1
|
Zalewski A, Musiał W, Jankowska-Konsur A. Photodynamic Therapy in Primary Cutaneous Skin Lymphoma-Systematic Review. J Clin Med 2025; 14:2956. [PMID: 40363989 PMCID: PMC12073078 DOI: 10.3390/jcm14092956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: Primary cutaneous lymphomas (CLs) are a group of skin-limited lymphoproliferative disorders, including cutaneous T-cell (CTCLs) and B-cell lymphomas (CBCLs). Photodynamic therapy (PDT), a non-invasive, light-activated treatment, has gained attention as a skin-directed therapy for early-stage CLs due to its selectivity and favorable safety profile. This systematic review evaluates the current evidence on the clinical use of PDT in managing CLs. Methods: A systematic literature search was conducted in PubMed, Scopus, and Embase through 1 September 2024 following PRISMA guidelines. Search terms included "primary cutaneous skin lymphoma", "CTCL", "CBCL", "mycosis fungoides", "lymphomatoid papulosis", and "photodynamic therapy". After screening 1033 records, 30 studies were included. Data were extracted and categorized by lymphoma subtype and clinical outcomes. Results: Of the included studies, 23 focused on mycosis fungoides (MF), 5 on lymphomatoid papulosis (LyP), and 2 on CBCL. PDT demonstrated notable clinical efficacy in early-stage and localized disease, particularly MF, using methyl aminolevulinate (MAL) or 5-aminolevulinic acid (5-ALA) as photosensitizers. Adjunctive techniques like microneedling and laser-assisted delivery improved treatment outcomes. PDT was generally well tolerated, with mild, transient side effects; rare complications such as localized neuropathy were reported. Conclusions: PDT is a promising, non-invasive treatment for early-stage CLs, especially MF and indolent CBCL variants. While current evidence supports its safety and effectiveness, further comparative and prospective studies are needed to refine protocols, evaluate long-term efficacy, and compare different photosensitizers.
Collapse
Affiliation(s)
- Adam Zalewski
- Clinical Department of Oncodermatology, University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland;
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland;
| | - Alina Jankowska-Konsur
- Clinical Department of Oncodermatology, University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland;
| |
Collapse
|
2
|
Fredman G, Jacobsen K, Philipsen PA, Wiegell SR, Haedersdal M. Prebiotic and panthenol-containing dermocosmetic improves tolerance from artificial daylight photodynamic therapy: A randomized controlled trial in patients with actinic keratosis. Photodiagnosis Photodyn Ther 2024; 50:104394. [PMID: 39528008 DOI: 10.1016/j.pdpdt.2024.104394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION & OBJECTIVES Treatment with daylight photodynamic therapy (dPDT) of actinic keratosis (AK) is associated with local skin reactions (LSR), which may affect patients' quality of life and treatment acceptability. This study explores the potential of a prebiotic and panthenol-containing Dermocosmetic Cream (DC) to enhance tolerance and mitigate post-dPDT induced LSR in the treatment of AKs. MATERIALS & METHODS This randomized controlled, intra-individual trial included 20 patients with ≥10 AKs in two symmetrical areas on their face or décolleté, treated with a single session of artificial dPDT. After treatment, the two areas were randomized to DC twice daily for 14 days or No-DC. Primary outcomes included clinical signs of LSR graded from 0=none to 3=severe, calculated as a composite score, and assessed on Days 2, 7, 14, and 30 post-treatment, along with AK clearance rate. Secondary outcomes encompassed objectively measured erythema, and clinical and objective skin photoaging assessment. RESULTS Topical application of DC following dPDT significantly improved post-treatment tolerance up to two weeks. By Day 2, DC-treated skin had milder LSR (median 3.0, IQR 2.0-4.8) compared to No-DC skin (median 4.0, IQR 3.0-5.0; p=0.011). This improvement continued on Day 7 (DC median 3.0, IQR 2.0-3.8 vs. No-DC median 4.5, IQR 3.0-5.8; p<0.001) and Day 14 (DC median 1.0, IQR 0.0-1.0 vs. No-DC median 1.0, IQR 1.0-2.0; p=0.004). Objective measurements showed milder erythema in DC-treated areas on Day 2 (p=0.045) and Day 7 (p=0.005). Crusting resolved more effectively in DC-treated areas by Day 7 (40% vs. 20%; p=0.039). No significant difference in complete lesion response rate was observed between DC and No-DC skin (p=0.850). By Day 30, clinical photoaging assessment demonstrated significant improvement in dyspigmentation (p=0.004) and skin texture (p<0.001) in both locations. Moreover, objective measurements revealed reduced dyspigmentation in both DC and No-DC treated skin (p≤0.001). CONCLUSION Application of a prebiotic and panthenol-containing multipurpose DC significantly enhanced tolerance from artificial dPDT and accelerated healing time up to 14 days after treatment. The use of DC cream did not affect the overall treatment efficacy of dPDT, indicating its potential to enhance patient comfort following dPDT.
Collapse
Affiliation(s)
- Gabriella Fredman
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg, 2400 Copenhagen NV, Denmark.
| | - Kevin Jacobsen
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg, 2400 Copenhagen NV, Denmark
| | - Peter A Philipsen
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg, 2400 Copenhagen NV, Denmark
| | - Stine R Wiegell
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg, 2400 Copenhagen NV, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Merete Haedersdal
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg, 2400 Copenhagen NV, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Aebisher D, Rogóż K, Myśliwiec A, Dynarowicz K, Wiench R, Cieślar G, Kawczyk-Krupka A, Bartusik-Aebisher D. The use of photodynamic therapy in medical practice. Front Oncol 2024; 14:1373263. [PMID: 38803535 PMCID: PMC11129581 DOI: 10.3389/fonc.2024.1373263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer therapy, especially for tumors near sensitive areas, demands precise treatment. This review explores photodynamic therapy (PDT), a method leveraging photosensitizers (PS), specific wavelength light, and oxygen to target cancer effectively. Recent advancements affirm PDT's efficacy, utilizing ROS generation to induce cancer cell death. With a history spanning over decades, PDT's dynamic evolution has expanded its application across dermatology, oncology, and dentistry. This review aims to dissect PDT's principles, from its inception to contemporary medical applications, highlighting its role in modern cancer treatment strategies.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, Rzeszów, Poland
| | - Kacper Rogóż
- English Division Science Club, Medical College of The Rzeszów University, Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, Rzeszów, Poland
| |
Collapse
|
4
|
Saenz-Guirado S, Ayen-Rodriguez A, Galvez-Moreno M, Velasco-Amador JP, Llamas-Molina JM, Ruiz-Villaverde R, Molina-Leyva A. Home- vs clinic-based daylight photodynamic therapy with 5-aminolevulinic acid nanoemulsion (BF-200 ALA) for actinic keratosis: A randomized, single-blind, prospective study. Photodiagnosis Photodyn Ther 2024; 46:104031. [PMID: 38438001 DOI: 10.1016/j.pdpdt.2024.104031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Daylight photodynamic therapy (DL-PDT) has become one of the most effective treatments for the resolution of actinic keratosis (AK) of Olsen grade 1 and 2. Generally, PDT it is carried out in a clinic setting, which involves the patient's and their caregivers commuting to the hospital as well as a significant use of resources to carry it out within the clinic setting. OBJECTIVES To determine the efficacy and safety of a home-based treatment of AK with DL-PDT with the BF-200 ALA gel compared to a clinic-based setting. METHODS The study was performed as a randomized, single-center, non-inferiority clinical trial with two parallel groups. 9 patients received one clinic-based DL-PDT (group 1) and 11 patients received one session of home-based DL-PDT (group 2). The primary endpoints were the mean AK clearance per patient and the total AK lesion clearance rate 12 weeks after treatment. The secondary endpoints were the number of remaining AKs and new AKs appearing in the treatment field 12 weeks after one PDT session. The pain during and 24 h after PDT as well as the local skin reactions were also assessed. RESULTS The overall reduction of AK lesions per patient was similar in both groups with one PDT session. An overall AK clearance per patient of 10 ± 4.33 for group 1 versus 9.73 ± 2.9 for group 2 without statistically significant differences (p = 0.868). Regarding the clearance rate, although it was slightly higher in group 2 (71.58 ± 22.51 vs 82.1 ± 11.13), the analysis did not show statistically significant differences. The mild pain recorded during the treatment course and the mild local skin reactions were similar in both groups. Patient satisfaction was high for both groups without statistically significant differences. CONCLUSION Self-performed home-based DL-PDT with BF-200 ALA gel is as effective as the one performed in a clinic-based setting, with a comparable safety profile, high levels of patient satisfaction and with advantages for the patients and their caregivers that can enhance patient´s adherence to the treatment.
