1
|
Zeng L, Bai J, Huang J, Huang S, Qin Y, Yin Y, Chen Y, Wei Z, Huang W, Ouyang K. Construction and preliminary immunological evaluation of EV-G replicon expressing PEDV-COE-N region. Virology 2025; 604:110436. [PMID: 39889482 DOI: 10.1016/j.virol.2025.110436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious virus that causes acute infectious disease in swine, with mortality rates in piglets reaching up to 100%. In recent years, PEDV has led to significant economic losses in China's pig industry. As there is no specific treatment for PEDV, vaccination remains a key strategy for its prevention and control. This study utilized the EV-G replicon system to develop a nucleic acid vaccine expressing the PEDV core neutralizing epitope (COE) region, which was evaluated through immunization of Kunming mice. The results demonstrated that the vaccine successfully induced high levels of specific IgG and neutralizing antibodies in the mice, while also significantly enhanced splenic lymphocyte proliferation, and increased the expression of IL-4 and IFN-γ cytokines. These findings indicate that the constructed pBluescript-EV-G-COE-N plasmid is an effective DNA replicon vaccine. Notably, immunized with pBluescript-EV-G-COE-N replicons with chitosan resulted in higher neutralizing antibodies and IFN-γ, suggesting the enhanced immune efficacy. The successful construction and preliminary immunological evaluation of the pBluescript-EV-G-COE-N replicon highlights its potential in PEDV vaccine development and offers valuable data for future research in new PEDV vaccine formulations.
Collapse
Affiliation(s)
- Lingyou Zeng
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China.
| | - Jiaguo Bai
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China.
| | - Jiabao Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China.
| | - Shiting Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China.
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530005, China.
| | - Yeshi Yin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530005, China.
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530005, China.
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530005, China.
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530005, China.
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 30005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530005, China.
| |
Collapse
|
2
|
Hoste ACR, Smeralda W, Cugnet A, Brostaux Y, Deleu M, Garigliany M, Jacques P. The structure of lipopeptides impacts their antiviral activity and mode of action against SARS-CoV-2 in vitro. Appl Environ Microbiol 2024; 90:e0103624. [PMID: 39445780 DOI: 10.1128/aem.01036-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024] Open
Abstract
Microbial lipopeptides are synthesized by nonribosomal peptide synthetases and are composed of a hydrophobic fatty acid chain and a hydrophilic peptide moiety. These structurally diverse amphiphilic molecules can interact with biological membranes and possess various biological activities, including antiviral properties. This study aimed to evaluate the cytotoxicity and antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of 15 diverse lipopeptides to understand their structure-activity relationships. Non-ionic lipopeptides were generally more cytotoxic than charged ones, with cationic lipopeptides being less cytotoxic than anionic and non-ionic variants. At 100 µg/mL, six lipopeptides reduced SARS-CoV-2 RNA to undetectable levels in infected Vero E6 cells, while six others achieved a 2.5- to 4.1-log reduction, and three had no significant effect. Surfactin, white line-inducing principle (WLIP), fengycin, and caspofungin emerged as the most promising anti-SARS-CoV-2 agents. Detailed analysis revealed that these four lipopeptides affected various stages of the viral life cycle involving the viral envelope. Surfactin and WLIP significantly reduced viral RNA levels in replication assays, comparable to neutralizing serum. Surfactin uniquely inhibited viral budding, while fengycin impacted viral binding after pre-infection treatment of the cells. Caspofungin demonstrated a lower antiviral effect compared to the others. Key structural traits of lipopeptides influencing their cytotoxic and antiviral activities were identified. Lipopeptides with a high number of amino acids, especially charged (preferentially anionic) amino acids, showed potent anti-SARS-CoV-2 activity. This research paves the way for designing new lipopeptides with low cytotoxicity and high antiviral efficacy, potentially leading to effective treatments. IMPORTANCE This study advances our understanding of how lipopeptides, which are molecules mostly produced by bacteria, with both fat and protein components, can be used to fight viruses like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). By analyzing 15 different lipopeptides, researchers identified key structural features that make some of these molecules particularly effective at reducing viral levels while being less harmful to cells. Specifically, lipopeptides with certain charged amino acids were found to have the strongest antiviral effects. This research lays the groundwork for developing new antiviral treatments that are both potent against viruses and safe for human cells, offering hope for better therapeutic options in the future.
