rossi G, Khouri Chalouhi K, Manfredi C, Giaccone G, Tiraboschi P, Bersano A, Groppo E, Rosci C, Tancredi L, Campiglio L, De Grado A, Priori A, Scelzo E. SORL1 gene mutation and octapeptide repeat insertion in PRNP gene in a case presenting with rapidly progressive dementia and cerebral amyloid angiopathy. Eur J Neurol 2022; 29:3139-3146. [PMID: 35789031 DOI: 10.1111/ene.15487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) has been associated with a variety of neurodegenerative disorders, included prion diseases (PrDs) and Alzheimer's disease (AD); its pathophysiology is still largely unknown. We report the case of an 80-year-old man with a rapidly progressive dementia and neuroimaging features consistent with CAA carrying two genetic defects in the PRNP and SORL1 genes. METHODS Neurological examination, brain Magnetic Resonance Imaging (MRI), electroencephalogram-electromyography (EEG-EMG) polygraphy and analysis of 14-3-3 and tau proteins, Aβ40 and Aβ42 in the cerebrospinal fluid (CSF) were performed. The patient underwent a detailed genetic study by next generation sequencing analysis. RESULTS The patient presented with progressive cognitive dysfunction, generalized myoclonus and ataxia. About 9 months after symptom onset, he was bed-bound, almost mute and akinetic. Brain MRI was consistent with CAA. CSF analysis showed high levels of t-tau and p-tau, decreased Aβ42, decreased Aβ42/Aβ40 ratio, while 14.3.3 protein was not detected. EEG-EMG polygraphy demonstrated diffuse slowing, frontal theta activity and generalized spikes-waves related to upper limb myoclonus induced by intermittent photic stimulation. Genetic tests revealed the presence of the E270K variant in the SORL1 gene and the presence of a single octapeptide repeat insertion (OPRI) in the coding region of the PRNP gene. CONCLUSIONS The specific pathogenic contribution of the two DNA variations is difficult to determine without neuropathology; among the possible explanations, we discuss the possibility of their link with CAA. Vascular and degenerative pathways actually interact in a synergistic way, and genetic studies may lead to more insight into pathophysiological mechanisms.
Collapse
Affiliation(s)
- Federica Cencini
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Marcella Catania
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Fede
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giacomina Rossi
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Chiara Manfredi
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Giorgio Giaccone
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pietro Tiraboschi
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisabetta Groppo
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Chiara Rosci
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Lucia Tancredi
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Laura Campiglio
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Amedeo De Grado
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Alberto Priori
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Emma Scelzo
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| |
Collapse
|
15
|
Sirin S, Nigdelioglu Dolanbay S, Aslim B. The relationship of early- and late-onset Alzheimer’s disease genes with COVID-19. J Neural Transm (Vienna) 2022; 129:847-859. [PMID: 35429259 PMCID: PMC9012910 DOI: 10.1007/s00702-022-02499-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
Abstract
Individuals with Alzheimer’s disease and other neurodegenerative diseases have been exposed to excess risk by the COVID-19 pandemic. COVID-19’s main manifestations include high body temperature, dry cough, and exhaustion. Nevertheless, some affected individuals may have an atypical presentation at diagnosis but suffer neurological signs and symptoms as the first disease manifestation. These findings collectively show the neurotropic nature of SARS-CoV-2 virus and its ability to involve the central nervous system. In addition, Alzheimer’s disease and COVID-19 has a number of common risk factors and comorbid conditions including age, sex, hypertension, diabetes, and the expression of APOE ε4. Until now, a plethora of studies have examined the COVID-19 disease but only a few studies has yet examined the relationship of COVID-19 and Alzheimer’s disease as risk factors of each other. This review emphasizes the recently published evidence on the role of the genes of early- or late-onset Alzheimer’s disease in the susceptibility of individuals currently suffering or recovered from COVID-19 to Alzheimer’s disease or in the susceptibility of individuals at risk of or with Alzheimer’s disease to COVID-19 or increased COVID-19 severity and mortality. Furthermore, the present review also draws attention to other uninvestigated early- and late-onset Alzheimer’s disease genes to elucidate the relationship between this multifactorial disease and COVID-19.
Collapse
|
16
|
Panitch R, Hu J, Xia W, Bennett DA, Stein TD, Farrer LA, Jun GR. Blood and brain transcriptome analysis reveals APOE genotype-mediated and immune-related pathways involved in Alzheimer disease. Alzheimers Res Ther 2022; 14:30. [PMID: 35139885 PMCID: PMC8830081 DOI: 10.1186/s13195-022-00975-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/02/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND While Alzheimer disease (AD) is generally considered as a brain disorder, blood biomarkers may be useful for the diagnosis and prediction of AD brain pathology. The APOE ε4 allele has shown cerebrovascular effects including acceleration of blood-brain barrier (BBB) breakdown. METHODS We evaluated the differential expression of previously established AD genes in brains from 344 pathologically confirmed AD cases and 232 controls and in blood from 112 pathologically confirmed AD cases and 67 controls from the Religious Orders Study and Memory and Aging Project. Differential gene expression between AD cases and controls was analyzed in the blood and brain jointly using a multivariate approach in the total sample and within APOE genotype groups. Gene set enrichment analysis was performed within APOE genotype groups using the results from the combined blood and brain analyses to identify biologically important pathways. Gene co-expression networks in brain and blood samples were investigated using weighted correlation network analysis. Top-ranked genes from networks and pathways were further evaluated with vascular injury traits. RESULTS We observed differentially expressed genes with P < 0.05 in both brain and blood for established AD genes INPP5D (upregulated) and HLA-DQA1 (downregulated). PIGHP1 and FRAS1 were differentially expressed at the transcriptome-wide level (P < 3.3 × 10-6) within ε2/ε3 and ε3/ε4 groups, respectively. Gene set enrichment analysis revealed 21 significant pathways (false discovery rate P < 0.05) in at least one APOE genotype group. Ten pathways were significantly enriched in the ε3/ε4 group, and six of these were unique to these subjects. Four pathways (allograft rejection, interferon gamma response, peroxisome, and TNFA signaling via NFKB) were enriched for AD upregulated genes in the ε3/ε4 group and AD downregulated genes in subjects lacking ε4. We identified a co-expressed gene network in the brain that reproduced in blood and showed higher average expression in ε4 carriers. Twenty-three genes from pathway and network analyses were significantly associated with at least one vascular injury trait. CONCLUSION These results suggest that the APOE genotype contributes to unique expression network profiles in both blood and brain. Several genes in these networks are associated with measures of vascular injury and potentially contribute to ε4's effect on the BBB.
Collapse
Affiliation(s)
- Rebecca Panitch
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
| | - Junming Hu
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
| | - Weiming Xia
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, 01730, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison Street, Suite 1000, Chicago, IL, 60612, USA
| | - Thor D Stein
- Department of Veterans Affairs Medical Center, Bedford, MA, 01730, USA
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Department of Ophthalmology, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, 715 Albany Street, Boston, MA, 02118, USA
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, 02118, USA
| | - Gyungah R Jun
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
- Department of Ophthalmology, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
- Department of Biostatistics, Boston University School of Public Health, 715 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
17
|
Campbell AS, Ho CCG, Atık M, Allen M, Lincoln S, Malphrus K, Nguyen T, Oatman SR, Corda M, Conway O, Strickland S, Petersen RC, Dickson DW, Graff-Radford NR, Ertekin-Taner N. Clinical Deep Phenotyping of ABCA7 Mutation Carriers. Neurol Genet 2022; 8:e655. [PMID: 35047668 PMCID: PMC8759075 DOI: 10.1212/nxg.0000000000000655] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022]
Abstract
Background and Objectives Putative loss-of-function (pLOF) ABCA7 variants that increase Alzheimer disease (AD) risk were identified; however, deep phenotypic characterization of these variants in mutation carriers is limited. We aimed to obtain deep clinical phenotypes of ABCA7 pLOF mutation carriers from a large retrospectively reviewed series. Methods Genotypes were determined for 5,353 individuals evaluated at Mayo Clinic for 6 reported ABCA7 pLOF variants (p.E709fs, p.Trp1214X, p.L1403fs, c.4416+2T>G, p.E1679X, and c.5570+5G>C). Medical records of 100 mutation carriers were reviewed for demographics, clinical phenotypes, and diagnoses. Eleven mutation carriers had autopsy-based neuropathologic diagnoses. Results We confirmed that ABCA7 pLOF mutations confer AD risk in our series of 2,495 participants with AD and 2,858 cognitively unaffected participants. Clinical review of 100 mutation carriers demonstrated phenotypic variability of clinical presentations with both memory and nonmemory cognitive impairment and a subset presenting with motor symptoms. There was a wide range of age at onset of cognitive symptoms (ages 56–92 years, mean = 75.6). Ten of the 11 autopsied mutation carriers had AD neuropathology. ABCA7 pLOF mutation carriers had higher rates of depression (41.6%) and first-degree relatives with cognitive impairment (38.1%) compared with the general population. Discussion Our study provides a deep clinical review of phenotypic characteristics of mutation carriers for 6 ABCA7 pLOF mutations. Although memory impairment was the most common initial symptom, nonmemory cognitive and/or motor symptoms were present in a substantial number of mutation carriers, highlighting the heterogeneity of clinical features associated with these mutations. Likewise, although AD neuropathology is the most common, it is not the only autopsy-based diagnosis. Presence of earlier ages at onset, higher rates of depression, and first-degree relatives with cognitive impairment among mutation carriers suggest that these genetic variants may have more aggressive clinical features than AD in the general population. This deep phenotyping study of ABCA7 pLOF mutation carriers provides essential genotype-phenotype correlations for future precision medicine approaches in the clinical setting.