Collapse
Affiliation(s)
- S Saenz-Guirado
- Department of Dermatology, University Hospital San Cecilio, Granada, Spain.
| | - A Ayen-Rodriguez
- Department of Dermatology, University Hospital San Cecilio, Granada, Spain
| | - M Galvez-Moreno
- Department of Dermatology, University Hospital San Cecilio, Granada, Spain
| | - J P Velasco-Amador
- Department of Dermatology, University Hospital San Cecilio, Granada, Spain
| | - J M Llamas-Molina
- Department of Dermatology, University Hospital San Cecilio, Granada, Spain
| | - R Ruiz-Villaverde
- Department of Dermatology, University Hospital San Cecilio, Granada, Spain; Biosanitary Institute of Granada, IBS, Granada, Spain
| | - A Molina-Leyva
- Biosanitary Institute of Granada, IBS, Granada, Spain; Department of Dermatology, University Hospital Virgen de las Nieves, Granada. Spain; Facultad de Medicina. Universidad de Granada, Spain
| |
Collapse
|
5
|
Belashov AV, Zhikhoreva AA, Gorbunova IA, Sasin ME, Semenova IV, Vasyutinskii OS. Photophysical, rotational and translational properties of Radachlorin photosensitizer upon binding to serum albumins. Biochim Biophys Acta Gen Subj 2024; 1868:130546. [PMID: 38141885 DOI: 10.1016/j.bbagen.2023.130546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION Although photophysical properties of Radachlorin photosensitizer (PS) were extensively studied in solutions and cells, no data is available on variations of its characteristics upon binding to serum albumins, which are major transporters in blood and nutrients in cell culture media. OBJECTIVES The primary objective of this study was to analyze changes in photophysical properties of Radachlorin molecules upon their binding to human and bovine serum albumins at different microenvironment properties. METHODS Experiments were performed using time-resolved fluorescence spectroscopy and fluorescence recovery after photobleaching. Variations in fluorescence spectra and lifetime, fluorescence anisotropy, rotational and translational diffusion of PS molecules upon binding to albumins were studied in normal, basic and acidic conditions and at different concentrations of albumin and PS molecules. RESULTS Radachlorin molecules effectively bind to both types of serum albumins, which causes changes in photophysical properties of the PS. A minor red shift of the fluorescence spectrum, an increase in fluorescence lifetime and anisotropy and substantial decrease of translational and rotational mobility of PS molecules were observed upon their binding to albumins. The analysis of rotational diffusion time provided robust evaluation of the bound fraction of PS molecules. Both the highly acidic microenvironment and increase in alcohol concentration above 40% resulted in detachment of PS molecules from albumins. Photophysical properties of Radachlorin in complexes with BSA and HSA were found to be slightly different. CONCLUSIONS Binding of Radachlorin photosensitizer to either BSA or HSA affects significantly its photophysical properties, which may also vary with microenvironment acidity and alcohol concentration.
Collapse
Affiliation(s)
- A V Belashov
- Ioffe Institute, 26, Polytekhnicheskaya, St.Petersburg 194021, Russia
| | - A A Zhikhoreva
- Ioffe Institute, 26, Polytekhnicheskaya, St.Petersburg 194021, Russia
| | - I A Gorbunova
- Ioffe Institute, 26, Polytekhnicheskaya, St.Petersburg 194021, Russia
| | - M E Sasin
- Ioffe Institute, 26, Polytekhnicheskaya, St.Petersburg 194021, Russia
| | - I V Semenova
- Ioffe Institute, 26, Polytekhnicheskaya, St.Petersburg 194021, Russia.
| | - O S Vasyutinskii
- Ioffe Institute, 26, Polytekhnicheskaya, St.Petersburg 194021, Russia
| |
Collapse
|
6
|
Martínez-Alonso M, Jones CG, Shipp JD, Chekulaev D, Bryant HE, Weinstein JA. Phototoxicity of cyclometallated Ir(III) complexes bearing a thio-bis-benzimidazole ligand, and its monodentate analogue, as potential PDT photosensitisers in cancer cell killing. J Biol Inorg Chem 2024; 29:113-125. [PMID: 38183420 PMCID: PMC11001735 DOI: 10.1007/s00775-023-02031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/08/2024]
Abstract
Two novel cyclometallated iridium(III) complexes have been prepared with one bidentate or two monodentate imidazole-based ligands, 1 and 2, respectively. The complexes showed intense emission with long lifetimes of the excited state. Femtosecond transient absorption experiments established the nature of the lowest excited state as 3IL state. Singlet oxygen generation with good yields (40% for 1 and 82% for 2) was established by detecting 1O2 directly, through its emission at 1270 nm. Photostability studies were also performed to assess the viability of the complexes as photosensitizers (PS) for photodynamic therapy (PDT). Complex 1 was selected as a good candidate to investigate light-activated killing of cells, whilst complex 2 was found to be toxic in the dark and unstable under light. Complex 1 demonstrated high phototoxicity indexes (PI) in the visible region, PI > 250 after irradiation at 405 nm and PI > 150 at 455 nm, in EJ bladder cancer cells.