Collapse
Affiliation(s)
- Alexis C R Hoste
- MiPI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Veterinary Pathology, FARAH Research Centre, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Willy Smeralda
- LBMI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Aurélien Cugnet
- MiPI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yves Brostaux
- Applied Statistics, Computer Science and Modelling laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Magali Deleu
- LBMI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Mutien Garigliany
- Veterinary Pathology, FARAH Research Centre, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Philippe Jacques
- MiPI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
3
|
Wang J, Zeng X, Gou J, Zhu X, Yin D, Yin L, Shen X, Dai Y, Pan X. Antiviral activity of luteolin against porcine epidemic diarrhea virus in silico and in vitro. BMC Vet Res 2024; 20:288. [PMID: 38961481 PMCID: PMC11221151 DOI: 10.1186/s12917-024-04053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) mainly causes acute and severe porcine epidemic diarrhea (PED), and is highly fatal in neonatal piglets. No reliable therapeutics against the infection exist, which poses a major global health issue for piglets. Luteolin is a flavonoid with anti-viral activity toward several viruses. RESULTS We evaluated anti-viral effects of luteolin in PEDV-infected Vero and IPEC-J2 cells, and identified IC50 values of 23.87 µM and 68.5 µM, respectively. And found PEDV internalization, replication and release were significantly reduced upon luteolin treatment. As luteolin could bind to human ACE2 and SARS-CoV-2 main protease (Mpro) to contribute viral entry, we first identified that luteolin shares the same core binding site on pACE2 with PEDV-S by molecular docking and exhibited positive pACE2 binding with an affinity constant of 71.6 µM at dose-dependent increases by surface plasmon resonance (SPR) assay. However, pACE2 was incapable of binding to PEDV-S1. Therefore, luteolin inhibited PEDV internalization independent of PEDV-S binding to pACE2. Moreover, luteolin was firmly embedded in the groove of active pocket of Mpro in a three-dimensional docking model, and fluorescence resonance energy transfer (FRET) assays confirmed that luteolin inhibited PEDV Mpro activity. In addition, we also observed PEDV-induced pro-inflammatory cytokine inhibition and Nrf2-induced HO-1 expression. Finally, a drug resistant mutant was isolated after 10 cell culture passages concomitant with increasing luteolin concentrations, with reduced PEDV susceptibility to luteolin identified at passage 10. CONCLUSIONS Our results push forward that anti-PEDV mechanisms and resistant-PEDV properties for luteolin, which may be used to combat PED.
Collapse
Affiliation(s)
- Jieru Wang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Xiaoyu Zeng
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Jiaojiao Gou
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Xiaojie Zhu
- China Institute of Veterinary Drug Control, Beijing, 100000, China
| | - Dongdong Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Lei Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Xuehuai Shen
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Yin Dai
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China.
| | - Xiaocheng Pan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China.
| |
Collapse
|
4
|
Delbrouck JA, Desgagné M, Comeau C, Bouarab K, Malouin F, Boudreault PL. The Therapeutic Value of Solanum Steroidal (Glyco)Alkaloids: A 10-Year Comprehensive Review. Molecules 2023; 28:4957. [PMID: 37446619 DOI: 10.3390/molecules28134957] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Steroidal (glycol)alkaloids S(G)As are secondary metabolites made of a nitrogen-containing steroidal skeleton linked to a (poly)saccharide, naturally occurring in the members of the Solanaceae and Liliaceae plant families. The genus Solanum is familiar to all of us as a food source (tomato, potato, eggplant), but a few populations have also made it part of their ethnobotany for their medicinal properties. The recent development of the isolation, purification and analysis techniques have shed light on the structural diversity among the SGAs family, thus attracting scientists to investigate their various pharmacological properties. This review aims to overview the recent literature (2012-2022) on the pharmacological benefits displayed by the SGAs family. Over 17 different potential therapeutic applications (antibiotic, antiviral, anti-inflammatory, etc.) were reported over the past ten years, and this unique review analyzes each pharmacological effect independently without discrimination of either the SGA's chemical identity or their sources. A strong emphasis is placed on the discovery of their biological targets and the subsequent cellular mechanisms, discussing in vitro to in vivo biological data. The therapeutic value and the challenges of the solanum steroidal glycoalkaloid family is debated to provide new insights for future research towards clinical development.