Collapse
Affiliation(s)
- Alana S Campbell
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Charlotte C G Ho
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Merve Atık
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Mariet Allen
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Sarah Lincoln
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Kimberly Malphrus
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Thuy Nguyen
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Stephanie R Oatman
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Morgane Corda
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Olivia Conway
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Samantha Strickland
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Ronald C Petersen
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Dennis W Dickson
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Neill R Graff-Radford
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| | - Nilüfer Ertekin-Taner
- Department of Neurology (A.S.C., S.R.O., N.R.G.-R., N.E.-T.), and Department of Neuroscience (C.C.G.H., M. Atık, M. Allen, S.L., K.M., T.N., S.R.O., M.C., O.C., S.S., D.W.D., N.E.-T.), Mayo Clinic, Jacksonville, FL; and Department of Neurology (R.C.P.), Mayo Clinic, Rochester, MN
| |
Collapse
|
18
|
Motazedi E, Cheng W, Thomassen JQ, Frei O, Rongve A, Athanasiu L, Bahrami S, Shadrin A, Ulstein I, Stordal E, Brækhus A, Saltvedt I, Sando SB, O’Connell KS, Hindley G, van der Meer D, Bergh S, Nordestgaard BG, Tybjærg-Hansen A, Bråthen G, Pihlstrøm L, Djurovic S, Frikke-Schmidt R, Fladby T, Aarsland D, Selbæk G, Seibert TM, Dale AM, Fan CC, Andreassen OA. Using Polygenic Hazard Scores to Predict Age at Onset of Alzheimer's Disease in Nordic Populations. J Alzheimers Dis 2022; 88:1533-1544. [PMID: 35848024 PMCID: PMC10022308 DOI: 10.3233/jad-220174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Polygenic hazard scores (PHS) estimate age-dependent genetic risk of late-onset Alzheimer's disease (AD), but there is limited information about the performance of PHS on real-world data where the population of interest differs from the model development population and part of the model genotypes are missing or need to be imputed. OBJECTIVE The aim of this study was to estimate age-dependent risk of late-onset AD using polygenic predictors in Nordic populations. METHODS We used Desikan PHS model, based on Cox proportional hazards assumption, to obtain age-dependent hazard scores for AD from individual genotypes in the Norwegian DemGene cohort (n = 2,772). We assessed the risk discrimination and calibration of Desikan model and extended it by adding new genotype markers (the Desikan Nordic model). Finally, we evaluated both Desikan and Desikan Nordic models in two independent Danish cohorts: The Copenhagen City Heart Study (CCHS) cohort (n = 7,643) and The Copenhagen General Population Study (CGPS) cohort (n = 10,886). RESULTS We showed a robust prediction efficiency of Desikan model in stratifying AD risk groups in Nordic populations, even when some of the model SNPs were missing or imputed. We attempted to improve Desikan PHS model by adding new SNPs to it, but we still achieved similar risk discrimination and calibration with the extended model. CONCLUSION PHS modeling has the potential to guide the timing of treatment initiation based on individual risk profiles and can help enrich clinical trials with people at high risk to AD in Nordic populations.
Collapse
Affiliation(s)
- Ehsan Motazedi
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Weiqiu Cheng
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Jesper Q. Thomassen
- Department of Clinical Biochemistry, Copenhagen University Hospital – Rigshospitalet, 2100 Copenhagen, Denmark
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, PO box 1080, Blindern, 0316 Oslo, Norway
| | - Arvid Rongve
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Lavinia Athanasiu
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Ingun Ulstein
- Department of Geriatric Medicine, Oslo University Hospital, Ullevål, 0424 Oslo, Norway
| | - Eystein Stordal
- Department of Neuromedicine and Movement Science (INB), NTNU, Faculty of Medicine and Health Sciences, N-7491 Trondheim, Norway
- Clinic of Psychiatry, Namsos Hospital, 7801 Namsos, Norway
| | - Anne Brækhus
- Department of Geriatric Medicine, Oslo University Hospital, Ullevål, 0424 Oslo, Norway
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science (INB), NTNU, Faculty of Medicine and Health Sciences, N-7491 Trondheim, Norway
- Department of geriatric medicine, Clinic of Medicine, St. Olavs Hospital, Trondheim university hospital, Trondheim, Norway
| | - Sigrid B. Sando
- Department of Neuromedicine and Movement Science (INB), NTNU, Faculty of Medicine and Health Sciences, N-7491 Trondheim, Norway
- University Hospital of Trondheim, Department of Neurology and Clinical Neurophysiology, Postboks 3250 Torgarden, N-7006 Trondheim, Norway
| | - Kevin S. O’Connell
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Guy Hindley
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AB
| | - Dennis van der Meer
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
- School for Mental Health and Neuroscience, Maastricht University, the Netherlands
| | - Sverre Bergh
- Research center for Age-related Functional Decline and Disease, Innlandet Hospital Trust, 2381 Brumunddal, Norway
- Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, 3103 Tønsberg, Norway
| | - Børge G. Nordestgaard
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital – Herlev Gentofte, 2730 Herlev, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital – Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Geir Bråthen
- Department of Neuromedicine and Movement Science (INB), NTNU, Faculty of Medicine and Health Sciences, N-7491 Trondheim, Norway
- University Hospital of Trondheim, Department of Neurology and Clinical Neurophysiology, Postboks 3250 Torgarden, N-7006 Trondheim, Norway
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital – Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tormod Fladby
- Department of Neuromedicine and Movement Science (INB), NTNU, Faculty of Medicine and Health Sciences, N-7491 Trondheim, Norway
- Klinikk for indremedisin og lab fag (AHUSKIL), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Dag Aarsland
- Department of Old-Age Psychiatry, Stavanger University Hospital, 4011 Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, PO Box P070, De Crespigny Park, London SE5 8AF
| | - Geir Selbæk
- Department of Geriatric Medicine, Oslo University Hospital, Ullevål, 0424 Oslo, Norway
- Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, 3103 Tønsberg, Norway
- Faculty of Medicine, University of Oslo, PO BOX 1078 Blindern, 0316 Oslo, Norway
| | - Tyler M. Seibert
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
- Department of Radiation Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Anders M. Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Chun C. Fan
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
- Population Neuroscience and Genetics Lab, University of California San Diego, La Jolla, CA, USA
| | - Ole A. Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| |
Collapse
|
19
|
Stepler KE, Gillyard TR, Reed CB, Avery TM, Davis JS, Robinson RA. ABCA7, a Genetic Risk Factor Associated with Alzheimer's Disease Risk in African Americans. J Alzheimers Dis 2022; 86:5-19. [PMID: 35034901 PMCID: PMC10984370 DOI: 10.3233/jad-215306] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
African American/Black adults are twice as likely to have Alzheimer's disease (AD) compared to non-Hispanic White adults. Genetics partially contributes to this disparity in AD risk, among other factors, as there are several genetic variants associated with AD that are more prevalent in individuals of African or European ancestry. The phospholipid-transporting ATPase ABCA7 (ABCA7) gene has stronger associations with AD risk in individuals with African ancestry than in individuals with European ancestry. In fact, ABCA7 has been shown to have a stronger effect size than the apolipoprotein E (APOE) ɛ4 allele in African American/Black adults. ABCA7 is a transmembrane protein involved in lipid homeostasis and phagocytosis. ABCA7 dysfunction is associated with increased amyloid-beta production, reduced amyloid-beta clearance, impaired microglial response to inflammation, and endoplasmic reticulum stress. This review explores the impact of ABCA7 mutations that increase AD risk in African American/Black adults on ABCA7 structure and function and their contributions to AD pathogenesis. The combination of biochemical/biophysical and 'omics-based studies of these variants needed to elucidate their downstream impact and molecular contributions to AD pathogenesis is highlighted.
Collapse
Affiliation(s)
| | - Taneisha R. Gillyard
- Meharry Medical College Department of Biochemistry and Cancer Biology, Nashville, TN, USA
| | - Calla B. Reed
- Vanderbilt University Department of Chemistry, Nashville, TN, USA
| | - Tyra M. Avery
- Fisk University Department of Life and Physical Sciences, Nashville, TN, USA
| | - Jamaine S. Davis
- Meharry Medical College Department of Biochemistry and Cancer Biology, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center Vanderbilt University Medical Center, Nashville, TN, USA
| | - Renã A.S. Robinson
- Vanderbilt University Department of Chemistry, Nashville, TN, USA
- Vanderbilt University Medical Center Department of Neurology, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
| |
Collapse
|
20
|
Lordén G, Newton A. Conventional protein kinase C in the brain: repurposing cancer drugs for neurodegenerative treatment? Neuronal Signal 2021; 5:NS20210036. [PMID: 34737895 PMCID: PMC8536831 DOI: 10.1042/ns20210036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
Protein Kinase C (PKC) isozymes are tightly regulated kinases that transduce a myriad of signals from receptor-mediated hydrolysis of membrane phospholipids. They play an important role in brain physiology, and dysregulation of PKC activity is associated with neurodegeneration. Gain-of-function mutations in PKCα are associated with Alzheimer's disease (AD) and mutations in PKCγ cause spinocerebellar ataxia (SCA) type 14 (SCA14). This article presents an overview of the role of the conventional PKCα and PKCγ in neurodegeneration and proposes repurposing PKC inhibitors, which failed in clinical trials for cancer, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gema Lordén
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, U.S.A
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, U.S.A
| |
Collapse
|
21
|
Xu J, Zhang P, Huang Y, Zhou Y, Hou Y, Bekris LM, Lathia J, Chiang CW, Li L, Pieper AA, Leverenz JB, Cummings J, Cheng F. Multimodal single-cell/nucleus RNA sequencing data analysis uncovers molecular networks between disease-associated microglia and astrocytes with implications for drug repurposing in Alzheimer's disease. Genome Res 2021; 31:1900-1912. [PMID: 33627474 PMCID: PMC8494225 DOI: 10.1101/gr.272484.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/18/2021] [Indexed: 11/25/2022]
Abstract
Because disease-associated microglia (DAM) and disease-associated astrocytes (DAA) are involved in the pathophysiology of Alzheimer's disease (AD), we systematically identified molecular networks between DAM and DAA to uncover novel therapeutic targets for AD. Specifically, we develop a network-based methodology that leverages single-cell/nucleus RNA sequencing data from both transgenic mouse models and AD patient brains, as well as drug-target network, metabolite-enzyme associations, the human protein-protein interactome, and large-scale longitudinal patient data. Through this approach, we find both common and unique gene network regulators between DAM (i.e., PAK1, MAPK14, and CSF1R) and DAA (i.e., NFKB1, FOS, and JUN) that are significantly enriched by neuro-inflammatory pathways and well-known genetic variants (i.e., BIN1). We identify shared immune pathways between DAM and DAA, including Th17 cell differentiation and chemokine signaling. Last, integrative metabolite-enzyme network analyses suggest that fatty acids and amino acids may trigger molecular alterations in DAM and DAA. Combining network-based prediction and retrospective case-control observations with 7.2 million individuals, we identify that usage of fluticasone (an approved glucocorticoid receptor agonist) is significantly associated with a reduced incidence of AD (hazard ratio [HR] = 0.86, 95% confidence interval [CI] 0.83-0.89, P < 1.0 × 10-8). Propensity score-stratified cohort studies reveal that usage of mometasone (a stronger glucocorticoid receptor agonist) is significantly associated with a decreased risk of AD (HR = 0.74, 95% CI 0.68-0.81, P < 1.0 × 10-8) compared to fluticasone after adjusting age, gender, and disease comorbidities. In summary, we present a network-based, multimodal methodology for single-cell/nucleus genomics-informed drug discovery and have identified fluticasone and mometasone as potential treatments in AD.