Collapse
Affiliation(s)
- Marta Martínez-Alonso
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
- Department of Oncology and Metabolism, Medical School, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Callum G Jones
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
- Department of Oncology and Metabolism, Medical School, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - James D Shipp
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - Dimitri Chekulaev
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - Helen E Bryant
- Department of Oncology and Metabolism, Medical School, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| | - Julia A Weinstein
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| |
Collapse
|
7
|
Zha W, Huang J, Lyu T, Miao F, Wu M, Shen J, Zhu R, Wang H, Shi L. Full-face ALA-PDT for facial actinic keratosis: Two case reports. Photodiagnosis Photodyn Ther 2024; 45:103927. [PMID: 38097119 DOI: 10.1016/j.pdpdt.2023.103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
We reported two cases of full-face 5-aminolevulinic acid-photodynamic therapy (ALA-PDT) for facial multiple actinic keratosis (AK). After the full-face ALA-PDT, we observed that the AK lesions on the faces of the patients were completely cleared and facial rejuvenation was achieved. In our follow-up, one patient was free of recurrence for over 13 months and the other one for over 28 months. The experience of these two cases may indicate that full-face ALA-PDT has an excellent therapeutic effect while potentially preventing the recurrence of AK.
Collapse
Affiliation(s)
- Wenjing Zha
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, PR China
| | - Jianhua Huang
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, PR China
| | - Ting Lyu
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, PR China
| | - Fei Miao
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, PR China
| | - Minfeng Wu
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, PR China
| | - Jie Shen
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, PR China
| | - Rongyi Zhu
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, PR China
| | - Hongwei Wang
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, PR China
| | - Lei Shi
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
8
|
Belashov AV, Zhikhoreva AA, Gorbunova IA, Sasin ME, Shayakhmedov SS, Semenova IV. Photophysical properties of Radachlorin photosensitizer in solutions of different pH, viscosity and polarity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123480. [PMID: 37827004 DOI: 10.1016/j.saa.2023.123480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
We present a thorough experimental investigation of fluorescence properties of Radachlorin photosensitizer in solutions of different acidity, viscosity and polarity. Experiments were performed using time-resolved fluorescence lifetime imaging and time-resolved analysis of polarized fluorescence. Variations of solution acidity resulted in considerable changes of Radachlorin fluorescence quantum yield and lifetime in the pH range from 4 to 7, but did not affect the rotational diffusion time, and almost did not change the quantum yield and characteristic times of singlet oxygen phosphorescence. Variations of solution polarity and viscosity were achieved by changing ethanol or methanol fraction in aqueous solution. The decrease of solution polarity resulted in nonlinear rise of Radachlorin fluorescence quantum yield and lifetime up to alcohol concentration of 50%-65%, as well as in considerable rise of singlet oxygen quantum yield and significant changes in characteristic times of its phosphorescence. Variations of solution viscosity resulted in changes of rotational diffusion time of Radachlorin molecules, which appeared to be in perfect correlation with methanol solution viscosity. Good correspondence with ethanol solution viscosity was observed only up to 50% alcohol fraction. Deviations of rotational diffusion time of Radachlorin molecules from direct proportionality with solution viscosity at higher ethanol concentrations were suggested to be due to different solvation conditions. The data obtained can give important reference points for analysis of microenvironment of Radachlorin molecules, their intracellular localization and performance in singlet oxygen generation.
Collapse
Affiliation(s)
- A V Belashov
- Ioffe Institute, 26, Polytekhnicheskaya, St.Petersburg, 194021, Russia
| | - A A Zhikhoreva
- Ioffe Institute, 26, Polytekhnicheskaya, St.Petersburg, 194021, Russia
| | - I A Gorbunova
- Ioffe Institute, 26, Polytekhnicheskaya, St.Petersburg, 194021, Russia
| | - M E Sasin
- Ioffe Institute, 26, Polytekhnicheskaya, St.Petersburg, 194021, Russia
| | - Sh S Shayakhmedov
- Chemical Analysis and Materials Research Centre, St.Petersburg State University, St.Petersburg, 198504, Russia
| | - I V Semenova
- Ioffe Institute, 26, Polytekhnicheskaya, St.Petersburg, 194021, Russia.
| |
Collapse
|
9
|
Hayoun M, Misery L. Pain Management in Dermatology. Dermatology 2023; 239:675-684. [PMID: 37433287 DOI: 10.1159/000531758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The dermatologist has to deal with many situations where the patient feels pain and must therefore know how to manage it. SUMMARY The aim of this review was to explore the treatments available to manage pain in dermatology in different circumstances, with an emphasis on pharmacological and non-pharmacological interventions specifically studied in dermatology.
Collapse
Affiliation(s)
- Mathilde Hayoun
- Department of Dermatology, University Hospital of Brest, Brest, France
| | - Laurent Misery
- Department of Dermatology, University Hospital of Brest, Brest, France
- LIEN, University Brest, Brest, France
| |
Collapse
|
10
|
Sun J, Zhao H, Fu L, Cui J, Yang Y. Global Trends and Research Progress of Photodynamic Therapy in Skin Cancer: A Bibliometric Analysis and Literature Review. Clin Cosmet Investig Dermatol 2023; 16:479-498. [PMID: 36851952 PMCID: PMC9961166 DOI: 10.2147/ccid.s401206] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Background Based on photochemical reactions through the combined use of light and photosensitizers, photodynamic therapy (PDT) is gaining popularity for the treatment of skin cancer. Various photosensitizers and treatment regimens are continuously being developed for enhancing the efficacy of PDT on skin cancer. Reviewing the development history of PDT on skin cancer, and summarizing its development direction and research status, is conducive to the further research. Methods To evaluate the research trends and map knowledge structure, all publications covering PDT on skin cancer were retrieved and extracted from Web of Science database. We applied VOSviewer and CiteSpace softwares to evaluate and visualize the countries, institutes, authors, keywords and research trends. Literature review was performed for the analysis of the research status of PDT on skin cancer. Results A total of 2662 publications were identified. The elements, mechanism, pros and cons, representative molecular photosensitizers, current challenges and research progress of PDT on skin cancer were reviewed and summarized. Conclusion This study provides a comprehensive display of the field of PDT on skin cancer, which will help researchers further explore the mechanism and application of PDT more effectively and intuitively.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Dermatology, Fourth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hongqing Zhao
- Department of Dermatology, Fourth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lin Fu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Cui
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, People's Republic of China
| | - Yuguang Yang
- Department of Dermatology, Fourth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
11
|
Efficacy of two different methods of cold air analgesia for pain relief in PDT of actinic keratoses of the head region - a randomized controlled comparison study. Photodiagnosis Photodyn Ther 2022; 40:103190. [PMID: 36336323 DOI: 10.1016/j.pdpdt.2022.103190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is an effective method for treating actinic keratosis (AK) with pain during illumination representing the major side effect. The efficacy of two different cooling methods for pain relief in PDT of AK in the head region was compared. METHODS Randomized, assessor-blinded, half side comparison study in 20 patients with symmetrically distributed AK on the head. Conventional PDT was performed on both halves of the scalp or face by applying 20% aminolevulinic acid cream (ALA) and subsequent illumination with incoherent red light. During illumination one side was cooled with a cold air blower (CAB) and the other with a standard fan (FAN) in a randomized fashion. Pain and skin temperature were recorded during and after PDT. The phototoxic skin reaction was evaluated up to seven days after PDT. The clearance rate of AK was assessed at 3 and 6 months after PDT. RESULTS Mean pain (VASmean), maximum pain intensity (VASmax) and the mean skin temperature during PDT were significantly lower with CAB as compared to FAN (VASmean: 2.7 ± 1.4 vs. 3.7 ± 2.1, p = 0.003; VASmax: 3.8 ± 2.0 vs. 4.8 ± 2.5, p = 0.002; 26.8 ± 2.0 °C vs. 32.1 ± 1.7 °C; p=<0.001). The severity of the phototoxic skin reaction and the clearance rate of AK did not differ between the two cooling methods. CONCLUSION Cooling with CAB during PDT has a greater analgesic effect than cooling with FAN. Patients with a lower skin temperature during illumination tended to experience less pain, however, this effect did not reach the level of statistical significance.
