1
|
Wang M, Zhao JH, Tang MX, Li M, Zhao H, Li ZY, Liu AD. Cell Death Modalities in Therapy of Melanoma. Int J Mol Sci 2025; 26:3475. [PMID: 40331942 PMCID: PMC12026598 DOI: 10.3390/ijms26083475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Melanoma, one of the most lethal cancers, demands urgent and effective treatment strategies. However, a successful therapeutic approach requires a precise understanding of the mechanisms underlying melanoma initiation and progression. This review provides an overview of melanoma pathogenesis, identifies current pathogenic factors contributing to mortality, and explores targeted therapy and checkpoint inhibitor therapy. Furthermore, we examine melanoma classification and corresponding therapies, along with advancements in various cell death mechanisms for melanoma treatment. We also discuss the current treatment status along with some drawbacks encountered during research stages such as resistance and metastasis.
Collapse
Affiliation(s)
- Meng Wang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Jia-Hui Zhao
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Ming-Xuan Tang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Meng Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Hu Zhao
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhong-Yu Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An-Dong Liu
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Poudel K, Ji Z, Njauw CN, Rajadurai A, Bhayana B, Sullivan RJ, Kim JO, Tsao H. Fabrication and functional validation of a hybrid biomimetic nanovaccine (HBNV) against Kit K641E -mutant melanoma. Bioact Mater 2025; 46:347-364. [PMID: 39834347 PMCID: PMC11742834 DOI: 10.1016/j.bioactmat.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
Cancer nanovaccines hold the promise for personalization, precision, and pliability by integrating all the elements essential for effective immune stimulation. An effective immune response requires communication and interplay between antigen-presenting cells (APCs), tumor cells, and immune cells to stimulate, extend, and differentiate antigen-specific and non-specific anti-tumor immune cells. The versatility of nanomedicine can be adapted to deliver both immunoadjuvant payloads and antigens from the key players in immunity (i.e., APCs and tumor cells). The imperative for novel cancer medicine is particularly pressing for less common but more devastating KIT-mutated acral and mucosal melanomas that are resistant to small molecule c-kit and immune checkpoint inhibitors. To overcome this challenge, we successfully engineered nanotechnology-enabled hybrid biomimetic nanovaccine (HBNV) comprised of membrane proteins (antigens to activate immunity and homing/targeting ligand to tumor microenvironment (TME) and lymphoid organs) from fused cells (of APCs and tumor cells) and immunoadjuvant. These HBNVs are efficiently internalized to the target cells, assisted in the maturation of APCs via antigens and adjuvant, activated the release of anti-tumor cytokines/inhibited the release of immunosuppressive cytokine, showed a homotypic effect on TME and lymph nodes, activated the anti-tumor immune cells/downregulated the immunosuppressive immune cells, reprogram the tumor microenvironment, and showed successful anti-tumor therapeutic and prophylactic effects.
Collapse
Affiliation(s)
- Kishwor Poudel
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhenyu Ji
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ching-Ni Njauw
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anpuchchelvi Rajadurai
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brijesh Bhayana
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan J. Sullivan
- Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Márquez-Rodas I, Muñoz Couselo E, Rodríguez Moreno JF, Arance Fernández AM, Berciano Guerrero MÁ, Campos Balea B, de la Cruz Merino L, Espinosa Arranz E, García Castaño A, Berrocal Jaime A. SEOM-GEM clinical guidelines for cutaneous melanoma (2023). Clin Transl Oncol 2024; 26:2841-2855. [PMID: 38748192 PMCID: PMC11467041 DOI: 10.1007/s12094-024-03497-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 10/11/2024]
Abstract
Cutaneous melanoma incidence is rising. Early diagnosis and treatment administration are key for increasing the chances of survival. For patients with locoregional advanced melanoma that can be treated with complete resection, adjuvant-and more recently neoadjuvant-with targeted therapy-BRAF and MEK inhibitors-and immunotherapy-anti-PD-1-based therapies-offer opportunities to reduce the risk of relapse and distant metastases. For patients with advanced disease not amenable to radical treatment, these treatments offer an unprecedented increase in overall survival. A group of medical oncologists from the Spanish Society of Medical Oncology (SEOM) and Spanish Multidisciplinary Melanoma Group (GEM) has designed these guidelines, based on a thorough review of the best evidence available. The following guidelines try to cover all the aspects from the diagnosis-clinical, pathological, and molecular-staging, risk stratification, adjuvant therapy, advanced disease therapy, and survivor follow-up, including special situations, such as brain metastases, refractory disease, and treatment sequencing. We aim help clinicians in the decision-making process.
Collapse
Affiliation(s)
| | - Eva Muñoz Couselo
- Hospital Vall d'Hebron & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | | | | | - Luis de la Cruz Merino
- Cancer Immunotherapy, Biomedicine Institute of Seville (IBIS)/CSIC, Clinical Oncology Department, University Hospital Virgen Macarena and School of Medicine, University of Seville, Seville, Spain
| | | | | | | |
Collapse
|
4
|
Zhi L, Li H, Shi B, Yu T, Jia X, Zhang H. Design, synthesis and neuroprotective activity of compound derived from Gastrodia elata Blume and borneol. Front Pharmacol 2024; 15:1437806. [PMID: 39376614 PMCID: PMC11456490 DOI: 10.3389/fphar.2024.1437806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Traditional Chinese medicine Gastrodia elata Blume (GEB) possesses properties that soothe the liver and dispel wind. Its constituents exhibit numerous pharmacological properties, including neuroprotective effects, analgesic properties for headache relief, memory enhancement, and others. Borneol enhances drug absorption by traversing the blood-brain barrier, thereby improving its bioavailability and therapeutic efficacy. The research aimed to design innovative drug molecules and contribute to the beneficial exploration of compound Chinese medicine modernization. Methods This study employed the strategy of "compound Chinese medicine molecular chemistry" to integrate and fuse the effective substances of compound Chinese medicines. An excitotoxic injury model was established by exposing PC12 cells to glutamate. Cell viability was quantitatively evaluated utilizing a colorimetric assay with the CCK-8 reagent kit. Genecards, Disgenet, and OMIM databases were used to identify potential disease-related targets. Molecular docking methods were performed to predict the binding interactions between compounds and core targets. Results We designed and synthesized compounds TB-1 to TB-16. Following the evaluation of their safety, TB-1, TB-2, TB-12, and TB-16 were selected for further investigation of their neuroprotective properties. The compound designed in this study exhibits a dose-dependent protective effect on glutamate-damaged PC12 cells. Further network pharmacology and molecular docking analyses indicate that TB-2 possesses a potential therapeutic effect against cerebral ischemia, and its possible targets were SRC, MAPK1 and KDR. Discussion The results indicated that TB-2 displayed a significant neuroprotective effect against Glu-induced injury in PC12 cells, suggesting potential therapeutic implications for cerebral ischemia.
Collapse
Affiliation(s)
- Lijuan Zhi
- Center Laboratory, Xi’an Mental Health Center, Xi’an, China
| | - Huan Li
- Center Laboratory, Xi’an Mental Health Center, Xi’an, China
| | - Baimei Shi
- College of Chemical Engineering, Xi’an University, Xi’an, China
| | - Tao Yu
- Center Laboratory, Xi’an Mental Health Center, Xi’an, China
| | - Xiaoni Jia
- Center Laboratory, Xi’an Mental Health Center, Xi’an, China
| | - Hui Zhang
- Center Laboratory, Xi’an Mental Health Center, Xi’an, China
| |
Collapse
|
5
|
Castrejon N, Martin R, Carrasco A, Castillo P, Garcia A, Albero-González R, García M, Marginet M, Palau N, Hernández M, Montironi C, Clot G, Arance A, Alos L, Teixido C. Feasibility and Impact of Embedding an Extended DNA and RNA Tissue-Based Sequencing Panel for the Routine Care of Patients with Advanced Melanoma in Spain. Int J Mol Sci 2024; 25:6942. [PMID: 39000050 PMCID: PMC11241382 DOI: 10.3390/ijms25136942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Targeted NGS allows a fast and efficient multi-gene analysis and the detection of key gene aberrations in melanoma. In this study, we aim to describe the genetic alterations in a series of 87 melanoma cases using the oncomine focus assay (OFA), relate these results with the clinicopathological features of the patients, and compare them with our previous study results in which we used a smaller panel, the oncomine solid tumor (OST) DNA kit. Patients diagnosed with advanced melanoma at our center from 2020 to 2022 were included and DNA and RNA were extracted for sequencing. Common mutated genes were BRAF (29%), NRAS (28%), ALK, KIT, and MAP2K1 (5% each). Co-occurring mutations were detected in 29% of the samples, including BRAF with KIT, CTNNB1, EGFR, ALK, HRAS, or MAP2K1. Amplifications and rearrangements were detected in 5% of cases. Only BRAF mutation showed a significant statistical association with sun exposure. For patients with a given genetic profile, the melanoma survival and recurrence-free survival rates were equivalent, but not for stage and LDH values. This expanded knowledge of molecular alterations has helped to more comprehensively characterize our patients and has provided relevant information for deciding the best treatment strategy.
Collapse
Affiliation(s)
- Natalia Castrejon
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Roberto Martin
- Department of Medical Oncology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Antonio Carrasco
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Paola Castillo
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Adriana Garcia
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Raquel Albero-González
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Mireia García
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Marta Marginet
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Núria Palau
- Molecular Biology Core Facility, Hospital Clínic, 08036 Barcelona, Spain
| | - Mónica Hernández
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Carla Montironi
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Molecular Biology Core Facility, Hospital Clínic, 08036 Barcelona, Spain
| | - Guillem Clot
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Ana Arance
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Llucia Alos
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Cristina Teixido
- Department of Pathology, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Molecular Biology Core Facility, Hospital Clínic, 08036 Barcelona, Spain
| |
Collapse
|
6
|
Sevilla A, Grichnik J. Therapeutic modulation of KIT ligand in melanocytic disorders with implications for mast cell diseases. Exp Dermatol 2024; 33:e15091. [PMID: 38711220 DOI: 10.1111/exd.15091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
KIT ligand and its associated receptor KIT serve as a master regulatory system for both melanocytes and mast cells controlling survival, migration, proliferation and activation. Blockade of this pathway results in cell depletion, while overactivation leads to mastocytosis or melanoma. Expression defects are associated with pigmentary and mast cell disorders. KIT ligand regulation is complex but efficient targeting of this system would be of significant benefit to those suffering from melanocytic or mast cell disorders. Herein, we review the known associations of this pathway with cutaneous diseases and the regulators of this system both in skin and in the more well-studied germ cell system. Exogenous agents modulating this pathway will also be presented. Ultimately, we will review potential therapeutic opportunities to help our patients with melanocytic and mast cell disease processes potentially including vitiligo, hair greying, melasma, urticaria, mastocytosis and melanoma.
Collapse
Affiliation(s)
- Alec Sevilla
- Department of Dermatology, New York Medical College, New York, New York, USA
- Department of Internal Medicine, Lakeland Regional Health, Lakeland, Florida, USA
| | - James Grichnik
- Department of Dermatology and Cutaneous Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
7
|
Everdell E, Ji Z, Njauw CN, Tsao H. Molecular Analysis of Murine Kit K641E Melanoma Progression. JID INNOVATIONS 2024; 4:100266. [PMID: 38585193 PMCID: PMC10995915 DOI: 10.1016/j.xjidi.2024.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 04/09/2024] Open
Abstract
Acral and mucosal melanomas are often driven by sequence variants in the KIT receptor tyrosine kinase, with nearly 40% harboring alterations in the KIT locus. Despite advances in the knowledge of KIT-mutated melanomas, little is known about the molecular reprogramming that occurs during KIT-mediated melanoma progression owing to the rarity of acral and mucosal melanomas and the lack of comprehensive biological tools and models. To this end, we used a murine model that allows us to ascertain the molecular underpinnings of the stages of cancer progression-transformation, tumorigenesis, immune engagement, and tumor escalation. We found dramatic increases in biosynthetic demands associated with the transformation stage, including DNA and RNA metabolism, leading to replication stress. Tumorigenesis was closely linked to neuronal and axonal development, likely necessary for invasion into the host. Immune engagement highlighted early immune excitation and rejection pathways, possibly triggered by abrupt neoantigen exposure. Finally, tumor escalation pathways proved consistent with immune evasion, with immune-related pathways becoming significantly downregulated. To our knowledge, it is previously unreported that these critical milestones needed for KIT-driven melanoma tumor formation have been studied at the molecular level using isogenically matched and phenotypically defined cells.