Collapse
Affiliation(s)
- Jielin Xu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Pengyue Zhang
- Department of Biostatistics, School of Medicine, Indiana University, Indianapolis, Indiana 46202, USA
| | - Yin Huang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Lynn M Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Justin Lathia
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Chien-Wei Chiang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland 44106, Ohio, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, New York 10065, USA
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
22
|
Kuwar R, Rolfe A, Di L, Blevins H, Xu Y, Sun X, Bloom GS, Zhang S, Sun D. A Novel Inhibitor Targeting NLRP3 Inflammasome Reduces Neuropathology and Improves Cognitive Function in Alzheimer's Disease Transgenic Mice. J Alzheimers Dis 2021; 82:1769-1783. [PMID: 34219728 DOI: 10.3233/jad-210400] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and the most common type of dementia. A growing body of evidence has implicated neuroinflammation as an essential player in the etiology of AD. Inflammasomes are intracellular multiprotein complexes and essential components of innate immunity in response to pathogen- and danger-associated molecular patterns. Among the known inflammasomes, the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays a critical role in the pathogenesis of AD. OBJECTIVE We recently developed a novel class of small molecule inhibitors that selectively target the NLRP3 inflammasome. One of the lead compounds, JC124, has shown therapeutic efficacy in a transgenic animal model of AD. In this study we tested the preventative efficacy of JC124 in another strain of transgenic AD mice. METHODS In this study, 5-month-old female APP/PS1 and matched wild type mice were treated orally with JC124 for 3 months. After completion of treatment, cognitive functions and AD pathologies, as well as protein expression levels of synaptic proteins, were assessed. RESULTS We found that inhibition of NLRP3 inflammasome with JC124 significantly decreased multiple AD pathologies in APP/PS1 mice, including amyloid-β (Aβ) load, neuroinflammation, and neuronal cell cycle re-entry, accompanied by preserved synaptic plasticity with higher expression of pre- and post-synaptic proteins, increased hippocampal neurogenesis, and improved cognitive functions. CONCLUSION Our study demonstrates the importance of the NLRP3 inflammasome in AD pathological development, and pharmacological inhibition of NLRP3 inflammasome with small molecule inhibitors represents a potential therapy for AD.
Collapse
Affiliation(s)
- Ram Kuwar
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew Rolfe
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Long Di
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Hallie Blevins
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Yiming Xu
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Xuehan Sun
- Departments of Biology, University of Virginia, Charlottesville, VA, USA
| | - George S Bloom
- Departments of Biology, University of Virginia, Charlottesville, VA, USA.,Departments of Cell Biology, University of Virginia, Charlottesville, VA, USA.,Departments of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Dong Sun
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
23
|
Claes C, Danhash EP, Hasselmann J, Chadarevian JP, Shabestari SK, England WE, Lim TE, Hidalgo JLS, Spitale RC, Davtyan H, Blurton-Jones M. Plaque-associated human microglia accumulate lipid droplets in a chimeric model of Alzheimer's disease. Mol Neurodegener 2021; 16:50. [PMID: 34301296 PMCID: PMC8305935 DOI: 10.1186/s13024-021-00473-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Disease-associated microglia (DAMs), that surround beta-amyloid plaques, represent a transcriptionally-distinct microglial profile in Alzheimer's disease (AD). Activation of DAMs is dependent on triggering receptor expressed on myeloid cells 2 (TREM2) in mouse models and the AD TREM2-R47H risk variant reduces microglial activation and plaque association in human carriers. Interestingly, TREM2 has also been identified as a microglial lipid-sensor, and recent data indicates lipid droplet accumulation in aged microglia, that is in turn associated with a dysfunctional proinflammatory phenotype. However, whether lipid droplets (LDs) are present in human microglia in AD and how the R47H mutation affects this remains unknown. METHODS To determine the impact of the TREM2 R47H mutation on human microglial function in vivo, we transplanted wild-type and isogenic TREM2-R47H iPSC-derived microglial progenitors into our recently developed chimeric Alzheimer mouse model. At 7 months of age scRNA-seq and histological analyses were performed. RESULTS Here we report that the transcriptome of human wild-type TREM2 and isogenic TREM2-R47H DAM xenografted microglia (xMGs), isolated from chimeric AD mice, closely resembles that of human atherosclerotic foam cells. In addition, much like foam cells, plaque-bound xMGs are highly enriched in lipid droplets. Somewhat surprisingly and in contrast to a recent in vitro study, TREM2-R47H mutant xMGs exhibit an overall reduction in the accumulation of lipid droplets in vivo. Notably, TREM2-R47H xMGs also show overall reduced reactivity to plaques, including diminished plaque-proximity, reduced CD9 expression, and lower secretion of plaque-associated APOE. CONCLUSIONS Altogether, these results indicate lipid droplet accumulation occurs in human DAM xMGs in AD, but is reduced in TREM2-R47H DAM xMGs, as it occurs secondary to TREM2-mediated changes in plaque proximity and reactivity.
Collapse
Affiliation(s)
- Christel Claes
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92696, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, 92696, USA.
| | - Emma Pascal Danhash
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, 92696, USA
| | - Jonathan Hasselmann
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92696, USA.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, 92696, USA.,Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92696, USA
| | - Jean Paul Chadarevian
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92696, USA.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, 92696, USA
| | - Sepideh Kiani Shabestari
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, 92696, USA
| | - Whitney E England
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Tau En Lim
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92696, USA
| | - Jorge Luis Silva Hidalgo
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92696, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Hayk Davtyan
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92696, USA.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, 92696, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92696, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, 92696, USA. .,Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92696, USA. .,Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
24
|
Nutraceutical and Probiotic Approaches to Examine Molecular Interactions of the Amyloid Precursor Protein APP in Drosophila Models of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22137022. [PMID: 34209883 PMCID: PMC8269328 DOI: 10.3390/ijms22137022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Studies using animal models have shed light into the molecular and cellular basis for the neuropathology observed in patients with Alzheimer’s disease (AD). In particular, the role of the amyloid precursor protein (APP) plays a crucial role in the formation of senile plaques and aging-dependent degeneration. Here, we focus our review on recent findings using the Drosophila AD model to expand our understanding of APP molecular function and interactions, including insights gained from the fly homolog APP-like (APPL). Finally, as there is still no cure for AD, we review some approaches that have shown promising results in ameliorating AD-associated phenotypes, with special attention on the use of nutraceuticals and their molecular effects, as well as interactions with the gut microbiome. Overall, the phenomena described here are of fundamental significance for understanding network development and degeneration. Given the highly conserved nature of fundamental signaling pathways, the insight gained from animal models such as Drosophila melanogaster will likely advance the understanding of the mammalian brain, and thus be relevant to human health.
Collapse
|
25
|
Caspers S, Röckner ME, Jockwitz C, Bittner N, Teumer A, Herms S, Hoffmann P, Nöthen MM, Moebus S, Amunts K, Cichon S, Mühleisen TW. Pathway-Specific Genetic Risk for Alzheimer's Disease Differentiates Regional Patterns of Cortical Atrophy in Older Adults. Cereb Cortex 2021; 30:801-811. [PMID: 31402375 DOI: 10.1093/cercor/bhz127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/30/2019] [Accepted: 05/18/2019] [Indexed: 11/13/2022] Open
Abstract
Brain aging is highly variable and represents a challenge to delimit aging from disease processes. Moreover, genetic factors may influence both aging and disease. Here we focused on this issue and investigated effects of multiple genetic loci previously identified to be associated with late-onset Alzheimer's disease (AD) on brain structure of older adults from a population sample. We calculated a genetic risk score (GRS) using genome-wide significant single-nucleotide polymorphisms from genome-wide association studies of AD and tested its effect on cortical thickness (CT). We observed a common pattern of cortical thinning (right inferior frontal, left posterior temporal, medial occipital cortex). To identify CT changes by specific biological processes, we subdivided the GRS effect according to AD-associated pathways and performed follow-up analyses. The common pattern from the main analysis was further differentiated by pathway-specific effects yielding a more bilateral pattern. Further findings were located in the superior parietal and mid/anterior cingulate regions representing 2 unique pathway-specific patterns. All patterns, except the superior parietal pattern, were influenced by apolipoprotein E. Our step-wise approach revealed atrophy patterns that partially resembled imaging findings in early stages of AD. Our study provides evidence that genetic burden for AD contributes to structural brain variability in normal aging.