Collapse
|
12
|
Hartmann J, Keller A, Enk A, Gholam P. Hemodynamic changes during conventional and daylight photodynamic therapy of actinic keratoses - a randomized controlled trial. J DERMATOL TREAT 2022; 33:3022-3027. [PMID: 35775704 DOI: 10.1080/09546634.2022.2097160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is an effective treatment for actinic keratosis (AK). However, pain and hypertension are important side effects of conventional PDT (c-PDT). Several studies have demonstrated that daylight PDT (dl-PDT) is less painful while being as effective as c-PDT. OBJECTIVE To observe the effect of c-PDT and dl-PDT on different hemodynamic parameters (systolic blood pressure and diastolic blood pressure, pulse rate, and peripheral oxygen saturation). METHODS Fifty patients with AK on the head were enrolled into this prospective, randomized, controlled study and treated with c-PDT or dl-PDT in a 1:1 ratio. Hemodynamic parameters were measured at four different time points during treatment. Pain was quantified using a visual analog scale. AK was counted before treatment and after one month. RESULTS C-PDT is associated with significantly more pain, a significant increase in blood pressure and a higher rate of patients with grade 3 hypertension. Whereas dl-PDT is almost painless and does not lead to any changes in hemodynamic parameters. For both treatments, a similar lesion response rate was found after one month. CONCLUSIONS dl-PDT has a better tolerability while being as effective as c-PDT and therefore may be the more favorable treatment option in certain patient groups.
Collapse
Affiliation(s)
- J Hartmann
- Department of Dermatology, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - A Keller
- Department of Dermatology, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - A Enk
- Department of Dermatology, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - P Gholam
- Department of Dermatology, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Dey A, Singhvi G, Puri A, Kesharwani P, Dubey SK. An insight into photodynamic therapy towards treating major dermatological conditions. J Drug Deliv Sci Technol 2022; 76:103751. [PMID: 36159728 PMCID: PMC9495279 DOI: 10.1016/j.jddst.2022.103751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT), as the name suggests is a light-based, non-invasive therapeutic treatment method that has garnered immense interest in the recent past for its efficacy in treating several pathological conditions. PDT has prominent use in the treatment of several dermatological conditions, which consequently have cosmetic benefits associated with it as PDT improves the overall appearance of the affected area. PDT is commonly used for repairing sun-damaged skin, providing skin rejuvenation, curbing pre-cancerous cells, treating conditions like acne, keratosis, skin-microbial infections, and cutaneous warts, etc. PDT mediates its action by generating oxygen species that are involved in bringing about immunomodulation, suppression of microbial load, wound-healing, lightening of scarring, etc. Although there are several challenges associated with PDT, the prominent ones being pain, erythema, insufficient delivery of the photosensitizing agent, and poor clinical outcomes, still PDT stands to be a promising approach with continuous efforts towards maximizing clinical efficacy while being cautious of the side effects and working towards lessening them. This article discusses the major skin-related conditions which can be treated or managed by employing PDT as a better or comparable alternative to conventional treatment approaches such that it also brings about aesthetic improvements thereof.
Collapse
Affiliation(s)
- Anuradha Dey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India-333031
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute — Frederick, Frederick, MD, 21702, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India
| |
Collapse
|
14
|
Effects of Blue Light on the Skin and Its Therapeutic Uses: Photodynamic Therapy and Beyond. Dermatol Surg 2022; 48:802-808. [DOI: 10.1097/dss.0000000000003500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Romero MP, Posso V, Ureña V, Inada N, Bagnato V, Cabrera F. Clinical and histopathologycal study of actinic keratosis treatment with photodynamic therapy VS 5-fluorouracil in face cancerization field. Photodiagnosis Photodyn Ther 2022; 39:102967. [PMID: 35716996 DOI: 10.1016/j.pdpdt.2022.102967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
Actinic keratosis (AK) is one of the most frequent pathologies in clinical practice. The prevalence varies according to the area of incidence and age. Approximately 10% of the prevalence of AK occurs at 30 years of age and rises to 80% at 70 years of life. This study conducted a split-face analysis based on Photodynamic Therapy (MALA-PDT) and 5-fluorouracil (5-FU) treatments in patients with AK. Clinical and histopathological studies evaluated each treatment's efficiency and side effects. Six patients were recruited between 50 and 70 years of age for this. MALA-PDT was applied on the right side of the face. A biodistribution time of 2 hours, a dose of light of 36 J / cm2 (20 min irradiation), a spot for photoirradiation with a total area of 100 cm2, and a wavelength of 635 nm were used. (LINCE equipment MMOPTICS-Brazil). By fluorescence diagnosis, clinical and subclinical AK lesions were evidenced in the area called the "cancerization field." Two cycles of MALA-PDT were performed on each patient, and 5-FU was applied twice daily for 15 days. A 2-month follow-up post-MALA-PDT and post-5-FU was carried out. The treatment based on 5-Flu and MALA-PDT clinically shows the same response, but MALA-PDT is less aggressive than 5-FU. The treatment of AK based on MALA-PDT is a practical, cheap, and easy-to-use technique.
