1
|
Xiao J, Wang H, Callahan C, O’Donnell G, Rodriguez S, Staupe RP, Balibar CJ, Citron MP. Immunogenicity of RSV Fusion Protein Adsorbed to Non-Pathogenic Bacillus subtilis Spores: Implications for Mucosal Vaccine Delivery in Nonclinical Animal Models. Biomedicines 2025; 13:1112. [PMID: 40426939 PMCID: PMC12109483 DOI: 10.3390/biomedicines13051112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Mucosal vaccines are rare but commercially desirable because of their real and theoretical biological advantages. Spores and vegetative forms from Bacillus have been used as probiotics due to their stability under various environmental conditions, including heat, gastric acidity, and moisture. Preclinical studies have shown that Bacillus subtilis (B. subtilis) spores can serve as effective mucosal adjuvants. Our study aimed to evaluate B. subtilis spores as a mucosal adjuvant. Methods and Results: We demonstrate in rodents that the fusion protein (F) from respiratory syncytial virus (RSV), when combined with either heat-inactivated or live B. subtilis spores, elicits robust IgG binding and neutralizes antibody titers following both systemic and intranasal administration in mice. The spores facilitate TH-1 and local IgA responses, which could enhance antiviral protection. However, this vaccine failed to elicit measurable antibodies when immunized using a strict intranasal administration method in cotton rats. Conclusions: Our findings illustrate the differing immune responses between the two rodent species, highlighting the need for the careful consideration of validated methods when evaluating intranasal vaccines in preclinical studies.
Collapse
Affiliation(s)
- Jianying Xiao
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| | - Hao Wang
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| | - Cheryl Callahan
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| | - Gregory O’Donnell
- Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ 07065, USA; (G.O.); (S.R.)
| | - Silveria Rodriguez
- Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ 07065, USA; (G.O.); (S.R.)
| | - Ryan P. Staupe
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| | - Carl J. Balibar
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| | - Michael P. Citron
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| |
Collapse
|
2
|
Shi L, Wang J, Wei T, Liang Z, Zhang L, Li C, Liu T, Fan W, MinZhang. Analysis of research trends and hotspots in the primary treatment of end-stage renal disease. Int Urol Nephrol 2025; 57:1513-1531. [PMID: 39589637 DOI: 10.1007/s11255-024-04290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND There is a lack of bibliometric analysis in research regarding primary therapy for end-stage renal disease (ESRD). This study aims to analyze the literature on ESRD therapy published over the past decade to understand current conditions and study trends for future research. METHODS Data were collected from the Web of Science Core Collection (WOSCC) database. Tools like CiteSpace 6.2.R4, 6.1.R6, VOSviewer 1.6.18, and Bibliometrix R4.1.1 were used to reveal research trends and hotspots. In addition, KEGG/GO analysis examined the probable functionalities of genes implicated in ESRD therapy to guide future research. RESULTS The bibliometric analysis presented in this paper indicates that the number of publications has remained relatively stable since 2013. The level of international collaboration is notably high, with the United States serving as the dominant research hub in this field. The University of California system is the most prolific institution, and Transplantation Proceedings is the most frequently published journal in this area. Kalantar-Zadeh, Kamyar is recognized as the most published and cited author. Keywords such as "secondary hyperparathyroidism," "uremic toxins," "cyclosporine," "mycophenolate mofetil," and "biomarkers" have seen a surge in interest recently, reflecting emerging research trends. Furthermore, inflammation and stem cell research have been identified as promising new therapeutic avenues for ESRD. CONCLUSION This study identifies major areas, frontiers, and trends in research on primary treatments for ESRD, providing significant implications for future research.