Collapse
Affiliation(s)
- Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52428 Jülich, Germany.,Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Melanie E Röckner
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52428 Jülich, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52428 Jülich, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Nora Bittner
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52428 Jülich, Germany.,Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Herms
- Institute of Human Genetics, University Hospital Bonn, Bonn, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52428 Jülich, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Susanne Moebus
- Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52428 Jülich, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52428 Jülich, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany.,Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52428 Jülich, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland.,C. & O. Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
26
|
Molecular subtyping of Alzheimer's disease with consensus non-negative matrix factorization. PLoS One 2021; 16:e0250278. [PMID: 34014928 PMCID: PMC8136734 DOI: 10.1371/journal.pone.0250278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/01/2021] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is a heterogeneous disease and exhibits diverse clinical presentations and disease progression. Some pathological and anatomical subtypes have been proposed. However, these subtypes provide a limited mechanistic understanding for AD. Leveraging gene expression data of 222 AD patients from The Religious Orders Study and Memory and Aging Project (ROSMAP) Study, we identified two AD molecular subtypes (synaptic type and inflammatory type) using consensus non-negative matrix factorization (NMF). Synaptic type is characterized by disrupted synaptic vesicle priming and recycling and synaptic plasticity. Inflammatory type is characterized by disrupted IL2, interferon alpha and gamma pathways. The two AD molecular subtypes were validated using independent data from Gene Expression Omnibus. We further demonstrated that the two molecular subtypes are associated with APOE genotypes, with synaptic type more prevalent in AD patients with E3E4 genotype and inflammatory type more prevalent in AD patients with E3E3 genotype (p = 0.031). In addition, two molecular subtypes are differentially represented in male and female AD, with synaptic type more prevalent in male and inflammatory type in female patients (p = 0.051). Identification of AD molecular subtypes has potential in facilitating disease mechanism understanding, clinical trial design, drug discovery, and precision medicine for AD.
Collapse
|
27
|
Huang M, Chen X, Yu Y, Lai H, Feng Q. Imaging Genetics Study Based on a Temporal Group Sparse Regression and Additive Model for Biomarker Detection of Alzheimer's Disease. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1461-1473. [PMID: 33556003 DOI: 10.1109/tmi.2021.3057660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Imaging genetics is an effective tool used to detect potential biomarkers of Alzheimer's disease (AD) in imaging and genetic data. Most existing imaging genetics methods analyze the association between brain imaging quantitative traits (QTs) and genetic data [e.g., single nucleotide polymorphism (SNP)] by using a linear model, ignoring correlations between a set of QTs and SNP groups, and disregarding the varied associations between longitudinal imaging QTs and SNPs. To solve these problems, we propose a novel temporal group sparsity regression and additive model (T-GSRAM) to identify associations between longitudinal imaging QTs and SNPs for detection of potential AD biomarkers. We first construct a nonparametric regression model to analyze the nonlinear association between QTs and SNPs, which can accurately model the complex influence of SNPs on QTs. We then use longitudinal QTs to identify the trajectory of imaging genetic patterns over time. Moreover, the SNP information of group and individual levels are incorporated into the proposed method to boost the power of biomarker detection. Finally, we propose an efficient algorithm to solve the whole T-GSRAM model. We evaluated our method using simulation data and real data obtained from AD neuroimaging initiative. Experimental results show that our proposed method outperforms several state-of-the-art methods in terms of the receiver operating characteristic curves and area under the curve. Moreover, the detection of AD-related genes and QTs has been confirmed in previous studies, thereby further verifying the effectiveness of our approach and helping understand the genetic basis over time during disease progression.
Collapse
|
28
|
Network-based analysis on genetic variants reveals the immunological mechanism underlying Alzheimer's disease. J Neural Transm (Vienna) 2021; 128:803-816. [PMID: 33909139 DOI: 10.1007/s00702-021-02337-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/11/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the impairment of cognitive function and loss of memory. Previous studies indicate an essential role of immune response in AD, but the detailed mechanisms remain unclear. In this study, we obtained 1664 credible risk variants (CRVs) based on the most significant SNP detected by International Genomics of Alzheimer's Project, from which 99 genes (CRVs-related genes) were identified. Function analysis revealed that these genes were mainly involved in immune response and amyloid-β and its precursor metabolisms, indicating a potential role of immune response in regulating neurobiological processes in the etiology of neurodegenerative disease. Pathway crosstalk analysis revealed the complicated connections between immune-related pathways. Further, we found that the CRVs-related genes showed temporal-specific expression in the thalamus in adolescence developmental period. Cell type-specific expression analysis found that CRVs-related genes might be specifically expressed in brain cells such as astrocytes and oligodendrocytes. Protein-protein interaction network analysis identified the highly interconnected 'hub' genes, all of which were susceptible loci of AD. These results indicated that the CRVs may exert a potential influence in AD by regulating immune response, thalamus development, astrocytes activities, and amyloid-β binding. Our results provided hints for further experimental verification of AD pathophysiology.
Collapse
|
29
|
Jin J, Guang M, Ogbuehi AC, Li S, Zhang K, Ma Y, Acharya A, Guo B, Peng Z, Liu X, Deng Y, Fang Z, Zhu X, Hua S, Li C, Haak R, Ziebolz D, Schmalz G, Liu L, Xu B, Huang X. Shared Molecular Mechanisms between Alzheimer's Disease and Periodontitis Revealed by Transcriptomic Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6633563. [PMID: 33869630 PMCID: PMC8032519 DOI: 10.1155/2021/6633563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/20/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the genetic crosstalk mechanisms that link periodontitis and Alzheimer's disease (AD). BACKGROUND Periodontitis, a common oral infectious disease, is associated with Alzheimer's disease (AD) and considered a putative contributory factor to its progression. However, a comprehensive investigation of potential shared genetic mechanisms between these diseases has not yet been reported. METHODS Gene expression datasets related to periodontitis were downloaded from the Gene Expression Omnibus (GEO) database, and differential expression analysis was performed to identify differentially expressed genes (DEGs). Genes associated with AD were downloaded from the DisGeNET database. Overlapping genes among the DEGs in periodontitis and the AD-related genes were defined as crosstalk genes between periodontitis and AD. The Boruta algorithm was applied to perform feature selection from these crosstalk genes, and representative crosstalk genes were thus obtained. In addition, a support vector machine (SVM) model was constructed by using the scikit-learn algorithm in Python. Next, the crosstalk gene-TF network and crosstalk gene-DEP (differentially expressed pathway) network were each constructed. As a final step, shared genes among the crosstalk genes and periodontitis-related genes in DisGeNET were identified and denoted as the core crosstalk genes. RESULTS Four datasets (GSE23586, GSE16134, GSE10334, and GSE79705) pertaining to periodontitis were included in the analysis. A total of 48 representative crosstalk genes were identified by using the Boruta algorithm. Three TFs (FOS, MEF2C, and USF2) and several pathways (i.e., JAK-STAT, MAPK, NF-kappa B, and natural killer cell-mediated cytotoxicity) were identified as regulators of these crosstalk genes. Among these 48 crosstalk genes and the chronic periodontitis-related genes in DisGeNET, C4A, C4B, CXCL12, FCGR3A, IL1B, and MMP3 were shared and identified as the most pivotal candidate links between periodontitis and AD. CONCLUSIONS Exploration of available transcriptomic datasets revealed C4A, C4B, CXCL12, FCGR3A, IL1B, and MMP3 as the top candidate molecular linkage genes between periodontitis and AD.
Collapse
Affiliation(s)
- Jieqi Jin
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Mengkai Guang
- Department of Stomatology, China-Japan Friendship Hospital, Beijing 100029, China
| | | | - Simin Li
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Kai Zhang
- Department of Stomatology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Aneesha Acharya
- Dr. D Y Patil Dental College and Hospital, Dr D Y Patil Vidyapeeth, Pimpri, Pune, India
| | - Bihan Guo
- Faculty of Electrical Engineering, Information Technology, and Physics, University Braunschweig, Hans-Sommer-Str. 66, Braunschweig 38106, Germany
| | - Zongwu Peng
- Faculty of Electrical Engineering, Information Technology, and Physics, University Braunschweig, Hans-Sommer-Str. 66, Braunschweig 38106, Germany
| | - Xiangqiong Liu
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Yupei Deng
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Zhaobi Fang
- Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiongjie Zhu
- Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shiting Hua
- Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Cong Li
- Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Rainer Haak
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Lei Liu
- Department of Neurology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 10091 Shandong Province, China
| | - Baohua Xu
- Department of Stomatology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
30
|
Vogrinc D, Goričar K, Dolžan V. Genetic Variability in Molecular Pathways Implicated in Alzheimer's Disease: A Comprehensive Review. Front Aging Neurosci 2021; 13:646901. [PMID: 33815092 PMCID: PMC8012500 DOI: 10.3389/fnagi.2021.646901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease, affecting a significant part of the population. The majority of AD cases occur in the elderly with a typical age of onset of the disease above 65 years. AD presents a major burden for the healthcare system and since population is rapidly aging, the burden of the disease will increase in the future. However, no effective drug treatment for a full-blown disease has been developed to date. The genetic background of AD is extensively studied; numerous genome-wide association studies (GWAS) identified significant genes associated with increased risk of AD development. This review summarizes more than 100 risk loci. Many of them may serve as biomarkers of AD progression, even in the preclinical stage of the disease. Furthermore, we used GWAS data to identify key pathways of AD pathogenesis: cellular processes, metabolic processes, biological regulation, localization, transport, regulation of cellular processes, and neurological system processes. Gene clustering into molecular pathways can provide background for identification of novel molecular targets and may support the development of tailored and personalized treatment of AD.