Collapse
Affiliation(s)
| | - Verónica Posso
- Servicio de Anatomía Patológica. Hospital Carlos Andrade Marín. Quito, Ecuador.
| | - Valeria Ureña
- Postgrado de Dermatología. Facultad de Medicina Eugenio Espejo, Universidad UTE. Quito, Ecuador.
| | - Natalia Inada
- Instituto de Física. Universidade de São Paulo. São Carlos SP-Brasil.
| | - Vanderlei Bagnato
- Instituto de Física. Universidade de São Paulo. São Carlos SP-Brasil.
| | - Franklin Cabrera
- Servicio de Dermatología. Hospital Carlos Andrade Marín. Quito, Ecuador.
| |
Collapse
|
16
|
Photodynamic Therapy with 5-Aminolevulinic Acid Patch for the Treatment of Actinic Keratosis. J Clin Med 2022; 11:jcm11113164. [PMID: 35683551 PMCID: PMC9181164 DOI: 10.3390/jcm11113164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 01/09/2023] Open
Abstract
Photodynamic therapy (PDT) using 5-aminolevulinic acid (5-ALA) is an emerging treatment option in the care of actinic keratosis (AK). A self-adhesive 5-ALA patch was recently developed that allows a precise PDT procedure. Here, we review the current literature and report the findings of our case series that observed the outcomes and safety of 5-ALA patch PDT. Ten patients with a total of 40 AKs were treated with a single session of conventional or daylight PDT using 5-ALA patch at the Department of Dermatology and Venereology, Sapienza University of Rome or at the European Institute of Oncology, Milan, Italy. Complete response was observed in three patients, while partial response was seen in seven patients. Overall tolerability was good or excellent, with local adverse events observed in four patients. This is the first case series reported where the 5-ALA patch was applied using daylight PDT, and its efficacy and tolerability in the treatment of AK were demonstrated. In conclusion, the self-adhesive 5-ALA patch is a convenient application of PDT that provides a well-tolerated and effective treatment option with satisfactory cosmetic outcomes.
Collapse
|
17
|
Babu N, Rahaman SA, John AM, Balakrishnan SP. Photosensitizer Anchored Nanoparticles: A Potential Material for Photodynamic Therapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202200850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nisha Babu
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India 560029
| | - Shaik Abdul Rahaman
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India 560029
| | - Athira Maria John
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India 560029
| | | |
Collapse
|
18
|
Applications of Laser-Induced Fluorescence in Medicine. SENSORS 2022; 22:s22082956. [PMID: 35458942 PMCID: PMC9025499 DOI: 10.3390/s22082956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022]
Abstract
Fluorescence is the most sensitive spectroscopic method of analysis and fluorescence methods. However, classical analysis requires sampling. There are new needs for real-time analyses of biological materials, without the need for sampling. This article presents examples of proprietary applications of laser-induced fluorescence (LIF) in medicine with such methods. A classic example is the analysis of photosensitizers using the photodynamic treatment method (PDT). The level and kinetics of accumulation and excretion of sensitizers in the body are examined, as well as the optimal exposure time after the application of compounds. The LIF method is also used to analyze endogenous fluorophores; it has been used to detect neoplasms, e.g., lung cancer or gynecological and dermatological diseases. Furthermore, it is used for the diagnosis of early stages of tooth decay or detection of fungi. The article will present the construction of sensors based on the LIF method—fiber laser spectrometers and investigated fluorescence spectra in individual applications. Examples of fluorescence imaging, e.g., dermatological, and dental diagnostics and measuring systems will be presented. The advantage of the method is it has greater sensitivity and easily detects lesions early compared to the methods used in observing the material in reflected light.
Collapse
|
19
|
Zeng Q, Zhou C, Zhang Y, Yan G, Wang X. Modified 5-aminolevulinic acid photodynamic therapy reduces pain and improves therapeutic effects in cutaneous squamous cell carcinoma mouse model. Lasers Surg Med 2022; 54:804-812. [PMID: 35066886 DOI: 10.1002/lsm.23516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Conventional ALA-PDT (C-PDT) has limited efficacy in cutaneous squamous cell carcinoma (cSCC), and there is obvious pain during treatment, which limits its clinical application. We sought to modify photodynamic therapy into a more painless and effective treatment. METHODS We modified C-PDT by reducing the incubation time of the pro-sensitizer and increasing the light dose; we named this method modified ALA-PDT (M-PDT). We compared the pain response and curative effect between C-PDT and M-PDT in cSCC mouse models. Pain-related proteins were examined by western blot analysis and immunohistochemistry. Tumor progression-associated signaling pathways were analyzed by RNA-seq and western blot analysis. Reactive oxygen species (ROS) generation was measured with a ROS test kit and Microplate reader. RESULTS M-PDT greatly reduced pain during treatment. Interestingly, when the cSCC tumor volume increased to 150-200 mm3 , M-PDT almost completely eliminated the tumors, while C-PDT did not. The better curative effect of M-PDT might be due to the stronger suppression of the Stat3, Erk1/2, and mTOR signaling pathways. Moreover, flow cytometry demonstrated that M-PDT could recruit CD8+ T cells to inhibit cSCC progression. Further investigation determined that the different mechanisms of C-PDT and M-PDT were related to more ROS generation induced by M-PDT. CONCLUSIONS Our results suggest that M-PDT, which is more painless and effective than C-PDT, is expected to provide a solution for the treatment of cSCC.
Collapse
Affiliation(s)
- Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chu Zhou
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunfeng Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
20
|
McPhillips H, Wood AF, Harper-McDonald B. Critical thinking and diagnostic reasoning when advanced practitioners assess and treat skin conditions. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2021; 30:1278-1286. [PMID: 34889674 DOI: 10.12968/bjon.2021.30.22.1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Advanced clinical practitioner (ACP) roles require a broad range of knowledge of both medical and surgical medicine and the ability to work autonomously in a variety of settings. Despite around half of the UK adult population presenting with a skin condition requiring attention, this is something many ACPs feel unprepared to be consulted on. However, due to the complexity and large number of potential diagnoses, it is imperative that ACPs develop their confidence and knowledge to diagnosis, request investigations and initiate treatment for a patient with a skin complaint. In the first part of this clinical review the authors presented the key elements of history taking, consultation and assessment of the skin. This second clinical review discusses the main differential diagnoses, mimics, common investigations and treatments. This article is designed to support novice ACPs from acute hospital settings to primary care to develop a foundation of understanding in the main diagnosis and treatment options that should be considered following a clinical assessment of patients' skin outside the dermatology setting.
Collapse
Affiliation(s)
- Hazel McPhillips
- Advanced Nurse Practitioner, Hospital at Night Team, NHS Lothian
| | - Alison F Wood
- Programme Leader, Queen Margaret University, Edinburgh
| | | |
Collapse
|
21
|
Jin ZY, Fatima H, Zhang Y, Shao Z, Chen XJ. Recent Advances in Bio‐Compatible Oxygen Singlet Generation and Its Tumor Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Yang Jin
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Hira Fatima
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
| | - Yue Zhang
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Zongping Shao
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing Jiangsu 211816 P. R. China
| | - Xiang Jian Chen
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| |
Collapse
|
22
|
Antitumor Immune Response Triggered by Metal-Based Photosensitizers for Photodynamic Therapy: Where Are We? Pharmaceutics 2021; 13:pharmaceutics13111788. [PMID: 34834202 PMCID: PMC8620627 DOI: 10.3390/pharmaceutics13111788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Metal complexes based on transition metals have rich photochemical and photophysical properties that are derived from a variety of excited state electronic configurations triggered by visible and near-infrared light. These properties can be exploited to produce powerful energy and electron transfer processes that can lead to oxygen-(in)dependent photobiological activity. These principles are the basis of photodynamic therapy (PDT), which is a clinically approved treatment that offers a promising, effective, and noninvasive complementary treatment or even an alternative to treat several types of cancers. PDT is based on a reaction involving a photosensitizer (PS), light, and oxygen, which ultimately generates cytotoxic reactive oxygen species (ROS). However, skin photosensitivity, due to the accumulation of PSs in skin cells, has hampered, among other elements, its clinical development and application. Therefore, these is an increasing interest in the use of (metal-based) PSs that are more specific to tumor cells. This may increase efficacy and corollary decrease side-effects. To this end, metal-containing nanoparticles with photosensitizing properties have recently been developed. In addition, several studies have reported that the use of immunogenic/immunomodulatory metal-based nanoparticles increases the antitumor efficacy of immune-checkpoint inhibitor-based immunotherapy mediated by anti-PD-(L)1 or CTLA-4 antibodies. In this review, we discuss the main metal complexes used as PDT PSs. Lastly, we review the preclinical studies associated with metal-based PDT PSs and immunotherapies. This therapeutic association could stimulate PDT.