Collapse
Affiliation(s)
- Emily Everdell
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhenyu Ji
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ching-Ni Njauw
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hensin Tsao
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Chatzi D, Kyriakoudi SA, Dermitzakis I, Manthou ME, Meditskou S, Theotokis P. Clinical and Genetic Correlation in Neurocristopathies: Bridging a Precision Medicine Gap. J Clin Med 2024; 13:2223. [PMID: 38673496 PMCID: PMC11050951 DOI: 10.3390/jcm13082223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Neurocristopathies (NCPs) encompass a spectrum of disorders arising from issues during the formation and migration of neural crest cells (NCCs). NCCs undergo epithelial-mesenchymal transition (EMT) and upon key developmental gene deregulation, fetuses and neonates are prone to exhibit diverse manifestations depending on the affected area. These conditions are generally rare and often have a genetic basis, with many following Mendelian inheritance patterns, thus making them perfect candidates for precision medicine. Examples include cranial NCPs, like Goldenhar syndrome and Axenfeld-Rieger syndrome; cardiac-vagal NCPs, such as DiGeorge syndrome; truncal NCPs, like congenital central hypoventilation syndrome and Waardenburg syndrome; and enteric NCPs, such as Hirschsprung disease. Additionally, NCCs' migratory and differentiating nature makes their derivatives prone to tumors, with various cancer types categorized based on their NCC origin. Representative examples include schwannomas and pheochromocytomas. This review summarizes current knowledge of diseases arising from defects in NCCs' specification and highlights the potential of precision medicine to remedy a clinical phenotype by targeting the genotype, particularly important given that those affected are primarily infants and young children.
Collapse
Affiliation(s)
| | | | | | | | | | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (S.A.K.); (I.D.); (M.E.M.); (S.M.)
| |
Collapse
|
9
|
Dedeilia A, Lwin T, Li S, Tarantino G, Tunsiricharoengul S, Lawless A, Sharova T, Liu D, Boland GM, Cohen S. Factors Affecting Recurrence and Survival for Patients with High-Risk Stage II Melanoma. Ann Surg Oncol 2024; 31:2713-2726. [PMID: 38158497 PMCID: PMC10908640 DOI: 10.1245/s10434-023-14724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND In the current era of effective adjuvant therapies and de-escalation of surgery, distinguishing which patients with high-risk stage II melanoma are at increased risk of recurrence after excision of the primary lesion is essential to determining appropriate treatment and surveillance plans. METHODS A single-center retrospective study analyzed patients with stage IIB or IIC melanoma. Demographic and tumor data were collected, and genomic analysis of formalin-fixed, paraffin-embedded tissue samples was performed via an internal next-generation sequencing (NGS) platform (SNaPshot). The end points examined were relapse-free survival (RFS), distant metastasis-free survival (DMFS), overall survival (OS), and melanoma-specific survival (MSS). Uni- and multivariable Cox regressions were performed to calculate the hazard ratios. RESULTS The study included 92 patients with a median age of 69 years and a male/female ratio of 2:1. A Breslow depth greater than 4 mm, a higher mitotic rate, an advanced T stage, and a KIT mutation had a negative impact on RFS. A primary lesion in the head and neck, a mitotic rate exceeding 10 mitoses per mm2, a CDH1 mutation, or a KIT mutation was significantly associated with a shorter DMFS. Overall survival was significantly lower with older age at diagnosis and a higher mitotic rate. An older age at diagnosis also had a negative impact on MSS. CONCLUSION Traditional histopathologic factors and specific tumor mutations displayed a significant correlation with disease recurrence and survival for patients with high-risk stage II melanoma. This study supported the use of genomic testing of high-risk stage II melanomas for prognostic prediction and risk stratification.
Collapse
Affiliation(s)
- Aikaterini Dedeilia
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Thinzar Lwin
- Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Siming Li
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Giuseppe Tarantino
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Aleigha Lawless
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Tatyana Sharova
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David Liu
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Genevieve M Boland
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Sonia Cohen
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Sukniam K, Manaise HK, Popp K, Popp R, Gabriel E. Role of Surgery in Metastatic Melanoma and Review of Melanoma Molecular Characteristics. Cells 2024; 13:465. [PMID: 38534309 PMCID: PMC10969165 DOI: 10.3390/cells13060465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
We aimed to review the molecular characteristics of metastatic melanoma and the role of surgery in metastasectomy for metastatic melanoma. We performed a systematic literature search on PubMed to identify relevant studies focusing on several mutations, including NRAS, BRAF, NF1, MITF, PTEN, TP53, CDKN2A, TERT, TMB, EGFR, and c-KIT. This was performed in the context of metastatic melanoma and the role of metastasectomy in the metastatic melanoma population. A comprehensive review of these molecular characteristics is presented with a focus on their prognosis and role in surgical metastasectomy.
Collapse
Affiliation(s)
- Kulkaew Sukniam
- Department of General Surgery, Duke University Medical Center, Durham, NC 27707, USA
| | - Harsheen K. Manaise
- Department of Medicine, Government Medical College and Hospital, Chandigarh 160047, India
| | - Kyle Popp
- Department of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Reed Popp
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emmanuel Gabriel
- Department of General Surgery, Division of Surgical Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
11
|
Zhou S, Abdihamid O, Tan F, Zhou H, Liu H, Li Z, Xiao S, Li B. KIT mutations and expression: current knowledge and new insights for overcoming IM resistance in GIST. Cell Commun Signal 2024; 22:153. [PMID: 38414063 PMCID: PMC10898159 DOI: 10.1186/s12964-023-01411-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/25/2023] [Indexed: 02/29/2024] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common sarcoma located in gastrointestinal tract and derived from the interstitial cell of Cajal (ICC) lineage. Both ICC and GIST cells highly rely on KIT signal pathway. Clinically, about 80-90% of treatment-naive GIST patients harbor primary KIT mutations, and special KIT-targeted TKI, imatinib (IM) showing dramatic efficacy but resistance invariably occur, 90% of them was due to the second resistance mutations emerging within the KIT gene. Although there are multiple variants of KIT mutant which did not show complete uniform biologic characteristics, most of them have high KIT expression level. Notably, the high expression level of KIT gene is not correlated to its gene amplification. Recently, accumulating evidences strongly indicated that the gene coding, epigenetic regulation, and pre- or post- protein translation of KIT mutants in GIST were quite different from that of wild type (WT) KIT. In this review, we elucidate the biologic mechanism of KIT variants and update the underlying mechanism of the expression of KIT gene, which are exclusively regulated in GIST, providing a promising yet evidence-based therapeutic landscape and possible target for the conquer of IM resistance. Video Abstract.
Collapse
Affiliation(s)
- Shishan Zhou
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87
| | - Omar Abdihamid
- Garissa Cancer Center, Garissa County Referral Hospital, Kismayu road, Garissa town, P.O BOX, 29-70100, Kenya
| | - Fengbo Tan
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Haiyan Zhou
- Division of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heli Liu
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Zhi Li
- Center for Molecular Medicine of Xiangya Hospital, Collaborative Innovation Center for Cancer Medicine, Central South University, Changsha, Hunan, China, 410008
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, 410008, MA, USA
| | - Bin Li
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87#.
| |
Collapse
|
12
|
Caraban BM, Aschie M, Deacu M, Cozaru GC, Pundiche MB, Orasanu CI, Voda RI. A Narrative Review of Current Knowledge on Cutaneous Melanoma. Clin Pract 2024; 14:214-241. [PMID: 38391404 PMCID: PMC10888040 DOI: 10.3390/clinpract14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Cutaneous melanoma is a public health problem. Efforts to reduce its incidence have failed, as it continues to increase. In recent years, many risk factors have been identified. Numerous diagnostic systems exist that greatly assist in early clinical diagnosis. The histopathological aspect illustrates the grim nature of these cancers. Currently, pathogenic pathways and the tumor microclimate are key to the development of therapeutic methods. Revolutionary therapies like targeted therapy and immune checkpoint inhibitors are starting to replace traditional therapeutic methods. Targeted therapy aims at a specific molecule in the pathogenic chain to block it, stopping cell growth and dissemination. The main function of immune checkpoint inhibitors is to boost cellular immunity in order to combat cancer cells. Unfortunately, these therapies have different rates of effectiveness and side effects, and cannot be applied to all patients. These shortcomings are the basis of increased incidence and mortality rates. This study covers all stages of the evolutionary sequence of melanoma. With all these data in front of us, we see the need for new research efforts directed at therapies that will bring greater benefits in terms of patient survival and prognosis, with fewer adverse effects.
Collapse
Affiliation(s)
- Bogdan Marian Caraban
- Clinical Department of Plastic Surgery, Microsurgery-Reconstructive, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Mariana Aschie
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Service of Pathology, Departments of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Academy of Medical Sciences of Romania, 030171 Bucharest, Romania
- The Romanian Academy of Scientists, 030167 Bucharest, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), "Ovidius" University of Constanta, 900591 Constanta, Romania
| | - Mariana Deacu
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Service of Pathology, Departments of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), "Ovidius" University of Constanta, 900591 Constanta, Romania
- Clinical Service of Pathology, Departments of Genetics, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Mihaela Butcaru Pundiche
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Department of General Surgery, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Cristian Ionut Orasanu
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Service of Pathology, Departments of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), "Ovidius" University of Constanta, 900591 Constanta, Romania
| | - Raluca Ioana Voda
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Service of Pathology, Departments of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), "Ovidius" University of Constanta, 900591 Constanta, Romania
| |
Collapse
|
13
|
Zhang J, Tian H, Mao L, Si L. Treatment of acral and mucosal melanoma: Current and emerging targeted therapies. Crit Rev Oncol Hematol 2024; 193:104221. [PMID: 38036156 DOI: 10.1016/j.critrevonc.2023.104221] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/14/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
Targeted therapies revolutionized the management of patients with advanced and metastatic cutaneous melanoma. However, despite recent advances in the understanding of the molecular drivers of melanoma and its treatment with targeted therapies, patients with rare and aggressive melanoma subtypes, including acral melanoma (AM) and mucosal melanomas (MM), show limited long-term clinical benefit from current targeted therapies. While patients with AM or MM and BRAF or KIT mutations may benefit from targeted therapies, the frequency of these mutations is relatively low, and there are no genotype-specific treatments for most patients with AM or MM who lack common driver mutations. The poor prognosis of AM and MM can also be attributed to the lack of understanding of their unique molecular landscapes and clinical characteristics, due to being under-represented in preclinical and clinical studies. We review current knowledge of the molecular landscapes of AM and MM, focusing on actionable therapeutic targets and pathways for molecular targeted therapies, to guide the development of more effective targeted therapies for these cancers. Current and emerging strategies for the treatment of these melanoma subtypes using targeted therapies are also summarized.