Collapse
Affiliation(s)
| | | | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
31
|
Efficient manipulation of gene dosage in human iPSCs using CRISPR/Cas9 nickases. Commun Biol 2021; 4:195. [PMID: 33580208 PMCID: PMC7881037 DOI: 10.1038/s42003-021-01722-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
The dysregulation of gene dosage due to duplication or haploinsufficiency is a major cause of autosomal dominant diseases such as Alzheimer’s disease. However, there is currently no rapid and efficient method for manipulating gene dosage in a human model system such as human induced pluripotent stem cells (iPSCs). Here, we demonstrate a simple and precise method to simultaneously generate iPSC lines with different gene dosages using paired Cas9 nickases. We first generate a Cas9 nickase variant with broader protospacer-adjacent motif specificity to expand the targetability of double-nicking–mediated genome editing. As a proof-of-concept study, we examine the gene dosage effects on an Alzheimer’s disease patient-derived iPSC line that carries three copies of APP (amyloid precursor protein). This method enables the rapid and simultaneous generation of iPSC lines with monoallelic, biallelic, or triallelic knockout of APP. The cortical neurons generated from isogenically corrected iPSCs exhibit gene dosage-dependent correction of disease-associated phenotypes of amyloid-beta secretion and Tau hyperphosphorylation. Thus, the rapid generation of iPSCs with different gene dosages using our method described herein can be a useful model system for investigating disease mechanisms and therapeutic development. Ye et al demonstrate a simple and precise method to simultaneously generate iPSC lines with different gene dosages using paired Cas9 nickases. As proof-of-concept they apply this method to examining amyloid precursor protein gene dosage effects in an Alzheimer’s disease patient-derived iPSC line. Their method could potentially advance what we know about disease mechanisms and assist with gene therapy development.
Collapse
|
32
|
Abstract
The history of Alzheimer's disease (AD) started in 1907, but we needed to wait until the end of the century to identify the components of pathological hallmarks and genetic subtypes and to formulate the first pathogenic hypothesis. Thanks to biomarkers and new technologies, the concept of AD then rapidly changed from a static view of an amnestic dementia of the presenium to a biological entity that could be clinically manifested as normal cognition or dementia of different types. What is clearly emerging from studies is that AD is heterogeneous in each aspect, such as amyloid composition, tau distribution, relation between amyloid and tau, clinical symptoms, and genetic background, and thus it is probably impossible to explain AD with a single pathological process. The scientific approach to AD suffers from chronological mismatches between clinical, pathological, and technological data, causing difficulty in conceiving diagnostic gold standards and in creating models for drug discovery and screening. A recent mathematical computer-based approach offers the opportunity to study AD in real life and to provide a new point of view and the final missing pieces of the AD puzzle.
Collapse
Affiliation(s)
- Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
33
|
Niego A, Benítez-Burraco A. Autism and Williams syndrome: Dissimilar socio-cognitive profiles with similar patterns of abnormal gene expression in the blood. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2020; 25:464-489. [PMID: 33143449 DOI: 10.1177/1362361320965074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
LAY ABSTRACT Autism spectrum disorders and Williams syndrome are complex cognitive conditions exhibiting quite opposite features in the social domain: whereas people with autism spectrum disorders are mostly hyposocial, subjects with Williams syndrome are usually reported as hypersocial. At the same time, autism spectrum disorders and Williams syndrome share some common underlying behavioral and cognitive deficits. It is not clear, however, which genes account for the attested differences (and similarities) in the socio-cognitive domain. In this article, we adopted a comparative molecular approach and looked for genes that might be differentially (or similarly) regulated in the blood of people with these conditions. We found a significant overlap between genes dysregulated in the blood of patients compared to neurotypical controls, with most of them being upregulated or, in some cases, downregulated. Still, genes with similar expression trends can exhibit quantitative differences between conditions, with most of them being more dysregulated in Williams syndrome than in autism spectrum disorders. Differentially expressed genes are involved in aspects of brain development and function (particularly dendritogenesis) and are expressed in brain areas (particularly the cerebellum, the thalamus, and the striatum) of relevance for the autism spectrum disorder and the Williams syndrome etiopathogenesis. Overall, these genes emerge as promising candidates for the similarities and differences between the autism spectrum disorder and the Williams syndrome socio-cognitive profiles.
Collapse
|
34
|
Brandies PA, Tang S, Johnson RSP, Hogg CJ, Belov K. The first Antechinus reference genome provides a resource for investigating the genetic basis of semelparity and age-related neuropathologies. GIGABYTE 2020; 2020:gigabyte7. [PMID: 36824596 PMCID: PMC9631953 DOI: 10.46471/gigabyte.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Antechinus are a genus of mouse-like marsupials that exhibit a rare reproductive strategy known as semelparity and also naturally develop age-related neuropathologies similar to those in humans. We provide the first annotated antechinus reference genome for the brown antechinus (Antechinus stuartii). The reference genome is 3.3 Gb in size with a scaffold N50 of 73Mb and 93.3% complete mammalian BUSCOs. Using bioinformatic methods we assign scaffolds to chromosomes and identify 0.78 Mb of Y-chromosome scaffolds. Comparative genomics revealed interesting expansions in the NMRK2 gene and the protocadherin gamma family, which have previously been associated with aging and age-related dementias respectively. Transcriptome data displayed expression of common Alzheimer's related genes in the antechinus brain and highlight the potential of utilising the antechinus as a future disease model. The valuable genomic resources provided herein will enable future research to explore the genetic basis of semelparity and age-related processes in the antechinus.
Collapse
Affiliation(s)
- Parice A. Brandies
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Simon Tang
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Robert S. P. Johnson
- Zoologica: Veterinary and Zoological Consulting, Millthorpe, New South Wales, Australia
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Kurakin A, Bredesen DE. Alzheimer's disease as a systems network disorder: chronic stress/dyshomeostasis, innate immunity, and genetics. Aging (Albany NY) 2020; 12:17815-17844. [PMID: 32957083 PMCID: PMC7585078 DOI: 10.18632/aging.103883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/25/2020] [Indexed: 01/24/2023]
Abstract
Ineffective results of clinical trials of over 200 anti-Alzheimer's drug candidates, with a 99.6% attrition rate, suggest that the current paradigm of Alzheimer's disease (AD) may be incomplete, necessitating exploration of alternative and complementary frameworks.Using algorithms for hypothesis independent search and expert-assisted synthesis of heterogeneous data, we attempted to reconcile multimodal clinical profiles of early-stage AD patients and accumulated research data within a parsimonious framework. Results of our analysis suggest that Alzheimer's may not be a brain disease but a progressive system-level network disorder, which is driven by chronic network stress and dyshomeostasis. The latter can be caused by various endogenous and exogenous factors, such as chronic inflammatory conditions, infections, vascular dysfunction, head trauma, environmental toxicity, and immune disorders. Whether originating in the brain or on the periphery, chronic stress, toxicity, and inflammation are communicated to the central nervous system (CNS) via humoral and neural routes, preferentially targeting high-centrality regulatory nodes and circuits of the nervous system, and eventually manifesting as a neurodegenerative CNS disease.In this report, we outline an alternative perspective on AD as a systems network disorder and discuss biochemical and genetic evidence suggesting the central role of chronic tissue injury/dyshomeostasis, innate immune reactivity, and inflammation in the etiopathobiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Alexei Kurakin
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dale E. Bredesen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA,Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
36
|
Review of beneficial effects of resveratrol in neurodegenerative diseases such as Alzheimer's disease. Adv Med Sci 2020; 65:415-423. [PMID: 32871321 DOI: 10.1016/j.advms.2020.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/18/2020] [Accepted: 08/13/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE The prevalence of Alzheimer's Disease is rising, in part due to increase in the medium age of residents in developed countries. The aim of the study has been to determine whether resveratrol (RSV) can be effective in the prevention or treatment of Alzheimer's Disease, providing its antioxidant, anti-inflammatory, and SIRT1-activating properties. METHODS A systematic review of some experimental and clinical studies has been made. The eligibility criteria have comprised: maximum 10 years passed from the study publication, geographical diversity of the studies performed, and - as much as possible - pertaining of the reviewed study results both to animal models of AD, and to humans. RESULTS After the final assessment of the eligibility criteria, 96 research studies have been included in the review. Overall results suggest that RSV can be effectively used in the prevention of AD, especially in reference to its familial forms with an early onset. At the same time, efficacy of RSV in the treatment of AD needs further studies, aimed at: improving its transport through the blood-brain barrier (BBB), performing prospective clinical in vivo trials on large groups of patients, and determining the optimal RSV dosage. DISCUSSION Providing RSV mechanisms of action, inhibitory in reference to many pathomechanisms of AD, it seems very likely that RSV could be effective in AD prevention. The main limitations referring to such presumption include: limited permeability of BBB to RSV, and scarcity of clinical studies on RSV pertaining to large groups of humans.