Collapse
Affiliation(s)
- Julien A Delbrouck
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Christian Comeau
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Kamal Bouarab
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
5
|
Nakajima S, Ohashi H, Akazawa D, Torii S, Suzuki R, Fukuhara T, Watashi K. Antiviral Activity of Micafungin and Its Derivatives against SARS-CoV-2 RNA Replication. Viruses 2023; 15:v15020452. [PMID: 36851666 PMCID: PMC9958940 DOI: 10.3390/v15020452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Echinocandin antifungal drugs, including micafungin, anidulafungin, and caspofungin, have been recently reported to exhibit antiviral effects against various viruses such as flavivirus, alphavirus, and coronavirus. In this study, we focused on micafungin and its derivatives and analyzed their antiviral activities against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The micafungin derivatives Mi-2 and Mi-5 showed higher antiviral activity than micafungin, with 50% maximal inhibitory concentration (IC50) of 5.25 and 6.51 µM, respectively (3.8 to 4.7-fold stronger than micafungin) and 50% cytotoxic concentration (CC50) of >64 µM in VeroE6/TMPRSS2 cells. This high anti-SARS-CoV-2 activity was also conserved in human lung epithelial cell-derived Calu-3 cells. Micafungin, Mi-2, and Mi-5 were suggested to inhibit the intracellular virus replication process; additionally, these compounds were active against SARS-CoV-2 variants, including Delta (AY.122, hCoV-19/Japan/TY11-927/2021), Omicron (BA.1.18, hCoV-19/Japan/TY38-873/2021), a variant resistant to remdesivir (R10/E796G C799F), and a variant resistant to casirivimab/imdevimab antibody cocktail (E406W); thus, our results provide basic evidence for the potential use of micafungin derivatives for developing antiviral agents.
Collapse
Affiliation(s)
- Shogo Nakajima
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Choju Medical Institute, Fukushimura Hospital, 19-14 Yamanaka, Noyoricho, Toyohashi-shi 441-8124, Japan
| | - Hirofumi Ohashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Daisuke Akazawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shiho Torii
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
- Insect-Virus Interactions Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Applied Biological Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
- Correspondence:
| |
Collapse
|
6
|
Liang R, Song H, Wang K, Ding F, Xuan D, Miao J, Fei R, Zhang J. Porcine epidemic diarrhea virus 3CLpro causes apoptosis and collapse of mitochondrial membrane potential requiring its protease activity and signaling through MAVS. Vet Microbiol 2022; 275:109596. [DOI: 10.1016/j.vetmic.2022.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
7
|
Shen S, Zhang Y, Yin Z, Zhu Q, Zhang J, Wang T, Fang Y, Wu X, Bai Y, Dai S, Liu X, Jin J, Tang S, Liu J, Wang M, Guo Y, Deng F. Antiviral activity and mechanism of the antifungal drug, anidulafungin, suggesting its potential to promote treatment of viral diseases. BMC Med 2022; 20:359. [PMID: 36266654 PMCID: PMC9585728 DOI: 10.1186/s12916-022-02558-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The severe fever with thrombocytopenia syndrome disease (SFTS), caused by the novel tick-borne SFTS virus (SFTSV), was listed among the top 10 priority infectious disease by World Health Organization due to the high fatality rate of 5-30% and the lack of effective antiviral drugs and vaccines and therefore raised the urgent need to develop effective anti-SFTSV drugs to improve disease treatment. METHODS The antiviral drugs to inhibit SFTSV infection were identified by screening the library containing 1340 FDA-approved drugs using the SFTSV infection assays in vitro. The inhibitory effect on virus entry and the process of clathrin-mediated endocytosis under different drug doses was evaluated based on infection assays by qRT-PCR to determine intracellular viral copies, by Western blot to characterize viral protein expression in cells, and by immunofluorescence assays (IFAs) to determine virus infection efficiencies. The therapeutic effect was investigated in type I interferon receptor defective A129 mice in vivo with SFTSV infection, from which lesions and infection in tissues caused by SFTSV infection were assessed by H&E staining and immunohistochemical analysis. RESULTS Six drugs were identified as exerting inhibitory effects against SFTSV infection, of which anidulafungin, an antifungal drug of the echinocandin family, has a strong inhibitory effect on SFTSV entry. It suppresses SFTSV internalization by impairing the late endosome maturation and decreasing virus fusion with the membrane. SFTSV-infected A129 mice had relieving symptoms, reduced tissue lesions, and improved disease outcomes following anidulafungin treatment. Moreover, anidulafungin exerts an antiviral effect in inhibiting the entry of other viruses including SARS-CoV-2, SFTSV-related Guertu virus and Heartland virus, Crimean-Congo hemorrhagic fever virus, Zika virus, and Herpes simplex virus 1. CONCLUSIONS The results demonstrated that the antifungal drug, anidulafungin, could effectively inhibit virus infection by interfering with virus entry, suggesting it may be utilized for the clinical treatment of infectious viral diseases, in addition to its FDA-approved use as an antifungal. The findings also suggested to further evaluate the anti-viral effects of echinocandins and their clinical importance for patients with infection of viruses, which may promote therapeutic strategies as well as treatments and improve outcomes pertaining to various viral and fungal diseases.