Collapse
Affiliation(s)
- Jiaran Zhang
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Huichun Tian
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lili Mao
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| | - Lu Si
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
14
|
Vahdatinia M, Derakhshan F, Da Cruz Paula A, Dopeso H, Marra A, Gazzo AM, Brown D, Selenica P, Ross DS, Razavi P, Zhang H, Weigelt B, Wen HY, Brogi E, Reis-Filho JS, Pareja F. KIT genetic alterations in breast cancer. J Clin Pathol 2023; 77:40-45. [PMID: 36323507 PMCID: PMC10151428 DOI: 10.1136/jcp-2022-208611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 01/19/2023]
Abstract
AIMS Activating somatic mutations or gene amplification of KIT result in constitutive activation of its receptor tyrosine kinase, which is targetable in various solid tumours. Here, we sought to investigate the presence of KIT genetic alterations in breast cancer (BC) and characterise the histological and genomic features of these tumours. METHODS A retrospective analysis of 5,575 BCs previously subjected to targeted sequencing using the FDA-authorised Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Targets (MSK-IMPACT) assay was performed to identify BCs with KIT alterations. A histological assessment of KIT-altered BCs was conducted, and their repertoire of genetic alterations was compared with that of BCs lacking KIT genetic alterations, matched for age, histological type, oestrogen receptor/HER2 status and sample type. RESULTS We identified 18 BCs (0.32%), including 9 primary and 9 metastatic BCs, with oncogenic/likely oncogenic genetic alterations affecting KIT, including activating somatic mutations (n=4) or gene amplification (n=14). All KIT-altered BCs were of high histological grade, although no distinctive histological features were observed. When compared with BCs lacking KIT genetic alterations, no distinctive genetic features were identified. In two metastatic KIT-altered BCs in which the matched primary BC had also been analysed by MSK-IMPACT, the KIT mutations were found to be restricted to the metastatic samples, suggesting that they were late events in the evolution of these cancers. CONCLUSIONS KIT genetic alterations are vanishingly rare in BC. KIT-altered BCs are of high grade but lack distinctive histological features. Genetic alterations in KIT might be late events in the evolution and/or progression of BC.
Collapse
Affiliation(s)
- Mahsa Vahdatinia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Fatemeh Derakhshan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andrea M Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David Brown
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dara S Ross
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hong Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hannah Y Wen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Edi Brogi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
15
|
Mattei J, Trindade EN, Chedid MF. Mucosal melanoma: from molecular landscape to current treatment strategies. Melanoma Res 2023; 33:447-453. [PMID: 37650711 DOI: 10.1097/cmr.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Mucosal melanoma (MM) is an aggressive tumor originating from melanocytes located in the respiratory, gastrointestinal, and urogenital tract with clinical and pathologic characteristics distinct from cutaneous melanoma. In addition, MMs have a unique biology that contributes to delayed diagnosis and, therefore an adverse prognosis. The factors all contribute to a treatment paradigm unique from its more studied cutaneous brethren. Due to the rarity of this disease, well-established protocols for the treatment of this pathology have yet to be established. The use of immune checkpoint inhibitors patterned after cutaneous melanoma has become the de facto primary therapeutic approach; however, cytotoxic strategies and pathway-targeted therapies have a defined role in treatment. Judicious use of these approaches can give rise to durable unmaintained disease responses.
Collapse
Affiliation(s)
- Jane Mattei
- Division of Medical Oncology, University of Texas, San Antonio, Texas, USA
| | - Eduardo N Trindade
- Division of Gastrointestinal Surgery and Liver Transplantation, Hospital de Clinicas de Porto Alegre, Medical School of UFRGS
| | - Marcio F Chedid
- Division of Gastrointestinal Surgery and Liver Transplantation, Hospital de Clinicas de Porto Alegre, Medical School of UFRGS
- Postgraduate Program in Surgical Sciences, Hospital de Clinicas de Porto Alegre, Medical School of UFRGS, Porto Alegre, Brazil
| |
Collapse
|
16
|
Ye XW, Gu JM, Cao CY, Zhang ZY, Cheng H, Chen Z, Fang XM, Zhang Z, Wang QS, Pan YC, Wang Z. The jigsaw puzzle of pedigree: whole-genome resequencing reveals genetic diversity and ancestral lineage in Sunong black pigs. Animal 2023; 17:101014. [PMID: 37952495 DOI: 10.1016/j.animal.2023.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
The Sunong black pig is a new composite breed under development generated from Chinese indigenous pig breeds (i.e., Taihu and Huai) and intensive pig breeds (i.e., Landrace and Berkshire), which is an important genetic material for studying breeding mechanisms. However, there is currently limited knowledge about the genetic structure and germplasm characteristics of Sunong black pigs. To comprehensively understand their genetic composition and ancestry proportions, we performed population structure and local ancestry inference analysis based on whole-genome sequencing information. The results showed that Sunong black pigs could be clustered independently into a group, whose pedigree was intermediate between indigenous and commercial pig breeds, but closer to commercial pigs. Furthermore, local ancestry inference analysis revealed that Sunong black pigs inherited immune and reproductive traits from indigenous pig breeds, including CC and CXC chemokine family, Toll-like receptor family, IFN gene family, ESR1, AREG and EREG gene, while growth and development-related traits were inherited from commercial pig breeds, including IGF1 and GSY2 gene. Overall, Sunong black pigs have formed a relatively stable genome structure with some advantageous traits inherited from their ancestral breeds. This study deepened the understanding of the breeding mechanism of Sunong black pigs and provided a reference for cross-breeding programmes in livestock.
Collapse
Affiliation(s)
- X W Ye
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - J M Gu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - C Y Cao
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Z Y Zhang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - H Cheng
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Z Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Str, Nanjing 210014, China
| | - X M Fang
- Institute of Agricultural Product Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Str, Nanjing 210014, China
| | - Z Zhang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Q S Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Y C Pan
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Z Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China.
| |
Collapse
|
17
|
Alsayyah A. Differentiating between early melanomas and melanocytic nevi: A state-of-the-art review. Pathol Res Pract 2023; 249:154734. [PMID: 37573619 DOI: 10.1016/j.prp.2023.154734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
Clinicians and dermatologists are challenged by accurate diagnosis of melanocytic lesions, due to melanoma's resemblance to benign skin conditions. Several methodologies have been proposed to diagnose melanoma, and to differentiate between a cancerous and a benign skin condition. First, the ABCD rule and Menzies method use skin lesion characteristics to interpret the condition. The 7-point checklist, 3-point checklist, and CASH algorithm are score-based methods. Each of these methods attributes a score point to the features found on the skin lesion. Furthermore, reflectance confocal microscopy (RCM), an integrated clinical and dermoscopic risk scoring system (iDscore), and a deep convoluted neural network (DCNN) also aids in diagnosis. RCM optically sections live tissues to reveal morphological and cellular structures. The skin lesion's clinical parameters determine iDscore's score point system. The DCNN model is based on a detailed learning algorithm. Therefore, we discuss the conventional and new methodologies for the identification of skin diseases. Moreover, our review attempts to provide clinicians with a comprehensible summary of the wide range of techniques that can help differentiate between early melanomas and melanocytic nevi.
Collapse
Affiliation(s)
- Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| |
Collapse
|
18
|
Heerfordt IM, Philipsen PA, Andersen JD, Langhans L, Schmidt G, Morling N, Wulf HC. RNA analysis of tape strips to rule out melanoma in lesions clinically assessed as cutaneous malignant melanoma: A diagnostic study. J Am Acad Dermatol 2023; 89:537-543. [PMID: 37224970 DOI: 10.1016/j.jaad.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Distinguishing cutaneous malignant melanoma (CMM) from nevi can be clinically challenging. Suspicious lesions are therefore excised, resulting in many benign lesions being removed surgically to find 1 CMM. It has been proposed to use tape strip derived ribonucleic acid (RNA) to distinguish CMM from nevi. OBJECTIVE To develop this technique further and validate if RNA profiles can rule out CMM in clinically suspicious lesions with 100% sensitivity. METHODS Before surgical excision, 200 lesions clinically assessed as CMM were tape stripped. Expression levels of 11 genes on the tapes were investigated by RNA measurement and used in a rule-out test. RESULTS Histopathology showed that 73 CMMs and 127 non-CMMs were included. Our test correctly identified all CMMs (100% sensitivity) based on the expression levels of 2 oncogenes, PRAME and KIT, relative to a housekeeping gene. Patient age and sample storage time were also significant. Simultaneously, our test correctly excluded CMM in 32% of non-CMM lesions (32% specificity). LIMITATIONS Our sample contained a very high proportion of CMMs, perhaps due to inclusion during COVID-19 shutdown. Validation in a separate trial must be performed. CONCLUSION Our results demonstrate that the technique can reduce removal of benign lesions by one-third without overlooking any CMMs.
Collapse
Affiliation(s)
- Ida M Heerfordt
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.
| | - Peter A Philipsen
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jeppe D Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Linnea Langhans
- Department of Plastic Surgery and Burns Treatment, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Grethe Schmidt
- Department of Plastic Surgery and Burns Treatment, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Christian Wulf
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
19
|
Chen J, Wu L, Liu K, Xu Y, He S, Bo X. EDST: a decision stump based ensemble algorithm for synergistic drug combination prediction. BMC Bioinformatics 2023; 24:325. [PMID: 37644423 PMCID: PMC10466832 DOI: 10.1186/s12859-023-05453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION There are countless possibilities for drug combinations, which makes it expensive and time-consuming to rely solely on clinical trials to determine the effects of each possible drug combination. In order to screen out the most effective drug combinations more quickly, scholars began to apply machine learning to drug combination prediction. However, most of them are of low interpretability. Consequently, even though they can sometimes produce high prediction accuracy, experts in the medical and biological fields can still not fully rely on their judgments because of the lack of knowledge about the decision-making process. RELATED WORK Decision trees and their ensemble algorithms are considered to be suitable methods for pharmaceutical applications due to their excellent performance and good interpretability. We review existing decision trees or decision tree ensemble algorithms in the medical field and point out their shortcomings. METHOD This study proposes a decision stump (DS)-based solution to extract interpretable knowledge from data sets. In this method, a set of DSs is first generated to selectively form a decision tree (DST). Different from the traditional decision tree, our algorithm not only enables a partial exchange of information between base classifiers by introducing a stump exchange method but also uses a modified Gini index to evaluate stump performance so that the generation of each node is evaluated by a global view to maintain high generalization ability. Furthermore, these trees are combined to construct an ensemble of DST (EDST). EXPERIMENT The two-drug combination data sets are collected from two cell lines with three classes (additive, antagonistic and synergistic effects) to test our method. Experimental results show that both our DST and EDST perform better than other methods. Besides, the rules generated by our methods are more compact and more accurate than other rule-based algorithms. Finally, we also analyze the extracted knowledge by the model in the field of bioinformatics. CONCLUSION The novel decision tree ensemble model can effectively predict the effect of drug combination datasets and easily obtain the decision-making process.