Collapse
Affiliation(s)
- LuYao Shi
- Department of Nephrology, First Affiliated Hospital, Kunming Medical University, No.295, Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Jian Wang
- Department of Nephrology, The Second People's Hospital of Baoshan City, Baoshan, Yunnan Province, China
| | - Tao Wei
- Library, Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhang Liang
- Department of Science and Technology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Le Zhang
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - ChangYan Li
- Department of Nephrology, First Affiliated Hospital, Kunming Medical University, No.295, Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Tao Liu
- Organ Transplantation Center, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan Province, China
| | - WenXing Fan
- Department of Nephrology, First Affiliated Hospital, Kunming Medical University, No.295, Xichang Road, Kunming, 650032, Yunnan Province, China.
| | - MinZhang
- Clinical Pharmacy Center, First Affiliated Hospital, Kunming Medical University, No.295, Xichang Road, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
3
|
Ding S, Alexander E, Liang H, Kulchar RJ, Singh R, Herzog RW, Daniell H, Leong KW. Synthetic and Biogenic Materials for Oral Delivery of Biologics: From Bench to Bedside. Chem Rev 2025; 125:4009-4068. [PMID: 40168474 DOI: 10.1021/acs.chemrev.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The development of nucleic acid and protein drugs for oral delivery has lagged behind their production for conventional nonoral routes. Over the past decade, the evolution of DNA- and RNA-based technologies combined with the innovation of state-of-the-art delivery vehicles for nucleic acids has brought rapid advancements to the biopharmaceutical field. Nucleic acid therapies have the potential to achieve long-lasting effects, or even cures, by inhibiting or editing genes, which is not possible with conventional small-molecule drugs. However, challenges and limitations must be addressed before these therapies can provide cures for chronic conditions and rare diseases, rather than only offering temporary relief. Nucleic acids and proteins face premature degradation in the acidic, enzyme-rich stomach environment and are rapidly cleared by the liver. To overcome these challenges, various delivery vehicles have been developed to transport therapeutic compounds to the intestines, where the active compounds are released and gut microbiota and mucosal immune system also play an important role. This review provides a comprehensive overview of the promises and pitfalls associated with the oral route of administration of biologics, current delivery systems, applications of orally delivered therapeutics, and the challenges and considerations for translation of nucleic acid and protein therapeutics into clinical practice.
Collapse
Affiliation(s)
- Suwan Ding
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Huiyi Liang
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Rachel J Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
4
|
Xin X, Wu D, Zhao P, Li Y, Qin H, Dai J, Zhou Y, Lyu Y, Yang Y, Zhu Y, Shi H, Yang L, Yin L. Catch-to-Amplify Nanoparticles with Bacteria Surface for Sequential Mucosal Immune Activation for Acute Myeloid Leukemia Therapy. ACS NANO 2025; 19:14661-14679. [PMID: 40202129 DOI: 10.1021/acsnano.4c08515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Mucosal-mediated immune deficiency is associated with immune evasion and poor clinical outcomes in acute myeloid leukemia (AML). Here, we describe the elicitation of mucosal and systemic immune response by oral delivery of MDP-modified PEG-lipid (MDP-PEG-DSPE) and polylactic acid-polyhistidine (PLA-PHis) copolymer constructed nanosystem (mPOD) into Peyer's patches. To protect against gastrointestinal degradation, enteric-soluble capsules are utilized for encapsulating mPOD to promote penetration across intestinal mucus and engender robust Peyer's patch targeting initiated by MDP-PEG-DSPE. Compared with intravenous and intramuscular administration, the oral delivery of MDP-PEG-DSPE and 5'-triphosphate-modified RNA (ppp-RNA) into gut-associated lymphoid tissues reinforces dendritic cell maturation and migration, amplifies mucosal immune response, and boosts the production of secretory immunoglobulin A via retinoic acid-inducible gene I/nucleotide-binding oligomerization domain 2 (RIG-I/NOD2) signaling activation. In the AML murine model, the provoked mucosal immunity positively regulates the systemic cytotoxic immune reactions, which, in turn, eradicate disseminated malignant leukemic cells and provide defense against leukemia attacks.