Collapse
|
23
|
Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021; 13:pharmaceutics13091332. [PMID: 34575408 PMCID: PMC8470722 DOI: 10.3390/pharmaceutics13091332] [Citation(s) in RCA: 467] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality that has gained great attention in the past years as a new therapy for cancer treatment. PDT uses photosensitizers that, after being excited by light at a specific wavelength, react with the molecular oxygen to create reactive oxygen species in the target tissue, resulting in cell death. Compared to conventional therapeutic modalities, PDT presents greater selectivity against tumor cells, due to the use of photosensitizers that are preferably localized in tumor lesions, and the precise light irradiation of these lesions. This paper presents a review of the principles, mechanisms, photosensitizers, and current applications of PDT. Moreover, the future path on the research of new photosensitizers with enhanced tumor selectivity, featuring the improvement of PDT effectiveness, has also been addressed. Finally, new applications of PDT have been covered.
Collapse
|
24
|
Bayless S, Travers JB, Sahu RP, Rohan CA. Inhibition of photodynamic therapy induced-immunosuppression with aminolevulinic acid leads to enhanced outcomes of tumors and pre-cancerous lesions. Oncol Lett 2021; 22:664. [PMID: 34386086 PMCID: PMC8298988 DOI: 10.3892/ol.2021.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/18/2021] [Indexed: 11/06/2022] Open
Abstract
Photodynamic therapy (PDT) is a treatment option for tumors and pre-cancerous lesions, but it has immunosuppressive side effects that limit its effectiveness. Recent studies suggest that PDT-mediated immunosuppression occurs through a cyclooxygenase type 2 (COX-2) mediated pathway that leads to increases in regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), which act as negative regulators of immune responses. Given this pathway, there are three main methods to block immunosuppression: i) Inhibiting the proliferation of Tregs, which can be achieved with the administration of cyclophosphamide or inhibitors of indoleamine 2,3-dioxygenase 1, an activator of Tregs; ii) inhibiting MDSCs by reducing hypoxia around the tumor to create an unfavorable environment or administering all-trans-retinoic acid, which converts MDSCs to a non-immunosuppressive state; and iii) inhibiting COX-2 through selective or non-selective COX-inhibitors. In the present review article, strategies that have shown increased efficacy of PDT in treating tumors and pre-cancerous lesions by blocking the immunosuppressive side effects are outlined and discussed.
Collapse
Affiliation(s)
- Sharlo Bayless
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.,Department of Dermatology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.,Deparment of Dermatology, Dayton Veterans Administration Medical Center, Dayton, OH 45428, USA
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Craig A Rohan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.,Department of Dermatology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
25
|
Anand S, Govande M, Yasinchak A, Heusinkveld L, Shakya S, Fairchild R, Maytin EV. Painless Photodynamic Therapy Triggers Innate and Adaptive Immune Responses in a Murine Model of UV-induced Squamous Skin Pre-cancer. Photochem Photobiol 2021; 97:607-617. [PMID: 33113217 PMCID: PMC10481390 DOI: 10.1111/php.13350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Abstract
Painless photodynamic therapy (p-PDT), which involves application of photosensitizer and immediate exposure to light to treat actinic keratosis (AK) in patients, causes negligible pain on the day of treatment but leads to delayed inflammation and effective lesion clearance (Kaw et al., J Am Acad Dermatol 2020). To better understand how p-PDT works, hairless mice with UV-induced AK were treated with p-PDT and monitored for 2 weeks. Lesion clearance after p-PDT was similar to clearance after conventional PDT (c-PDT). However, lesion biopsies showed minimal cell death and less production of reactive oxygen species (ROS) in p-PDT treated than in c-PDT-treated lesions. Interestingly, p-PDT triggered vigorous recruitment of immune cells associated with innate immunity. Neutrophils (Ly6G+) and macrophages (F4/80+) appeared at 4 h and peaked at 24 h after p-PDT. Damage-associated molecular patterns (DAMPs), including calreticulin, HMGB1, and HSP70, were expressed at maximum levels around 24 h post-p-PDT. Total T cells (CD3+) were increased at 24 h, whereas large increases in cytotoxic (CD8+) and regulatory (Foxp3+) T cells were observed at 1 and 2 weeks post-p-PDT. In summary, the ability of p-PDT to eliminate AK lesions, despite very little overt cellular damage, appears to involve stimulation of a local immune response.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Biomedical Engineering
- Dermatology and Plastic Surgery Institute
- Cleveland Clinic Lerner College of Medicine of CWRU, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | - Lauren Heusinkveld
- Cleveland Clinic Lerner College of Medicine of CWRU, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | - Robert Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute
- Cleveland Clinic Lerner College of Medicine of CWRU, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Edward V. Maytin
- Department of Biomedical Engineering
- Dermatology and Plastic Surgery Institute
- Cleveland Clinic Lerner College of Medicine of CWRU, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
26
|
Vallejo MCS, Moura NMM, Gomes ATPC, Joaquinito ASM, Faustino MAF, Almeida A, Gonçalves I, Serra VV, Neves MGPMS. The Role of Porphyrinoid Photosensitizers for Skin Wound Healing. Int J Mol Sci 2021; 22:4121. [PMID: 33923523 PMCID: PMC8072979 DOI: 10.3390/ijms22084121] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022] Open
Abstract
Microorganisms, usually bacteria and fungi, grow and spread in skin wounds, causing infections. These infections trigger the immune system and cause inflammation and tissue damage within the skin or wound, slowing down the healing process. The use of photodynamic therapy (PDT) to eradicate microorganisms has been regarded as a promising alternative to anti-infective therapies, such as those based on antibiotics, and more recently, is being considered for skin wound-healing, namely for infected wounds. Among the several molecules exploited as photosensitizers (PS), porphyrinoids exhibit suitable features for achieving those goals efficiently. The capability that these macrocycles display to generate reactive oxygen species (ROS) gives a significant contribution to the regenerative process. ROS are responsible for avoiding the development of infections by inactivating microorganisms such as bacteria but also by promoting cell proliferation through the activation of stem cells which regulates inflammatory factors and collagen remodeling. The PS can act solo or combined with several materials, such as polymers, hydrogels, nanotubes, or metal-organic frameworks (MOF), keeping both the microbial photoinactivation and healing/regenerative processes' effectiveness. This review highlights the developments on the combination of PDT approach and skin wound healing using natural and synthetic porphyrinoids, such as porphyrins, chlorins and phthalocyanines, as PS, as well as the prodrug 5-aminolevulinic acid (5-ALA), the natural precursor of protoporphyrin-IX (PP-IX).