Collapse
Affiliation(s)
- Shu Shen
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Yaxian Zhang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Zhiyun Yin
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China.,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Qiong Zhu
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Jingyuan Zhang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Tiantian Wang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Yaohui Fang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Xiaoli Wu
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Yuan Bai
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Shiyu Dai
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Xijia Liu
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Jiayin Jin
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Shuang Tang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Jia Liu
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Manli Wang
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China.,College of Life Science, Nankai University, Tianjin, 300350, China
| | - Fei Deng
- State Key Laboratory of virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuchang District, Wuhan, 430071, Hubei, China.
| |
Collapse
|
8
|
Vergoten G, Bailly C. Interaction of panduratin A and derivatives with the SARS-CoV-2 main protease (m pro): a molecular docking study. J Biomol Struct Dyn 2022:1-11. [PMID: 35975613 DOI: 10.1080/07391102.2022.2112618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Panduratin A (Pa-A) is a prenylated cyclohexenyl chalcone isolated from the rhizomes of the medicinal and culinary plant Boesenbergia rotunda (L.) Mansf., commonly called fingerroots. Both an ethanolic plant extract and Pa-A have shown a marked antiviral activity against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the COVID-19 pandemic disease. Pa-A functions as a protease inhibitor inhibiting infection of human cells by the virus. We have modeled the interaction of Pa-A, and 26 panduratin analogues with the main protease (Mpro) of SARS-CoV-2 using molecular docking. The natural product 4-hydroxypanduratin showed a higher Mpro binding capacity than Pa-A and isopanduratin A. The interaction with MPro of all known panduratin derivatives (Pa-A to Pa-Y) have been compared, together with more than 60 reference products. Three compounds emerged as potential robust MPro binders: Pa-R, Pa-V, Pa-S, with a binding capacity significantly higher than 4-OH-Pa-A and Pa-A. The empirical energy of interaction (ΔE) calculated with the best compound in the panduratin series, Pa-R bound to Mpro, surpassed that measured with the top reference protease inhibitors such a ruprintrivir, lufotrelvir, and glecaprevir. Structure-binding relationships are discussed. Compounds with a flavanone moiety (PA-R/S) are the best binders, better than those with a chromene unit (Pa-F/G). The extended molecules (such as Pa-V) exhibit good Mpro binding, but the dimeric compound Pa-Y is too long and protrudes outside the binding cavity. The work provides novel ideas to guide the design of new molecules interacting with Mpro.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gérard Vergoten
- Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, France, Lille
| | | |
Collapse
|
9
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
10
|
Repurposing Antifungals for Host-Directed Antiviral Therapy? Pharmaceuticals (Basel) 2022; 15:ph15020212. [PMID: 35215323 PMCID: PMC8878022 DOI: 10.3390/ph15020212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Because of their epidemic and pandemic potential, emerging viruses are a major threat to global healthcare systems. While vaccination is in general a straightforward approach to prevent viral infections, immunization can also cause escape mutants that hide from immune cell and antibody detection. Thus, other approaches than immunization are critical for the management and control of viral infections. Viruses are prone to mutations leading to the rapid emergence of resistant strains upon treatment with direct antivirals. In contrast to the direct interference with pathogen components, host-directed therapies aim to target host factors that are essential for the pathogenic replication cycle or to improve the host defense mechanisms, thus circumventing resistance. These relatively new approaches are often based on the repurposing of drugs which are already licensed for the treatment of other unrelated diseases. Here, we summarize what is known about the mechanisms and modes of action for a potential use of antifungals as repurposed host-directed anti-infectives for the therapeutic intervention to control viral infections.