Collapse
MESH Headings
- Animals
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Nanoparticles/chemistry
- Mice
- Immunity, Mucosal/drug effects
- Humans
- Mice, Inbred C57BL
- Polyethylene Glycols/chemistry
Collapse
Affiliation(s)
- Xiaofei Xin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Di Wu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Pengbo Zhao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Huanyu Qin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinyu Dai
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yong Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yifu Lyu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hang Shi
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Lei Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Talbot A, de Koning-Ward TF, Layton D. Left out in the cold - inequity in infectious disease control due to cold chain disparity. Vaccine 2025; 45:126648. [PMID: 39708516 DOI: 10.1016/j.vaccine.2024.126648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Vaccines and diagnostic tools stand out as among the most influential advancements in public health, credited with averting an estimated 6 million deaths annually and substantially alleviating the burden of infectious disease. Despite this progress, the global imperative to prevent, detect, and combat infectious disease persists. Regrettably, hundreds of thousands of lives are still lost due to inadequate access to vaccines and diagnostics. A critical obstacle in accessibility lies in the requirement of reliable cold chain for their transportation and storage, a resource that remains inadequate in many regions, particularly in the developing world. Various factors, including socio-economic disparities, biological complexities, and manufacturing processes, exert significant influence on the availability and integrity of vaccines and diagnostic materials. This review aims to explore the multifaceted issue of inequality in access to disease control tools, examining the vulnerabilities of vaccines and diagnostics while also investigating recent advancements that offer promising solutions to improve thermal stability.
Collapse
Affiliation(s)
- Aimee Talbot
- CSIRO, Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia; School of Medicine, Deakin University, Geelong, Victoria, Australia; Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Geelong, Victoria, Australia; Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
| | - Daniel Layton
- CSIRO, Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia.
| |
Collapse
|
6
|
Liang X, Zhou J, Wang M, Wang J, Song H, Xu Y, Li Y. Progress and prospect of polysaccharides as adjuvants in vaccine development. Virulence 2024; 15:2435373. [PMID: 39601191 PMCID: PMC11622597 DOI: 10.1080/21505594.2024.2435373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024] Open
Abstract
Vaccines are an effective approach to confer immunity against infectious diseases. Modern subunit vaccines offer more precise target and safe protection compared to traditional whole-pathogen vaccines. However, subunit vaccines require adjuvants to stimulate the immune system due to the less immunogenicity. Adjuvants strengthen immunogenicity by enhancing, modulating, and prolonging the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new vaccine adjuvants with the characteristics of safety, efficacy, and cost-effectiveness. Notably, some natural polysaccharides have been approved as adjuvants in human vaccines, owing to their intrinsic immunomodulation, low toxicity, and high safety. Natural polysaccharides are mainly derived from plants, bacteria, and yeast. Partly owing to the difficulty of obtaining them, synthetic polysaccharides emerged in clinical trials. The immune mechanisms of both natural and synthetic polysaccharides remain incompletely understood, hindering the rational development of polysaccharide adjuvants. This comprehensive review primarily focused on several promising polysaccharide adjuvants, discussing their recent applications in vaccines and highlighting their immune-modulatory effects. Furthermore, the future perspectives of polysaccharides offer insightful guidance to adjuvant development and application.
Collapse
Affiliation(s)
- Xinlong Liang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiaying Zhou
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Mengmeng Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jing Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Houhui Song
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yigang Xu
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yuan Li
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
- Research and Development Department, Zhejiang Huijia Biotechnology Co. Ltd ., Huzhou, People’s Republic of China
| |
Collapse
|
7
|
Hopo MG, Mabrok M, Abu-Elala N, Yu Y. Navigating Fish Immunity: Focus on Mucosal Immunity and the Evolving Landscape of Mucosal Vaccines. BIOLOGY 2024; 13:980. [PMID: 39765647 PMCID: PMC11727089 DOI: 10.3390/biology13120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025]
Abstract
The growing role of aquaculture in global food security has underscored the need for advanced immunological insights to protect fish health and boost productivity. As aquaculture's importance rises, understanding fish immunity is crucial for developing effective vaccination strategies. Fish possess a specialized immune system with unique mucosal structures that enable resilience in aquatic environments. This review examines critical advances in fish mucosal immunity, particularly focusing on mucosal vaccines that target infection at primary entry points, such as the gills, skin, and gastrointestinal tract. Mucosal vaccination has demonstrated a compelling capacity to stimulate localized and systemic immune responses, offering enhanced protection against waterborne pathogens. Additionally, this review addresses knowledge gaps from previous research on the global aquaculture vaccines market by offering a regional perspective on industry developments, recent trends, and innovative vaccine formulations. In doing so, it highlights the role of mucosal vaccines in overcoming the specific challenges of fish farming and supporting sustainable aquaculture. This synthesis of current methodologies, industry practices, and future directions contributes to a deeper understanding of fish immunology, ultimately informing strategies to achieve optimal disease management and bolster global aquaculture resilience.