Collapse
Affiliation(s)
| | | | | | - Yong Xu
- Fujian University of Technology, Fuzhou, China
| | - Song He
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing, China
| |
Collapse
|
20
|
Brănişteanu DE, Porumb-Andrese E, Porumb V, Stărică A, Moraru AD, Nicolescu AC, Zemba M, Brănişteanu CI, Brănişteanu G, Brănişteanu DC. New Treatment Horizons in Uveal and Cutaneous Melanoma. Life (Basel) 2023; 13:1666. [PMID: 37629523 PMCID: PMC10455832 DOI: 10.3390/life13081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is a complex and heterogeneous malignant tumor with distinct genetic characteristics and therapeutic challenges in both cutaneous melanoma (CM) and uveal melanoma (UM). This review explores the underlying molecular features and genetic alterations in these melanoma subtypes, highlighting the importance of employing specific model systems tailored to their unique profiles for the development of targeted therapies. Over the past decade, significant progress has been made in unraveling the molecular and genetic characteristics of CM and UM, leading to notable advancements in treatment options. Genetic mutations in the mitogen-activated protein kinase (MAPK) pathway drive CM, while UM is characterized by mutations in genes like GNAQ, GNA11, BAP1, EIF1AX, and SF3B1. Chromosomal aberrations, including monosomy 3 in UM and monosomy 10 in CM, play significant roles in tumorigenesis. Immune cell infiltration differs between CM and UM, impacting prognosis. Therapeutic advancements targeting these genetic alterations, including oncolytic viruses and immunotherapies, have shown promise in preclinical and clinical studies. Oncolytic viruses selectively infect malignant cells, inducing oncolysis and activating antitumor immune responses. Talimogene laherparepvec (T-VEC) is an FDA-approved oncolytic virus for CM treatment, and other oncolytic viruses, such as coxsackieviruses and HF-10, are being investigated. Furthermore, combining oncolytic viruses with immunotherapies, such as CAR-T cell therapy, holds great potential. Understanding the intrinsic molecular features of melanoma and their role in shaping novel therapeutic approaches provides insights into targeted interventions and paves the way for more effective treatments for CM and UM.
Collapse
Affiliation(s)
- Daciana Elena Brănişteanu
- Department of Medical Specialties (III)-Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Railway Clinical Hospital, 700506 Iasi, Romania;
| | - Elena Porumb-Andrese
- Department of Medical Specialties (III)-Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Railway Clinical Hospital, 700506 Iasi, Romania;
| | - Vlad Porumb
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Military Emergency Clinical Hospital “Dr. Iacob Czihac”, 700506 Iasi, Romania
| | | | - Andreea Dana Moraru
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | | | - Mihail Zemba
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | | | - George Brănişteanu
- “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.I.B.); (G.B.)
| | - Daniel Constantin Brănişteanu
- Railway Clinical Hospital, 700506 Iasi, Romania;
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
21
|
Manzari Tavakoli G, Mirzapour MH, Razi S, Rezaei N. Targeting ferroptosis as a cell death pathway in Melanoma: From molecular mechanisms to skin cancer treatment. Int Immunopharmacol 2023; 119:110215. [PMID: 37094541 DOI: 10.1016/j.intimp.2023.110215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/30/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
Melanoma, the most aggressive form of human skin cancer, has been under investigation to reach the most efficient treatment. Surgical resection for early-diagnosed primary melanoma, targeted therapies, and immune checkpoint inhibitors for advanced/metastatic melanoma is the best clinical approach. Ferroptosis, a newly identified iron-dependent cell death pathway, which is morphologically and biochemically different from apoptosis and necrosis, has been reported to be involved in several cancers. Ferroptosis inducers could provide therapeutic options in case of resistance to conventional therapies for advanced/metastatic melanoma. Recently developed ferroptosis inducers, MEK and BRAF inhibitors, miRNAs such as miR-137 and miR-9, and novel strategies for targeting major histocompatibility complex (MHC) class II in melanoma can provide new opportunities for melanoma treatment. Combining ferroptosis inducers with targeted therapies or immune checkpoint inhibitors increases patient response rates. Here we review the mechanisms of ferroptosis and its environmental triggers. We also discuss the pathogenesis and current treatments of melanoma. Moreover, we aim to elucidate the relationship between ferroptosis and melanoma and ferroptosis implications to develop new therapeutic strategies against melanoma.
Collapse
Affiliation(s)
- Gita Manzari Tavakoli
- Department of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Hossein Mirzapour
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
22
|
Alotaibi G, Alharthi S, Basu B, Ash D, Dutta S, Singh S, Prajapati BG, Bhattacharya S, Chidrawar VR, Chitme H. Nano-Gels: Recent Advancement in Fabrication Methods for Mitigation of Skin Cancer. Gels 2023; 9:gels9040331. [PMID: 37102943 PMCID: PMC10137892 DOI: 10.3390/gels9040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
In the 21st century, melanoma and non-melanoma skin cancers have become an epidemic outbreak worldwide. Therefore, the exploration of all potential preventative and therapeutic measures based on either physical or bio-chemical mechanisms is essential via understanding precise pathophysiological pathways (Mitogen-activated protein kinase, Phosphatidylinositol 3-kinase Pathway, and Notch signaling pathway) and other aspects of such skin malignancies. Nano-gel, a three-dimensional polymeric cross-linked porous hydrogel having a diameter of 20-200 nm, possesses dual properties of both hydrogel and nanoparticle. The capacity of high drug entrapment efficiency with greater thermodynamic stability, remarkable solubilization potential, and swelling behavior of nano-gel becomes a promising candidate as a targeted drug delivery system in the treatment of skin cancer. Nano-gel can be either synthetically or architectonically modified for responding to either internal or external stimuli, including radiation, ultrasound, enzyme, magnetic, pH, temperature, and oxidation-reduction to achieve controlled release of pharmaceuticals and several bio-active molecules such as proteins, peptides, genes via amplifying drug aggregation in the active targeted tissue and reducing adverse pharmacological effects. Several drugs, such as anti-neoplastic biomolecules having short biological half-lives and prompt enzyme degradability capacity, must be appropriate for administration employing either chemically bridged or physically constructed nano-gel frameworks. The comprehensive review summarizes the advancement in the preparation and characterization methods of targeted nano-gel with enhanced pharmacological potential and preserved intracellular safety limits for the mitigation of skin malignancies with a special emphasize on skin cancer inducing pathophysiological pathways and prospective research opportunities for skin malignancy targeted nano-gels.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Biswajit Basu
- Department of Pharmaceutical Technology, Global College of Pharmaceutical Technology, Krishnagar 741102, West Bengal, India
| | - Dipanjana Ash
- Department of Pharmaceutics, BCDA College of Pharmacy & Technology, Kolkata 700127, West Bengal, India
| | - Swarnali Dutta
- Department of Pharmacology, Birla Institute of Technology, Ranchi 835215, Jharkhand, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS Deemed-to-Be University, Shirpur 425405, Maharashtra, India
| | - Vijay R Chidrawar
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Ananthapuramu 515721, Andhra Pradesh, India
| | - Havagiray Chitme
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| |
Collapse
|
23
|
Ibrahim YS, Amin AH, Jawhar ZH, Alghamdi MA, Al-Awsi GRL, Shbeer AM, Al-Ghamdi HS, Gabr GA, Ramírez-Coronel AA, Almulla AF. "To be or not to Be": Regulatory T cells in melanoma. Int Immunopharmacol 2023; 118:110093. [PMID: 37023699 DOI: 10.1016/j.intimp.2023.110093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
In spite of progresses in the therapy of different malignancies, melanoma still remains as one of lethal types of skin tumor. Melanoma is almost easily treatable by surgery alone with higher overall survival rates when it is diagnosed at early stages. However, survival rates are decreased remarkably upon survival if the tumor is progressed to advanced metastatic stages. Immunotherapeutics have been prosperous in the development of anti-tumor responses in patients with melanoma through promotion of the tumor-specific effector T cells in vivo; nonetheless, suitable clinical outcomes have not been satisfactory. One of the underlying causes of the unfavorable clinical outcomes might stem from adverse effects of regulatory T (Treg) cell, which is a prominent mechanism of tumor cells to escape from tumor-specific immune responses. Evidence shows that a poor prognosis and low survival rate in patients with melanoma can be attributed to a higher Treg cell number and function in these subjects. As a result, to promote melanoma-specific anti-tumor responses, depletion of Treg cells appears to be a promising approach; even though the clinical efficacy of different approaches to attain appropriate Treg cell depletion has been inconsistent. Here in this review, the main purpose is to assess the role of Treg cells in the initiation and perpetuation of melanoma and to discuss effective strategies for Treg cell modulation with the aim of melanoma therapy.
Collapse
Affiliation(s)
- Yousif Saleh Ibrahim
- Department of Medical Laboratory Techniques, Al-maarif University College, Ramadi, Al-Anbar, Iraq
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq; Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammad A Alghamdi
- Internal Medicine Department, Faculty of Medicine, Albaha University, Saudi Arabia
| | | | - Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Hasan S Al-Ghamdi
- Internal Medicine Department, Division of Dermatology, Faculty of Medicine, Albaha University, Albaha City, Saudi Arabia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt.
| | - Andrés Alexis Ramírez-Coronel
- Catholic University of Cuenca, Azogues Campus, Ecuador; University of Palermo, Buenos Aires, Argentina; National University of Education, Azogues, Ecuador; CES University, Colombia
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| |
Collapse
|
24
|
Ge Q, Liu Y, Yang F, Sun G, Guo J, Sun S. Chinese Pedigree with Hereditary Gastrointestinal Stromal Tumors: A Case Report and Literature Review. Int J Mol Sci 2023; 24:830. [PMID: 36614290 PMCID: PMC9820900 DOI: 10.3390/ijms24010830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Familial gastrointestinal stromal tumor (GIST) is a rare autosomal dominant genetic disorder with only a few affected families reported to date. Here, we report a case of familial GISTs harboring a novel germline mutation within exon 18 of KIT. A 58-year-old male patient presented with gastric subepithelial lesions accompanied by cutaneous hyperpigmentation, which were subsequently diagnosed as multinodular GISTs. Endoscopic surgery was initially conducted to remove the larger lesions, and pathological examinations were then conducted for the diagnosis of GISTs. Family history revealed that some other family members had similar cutaneous pigmentations. Whole-exome sequencing was used to search for potential driver mutations, and Sanger sequencing was used for mutation validation. A novel primary driver mutation of KIT (c.G2485C, p.A829P) was detected in these hereditary GISTs, which has been reported in some targeted chemotherapy-resistant GISTs. Cell models were subsequently established for the rapid screening of candidate drugs and exploring potential mechanisms. This mutation could lead to cell proliferation and imatinib resistance by ligand-independent activation of KIT; however, ripretinib administration was identified as an applicable targeted therapy for this mutation. The mutation activated the JAK/STAT3 and MAPK/ERK pathways, which could be inhibited by ripretinib administration. To the best of our knowledge, this is the first report of the KIT-A829P mutation in familial GISTs, complementing the pathogenesis of familial GISTs and providing valuable information for the precision treatment of this disease.