Collapse
Affiliation(s)
- Mariana C. S. Vallejo
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| | - Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| | - Ana T. P. C. Gomes
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.T.P.C.G.); (A.A.)
| | - Ana S. M. Joaquinito
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.T.P.C.G.); (A.A.)
| | - Maria Amparo F. Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.T.P.C.G.); (A.A.)
| | - Idalina Gonçalves
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Vanda Vaz Serra
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;
| | - Maria Graça P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| |
Collapse
|
27
|
|
28
|
Martín-Carrasco P, Sendín-Martín M, Domínguez-Cruz J, Bernabeu-Wittel J. Terapia fotodinámica con luz de día en el tratamiento de la queilitis actínica. ACTAS DERMO-SIFILIOGRAFICAS 2020; 111:883-885. [DOI: 10.1016/j.ad.2019.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/13/2019] [Accepted: 01/28/2019] [Indexed: 11/30/2022] Open
|
29
|
Collier NJ, Rhodes LE. Photodynamic Therapy for Basal Cell Carcinoma: The Clinical Context for Future Research Priorities. Molecules 2020; 25:molecules25225398. [PMID: 33218174 PMCID: PMC7698957 DOI: 10.3390/molecules25225398] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/05/2020] [Accepted: 11/15/2020] [Indexed: 01/11/2023] Open
Abstract
Photodynamic therapy (PDT) is an established treatment option for low-risk basal cell carcinoma (BCC). BCC is the most common human cancer and also a convenient cancer in which to study PDT treatment. This review clarifies challenges to researchers evident from the clinical use of PDT in BCC treatment. It outlines the context of PDT and how PDT treatments for BCC have been developed hitherto. The sections examine the development of systemic and subsequently topical photosensitizers, light delivery regimens, and the use of PDT in different patient populations and subtypes of BCC. The outcomes of topical PDT are discussed in comparison with alternative treatments, and topical PDT applications in combination and adjuvant therapy are considered. The intention is to summarize the clinical relevance and expose areas of research need in the BCC context, ultimately to facilitate improvements in PDT treatment.
Collapse
|
30
|
Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 2020; 17:657-674. [DOI: 10.1038/s41571-020-0410-2] [Citation(s) in RCA: 723] [Impact Index Per Article: 144.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
|
31
|
How promising is phototherapy for cancer? Br J Cancer 2020; 123:871-873. [PMID: 32587359 PMCID: PMC7492227 DOI: 10.1038/s41416-020-0926-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/22/2020] [Accepted: 05/21/2020] [Indexed: 01/13/2023] Open
Abstract
Oncological phototherapy, including current photodynamic therapy (PDT), developmental photoactivated chemotherapy (PACT) and photothermal therapy (PTT), shows promising photo-efficacy for superficial and internal tumours. The dual application of light and photochemotherapeutic agents allows accurate cancer targeting, low invasiveness and novel mechanisms of action. Current advances in new light sources and photoactive agents are encouraging for future development.
Collapse
|
32
|
Shi L, Liu P, Liu J, Yang Y, Chen Q, Zhang Y, Zhang H, Wang X. Application of 5‐aminolevulinic acid‐photodynamic therapy in common skin diseases. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.201900028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Lei Shi
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai China
| | - Pei Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai China
| | - Jia Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai China
| | - Yuling Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai China
| | - Qi Chen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai China
| | - Yunfeng Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai China
| | - Haiyan Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai China
| |
Collapse
|
33
|
Park S, Kim KE, Park HJ, Cho D. The Role of Erythroid Differentiation Regulator 1 (ERDR1) in the Control of Proliferation and Photodynamic Therapy (PDT) Response. Int J Mol Sci 2020; 21:ijms21072603. [PMID: 32283647 PMCID: PMC7178175 DOI: 10.3390/ijms21072603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Erythroid differentiation regulator 1 (ERDR1) was newly identified as a secreted protein that plays an essential role in maintaining cell growth homeostasis. ERDR1 enhances apoptosis at high cell densities, leading to the inhibition of cell survival. Exogenous ERDR1 treatment decreases cancer cell proliferation and tumor growth as a result of increased apoptosis via the regulation of apoptosis-related gene expression. Moreover, ERDR1 plays a pivotal role in skin diseases; ERDR1 expression in actinic keratosis (AK) is negatively correlated with the increase in apoptosis. Because of its high specificity and efficiency, photodynamic therapy (PDT) is a common therapy for patients with various skin diseases, including cancer. Many studies indicate that apoptosis is mainly induced by PDT treatment. As an apoptosis inducer, the recovery of the ERDR1 expression after PDT is correlated with good therapeutic outcomes. Here, we review recent findings that highlight the function of ERDR1 in the control of apoptosis. Thus, ERDR1 may have a role in the apoptosis regulation of target cells in the lesions, as the recovery of its expression after PDT is correlated with good therapeutic outcomes.
Collapse
Affiliation(s)
- Sunyoung Park
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea;
| | - Kyung Eun Kim
- Department of Cosmetic Sciences, Sookmyung Women’s University, Chungpa-Dong 2-Ka, Yongsan-ku, Seoul 04310, Korea;
| | - Hyun Jeong Park
- Department of Dermatology, Yeouido St. Mary’s Hospital, The Catholic University of Korea, Seoul 07345, Korea
- Correspondence: (H.J.P.); (D.C.); Tel.: +82-2-3779-1230 (H.J.P.); +82-2-3290-4541 (D.C.)
| | - Daeho Cho
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea;
- Institute of Convergence Science, Korea University, Anam-ro 145, Seongbuk-ku, Seoul 02481, Korea
- Correspondence: (H.J.P.); (D.C.); Tel.: +82-2-3779-1230 (H.J.P.); +82-2-3290-4541 (D.C.)
| |
Collapse
|
34
|
Cullen JK, Simmons JL, Parsons PG, Boyle GM. Topical treatments for skin cancer. Adv Drug Deliv Rev 2020; 153:54-64. [PMID: 31705912 DOI: 10.1016/j.addr.2019.11.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 01/13/2023]
Abstract
Skin cancer is a broad term used to describe a number of different malignant indications of the skin. Skin cancers mostly comprise of the keratinocyte cancers [Basal Cell Carcinoma (BCC) and cutaneous Squamous Cell Carcinoma (SCC)], and melanoma. Surgical excision of these malignancies has been the preferred treatment of patients for decades. However, the decision to perform surgery can be affected by various considerations, including co-morbidities of the patient, the anatomical site of the lesion and potential intolerance for repeated excisions. Topical treatment of skin cancer may therefore be more appropriate in certain instances. Topical treatment potentially allows for higher drug levels at the tumor site, and may result in less overall toxicity than systemic agents. This review will specifically address the current agents used in topical treatment of skin cancers, and introduce emerging treatments from the natural product field that may also find utility in these indications.