Collapse
Affiliation(s)
- Mai G. Hopo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Mahmoud Mabrok
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr 46612, Egypt
| | - Nermeen Abu-Elala
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
- Department of Animal Medicine, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr 46612, Egypt
| | - Yongyao Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
8
|
Le NMT, So KK, Kim DH. Oral immunization against foot-and-mouth disease virus using recombinant Saccharomyces cerevisiae with the improved expression of the codon-optimized VP1 fusion protein. Vet Microbiol 2024; 296:110192. [PMID: 39032444 DOI: 10.1016/j.vetmic.2024.110192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
VP1, a major immunogenic protein of foot-and-mouth disease virus (FMDV), facilitates viral attachment and entry into host cells. VP1 possesses critical epitope sequences responsible for inducing neutralizing antibodies but its expression using Saccharomyces cerevisiae has been hampered despite evidence that the presence of VP1 does not negatively impact the yeast's biology. In this study, we fused proteins to enhance VP1 expression using S. cerevisiae. Among short P1 chimeras containing VP1 including VP3-VP1 and VP2-VP1, VP3-VP1 fusion proteins showed higher expression levels than VP2-VP1. We subsequently designed new fusion proteins, of which 20 amino acids of N-terminal VP3 fused with VP1-Co1 (referred to 20aaVP3-VP1-Co1) showed the highest expression level. Lowering the culture temperature from 30 ⁰C to 20 ⁰C further enhanced fusion protein production. The highest expression level of 20aaVP3-VP1-Co1 was estimated to be 7.7 mg/L, which is comparable to other heterologous proteins produced using our S. cerevisiae expression system. Oral administration of the cell expressing 20aaVP3-VP1-Co1 induced VP1-specific IgG and IgA responses in mice. The S. cerevisiae-expressed 20aaVP3-VP1-Co1 fusion protein induced a significant immune response to the FMDV structural epitope protein, which opens the possibility of an oral FMDV vaccine.
Collapse
Affiliation(s)
- Ngoc My Tieu Le
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Kum-Kang So
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
| | - Dae-Hyuk Kim
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea; Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea; Department of Molecular Biology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
9
|
Biswas M, Nurunnabi M, Khatun Z. Understanding Mucosal Physiology and Rationale of Formulation Design for Improved Mucosal Immunity. ACS APPLIED BIO MATERIALS 2024; 7:5037-5056. [PMID: 38787767 DOI: 10.1021/acsabm.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The oral and nasal cavities serve as critical gateways for infectious pathogens, with microorganisms primarily gaining entry through these routes. Our first line of defense against these invaders is the mucosal membrane, a protective barrier that shields the body's internal systems from infection while also contributing to vital functions like air and nutrient intake. One of the key features of this mucosal barrier is its ability to protect the physiological system from pathogens. Additionally, mucosal tolerance plays a crucial role in maintaining homeostasis by regulating the pH and water balance within the body. Recognizing the importance of the mucosal barrier, researchers have developed various mucosal formulations to enhance the immune response. Mucosal vaccines, for example, deliver antigens directly to mucosal tissues, triggering local immune stimulation and ultimately inducing systemic immunity. Studies have shown that lipid-based formulations such as liposomes and virosomes can effectively elicit both local and systemic immune responses. Furthermore, mucoadhesive polymeric particles, with their prolonged delivery to target sites, have demonstrated an enhanced immune response. This Review delves into the critical role of material selection and delivery approaches in optimizing mucosal immunity.