Collapse
Affiliation(s)
- Qichao Ge
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China
- Innovative Research Center for Integrated Cancer Omics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yang Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China
- Innovative Research Center for Integrated Cancer Omics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Fan Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China
| | - Guangwei Sun
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jintao Guo
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China
| |
Collapse
|
25
|
Wu Y, Li H, Tan L, Lai Y, Li Z. Different clinico-pathological and prognostic features of vulvar, vaginal, and cervical melanomas. Hum Pathol 2023; 131:87-97. [PMID: 36370822 DOI: 10.1016/j.humpath.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Female genital tract melanoma (FGTM) is a rare and aggressive melanocytic malignancy, and its clinico-pathological and prognostic features at different anatomic sites have not yet been fully described. We retrospectively analyzed and compared the clinico-pathological data and survival outcomes of patients with primary lower genital tract melanoma enrolled between January 2005 and December 2020. We identified 95 patients with FGTM, of whom 46 had vulvar melanomas (VuM), 43 had vaginal melanomas (VaM), and six had cervical melanomas (CM). The clinical characteristics of all 95 cases, including symptoms, single or multiple primary lesions, clinical stage, surgery, and histopathological characteristics of 62 primary untreated cases, including pigmentation, predominant cytology, histological pattern, mitotic figures, and tumor-infiltrating lymphocytes of VuM, VaM, and CM, differed significantly. In comparison, only trend differences in molecular alternations were evident (p = 0.077). Disease-specific survival (DSS) was 30.7% at 5 years (46.5%, 25.6%, and 44.4% for VuM, VaM and CM, respectively). Seventy-one (85.5%) patients experienced FGTM recurrence. The median time to the first recurrence was 11 months, and VaM recurred earlier than VM and CM (16, 6, and 10 months for VuM, VaM, and CM, respectively, p = 0.038). A univariate analysis of 50 cases revealed the negative factors of disease-specific survival (DSS), including the location of the vagina and the presence of ulceration, and the negative factors of recurrence-free survival (RFS), including multiple lesions, the presence of ulceration, and the presence of lymphovascular invasion. Multiple lesions showed a borderline correlation with DSS. A multivariate Cox regression analyses of 50 cases revealed that the presence of ulceration was associated with shorter DSS and RFS (yes vs. no, Hazard Ratio = 2.400 and 2.716, respectively). Vaginal location showed a significant correlation with DSS (Hazard Ratio = 2.750, p = 0.024). In conclusion, vulval, vaginal, and cervical melanomas may differ in terms of their clinico-pathological features and associations with DSS and RFS. Ulceration and vaginal location were significantly associated with shorter DSS, and ulceration was associated with an increased risk of FGTM recurrence.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Huan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Luxin Tan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Yumei Lai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
26
|
Mercurio AC, Maniar AB, Wei AZ, Carvajal RD. Targeting the IL-2 pathway for the treatment of mucosal melanoma. Expert Opin Orphan Drugs 2022. [DOI: 10.1080/21678707.2022.2134776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Ann C. Mercurio
- Columbia University Irving Medical Center Department of Medicine, Division of Hematology & Oncology, 177 Fort Washington Avenue, 10032, New York, NY, USA
- New York Medical College, School of Medicine, 40 Sunshine Cottage Road, 10595, Valhalla, NY, USA
| | - Ashray B. Maniar
- Columbia University Irving Medical Center Department of Medicine, Division of Hematology & Oncology, 177 Fort Washington Avenue, 10032, New York, NY, USA
| | - Alexander Z. Wei
- Columbia University Irving Medical Center Department of Medicine, Division of Hematology & Oncology, 177 Fort Washington Avenue, 10032, New York, NY, USA
| | - Richard D. Carvajal
- Columbia University Irving Medical Center Department of Medicine, Division of Hematology & Oncology, 177 Fort Washington Avenue, 10032, New York, NY, USA
| |
Collapse
|
27
|
Liu W, Gajendran B, Sample KM, Wang C, Hu A, Chen B, Li Y, Zacksenhaus E, Ben-David Y. A critical ETV4/Twist1/Vimentin axis in Ha-RAS-induced aggressive breast cancer. Cancer Gene Ther 2022; 29:1590-1599. [PMID: 35477769 DOI: 10.1038/s41417-022-00471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023]
Abstract
RAS oncogenes are major drivers of diverse types of cancer. However, they are largely not druggable, and therefore targeting critical downstream pathways and dependencies is an attractive approach. We have isolated a tumorigenic cell line (FE1.2), which exhibits mesenchymal characteristics, after inoculating Ha-Ras-expressing retrovirus into mammary glands of rats, and subsequently isolated a non-aggressive revertant cell line (FC5). This revertant has lost the rat Ha-Ras driver and showed a more epithelial morphology, slower proliferation in culture, and reduced tumorigenicity in vivo. Re-expression of human Ha-RAS in these cells (FC5-RAS) reinduced mesenchymal morphology, higher proliferation rate, and tumorigenicity that was still significantly milder than parental FE1.2 cells. RNA-seq analysis of FC5-RAS vs FC5-Vector cells identified multiple genes whose expressions were regulated by Ha-RAS. This analysis also identified many genes including those controlling cell growth whose expression was altered by loss of HA-Ras in FC5 cells but remained unchanged upon reintroduction of Ha-RAS. These results suggest that targeting the Ha-Ras driver oncogene induces partial tumor regression, but it still denotes strong efficacy for cancer therapy. Among the RAS-responsive genes, we identified Twist1 as a critical mediator of epithelial-to-mesenchymal transition through the direct transcriptional regulation of vimentin. Mechanistically, we show that Twist1 is induced by the ETS gene, ETV4, downstream of Ha-RAS, and that inhibition of ETV4 suppressed the growth of breast cancer cells driven by the Ha-RAS pathway. Targeting the ETV4/Twist1/Vimentin axis may therefore offer a therapeutic modality for breast tumors driven by the Ha-RAS pathway.
Collapse
Affiliation(s)
- Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants/College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants/College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China.,School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Klarke M Sample
- State Key Laboratory for Functions and Applications of Medicinal Plants/College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants/College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants/College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China
| | - Beiling Chen
- State Key Laboratory for Functions and Applications of Medicinal Plants/College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China
| | - Yanmei Li
- State Key Laboratory for Functions and Applications of Medicinal Plants/College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Advanced Diagnostics, Toronto General Research Institute-University Health Network, Toronto, ON, Canada
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants/College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China.
| |
Collapse
|
28
|
Advanced Acral Melanoma Therapies: Current Status and Future Directions. Curr Treat Options Oncol 2022; 23:1405-1427. [PMID: 36125617 PMCID: PMC9526689 DOI: 10.1007/s11864-022-01007-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Melanoma is one of the deadliest malignancies. Its incidence has been significantly increasing in most countries in recent decades. Acral melanoma (AM), a peculiar subgroup of melanoma occurring on the palms, soles, and nails, is the main subtype of melanoma in people of color and is extremely rare in Caucasians. Although great progress has been made in melanoma treatment in recent years, patients with AM have shown limited benefit from current therapies and thus consequently have worse overall survival rates. Achieving durable therapeutic responses in this high-risk melanoma subtype represents one of the greatest challenges in the field. The frequency of BRAF mutations in AM is much lower than that in cutaneous melanoma, which prevents most AM patients from receiving treatment with BRAF inhibitors. However, AM has more frequent mutations such as KIT and CDK4/6, so targeted therapy may still improve the survival of some AM patients in the future. AM may be less susceptible to immune checkpoint inhibitors because of the poor immunogenicity. Therefore, how to enhance the immune response to the tumor cells may be the key to the application of immune checkpoint inhibitors in advanced AM. Anti-angiogenic drugs, albumin paclitaxel, or interferons are thought to enhance the effectiveness of immune checkpoint inhibitors. Combination therapies based on the backbone of PD-1 are more likely to provide greater clinical benefits. Understanding the molecular landscapes and immune microenvironment of AM will help optimize our combinatory strategies.
Collapse
|
29
|
Treatment of Metastatic Melanoma with a Combination of Immunotherapies and Molecularly Targeted Therapies. Cancers (Basel) 2022; 14:cancers14153779. [PMID: 35954441 PMCID: PMC9367420 DOI: 10.3390/cancers14153779] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Immunotherapies and molecularly targeted therapies have drastically changed the therapeutic approach for unresectable advanced or metastatic melanoma. The majority of melanoma patients have benefitted from these therapies; however, some patients acquire resistance to them. Novel combinations of immunotherapies and molecularly targeted therapies may be more efficient in treating these patients. In this review, we discuss various combination therapies under pre-clinical and clinical development which can reduce toxicity, enhance efficacy, and prevent recurrences in patients with metastatic melanoma. Abstract Melanoma possesses invasive metastatic growth patterns and is one of the most aggressive types of skin cancer. In 2021, it is estimated that 7180 deaths were attributed to melanoma in the United States alone. Once melanoma metastasizes, traditional therapies are no longer effective. Instead, immunotherapies, such as ipilimumab, pembrolizumab, and nivolumab, are the treatment options for malignant melanoma. Several biomarkers involved in tumorigenesis have been identified as potential targets for molecularly targeted melanoma therapy, such as tyrosine kinase inhibitors (TKIs). Unfortunately, melanoma quickly acquires resistance to these molecularly targeted therapies. To bypass resistance, combination treatment with immunotherapies and single or multiple TKIs have been employed and have been shown to improve the prognosis of melanoma patients compared to monotherapy. This review discusses several combination therapies that target melanoma biomarkers, such as BRAF, MEK, RAS, c-KIT, VEGFR, c-MET and PI3K. Several of these regimens are already FDA-approved for treating metastatic melanoma, while others are still in clinical trials. Continued research into the causes of resistance and factors influencing the efficacy of these combination treatments, such as specific mutations in oncogenic proteins, may further improve the effectiveness of combination therapies, providing a better prognosis for melanoma patients.
Collapse
|
30
|
Shi C, Gu Z, Xu S, Ju H, Wu Y, Han Y, Li J, Li C, Wu J, Wang L, Li J, Zhou G, Ye W, Ren G, Zhang Z, Zhou R. Candidate therapeutic agents in a newly established triple wild-type mucosal melanoma cell line. Cancer Commun (Lond) 2022; 42:627-647. [PMID: 35666052 PMCID: PMC9257989 DOI: 10.1002/cac2.12315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mucosal melanoma has characteristically distinct genetic features and typically poor prognosis. The lack of representative mucosal melanoma models, especially cell lines, has hindered translational research on this melanoma subtype. In this study, we aimed to establish and provide the biological properties, genomic features and the pharmacological profiles of a mucosal melanoma cell line that would contribute to the understanding and treatment optimization of molecularly-defined mucosal melanoma subtype. METHODS The sample was collected from a 67-year-old mucosal melanoma patient and processed into pieces for the establishment of cell line and patient-derived xenograft (PDX) model. The proliferation and tumorigenic property of cancer cells from different passages were evaluated, and whole-genome sequencing (WGS) was performed on the original tumor, PDX, established cell line, and the matched blood to confirm the establishment and define the genomic features of this cell line. AmpliconArchitect was conducted to depict the architecture of amplified regions detected by WGS. High-throughput drug screening (HTDS) assay including a total of 103 therapeutic agents was implemented on the established cell line, and selected candidate agents were validated in the corresponding PDX model. RESULTS A mucosal melanoma cell line, MM9H-1, was established which exhibited robust proliferation and tumorigenicity after more than 100 serial passages. Genomic analysis of MM9H-1, corresponding PDX, and the original tumor showed genetic fidelity across genomes, and MM9H-1 was defined as a triple wild-type (TWT) melanoma subtype lacking well-characterized "driver mutations". Instead, the amplification of several oncogenes, telomerase reverse transcriptase (TERT), v-Raf murine sarcoma viral oncogene homolog B1 (BRAF), melanocyte Inducing transcription factor (MITF) and INO80 complex ATPase subunit (INO80), via large-scale genomic rearrangement potentially contributed to oncogenesis of MM9H-1. Moreover, HTDS identified proteasome inhibitors, especially bortezomib, as promising therapeutic candidates for MM9H-1, which was verified in the corresponding PDX model in vivo. CONCLUSIONS We established and characterized a new mucosal melanoma cell line, MM9H-1, and defined this cell line as a TWT melanoma subtype lacking well-characterized "driver mutations". The MM9H-1 cell line could be adopted as a unique model for the preclinical investigation of mucosal melanoma.