Collapse
|
11
|
Zrieq R, Ahmad I, Snoussi M, Noumi E, Iriti M, Algahtani FD, Patel H, Saeed M, Tasleem M, Sulaiman S, Aouadi K, Kadri A. Tomatidine and Patchouli Alcohol as Inhibitors of SARS-CoV-2 Enzymes (3CLpro, PLpro and NSP15) by Molecular Docking and Molecular Dynamics Simulations. Int J Mol Sci 2021; 22:10693. [PMID: 34639036 PMCID: PMC8509278 DOI: 10.3390/ijms221910693] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
Considering the current dramatic and fatal situation due to the high spreading of SARS-CoV-2 infection, there is an urgent unmet medical need to identify novel and effective approaches for prevention and treatment of Coronavirus disease (COVID 19) by re-evaluating and repurposing of known drugs. For this, tomatidine and patchouli alcohol have been selected as potential drugs for combating the virus. The hit compounds were subsequently docked into the active site and molecular docking analyses revealed that both drugs can bind the active site of SARS-CoV-2 3CLpro, PLpro, NSP15, COX-2 and PLA2 targets with a number of important binding interactions. To further validate the interactions of promising compound tomatidine, Molecular dynamics study of 100 ns was carried out towards 3CLpro, NSP15 and COX-2. This indicated that the protein-ligand complex was stable throughout the simulation period, and minimal backbone fluctuations have ensued in the system. Post dynamic MM-GBSA analysis of molecular dynamics data showed promising mean binding free energy 47.4633 ± 9.28, 51.8064 ± 8.91 and 54.8918 ± 7.55 kcal/mol, respectively. Likewise, in silico ADMET studies of the selected ligands showed excellent pharmacokinetic properties with good absorption, bioavailability and devoid of toxicity. Therefore, patchouli alcohol and especially, tomatidine may provide prospect treatment options against SARS-CoV-2 infection by potentially inhibiting virus duplication though more research is guaranteed and secured.
Collapse
Affiliation(s)
- Rafat Zrieq
- Department of Public Health, College of Public Health and Health Informatics, University of Ha’il, Ha’il 81451, Saudi Arabia; (R.Z.); (F.D.A.)
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India; (I.A.); (H.P.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il City, P.O. 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Emira Noumi
- Department of Biology, College of Science, University of Ha’il City, P.O. 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.)
- Laboratory of Bioresources: Integrative Biology and Valorization, (LR14-ES06), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- Phytochem Lab., Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
- BAT Center—Interuniversity Center for Studies on Bioispired Agro-Environmental Technology, University of Napoli “Federico II”, Portici, 80055 Napoli, Italy
| | - Fahad D. Algahtani
- Department of Public Health, College of Public Health and Health Informatics, University of Ha’il, Ha’il 81451, Saudi Arabia; (R.Z.); (F.D.A.)
- Molecular Diagnostic and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81451, Saudi Arabia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India; (I.A.); (H.P.)
| | - Mohd Saeed
- Department of Biology, College of Science, University of Ha’il City, P.O. 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.)
| | - Munazzah Tasleem
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Shadi Sulaiman
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Ha’il, Ha’il 81451, Saudi Arabia;
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| | - Adel Kadri
- Department of Chemistry, Faculty of Science and Arts of Baljurashi, Albaha University, Al Bahah 65731, Saudi Arabia;
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| |
Collapse
|