Collapse
|
37
|
Dumitrescu L, Mahoney ER, Mukherjee S, Lee ML, Bush WS, Engelman CD, Lu Q, Fardo DW, Trittschuh EH, Mez J, Kaczorowski C, Hernandez Saucedo H, Widaman KF, Buckley R, Properzi M, Mormino E, Yang HS, Harrison T, Hedden T, Nho K, Andrews SJ, Tommet D, Hadad N, Sanders RE, Ruderfer DM, Gifford KA, Moore AM, Cambronero F, Zhong X, Raghavan NS, Vardarajan B, Pericak-Vance MA, Farrer LA, Wang LS, Cruchaga C, Schellenberg G, Cox NJ, Haines JL, Keene CD, Saykin AJ, Larson EB, Sperling RA, Mayeux R, Bennett DA, Schneider JA, Crane PK, Jefferson AL, Hohman TJ. Genetic variants and functional pathways associated with resilience to Alzheimer's disease. Brain 2020; 143:2561-2575. [PMID: 32844198 PMCID: PMC7447518 DOI: 10.1093/brain/awaa209] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/22/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
Approximately 30% of older adults exhibit the neuropathological features of Alzheimer's disease without signs of cognitive impairment. Yet, little is known about the genetic factors that allow these potentially resilient individuals to remain cognitively unimpaired in the face of substantial neuropathology. We performed a large, genome-wide association study (GWAS) of two previously validated metrics of cognitive resilience quantified using a latent variable modelling approach and representing better-than-predicted cognitive performance for a given level of neuropathology. Data were harmonized across 5108 participants from a clinical trial of Alzheimer's disease and three longitudinal cohort studies of cognitive ageing. All analyses were run across all participants and repeated restricting the sample to individuals with unimpaired cognition to identify variants at the earliest stages of disease. As expected, all resilience metrics were genetically correlated with cognitive performance and education attainment traits (P-values < 2.5 × 10-20), and we observed novel correlations with neuropsychiatric conditions (P-values < 7.9 × 10-4). Notably, neither resilience metric was genetically correlated with clinical Alzheimer's disease (P-values > 0.42) nor associated with APOE (P-values > 0.13). In single variant analyses, we observed a genome-wide significant locus among participants with unimpaired cognition on chromosome 18 upstream of ATP8B1 (index single nucleotide polymorphism rs2571244, minor allele frequency = 0.08, P = 2.3 × 10-8). The top variant at this locus (rs2571244) was significantly associated with methylation in prefrontal cortex tissue at multiple CpG sites, including one just upstream of ATPB81 (cg19596477; P = 2 × 10-13). Overall, this comprehensive genetic analysis of resilience implicates a putative role of vascular risk, metabolism, and mental health in protection from the cognitive consequences of neuropathology, while also providing evidence for a novel resilience gene along the bile acid metabolism pathway. Furthermore, the genetic architecture of resilience appears to be distinct from that of clinical Alzheimer's disease, suggesting that a shift in focus to molecular contributors to resilience may identify novel pathways for therapeutic targets.
Collapse
Affiliation(s)
- Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily R Mahoney
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Michael L Lee
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - William S Bush
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Corinne D Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Qiongshi Lu
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - David W Fardo
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Emily H Trittschuh
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- VA Puget Sound Health Care System, GRECC, Seattle, WA, USA
| | - Jesse Mez
- Deparment of Neurology, Boston University School of Medicine, Boston, MA, USA
| | | | - Hector Hernandez Saucedo
- UC Davis Alzheimer’s Disease Research Center, Department of Neurology, University of California Davis Medical Center, Sacramento, CA, USA
| | | | - Rachel Buckley
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Center for Alzheimer’s Research and Treatment, Department of Neurology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Michael Properzi
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Elizabeth Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Hyun-Sik Yang
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Center for Alzheimer’s Research and Treatment, Department of Neurology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
| | - Tessa Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Trey Hedden
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shea J Andrews
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Doug Tommet
- Department of Psychiatry and Human Behavior, Brown University School of Medicine, Providence, RI, USA
| | | | | | - Douglas M Ruderfer
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine A Gifford
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annah M Moore
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Francis Cambronero
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaoyuan Zhong
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Neha S Raghavan
- Department of Neurology, Columbia University, New York, NY, USA
- The Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and The New York Presbyterian Hospital, New York, NY, USA
| | - Badri Vardarajan
- Department of Neurology, Columbia University, New York, NY, USA
- The Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and The New York Presbyterian Hospital, New York, NY, USA
| | | | | | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami School of Medicine, Miami, FL, USA
| | - Lindsay A Farrer
- Deparment of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Gerard Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan L Haines
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University, New York, NY, USA
- The Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and The New York Presbyterian Hospital, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
38
|
Rendina A, Drongitis D, Donizetti A, Fucci L, Milan G, Tripodi F, Giustezza F, Postiglione A, Pappatà S, Ferrari R, Bossù P, Angiolillo A, di Costanzo A, Caiazzo M, Vitale E. CD33 and SIGLECL1 Immunoglobulin Superfamily Involved in Dementia. J Neuropathol Exp Neurol 2020; 79:891-901. [PMID: 32647856 DOI: 10.1093/jnen/nlaa055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/19/2020] [Accepted: 05/25/2020] [Indexed: 11/13/2022] Open
Abstract
Sialic acid-binding immunoglobulin-type lectins, which are predominantly expressed in immune cells, represent a family of immunomodulatory receptors with inhibitory and activating signals, in both healthy and disease states. Genetic factors are important in all forms of dementia, especially in early onset dementia. CD33 was recently recognized as a genetic risk factor for Alzheimer disease (AD). Here, we present a 2-generation family with 4 members, the father and the 3 siblings, characterized by an early form of unusual dementia exhibiting a behavioral variant close to behavioral variant frontotemporal dementia phenotype and severe forms of memory loss suggestive of AD. We analyzed the CD33 gene in this family and identified 10 single nucleotide polymorphisms (SNPs) in a linkage disequilibrium block associated with the disease. We also identified a tag SNP, rs2455069-A>G, in CD33 exon 2 that could be involved with dementia risk. Additionally, we excluded the presence of C9orf72 expansion mutations and other mutations previously associated with sporadic FTD and AD. The tag SNP association was also analyzed in selected sporadic AD patients from the same Southern Italy region. We demonstrate that CD33 and SIGLECL1 have a significantly increased level of expression in these patients.
Collapse
Affiliation(s)
- Antonella Rendina
- From the Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Naples, Italy
| | - Denise Drongitis
- Department of Biology, University of Naples Federico II, Naples, Italy.,Institute of Genetics and Biophysics (IGB), National Research Council of Italy (CNR), Naples, Italy
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Laura Fucci
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | | | - Alfredo Postiglione
- Department of Internal Medicine & Surgery, University of Naples "Federico II", Naples, Italy
| | - Sabina Pappatà
- Institute of Bioimaging and Biostructures, CNR, Naples, Italy
| | - Raffaele Ferrari
- Department of Neurodegenerative Disease, University College London, London, UK
| | - Paola Bossù
- Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome
| | - Antonella Angiolillo
- Centro Ricerca e Formazione in Medicina dell'Invecchiamento (CeRMI), Università degli Studi del Molise, Ospedale Cardarelli, Campobasso, Italy
| | - Alfonso di Costanzo
- Centro Ricerca e Formazione in Medicina dell'Invecchiamento (CeRMI), Università degli Studi del Molise, Ospedale Cardarelli, Campobasso, Italy
| | - Massimiliano Caiazzo
- Department of Pharmaceutics Utrecht, Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Emilia Vitale
- From the Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Naples, Italy
| |
Collapse
|
39
|
Squillario M, Abate G, Tomasi F, Tozzo V, Barla A, Uberti D. A telescope GWAS analysis strategy, based on SNPs-genes-pathways ensamble and on multivariate algorithms, to characterize late onset Alzheimer's disease. Sci Rep 2020; 10:12063. [PMID: 32694537 PMCID: PMC7374579 DOI: 10.1038/s41598-020-67699-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Genome–wide association studies (GWAS) have revealed a plethora of putative susceptibility genes for Alzheimer’s disease (AD), with the sole exception of APOE gene unequivocally validated in independent study. Considering that the etiology of complex diseases like AD could depend on functional multiple genes interaction network, here we proposed an alternative GWAS analysis strategy based on (i) multivariate methods and on a (ii) telescope approach, in order to guarantee the identification of correlated variables, and reveal their connections at three biological connected levels. Specifically as multivariate methods, we employed two machine learning algorithms and a genetic association test and we considered SNPs, Genes and Pathways features in the analysis of two public GWAS dataset (ADNI-1 and ADNI-2). For each dataset and for each feature we addressed two binary classifications tasks: cases vs. controls and the low vs. high risk of developing AD considering the allelic status of APOEe4. This complex strategy allowed the identification of SNPs, genes and pathways lists statistically robust and meaningful from the biological viewpoint. Among the results, we confirm the involvement of TOMM40 gene in AD and we propose GRM7 as a novel gene significantly associated with AD.
Collapse
Affiliation(s)
| | - Giulia Abate
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | | | | | | | - Daniela Uberti
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | | |
Collapse
|
40
|
Delpak A, Talebi M. On the impact of age, gender and educational level on cognitive function in Alzheimer’s disease: A quantitative approach. Arch Gerontol Geriatr 2020; 89:104090. [DOI: 10.1016/j.archger.2020.104090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/09/2020] [Accepted: 04/26/2020] [Indexed: 11/27/2022]
|
41
|
Van Dyke N, Yenugadhati N, Birkett NJ, Lindsay J, Turner MC, Willhite CC, Krewski D. Association between aluminum in drinking water and incident Alzheimer's disease in the Canadian Study of Health and Aging cohort. Neurotoxicology 2020; 83:157-165. [PMID: 32360354 DOI: 10.1016/j.neuro.2020.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 03/03/2020] [Accepted: 04/15/2020] [Indexed: 01/17/2023]
Abstract
Epidemiological evidence linking aluminum in drinking water and Alzheimer's disease (AD) has been inconsistent, with previous studies often limited by small sample sizes. The present study addresses this issue using data from the Canadian Study of Health and Aging (CSHA), a prospective cohort of 10,263 subjects followed-up from 1991-1992 through 2001-2002. Participants' residential histories were linked to municipal drinking water sources in 35 Canadian municipalities to obtain ecologic pH, aluminum, fluoride, iron and silica concentrations in drinking water. Cox proportional hazards models were used to examine associations between aluminum and incident AD [Hazard Ratios (HRs), 95% confidence intervals (CIs)], adjusting for age, gender, history of stroke, education, and high blood pressure. A total of 240 incident AD cases were identified during follow-up of 3, 638 subjects derived from the CSHA cohort with complete data on all covariates. With categorical aluminum measurements, there was an increasing, but not statistically significant, exposure-response relationship (HR = 1.34, 95% CI 0.88-2.04, in the highest aluminum exposure category; p = 0.13 for linear trend). Similar results were observed using continuous aluminum measurements (HR=1.21, 95% CI 0.97-1.52, at the interquartile range of 333.8 μg/L; p = 0.09 for linear trend). In a subsample genotyped for ApoE-ε4, there was some evidence of an association between aluminum and AD (p = 0.03 for linear trend). Although a clear association between aluminum in drinking water and AD was not found, the linear trend observed in ApoE-ε4 subsample warrants further examination.