Collapse
|
31
|
Garbe C, Amaral T, Peris K, Hauschild A, Arenberger P, Basset-Seguin N, Bastholt L, Bataille V, Del Marmol V, Dréno B, Fargnoli MC, Forsea AM, Grob JJ, Höller C, Kaufmann R, Kelleners-Smeets N, Lallas A, Lebbé C, Lytvynenko B, Malvehy J, Moreno-Ramirez D, Nathan P, Pellacani G, Saiag P, Stratigos AJ, Van Akkooi ACJ, Vieira R, Zalaudek I, Lorigan P. European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics: Update 2022. Eur J Cancer 2022; 170:236-255. [PMID: 35570085 DOI: 10.1016/j.ejca.2022.03.008] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 01/02/2023]
Abstract
Cutaneous melanoma (CM) is potentially the most dangerous form of skin tumor and causes 90% of skin cancer mortality. A unique collaboration of multi-disciplinary experts from the European Dermatology Forum (EDF), the European Association of Dermato-Oncology (EADO) and the European Organization for Research and Treatment of Cancer (EORTC) was formed to make recommendations on CM diagnosis and treatment, based on systematic literature reviews and the experts' experience. The diagnosis of melanoma can be made clinically and shall always be confirmed with dermatoscopy. If a melanoma is suspected, a histopathological examination is always required. Sequential digital dermatoscopy and full body photography can be used in high-risk patients to improve the detection of early melanoma. Where available, confocal reflectance microscopy can also improve clinical diagnosis in special cases. Melanoma shall be classified according to the 8th version of the American Joint Committee on Cancer classification. Thin melanomas up to 0.8 mm tumor thickness do not require further imaging diagnostics. From stage IB onwards, examinations with lymph node sonography are recommended, but no further imaging examinations. From stage IIC onwards whole-body examinations with computed tomography (CT) or positron emission tomography CT (PET-CT) in combination with brain magnetic resonance imaging are recommended. From stage III and higher, mutation testing is recommended, particularly for BRAF V600 mutation. It is important to provide a structured follow-up to detect relapses and secondary primary melanomas as early as possible. There is no evidence to define the frequency and extent of examinations. A stage-based follow-up scheme is proposed which, according to the experience of the guideline group, covers the optimal requirements, but further studies may be considered. This guideline is valid until the end of 2024.
Collapse
Affiliation(s)
- Claus Garbe
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany.
| | - Teresa Amaral
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | - Ketty Peris
- Institute of Dermatology, Università Cattolica, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Axel Hauschild
- Department of Dermatology, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Petr Arenberger
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nicole Basset-Seguin
- Université Paris Cite, AP-HP Department of Dermatology INSERM U 976 Hôpital Saint Louis Paris France
| | - Lars Bastholt
- Department of Oncology, Odense University Hospital, Denmark
| | - Veronique Bataille
- Twin Research and Genetic Epidemiology Unit, School of Basic & Medical Biosciences, King's College London, London, SE1 7EH, UK
| | - Veronique Del Marmol
- Department of Dermatology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Brigitte Dréno
- Dermatology Department, CHU Nantes, CIC 1413, CRCINA, University Nantes, Nantes, France
| | - Maria C Fargnoli
- Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ana-Maria Forsea
- Dermatology Department, Elias University Hospital, Carol Davila University of Medicine and Pharmacy Bucharest, Romania
| | | | - Christoph Höller
- Department of Dermatology, Medical University of Vienna, Austria
| | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergology, Frankfurt University Hospital, Frankfurt, Germany
| | - Nicole Kelleners-Smeets
- Department of Dermatology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Aimilios Lallas
- First Department of Dermatology, Aristotle University, Thessaloniki, Greece
| | - Celeste Lebbé
- Université Paris Cite, AP-HP Department of Dermatology INSERM U 976 Hôpital Saint Louis Paris France
| | - Bohdan Lytvynenko
- Shupyk National Medical Academy of Postgraduate Education, Kiev, Ukraine
| | - Josep Malvehy
- Melanoma Unit, Department of Dermatology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - David Moreno-Ramirez
- Medical-&-Surgical Dermatology Service, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Paul Nathan
- Mount-Vernon Cancer Centre, Northwood United Kingdom
| | | | - Philippe Saiag
- University Department of Dermatology, Université de Versailles-Saint Quentin en Yvelines, APHP, Boulogne, France
| | - Alexander J Stratigos
- 1st Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Alexander C J Van Akkooi
- Melanoma Institute Australia, The University of Sydney, Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Ricardo Vieira
- Department of Dermatology and Venereology, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Iris Zalaudek
- Dermatology Clinic, Maggiore Hospital, University of Trieste, Trieste, Italy
| | - Paul Lorigan
- The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| |
Collapse
|
32
|
Yang L, Liu Y, Wang T. Case Report: A Missense Mutation of KIT in Hyperpigmentation and Lentigines Unassociated With Systemic Disorders: Report of a Chinese Pedigree and a Literature Review. Front Med (Lausanne) 2022; 9:847382. [PMID: 35692550 PMCID: PMC9174787 DOI: 10.3389/fmed.2022.847382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
Background KIT is a proto-oncogene that is involved in the proliferation, survival, and regulation of melanocytes, mast cells, and the interstitial cells of Cajal. Mutations of KIT have been reported to be associated with hyperpigmentation and lentigines, mastocytosis, and gastrointestinal stromal tumors (GISTs). Some hotspot mutations of KIT have been reported to be associated with mastocytosis and GISTs, while the relationship between KIT mutations and hyperpigmentation and lentigines has not been fully elucidated. Methods In this study, we presented a three-generation Chinese pedigree with progressive hyperpigmentation and generalized lentigines inherited in an autosomal dominant pattern. High-throughput sequencing was performed to capture genetic variations in peripheral blood samples of the proband. Also, Sanger sequencing was performed to further verify the result. We also reviewed previous literature on KIT mutations with hyperpigmentation and lentigines. Results A missense mutation of the KIT gene was identified: c. 2485G > C, which was co-segregated in the proband and his insulted father. Germline KIT mutations presenting as generalized hyperpigmentation and lentigines without systemic disorders are rare, with only two reports of c. 2485G > C mutation associated with this phenotype in previous literature. Conclusion Our pedigree, together with those two reports, indicates a possible phenotype-genotype correlation of this germline KIT mutation, which might be helpful for genetic counseling, further functional segregation of KIT, and design of targeted therapy in the future.
Collapse
|
33
|
Njauw CN, Ji Z, Pham DM, Simoneau A, Kumar R, Flaherty KT, Zou L, Tsao H. Oncogenic KIT Induces Replication Stress and Confers Cell Cycle Checkpoint Vulnerability in Melanoma. J Invest Dermatol 2022; 142:1413-1424.e6. [PMID: 34687746 DOI: 10.1016/j.jid.2021.07.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/19/2023]
Abstract
Acral and mucosal melanomas arise from sun-protected sites, disproportionately impact darker-skinned individuals, and exact higher mortality than common types of cutaneous melanoma. Genetically, acral and mucosal melanomas harbor more alterations of KIT than typical cutaneous melanomas. Because KIT-mutated melanomas remain largely treatment resistant, we set out to create a faithful murine KIT-driven allograft model to define newer therapeutic strategies. Using the prevalent human KITK642E activating mutation, the murine mKITK641E cellular avatars show features of transformation in vitro and tumorigenicity in immunocompetent C57BL/6J mice. mKITK641E cells proliferate more rapidly, exhibit greater chromosomal aberrations, and sustain three-dimensional spheroid expansion and aggressive tumor growth in C57BL/6J mice compared with their vector-controlled cells. We further verified the functional dependence of these cells on KITK641E with both genetic and pharmacologic suppression. Using these cells, we performed a screen of 199 kinase inhibitors and identified a selective vulnerability to Chk1/ATR inhibition in the KITK641E-activated cells. Mechanistically, we subsequently showed that KITK641E induces a significantly increased level of replication stress compared with murine vector‒controlled cells. These results showcase an allograft model of human KIT-driven melanomas, which uncovered an unappreciated role for replication stress in KIT melanomagenesis and implicated a possible therapeutic strategy with Chk1/ATR inhibitors.
Collapse
Affiliation(s)
- Ching-Ni Njauw
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhenyu Ji
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Duc Minh Pham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Antoine Simoneau
- Mass General Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Raj Kumar
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Keith T Flaherty
- Mass General Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lee Zou
- Mass General Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hensin Tsao
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Mass General Cancer Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
34
|
Hirai I, Tanese K, Fukuda K, Fusumae T, Nakamura Y, Sato Y, Amagai M, Funakoshi T. Imatinib mesylate in combination with pembrolizumab in patients with advanced KIT-mutant melanoma following progression on standard therapy: A phase I/II trial and study protocol. Medicine (Baltimore) 2021; 100:e27832. [PMID: 34889232 PMCID: PMC8663894 DOI: 10.1097/md.0000000000027832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Genetic alterations of KIT gene are known to be one of the major causes of melanoma. Those are more common in the mucous and acral subtypes and KIT is regarded as major oncogene in Asian melanomas, where the prevalence of these subtypes is high. Up to date, several clinical trials have been conducted to target KIT gene alterations in melanoma with unsatisfied efficacies. Imatinib mesylate, a small-molecule inhibitor of the KIT tyrosine kinase, provides a rapid but not durable clinical response in KIT-mutant melanoma. Meanwhile, recent basic and clinical evidence have revealed another aspect of KIT-targeted therapy, namely the enhancement of antitumor activity of immune checkpoint inhibitors. Herein, we designed clinical trial of co-administrating imatinib mesylate and pembrolizumab (anti-PD-1 antibody) to evaluate its safety and efficacy. METHODS AND ANALYSIS This is an open-label, single-arm, phase I/II clinical trial involving Japanese patients with metastatic KIT-mutant melanoma that are refractory to standard therapy including anti-PD-1 therapy. Phase I study is a dose-escalation study comprising two dose levels of imatinib mesylate (200 and 400 mg/day, respectively) with fixed dose of pembrolizumab (200 mg every 3 weeks) to evaluate safety and tolerability and determine recommended phase II dose. The primary endpoint of the phase II study is the objective response rate after 4 cycles (3 weeks/cycle) of pembrolizumab and imatinib mesylate at the dose determined in phase I, based on RECIST version 1.1. A Simon's minimax two-stage design is employed to test the null hypothesis of a 5% response rate vs 30% alternative, which will be rejected when a lower confidence limit of two-sided 90% confidence interval of true response rate is over than threshold response rate. The secondary endpoints include progression free survival, overall survival, best overall response and incidence of adverse events. Totally, a target size of 22 patients will be expected. DISCUSSION If this study shows efficacy and acceptable safety profile, it will contribute to the development of novel treatment option for patients with KIT-mutant melanoma that are refractory to standard therapy. TRIAL REGISTRATION NCT04546074. Date of Registration: September 11, 2020 (https://clinicaltrials.gov/ct2/show/NCT04546074). Date of First Participant Enrollment: December 23, 2020.
Collapse
Affiliation(s)
- Ikuko Hirai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Keiji Tanese
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Keitaro Fukuda
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takayuki Fusumae
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshio Nakamura
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Sato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
c-Kit inhibitors for unresectable or metastatic mucosal, acral or chronically sun-damaged melanoma: a systematic review and one-arm meta-analysis. Eur J Cancer 2021; 157:348-357. [PMID: 34562816 DOI: 10.1016/j.ejca.2021.08.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/15/2021] [Accepted: 08/09/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Activating genomic alterations of the receptor tyrosine kinase KIT are found preferentially in certain melanoma subtypes such as acral and mucosal melanoma or melanoma arising in chronically sun-damaged skin. However, the therapeutic value of c-Kit inhibitors for these subtypes currently remains unclear. OBJECTIVES The objective of this study was to summarise the efficacy and safety of c-Kit inhibitors for unresectable or metastatic mucosal, acral or chronically sun-damaged melanoma. METHODS We performed a systematic literature research in MEDLINE, Embase and CENTRAL and hand searched pertinent trial registers and conference abstracts for eligible trials until 23rd June 2020. Results were pooled using a random-effects model to calculate pooled proportions of objective response rates (ORRs) and severe adverse events (sAEs) from unselected KIT mutant or amplified cohorts. RESULTS Nineteen single-arm studies with an overall sample size of 601 patients were included. The studies investigated imatinib (n = 8), nilotinib (n = 7), dasatinib (n = 3) and sunitinib (n = 1). The pooled ORR for all inhibitors was 15% (95% confidence interval [CI]: 12-18%). Subgroup analysis revealed the highest ORR (20%; 95% CI: 14-26%) for nilotinib. The ORR for mucosal melanoma was 14% (95% CI: 6-24%) and 22% for acral lentiginous melanoma (95% CI: 14-30%). At least one sAE was reported in 42% of patients (95% CI: 34-50%). CONCLUSIONS c-Kit inhibitors represent a valuable treatment option for patients with KIT-mutant melanoma, in particular for mutations of exons 11 and 13. Furthermore, high-quality trials are urgently needed to investigate putative combinations of specific targeted therapies with immunotherapy.