Collapse
|
35
|
Morton CA, Szeimies RM, Basset-Séguin N, Calzavara-Pinton PG, Gilaberte Y, Haedersdal M, Hofbauer GFL, Hunger RE, Karrer S, Piaserico S, Ulrich C, Wennberg AM, Braathen LR. European Dermatology Forum guidelines on topical photodynamic therapy 2019 Part 2: emerging indications - field cancerization, photorejuvenation and inflammatory/infective dermatoses. J Eur Acad Dermatol Venereol 2019; 34:17-29. [PMID: 31805604 DOI: 10.1111/jdv.16044] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022]
Abstract
In addition to approved indications in non-melanoma skin cancer in immunocompetent patients, topical photodynamic therapy (PDT) has also been studied for its place in the treatment of, as well as its potential to prevent, superficial skin cancers in immune-suppressed patients, although sustained clearance rates are lower than for immune-competent individuals. PDT using a nanoemulsion of ALA in a daylight or conventional PDT protocol has been approved for use in field cancerization, although evidence of the potential of the treatment to prevent new SCC remained limited. High-quality evidence supports a strong recommendation for the use of topical PDT in photorejuvenation as well as for acne, refractory warts, cutaneous leishmaniasis and in onychomycosis, although these indications currently lack approvals for use and protocols remain to be optimized, with more comparative evidence with established therapies required to establish its place in practice. Adverse events across all indications for PDT can be minimized through the use of modified and low-irradiance regimens, with a low risk of contact allergy to photosensitizer prodrugs, and no other significant documented longer-term risks with no current evidence of cumulative toxicity or photocarcinogenic risk. The literature on the pharmacoeconomics for using PDT is also reviewed, although accurate comparisons are difficult to establish in different healthcare settings, comparing hospital/office-based therapies of PDT and surgery with topical ointments, requiring inclusion of number of visits, real-world efficacy as well as considering the value to be placed on cosmetic outcome and patient preference. This guideline, published over two parts, considers all current approved and emerging indications for the use of topical photodynamic therapy in Dermatology prepared by the PDT subgroup of the European Dermatology Forum guidelines committee. It presents consensual expert recommendations reflecting current published evidence.
Collapse
Affiliation(s)
- C A Morton
- Department of Dermatology, Stirling Community Hospital, Stirling, UK
| | - R-M Szeimies
- Department of Dermatology, Regensburg University Hospital, Regensburg, Germany.,Department of Dermatology & Allergology, Klinikum Vest GmbH, Recklinghausen, Germany
| | - N Basset-Séguin
- Department of Dermatology, Hôpital Saint Louis, Paris, France
| | | | - Y Gilaberte
- Department of Dermatology, Hospital Universitario miguel servet IIS Aragón, Zaragoza, Spain
| | - M Haedersdal
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - G F L Hofbauer
- Department of Dermatology, Zürich University Hospital, Zürich, Switzerland
| | - R E Hunger
- Department of Dermatology Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - S Karrer
- Department of Dermatology, Regensburg University Hospital, Regensburg, Germany
| | - S Piaserico
- Unit of Dermatology, Department of Medicine, University of Padova, Padova, Italy
| | - C Ulrich
- Skin Cancer Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - A-M Wennberg
- Department of Dermatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | |
Collapse
|
36
|
Gutiérrez García-Rodrigo C, Pellegrini C, Piccioni A, Tambone S, Fargnoli MC. Single versus two-treatment schedule of methyl aminolevulinate daylight photodynamic therapy for actinic keratosis of the face and scalp: An intra-patient randomized trial. Photodiagnosis Photodyn Ther 2019; 27:100-104. [DOI: 10.1016/j.pdpdt.2019.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/14/2019] [Accepted: 05/24/2019] [Indexed: 01/22/2023]
|
37
|
Nemer KM, Council ML. Topical and Systemic Modalities for Chemoprevention of Nonmelanoma Skin Cancer. Dermatol Clin 2019; 37:287-295. [DOI: 10.1016/j.det.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Nguyen M, Sandhu SS, Sivamani RK. Clinical utility of daylight photodynamic therapy in the treatment of actinic keratosis - a review of the literature. Clin Cosmet Investig Dermatol 2019; 12:427-435. [PMID: 31239746 PMCID: PMC6560187 DOI: 10.2147/ccid.s167498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/24/2019] [Indexed: 12/25/2022]
Abstract
Actinic keratosis (AK) is an early in situ squamous cell carcinoma that results from UV light exposure and has the potential to evolve into invasive tumor. Therefore, it is crucial that AKs are monitored and treated appropriately. Photodynamic therapy (PDT) is a treatment option that is minimally invasive and leaves patients with cosmetically superior results. However, disadvantages of PDT include pain and lengthy clinic visits. Accordingly, there has been much interest in the use of daylight photodynamic therapy (daylight-PDT) as a more convenient and less painful alternative to conventional photodynamic therapy (c-PDT). Current evidence shows that daylight-PDT is noninferior to c-PDT in the short and long term. Patients reported decreased pain with daylight-PDT and were more satisfied with the procedure (P<0.001). Current evidence suggests that 2 hrs of daylight exposure was sufficient for treatment, and its efficacy does not appear to be limited by weather conditions. Given the decreased intensity of treatment, daylight-PDT is better for mild disease, as it is less effective in moderate-to-thick AKs. Though further studies are still needed to refine the technique, daylight-PDT is a potential alternative to c-PDT for thin-to-moderate AKs and should be offered to patients with lower pain tolerance or busy schedules.
Collapse
Affiliation(s)
- Mimi Nguyen
- Department of Dermatology, University of California - Davis, Sacramento, CA, USA
| | - Simran S Sandhu
- Department of Dermatology, University of California - Davis, Sacramento, CA, USA
| | - Raja K Sivamani
- Department of Dermatology, University of California - Davis, Sacramento, CA, USA.,Department of Biological Sciences, California State University Sacramento, Sacramento, CA, USA.,College of Medicine, California Northstate University, Elk Grove, CA, USA.,Department of Dermatology, Pacific Skin Institute, Sacramento, CA, USA
| |
Collapse
|
39
|
Morton CA. Come in from the cold - laser fabric photodynamic therapy offers an alternative to seasonal daylight therapy. Br J Dermatol 2019; 180:703-704. [PMID: 30933328 DOI: 10.1111/bjd.17618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C A Morton
- Department of Dermatology, Stirling Community Hospital, Stirling, FK8 2AU, Scotland, U.K
| |
Collapse
|
40
|
Mei X, Wang L, Zhang R, Zhong S. Daylight versus conventional photodynamic therapy for the treatment of actinic keratosis: A meta-analysis of randomized controlled trials. Photodiagnosis Photodyn Ther 2019; 25:23-28. [DOI: 10.1016/j.pdpdt.2018.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/28/2018] [Accepted: 11/05/2018] [Indexed: 01/23/2023]
|