Collapse
Affiliation(s)
- Nicole Van Dyke
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada
| | - Nagarajkumar Yenugadhati
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada; Risk Sciences International, Ottawa, Canada; Department of Epidemiology and Biostatistics, College of Public Health and Health Informatics, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Nicholas J Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada
| | - Joan Lindsay
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Michelle C Turner
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada; Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada; Risk Sciences International, Ottawa, Canada
| |
Collapse
|
42
|
Chang YT, Hsu SW, Huang SH, Huang CW, Chang WN, Lien CY, Lee JJ, Lee CC, Chang CC. ABCA7 polymorphisms correlate with memory impairment and default mode network in patients with APOEε4-associated Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2019; 11:103. [PMID: 31831047 PMCID: PMC6909474 DOI: 10.1186/s13195-019-0563-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023]
Abstract
Background Since both APOE and ABCA7 protein expression may independently reduce neuritic plaque burden and reorganize fibrillar amyloid burden-mediated disruption of functional connectivity in the default mode network, we aimed to investigate the effect of the APOE-ABCA7 interaction on default mode network in Alzheimer’s disease. Methods Two hundred and eighty-seven individuals with a diagnosis of typical Alzheimer’s disease were included in this study. Memory was characterized and compared between APOE-ε4+ carriers and APOE-ε4 non-carriers within ABCA7 rs3764650T allele homozygous carriers and ABCA7 rs3764650G allele carriers, respectively. Two-way analysis of variance was used to identify a significant interaction effect between APOE (APOE-ε4+ carriers versus APOE-ε4 non-carriers) and ABCA7 (ABCA7 rs3764650T allele homozygous versus ABCA7 rs3764650G allele carriers) on memory scores and functional connectivity in each default mode network subsystem. Results In ABCA7 rs3764650G allele carriers, APOE-ε4+ carriers had lower memory scores (t (159) = − 4.879; P < 0.001) compared to APOE-ε4 non-carriers, but APOE-ε4+ carriers and APOE-ε4 non-carriers did not have differences in memory (P > 0.05) within ABCA7 rs3764650T allele homozygous carriers. There was a significant APOE-ABCA7 interaction effect on the memory (F3, 283 = 4.755, P = 0.030). In the default mode network anchored by the entorhinal seed, the peak neural activity of the cluster that was significantly associated with APOE-ABCA7 interaction effects (P = 0.00002) was correlated with the memory (ρ = 0.129, P = 0.030). Conclusions Genetic-biological systems may impact disease presentation and therapy. Clarifying the effect of APOE-ABCA7 interactions on the default mode network and memory is critical to exploring the complex pathogenesis of Alzheimer’s disease and refining a potential therapy.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Department of Neurology, Institute of translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan.
| | - Shih-Wei Hsu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan
| | - Chi-Wei Huang
- Department of Neurology, Institute of translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan
| | - Wen-Neng Chang
- Department of Neurology, Institute of translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan
| | - Chia-Yi Lien
- Department of Neurology, Institute of translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan
| | - Jun-Jun Lee
- Department of Neurology, Institute of translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan
| | - Chen-Chang Lee
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Institute of translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan.
| |
Collapse
|
43
|
Tey HJ, Ng CH. Computational analysis of functional SNPs in Alzheimer's disease-associated endocytosis genes. PeerJ 2019; 7:e7667. [PMID: 31592138 PMCID: PMC6776068 DOI: 10.7717/peerj.7667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/13/2019] [Indexed: 01/10/2023] Open
Abstract
Background From genome wide association studies on Alzheimer’s disease (AD), it has been shown that many single nucleotide polymorphisms (SNPs) of genes of different pathways affect the disease risk. One of the pathways is endocytosis, and variants in these genes may affect their functions in amyloid precursor protein (APP) trafficking, amyloid-beta (Aβ) production as well as its clearance in the brain. This study uses computational methods to predict the effect of novel SNPs, including untranslated region (UTR) variants, splice site variants, synonymous SNPs (sSNPs) and non-synonymous SNPs (nsSNPs) in three endocytosis genes associated with AD, namely PICALM, SYNJ1 and SH3KBP1. Materials and Methods All the variants’ information was retrieved from the Ensembl genome database, and then different variation prediction analyses were performed. UTRScan was used to predict UTR variants while MaxEntScan was used to predict splice site variants. Meta-analysis by PredictSNP2 was used to predict sSNPs. Parallel prediction analyses by five different software packages including SIFT, PolyPhen-2, Mutation Assessor, I-Mutant2.0 and SNPs&GO were used to predict the effects of nsSNPs. The level of evolutionary conservation of deleterious nsSNPs was further analyzed using ConSurf server. Mutant protein structures of deleterious nsSNPs were modelled and refined using SPARKS-X and ModRefiner for structural comparison. Results A total of 56 deleterious variants were identified in this study, including 12 UTR variants, 18 splice site variants, eight sSNPs and 18 nsSNPs. Among these 56 deleterious variants, seven variants were also identified in the Alzheimer’s Disease Sequencing Project (ADSP), Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Mount Sinai Brain Bank (MSBB) studies. Discussion The 56 deleterious variants were predicted to affect the regulation of gene expression, or have functional impacts on these three endocytosis genes and their gene products. The deleterious variants in these genes are expected to affect their cellular function in endocytosis and may be implicated in the pathogenesis of AD as well. The biological consequences of these deleterious variants and their potential impacts on the disease risks could be further validated experimentally and may be useful for gene-disease association study.
Collapse
Affiliation(s)
- Han Jieh Tey
- Faculty of Information Science and Technology, Multimedia University, Ayer Keroh, Melaka, Malaysia
| | - Chong Han Ng
- Faculty of Information Science and Technology, Multimedia University, Ayer Keroh, Melaka, Malaysia
| |
Collapse
|
44
|
Masoud AM, Bihaqi SW, Alansi B, Dash M, Subaiea GM, Renehan WE, Zawia NH. Altered microRNA, mRNA, and Protein Expression of Neurodegeneration-Related Biomarkers and Their Transcriptional and Epigenetic Modifiers in a Human Tau Transgenic Mouse Model in Response to Developmental Lead Exposure. J Alzheimers Dis 2019; 63:273-282. [PMID: 29614648 DOI: 10.3233/jad-170824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid deposits originating from the amyloid-β protein precursor (AβPP) and aggregates of the microtubule associated protein tau (MAPT) are the hallmarks of Alzheimer's disease (AD). Animal studies have demonstrated a link between early life exposure to lead (Pb) and latent overexpression of the AβPP and MAPT genes and their products via epigenetic reprogramming. The present study monitored APP gene and epigenetic mediators and transcription factors known to regulate it. Western blot analysis and quantitative polymerase chain reaction (qPCR) were used to study the mRNA, miRNA, and proteins levels of AβPP, specificity protein 1 (SP1; a transcriptional regulator of amyloid and tau pathway), and epigenetic intermediates namely: DNA methyltransferase (DNMT) 1, DNMT3a and Methyl- CpG protein binding 2 (MeCP2) in the cerebral cortex of transgenic mice (Knock-in for human MAPT). These transgenic mice were developmentally exposed to Pb and the impact on mRNA, miRNA, and protein levels was scrutinized on postnatal days (PND) 20 and 50. The data revealed a consistent inverse relationship between miRNA and protein levels for SP1 and AβPP both in the basal and exposed conditions, which may influence the levels of their corresponding proteins. On the other hand, the relationship between miRNA and protein levels was not correlative for DNMT1 and DNMT3a. MeCP2 miRNA protein levels corresponded only following environmental exposure. These results suggest that developmental exposure to Pb and subsequent AβPP protein levels may be controlled through transcriptional regulators and epigenetic mechanisms that mainly involve miRNA regulation.
Collapse
Affiliation(s)
- Anwar M Masoud
- Biochemical Technology Program, Faculty of Applied Science, Thamar University, Thamar, Yemen
| | - Syed W Bihaqi
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston RI, USA
| | - Bothaina Alansi
- Department of Biomedical and Pharmaceutical Science, University of Rhode Island, Kingston RI, USA
| | - Miriam Dash
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston RI, USA
| | - Gehad M Subaiea
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Kingdom of Saudi Arabia
| | - William E Renehan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston RI, USA
| | - Nasser H Zawia
- Department of Biomedical and Pharmaceutical Science, University of Rhode Island, Kingston RI, USA.,Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston RI, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston RI, USA
| |
Collapse
|
45
|
Emerging roles for MEF2 in brain development and mental disorders. Curr Opin Neurobiol 2019; 59:49-58. [PMID: 31129473 DOI: 10.1016/j.conb.2019.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022]
Abstract
The MEF2 family of transcription factors regulate large programs of gene expression important for the development and maintenance of many tissues, including the brain. MEF2 proteins are regulated by neuronal synaptic activity, and they recruit several epigenetic enzymes to influence chromatin structure and gene expression during development and throughout adulthood. Here, we provide a brief review of the recent literature reporting important roles for MEF2 during early brain development and function, and we highlight emerging roles for MEF2 as a risk factor for multiple neurodevelopmental disorders and mental illnesses, such as autism, intellectual disability, and schizophrenia.