Collapse
|
36
|
Prognostic Roles of BRAF, KIT, NRAS, IGF2R and SF3B1 Mutations in Mucosal Melanomas. Cells 2021; 10:cells10092216. [PMID: 34571863 PMCID: PMC8468625 DOI: 10.3390/cells10092216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The prognostic value of commonly recurrent mutations remains unclear in mucosal melanomas. METHODS Clinicopathologic parameters of 214 cases of mucosal melanomas diagnosed in 1989-2020 in several clinical institutions were analyzed. NRAS, KIT, BRAF, IGF2R and SF3B1 mutational analyses by Sanger sequencing and next generation sequencing-based assay were performed in a subset of cases. RESULTS Of the triple (BRAF, NRAS, NF1)-negative cases, APC, KIT and KRAS are detected mainly in sinonasal, vulvovaginal and anorectal melanomas, respectively. NRAS, KIT, BRAF, IGF2R and SF3B1 mutations are detected in 19% (37/198), 22% (44/197), 12% (25/201), 16% (22/138) and 15% (20/133) of cases, respectively. In univariate analyses, advanced stage (p = 0.016), 65 years or older (p = 0.048) and presence of ulceration (p = 0.027) are significantly correlated with worse overall survival (OS), respectively. NRAS mutation significantly correlates with worse OS (p = 0.028) and worse melanoma-specific survival (MSS) (p = 0.03) for all cases of mucosal melanomas. In multivariate analyses, NRAS mutation remains as an independent predictor of worse OS (p = 0.036) and worse MSS (p = 0.024). CONCLUSION NRAS mutation is a predictor of worse survival, independent of stage in mucosal melanomas. The significance of frequently mutated IGF2R in mucosal melanomas remains unclear.
Collapse
|
37
|
Peterková K, Durník I, Marek R, Plavec J, Podbevšek P. c-kit2 G-quadruplex stabilized via a covalent probe: exploring G-quartet asymmetry. Nucleic Acids Res 2021; 49:8947-8960. [PMID: 34365512 PMCID: PMC8421218 DOI: 10.1093/nar/gkab659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022] Open
Abstract
Several sequences forming G-quadruplex are highly conserved in regulatory regions of genomes of different organisms and affect various biological processes like gene expression. Diverse G-quadruplex properties can be modulated via their interaction with small polyaromatic molecules such as pyrene. To investigate how pyrene interacts with G-rich DNAs, we incorporated deoxyuridine nucleotide(s) with a covalently attached pyrene moiety (Upy) into a model system that forms parallel G-quadruplex structures. We individually substituted terminal positions and positions in the pentaloop of the c-kit2 sequence originating from the KIT proto-oncogene with Upy and performed a detailed NMR structural study accompanied with molecular dynamic simulations. Our results showed that incorporation into the pentaloop leads to structural polymorphism and in some cases also thermal destabilization. In contrast, terminal positions were found to cause a substantial thermodynamic stabilization while preserving topology of the parent c-kit2 G-quadruplex. Thermodynamic stabilization results from π–π stacking between the polyaromatic core of the pyrene moiety and guanine nucleotides of outer G-quartets. Thanks to the prevalent overall conformation, our structures mimic the G-quadruplex found in human KIT proto-oncogene and could potentially have antiproliferative effects on cancer cells.
Collapse
Affiliation(s)
- Kateřina Peterková
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Ivo Durník
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Radek Marek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
| | - Peter Podbevšek
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
38
|
Ma Y, Xia R, Ma X, Judson-Torres RL, Zeng H. Mucosal Melanoma: Pathological Evolution, Pathway Dependency and Targeted Therapy. Front Oncol 2021; 11:702287. [PMID: 34350118 PMCID: PMC8327265 DOI: 10.3389/fonc.2021.702287] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Mucosal melanoma (MM) is a rare melanoma subtype that originates from melanocytes within sun-protected mucous membranes. Compared with cutaneous melanoma (CM), MM has worse prognosis and lacks effective treatment options. Moreover, the endogenous or exogenous risk factors that influence mucosal melanocyte transformation, as well as the identity of MM precursor lesions, are ambiguous. Consequently, there remains a lack of molecular markers that can be used for early diagnosis, and therefore better management, of MM. In this review, we first summarize the main functions of mucosal melanocytes. Then, using oral mucosal melanoma (OMM) as a model, we discuss the distinct pathologic stages from benign mucosal melanocytes to metastatic MM, mapping the possible evolutionary trajectories that correspond to MM initiation and progression. We highlight key areas of ambiguity during the genetic evolution of MM from its benign lesions, and the resolution of which could aid in the discovery of new biomarkers for MM detection and diagnosis. We outline the key pathways that are altered in MM, including the MAPK pathway, the PI3K/AKT pathway, cell cycle regulation, telomere maintenance, and the RNA maturation process, and discuss targeted therapy strategies for MM currently in use or under investigation.
Collapse
Affiliation(s)
- Yanni Ma
- Department of Oncology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Ronghui Xia
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuhui Ma
- Department of Oral & Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Robert L Judson-Torres
- Department of Dermatology, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, Salt Lake City, UT, United States
| | - Hanlin Zeng
- Department of Oncology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| |
Collapse
|
39
|
Strashilov S, Yordanov A. Aetiology and Pathogenesis of Cutaneous Melanoma: Current Concepts and Advances. Int J Mol Sci 2021; 22:6395. [PMID: 34203771 PMCID: PMC8232613 DOI: 10.3390/ijms22126395] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Melanoma develops from malignant transformations of the pigment-producing melanocytes. If located in the basal layer of the skin epidermis, melanoma is referred to as cutaneous, which is more frequent. However, as melanocytes are be found in the eyes, ears, gastrointestinal tract, genitalia, urinary system, and meninges, cases of mucosal melanoma or other types (e.g., ocular) may occur. The incidence and morbidity of cutaneous melanoma (cM) are constantly increasing worldwide. Australia and New Zealand are world leaders in this regard with a morbidity rate of 54/100,000 and a mortality rate of 5.6/100,000 for 2015. The aim of this review is to consolidate and present the data related to the aetiology and pathogenesis of cutaneous melanoma, thus rendering them easier to understand. In this article we will discuss these problems and the possible impacts on treatment for this disease.
Collapse
Affiliation(s)
- Strahil Strashilov
- Department of Plastic Restorative, Reconstructive and Aesthetic Surgery, University Hospital “Dr. Georgi Stranski”, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Angel Yordanov
- Clinic of Gynecologic Oncology, University Hospital “Dr. Georgi Stranski”, Medical University Pleven, 5800 Pleven, Bulgaria;
| |
Collapse
|
40
|
Oba J, Woodman SE. The genetic and epigenetic basis of distinct melanoma types. J Dermatol 2021; 48:925-939. [PMID: 34008215 DOI: 10.1111/1346-8138.15957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
Melanoma represents the deadliest skin cancer. Recent therapeutic developments, including targeted and immune therapies have revolutionized clinical management and improved patient outcome. This progress was achieved by rigorous molecular and functional studies followed by robust clinical trials. The identification of key genomic alterations and gene expression profiles have propelled the understanding of distinct characteristics within melanoma subtypes. The aim of this review is to summarize and highlight the main genetic and epigenetic findings of melanomas and highlight their pathological and therapeutic importance.
Collapse
Affiliation(s)
- Junna Oba
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Scott E Woodman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
41
|
Brouwer NJ, Verdijk RM, Heegaard S, Marinkovic M, Esmaeli B, Jager MJ. Conjunctival melanoma: New insights in tumour genetics and immunology, leading to new therapeutic options. Prog Retin Eye Res 2021; 86:100971. [PMID: 34015548 DOI: 10.1016/j.preteyeres.2021.100971] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Recent developments in oncology have led to a better molecular and cellular understanding of cancer, and the introduction of novel therapies. Conjunctival melanoma (CoM) is a rare but potentially devastating disease. A better understanding of CoM, leading to the development of novel therapies, is urgently needed. CoM is characterized by mutations that have also been identified in cutaneous melanoma, e.g. in BRAF, NRAS and TERT. These mutations are distinct from the mutations found in uveal melanoma (UM), affecting genes such as GNAQ, GNA11, and BAP1. Targeted therapies that are successful in cutaneous melanoma may therefore be useful in CoM. A recent breakthrough in the treatment of patients with metastatic cutaneous melanoma was the development of immunotherapy. While immunotherapy is currently sparsely effective in intraocular tumours such as UM, the similarities between CoM and cutaneous melanoma (including in their immunological tumour micro environment) provide hope for the application of immunotherapy in CoM, and preliminary clinical data are indeed emerging to support this use. This review aims to provide a comprehensive overview of the current knowledge regarding CoM, with a focus on the genetic and immunologic understanding. We elaborate on the distinct position of CoM in contrast to other types of melanoma, and explain how new insights in the pathophysiology of this disease guide the development of new, personalized, treatments.
Collapse
Affiliation(s)
- Niels J Brouwer
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Robert M Verdijk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pathology, Leiden University Medica Center, Leiden, the Netherlands; Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Pathology, Eye Pathology Section, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Marina Marinkovic
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Bita Esmaeli
- Department of Plastic Surgery, Orbital Oncology and Ophthalmic Plastic Surgery, M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
42
|
Anko M, Kobayashi Y, Banno K, Aoki D. Current Status and Prospects of Immunotherapy for Gynecologic Melanoma. J Pers Med 2021; 11:jpm11050403. [PMID: 34065883 PMCID: PMC8151394 DOI: 10.3390/jpm11050403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Gynecologic melanomas are rare and have a poor prognosis. Although immunotherapy (immune checkpoint inhibitors) and targeted therapy has greatly improved the systemic treatment of cutaneous melanoma (CM) in recent years, its efficacy in gynecologic melanomas remains uncertain because of the rarity of this malignancy and its scarce literature. This review aimed to evaluate the literature of gynecologic melanomas treated with immunotherapy and targeted therapy through a PubMed search. We identified one study focusing on the overall survival of gynecologic melanomas separately and five case series and nine case reports concentrating on gynecologic melanomas treated with an immune checkpoint inhibitor and/or targeted therapy. Furthermore, the KIT mutation has the highest rate among all mutations in mucosal melanoma types. The KIT inhibitors (Tyrosine kinase inhibitors: TKIs) imatinib and nilotinib could be the treatment options. Moreover, immune checkpoint inhibitors combined with KIT inhibitors may potentially treat cases of resistance to immune checkpoint inhibitors. However, because of the different conditions and a small number of cases, it is difficult to evaluate the efficacy of immunotherapy and targeted therapy for gynecologic melanoma rigorously at this time. Further prospective cohort or randomized trials of gynecologic melanoma alone are needed to assess the treatment with solid evidence.