Collapse
|
46
|
Eid A, Mhatre I, Richardson JR. Gene-environment interactions in Alzheimer's disease: A potential path to precision medicine. Pharmacol Ther 2019; 199:173-187. [PMID: 30877021 DOI: 10.1016/j.pharmthera.2019.03.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the United States and afflicts >5.7 million Americans in 2018. Therapeutic options remain extremely limited to those that are symptom targeting, while no drugs have been approved for the modification or reversal of the disease itself. Risk factors for AD including aging, the female sex, as well as carrying an APOE4 genotype. These risk factors have been extensively examined in the literature, while less attention has been paid to modifiable risk factors, including lifestyle, and environmental risk factors such as exposures to air pollution and pesticides. This review highlights the most recent data on risk factors in AD and identifies gene by environment interactions that have been investigated. It also provides a suggested framework for a personalized therapeutic approach to AD, by combining genetic, environmental and lifestyle risk factors. Understanding modifiable risk factors and their interaction with non-modifiable factors (age, susceptibility alleles, and sex) is paramount for designing personalized therapeutic interventions.
Collapse
Affiliation(s)
- Aseel Eid
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America
| | - Isha Mhatre
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America; Department of Neurosciences, School of Biomedical Sciences, Kent State University, Kent, OH
| | - Jason R Richardson
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America.
| |
Collapse
|
47
|
Nery TGM, Silva EM, Tavares R, Passetti F. The Challenge to Search for New Nervous System Disease Biomarker Candidates: the Opportunity to Use the Proteogenomics Approach. J Mol Neurosci 2018; 67:150-164. [PMID: 30554402 DOI: 10.1007/s12031-018-1220-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease, Parkinson's disease, prion diseases, schizophrenia, and multiple sclerosis are the most common nervous system diseases, affecting millions of people worldwide. The current scientific literature associates these pathological conditions to abnormal expression levels of certain proteins, which in turn improved the knowledge concerning normal and affected brains. However, there is no available cure or preventive therapy for any of these disorders. Proteogenomics is a recent approach defined as the data integration of both nucleotide high-throughput sequencing and protein mass spectrometry technologies. In the last years, proteogenomics studies in distinct diseases have emerged as a strategy for the identification of uncharacterized proteoforms, which are all the different protein forms derived from a single gene. For many of these diseases, at least one protein used as biomarker presents more than one proteoform, which fosters the analysis of publicly available data focusing proteoforms. Given this context, we describe the most important biomarkers for each neurodegenerative disease and how genomics, transcriptomics, and proteomics separately contributed to unveil them. Finally, we present a selection of proteogenomics studies in which the combination of nucleotide and proteome high-throughput data, from cell lines or brain tissue samples, is used to uncover proteoforms not previously described. We believe that this new approach may improve our knowledge about nervous system diseases and brain function and an opportunity to identify new biomarker candidates.
Collapse
Affiliation(s)
- Thais Guimarães Martins Nery
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Esdras Matheus Silva
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Raphael Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Fabio Passetti
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (Fiocruz), Manguinhos, Rio de Janeiro, Brazil.
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil.
| |
Collapse
|
48
|
Claes C, Van Den Daele J, Boon R, Schouteden S, Colombo A, Monasor LS, Fiers M, Ordovás L, Nami F, Bohrmann B, Tahirovic S, De Strooper B, Verfaillie CM. Human stem cell-derived monocytes and microglia-like cells reveal impaired amyloid plaque clearance upon heterozygous or homozygous loss of TREM2. Alzheimers Dement 2018; 15:453-464. [PMID: 30442540 DOI: 10.1016/j.jalz.2018.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/25/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Murine microglia expressing the Alzheimer's disease-linked TREM2R47H mutation display variable decrease in phagocytosis, while impaired phagocytosis is reported following loss of TREM2. However, no data exist on TREM2+/R47H human microglia. Therefore, we created human pluripotent stem cell (hPSC) monocytes and transdifferentiated microglia-like cells (tMGs) to examine the effect of the TREM2+/R47H mutation and loss of TREM2 on phagocytosis. METHODS We generated isogenic TREM2+/R47H, TREM2+/-, and TREM2-/- hPSCs using CRISPR/Cas9. Following differentiation to monocytes and tMGs, we studied the uptake of Escherichia coli fragments and analyzed amyloid plaque clearance from cryosections of APP/PS1+/- mouse brains. RESULTS We demonstrated that tMGs resemble cultured human microglia. TREM2+/- and TREM2-/- hPSC monocytes and tMGs phagocytosed significantly less E. coli fragments and cleared less amyloid plaques than wild-type hPSC progeny, with no difference for TREM2+/R47H progeny. DISCUSSION In vitro phagocytosis of hPSC monocytes and tMGs was not affected by the TREM2+/R47H mutation but was significantly impaired in TREM2+/- and TREM2-/- progeny.
Collapse
Affiliation(s)
- Christel Claes
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium; Laboratory for the Research of Neurodegenerative Diseases, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Johanna Van Den Daele
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium; Laboratory for the Research of Neurodegenerative Diseases, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Ruben Boon
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Sarah Schouteden
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | - Mark Fiers
- Laboratory for the Research of Neurodegenerative Diseases, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Laura Ordovás
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - FatemehArefeh Nami
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Bernd Bohrmann
- Roche Pharmaceutical Research and Early Development NORD Discovery & Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium.
| |
Collapse
|
49
|
Lemche E. Early Life Stress and Epigenetics in Late-onset Alzheimer's Dementia: A Systematic Review. Curr Genomics 2018; 19:522-602. [PMID: 30386171 PMCID: PMC6194433 DOI: 10.2174/1389202919666171229145156] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022] Open
Abstract
Involvement of life stress in Late-Onset Alzheimer's Disease (LOAD) has been evinced in longitudinal cohort epidemiological studies, and endocrinologic evidence suggests involvements of catecholamine and corticosteroid systems in LOAD. Early Life Stress (ELS) rodent models have successfully demonstrated sequelae of maternal separation resulting in LOAD-analogous pathology, thereby supporting a role of insulin receptor signalling pertaining to GSK-3beta facilitated tau hyper-phosphorylation and amyloidogenic processing. Discussed are relevant ELS studies, and findings from three mitogen-activated protein kinase pathways (JNK/SAPK pathway, ERK pathway, p38/MAPK pathway) relevant for mediating environmental stresses. Further considered were the roles of autophagy impairment, neuroinflammation, and brain insulin resistance. For the meta-analytic evaluation, 224 candidate gene loci were extracted from reviews of animal studies of LOAD pathophysiological mechanisms, of which 60 had no positive results in human LOAD association studies. These loci were combined with 89 gene loci confirmed as LOAD risk genes in previous GWAS and WES. Of the 313 risk gene loci evaluated, there were 35 human reports on epigenomic modifications in terms of methylation or histone acetylation. 64 microRNA gene regulation mechanisms were published for the compiled loci. Genomic association studies support close relations of both noradrenergic and glucocorticoid systems with LOAD. For HPA involvement, a CRHR1 haplotype with MAPT was described, but further association of only HSD11B1 with LOAD found; however, association of FKBP1 and NC3R1 polymorphisms was documented in support of stress influence to LOAD. In the brain insulin system, IGF2R, INSR, INSRR, and plasticity regulator ARC, were associated with LOAD. Pertaining to compromised myelin stability in LOAD, relevant associations were found for BIN1, RELN, SORL1, SORCS1, CNP, MAG, and MOG. Regarding epigenetic modifications, both methylation variability and de-acetylation were reported for LOAD. The majority of up-to-date epigenomic findings include reported modifications in the well-known LOAD core pathology loci MAPT, BACE1, APP (with FOS, EGR1), PSEN1, PSEN2, and highlight a central role of BDNF. Pertaining to ELS, relevant loci are FKBP5, EGR1, GSK3B; critical roles of inflammation are indicated by CRP, TNFA, NFKB1 modifications; for cholesterol biosynthesis, DHCR24; for myelin stability BIN1, SORL1, CNP; pertaining to (epi)genetic mechanisms, hTERT, MBD2, DNMT1, MTHFR2. Findings on gene regulation were accumulated for BACE1, MAPK signalling, TLR4, BDNF, insulin signalling, with most reports for miR-132 and miR-27. Unclear in epigenomic studies remains the role of noradrenergic signalling, previously demonstrated by neuropathological findings of childhood nucleus caeruleus degeneration for LOAD tauopathy.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
50
|
Cerquera-Jaramillo MA, Nava-Mesa MO, González-Reyes RE, Tellez-Conti C, de-la-Torre A. Visual Features in Alzheimer's Disease: From Basic Mechanisms to Clinical Overview. Neural Plast 2018; 2018:2941783. [PMID: 30405709 PMCID: PMC6204169 DOI: 10.1155/2018/2941783] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. It compromises patients' daily activities owing to progressive cognitive deterioration, which has elevated direct and indirect costs. Although AD has several risk factors, aging is considered the most important. Unfortunately, clinical diagnosis is usually performed at an advanced disease stage when dementia is established, making implementation of successful therapeutic interventions difficult. Current biomarkers tend to be expensive, insufficient, or invasive, raising the need for novel, improved tools aimed at early disease detection. AD is characterized by brain atrophy due to neuronal and synaptic loss, extracellular amyloid plaques composed of amyloid-beta peptide (Aβ), and neurofibrillary tangles of hyperphosphorylated tau protein. The visual system and central nervous system share many functional components. Thus, it is plausible that damage induced by Aβ, tau, and neuroinflammation may be observed in visual components such as the retina, even at an early disease stage. This underscores the importance of implementing ophthalmological examinations, less invasive and expensive than other biomarkers, as useful measures to assess disease progression and severity in individuals with or at risk of AD. Here, we review functional and morphological changes of the retina and visual pathway in AD from pathophysiological and clinical perspectives.
Collapse
Affiliation(s)
| | - Mauricio O. Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Rodrigo E. González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Tellez-Conti
- Escuela Superior de Oftalmología-Instituto Barraquer de América, Bogotá, Colombia
| | - Alejandra de-la-Torre
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|