Collapse
|
43
|
Guhan SM, Shaughnessy M, Rajadurai A, Taylor M, Kumar R, Ji Z, Rashid S, Flaherty K, Tsao H. The Molecular Context of Vulnerability for CDK9 Suppression in Triple Wild-Type Melanoma. J Invest Dermatol 2021; 141:2018-2027.e4. [PMID: 33745909 DOI: 10.1016/j.jid.2020.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/05/2020] [Accepted: 12/18/2020] [Indexed: 10/21/2022]
Abstract
Approximately half of melanoma tumors lack a druggable target and are unresponsive to current targeted therapeutics. One proposed approach for treating these therapeutically orphaned tumors is by targeting transcriptional dependencies (oncogene starvation), whereby survival factors are depleted through inhibition of transcriptional regulators. A drug screen identified a CDK9 inhibitor (SNS-032) to have therapeutic selectivity against wild-type (wt) BRAFwt/NRASwt melanomas compared with BRAFmut/NRASmut mutated melanomas. We then used two strategies to inhibit CDK9 in vitro-a CDK9 degrader (TS-032) and a selective CDK9 kinase inhibitor (NVP-2). At 500 nM, both TS-032 and NVP-2 demonstrated greater suppression of BRAFwt/NRASwt/NF1wt cutaneous and uveal melanomas than mutant melanomas. RNA sequencing analysis of eight melanoma lines with NVP-2 treatment demonstrated that the context of this vulnerability appears to converge on a cell cycle network that includes many transcriptional regulators, such as the E2F family members. The Cancer Genome Atlas human melanoma tumor data further supported a potential oncogenic role for E2F1 and E2F2 in BRAFwt/NRASwt/NF1wt tumors and a direct link to CDK9. Our results suggest that transcriptional blockade through selective targeting of CDK9 is an effective method of suppressing therapeutically orphaned BRAF/NRAS/NF1 wt melanomas.
Collapse
Affiliation(s)
- Samantha M Guhan
- Harvard Medical School, Boston, Massachusetts, USA; Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael Shaughnessy
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Anpuchchelvi Rajadurai
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael Taylor
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Raj Kumar
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Zhenyu Ji
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sarem Rashid
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Keith Flaherty
- Massachusetts General Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hensin Tsao
- Harvard Medical School, Boston, Massachusetts, USA; Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA; Massachusetts General Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
44
|
Worrede A, Douglass SM, Weeraratna AT. The dark side of daylight: photoaging and the tumor microenvironment in melanoma progression. J Clin Invest 2021; 131:143763. [PMID: 33720046 DOI: 10.1172/jci143763] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Continued thinning of the atmospheric ozone, which protects the earth from damaging ultraviolet radiation (UVR), will result in elevated levels of UVR reaching the earth's surface, leading to a drastic increase in the incidence of skin cancer. In addition to promoting carcinogenesis in skin cells, UVR is a potent extrinsic driver of age-related changes in the skin known as "photoaging." We are in the preliminary stages of understanding of the role of intrinsic aging in melanoma, and the tumor-permissive effects of photoaging on the skin microenvironment remain largely unexplored. In this Review, we provide an overview of the impact of UVR on the skin microenvironment, addressing changes that converge or diverge with those observed in intrinsic aging. Intrinsic and extrinsic aging promote phenotypic changes to skin cell populations that alter fundamental processes such as melanogenesis, extracellular matrix deposition, inflammation, and immune response. Given the relevance of these processes in cancer, we discuss how photoaging might render the skin microenvironment permissive to melanoma progression.
Collapse
Affiliation(s)
- Asurayya Worrede
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Stephen M Douglass
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Genomic Characterization of Radiation-Induced Intracranial Undifferentiated Pleomorphic Sarcoma. Case Rep Genet 2021; 2021:5586072. [PMID: 33747576 PMCID: PMC7960067 DOI: 10.1155/2021/5586072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/01/2022] Open
Abstract
Intracranial undifferentiated pleomorphic sarcoma remains a rare pathology within the sarcoma literature that may arise primarily or secondary after radiation therapy. Despite first-line treatment with maximal surgical resection, followed by nonstandardized adjuvant chemotherapy/radiation regimens, clinical prognosis remains exceedingly poor. Furthermore, there is a lack of genetic or molecular characterization to guide potential for targeted therapies. We present genomic analysis of a radiation-induced intracranial undifferentiated pleomorphic sarcoma in an 83-year-old woman with notable KIT and PDGFRA alterations. Further similar genomic studies of intracranial pleomorphic sarcoma are needed to develop better therapies for this rare but challenging disease entity.
Collapse
|
46
|
Majem M, Manzano JL, Marquez-Rodas I, Mujika K, Muñoz-Couselo E, Pérez-Ruiz E, de la Cruz-Merino L, Espinosa E, Gonzalez-Cao M, Berrocal A. SEOM clinical guideline for the management of cutaneous melanoma (2020). Clin Transl Oncol 2021; 23:948-960. [PMID: 33651321 PMCID: PMC8057998 DOI: 10.1007/s12094-020-02539-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Melanoma affects about 6000 patients a year in Spain. A group of medical oncologists from Spanish Society of Medical Oncology (SEOM) and Spanish Multidisciplinary Melanoma Group (GEM) has designed these guidelines to homogenize the management of these patients. The diagnosis must be histological and determination of BRAF status has to be performed in patients with stage ≥ III. Stage I–III resectable melanomas will be treated surgically. In patients with stage III melanoma, adjuvant treatment with immunotherapy or targeted therapy is also recommended. Patients with unresectable or metastatic melanoma will receive treatment with immunotherapy or targeted therapy, the optimal sequence of these treatments remains unclear. Brain metastases require a separate consideration, since, in addition to systemic treatment, they may require local treatment. Patients must be followed up closely to receive or change treatment as soon as their previous clinical condition changes, since multiple therapeutic options are available.
Collapse
Affiliation(s)
- M Majem
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, c/Sant Antoni Maria Claret 167, 08025, Barcelona, Spain.
| | - J L Manzano
- Department of Medical Oncology, H. Germans Trias i Pujol, Catalan Institute of Oncology, ICO-Badalona, Badalona, Spain
| | - I Marquez-Rodas
- Department of Medical Oncology, Instituto de Investigación Sanitaria Gregorio Marañón and CIBERONC, Madrid, Spain
| | - K Mujika
- Department of Medical Oncology, UGC de Oncología de Gipuzkoa, OSI Donostialdea-Onkologikoa, Guipúzcoa, Spain
| | - E Muñoz-Couselo
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Hospital Vall d'Hebron Barcelona, Barcelona, Spain
| | - E Pérez-Ruiz
- Department of Medical Oncology, Hospital Costa del Sol and UGC Oncol, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional Virgen Victoria, Málaga, Spain
| | - L de la Cruz-Merino
- Department of Medical Oncology, Hospital Universitario Virgen Macarena, Seville, Spain.,Medicine Department, Universidad de Sevilla, Seville, Spain
| | - E Espinosa
- Department of Medical Oncology, Hospital Universitario La Paz, CIBERONC, Madrid, Spain
| | - M Gonzalez-Cao
- Oncology Department (IOR), Hospital Dexeus, Barcelona, Spain
| | - A Berrocal
- Department of Medical Oncology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| |
Collapse
|
47
|
Hernández IB, Kromhout JZ, Teske E, Hennink WE, van Nimwegen SA, Oliveira S. Molecular targets for anticancer therapies in companion animals and humans: what can we learn from each other? Theranostics 2021; 11:3882-3897. [PMID: 33664868 PMCID: PMC7914358 DOI: 10.7150/thno.55760] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Despite clinical successes in the treatment of some early stage cancers, it is undeniable that novel and innovative approaches are needed to aid in the fight against cancer. Targeted therapies offer the desirable feature of tumor specificity while sparing healthy tissues, thereby minimizing side effects. However, the success rate of translation of these therapies from the preclinical setting to the clinic is dramatically low, highlighting an important point of necessary improvement in the drug development process in the oncology field. The practice of a comparative oncology approach can address some of the current issues, by introducing companion animals with spontaneous tumors in the linear drug development programs. In this way, animals from the veterinary clinic get access to novel/innovative therapies, otherwise inaccessible, while generating robust data to aid therapy refinement and increase translational success. In this review, we present an overview of targetable membrane proteins expressed in the most well-characterized canine and feline solid cancers, greatly resembling the counterpart human malignancies. We identified particular areas in which a closer collaboration between the human and veterinary clinic would benefit both human and veterinary patients. Considerations and challenges to implement comparative oncology in the development of anticancer targeted therapies are also discussed.
Collapse
|
48
|
Zhang M, Liang J, Jiang SK, Xu L, Wu YL, Awadasseid A, Zhao XY, Xiong XQ, Sugiyama H, Zhang W. Design, synthesis and anti-cancer activity of pyrrole-imidazole polyamides through target-downregulation of c-kit gene expression. Eur J Med Chem 2020; 207:112704. [DOI: 10.1016/j.ejmech.2020.112704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/12/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022]
|
49
|
Song X, Hu Y, Li Y, Shao R, Liu F, Liu Y. Overview of current targeted therapy in gallbladder cancer. Signal Transduct Target Ther 2020; 5:230. [PMID: 33028805 PMCID: PMC7542154 DOI: 10.1038/s41392-020-00324-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/08/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023] Open
Abstract
Gallbladder cancer (GBC) is rare, but is the most malignant type of biliary tract tumor. Unfortunately, only a small population of cancer patients is acceptable for the surgical resection, the current effective regimen; thus, the high mortality rate has been static for decades. To substantially circumvent the stagnant scenario, a number of therapeutic approaches owing to the creation of advanced technologic measures (e.g., next-generation sequencing, transcriptomics, proteomics) have been intensively innovated, which include targeted therapy, immunotherapy, and nanoparticle-based delivery systems. In the current review, we primarily focus on the targeted therapy capable of specifically inhibiting individual key molecules that govern aberrant signaling cascades in GBC. Global clinical trials of targeted therapy in GBC are updated and may offer great value for novel pathologic and therapeutic insights of this deadly disease, ultimately improving the efficacy of treatment.
Collapse
Affiliation(s)
- Xiaoling Song
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Yunping Hu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Yongsheng Li
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Rong Shao
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Fatao Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, 200092, Shanghai, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Yingbin Liu
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| |
Collapse
|
50
|
Tumor Microenvironment: Implications in Melanoma Resistance to Targeted Therapy and Immunotherapy. Cancers (Basel) 2020; 12:cancers12102870. [PMID: 33036192 PMCID: PMC7601592 DOI: 10.3390/cancers12102870] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The response to pharmacological treatments is deeply influenced by the tight interactions between the tumor cells and the microenvironment. In this review we describe, for melanoma, the most important mechanisms of resistance to targeted therapy and immunotherapy mediated by the components of the microenvironment. In addition, we briefly describe the most recent therapeutic advances for this pathology. The knowledge of molecular mechanisms, which are underlying of drug resistance, is fundamental for the development of new therapeutic approaches for the treatment of melanoma patients. Abstract Antitumor therapies have made great strides in recent decades. Chemotherapy, aggressive and unable to discriminate cancer from healthy cells, has given way to personalized treatments that, recognizing and blocking specific molecular targets, have paved the way for targeted and effective therapies. Melanoma was one of the first tumor types to benefit from this new care frontier by introducing specific inhibitors for v-Raf murine sarcoma viral oncogene homolog B (BRAF), mitogen-activated protein kinase kinase (MEK), v-kit Hardy–Zuckerman 4 feline sarcoma viral oncogene homolog (KIT), and, recently, immunotherapy. However, despite the progress made in the melanoma treatment, primary and/or acquired drug resistance remains an unresolved problem. The molecular dynamics that promote this phenomenon are very complex but several studies have shown that the tumor microenvironment (TME) plays, certainly, a key role. In this review, we will describe the new melanoma treatment approaches and we will analyze the mechanisms by which TME promotes resistance to targeted therapy and immunotherapy.
Collapse
|