Collapse
Affiliation(s)
- Mila Biswas
- Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| |
Collapse
|
10
|
Gao S, Zuo W, Kang C, Zou Z, Zhang K, Qiu J, Shang X, Li J, Zhang Y, Zuo Q, Zhao Y, Jin M. Saccharomyces cerevisiae oral immunization in mice using multi-antigen of the African swine fever virus elicits a robust immune response. Front Immunol 2024; 15:1373656. [PMID: 38742108 PMCID: PMC11089227 DOI: 10.3389/fimmu.2024.1373656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
African swine fever virus (ASFV) is one of the most complex viruses. ASFV is a serious threat to the global swine industry because no commercial vaccines against this virus are currently available except in Vietnam. Moreover, ASFV is highly stable in the environment and can survive in water, feed, and aerosols for a long time. ASFV is transmitted through the digestive and respiratory tract. Mucosal immunity is the first line of defense against ASFV. Saccharomyces cerevisiae (SC), which has been certified by the U.S. Food and Drug Administration and has a generally recognized as safe status in the food industry, was used for oral immunization in this study. ASFV antigens were effectively expressed in recombinant SC strains with high DNA copy numbers and stable growth though surface display technology and chromosome engineering (δ-integration). The recombinant SC strains containing eight ASFV antigens-KP177R, E183L, E199L, CP204L, E248R, EP402R, B602L, and B646L- induced strong humoral and mucosal immune responses in mice. There was no antigenic competition, and these antigens induced Th1 and Th2 cellular immune responses. Therefore, the oral immunization strategy using recombinant SC strains containing multiple ASFV antigens demonstrate potential for future testing in swine, including challenge studies to evaluate its efficacy as a vaccine against ASFV.
Collapse
Affiliation(s)
- Shuo Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Wenfeng Zuo
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Chao Kang
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Zhong Zou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Kaiqi Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jun Qiu
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Xiaomin Shang
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Jingjing Li
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Yuanfeng Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Qi Zuo
- Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Ya Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Temchura V, Wagner JT, Damm D. Immunogenicity of Recombinant Lipid-Based Nanoparticle Vaccines: Danger Signal vs. Helping Hand. Pharmaceutics 2023; 16:24. [PMID: 38258035 PMCID: PMC10818441 DOI: 10.3390/pharmaceutics16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Infectious diseases are a predominant problem in human health. While the incidence of many pathogenic infections is controlled by vaccines, some pathogens still pose a challenging task for vaccine researchers. In order to face these challenges, the field of vaccine development has changed tremendously over the last few years. For non-replicating recombinant antigens, novel vaccine delivery systems that attempt to increase the immunogenicity by mimicking structural properties of pathogens are already approved for clinical applications. Lipid-based nanoparticles (LbNPs) of different natures are vesicles made of lipid layers with aqueous cavities, which may carry antigens and other biomolecules either displayed on the surface or encapsulated in the cavity. However, the efficacy profile of recombinant LbNP vaccines is not as high as that of live-attenuated ones. This review gives a compendious picture of two approaches that affect the immunogenicity of recombinant LbNP vaccines: (i) the incorporation of immunostimulatory agents and (ii) the utilization of pre-existing or promiscuous cellular immunity, which might be beneficial for the development of tailored prophylactic and therapeutic LbNP vaccine candidates.
Collapse
Affiliation(s)
- Vladimir Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | | | - Dominik Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
12
|
Hu Y, Xing Y, Yue H, Chen T, Diao Y, Wei W, Zhang S. Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities. Chem Soc Rev 2023; 52:7262-7293. [PMID: 37751298 DOI: 10.1039/d3cs00510k] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Ionic liquids (ILs), due to their inherent structural tunability, outstanding miscibility behavior, and excellent electrochemical properties, have attracted significant research attention in the biomedical field. As the application of ILs in biomedicine is a rapidly emerging field, there is still a need for systematic analyses and summaries to further advance their development. This review presents a comprehensive survey on the utilization of ILs in the biomedical field. It specifically emphasizes the diverse structures and properties of ILs with their relevance in various biomedical applications. Subsequently, we summarize the mechanisms of ILs as potential drug candidates, exploring their effects on various organisms ranging from cell membranes to organelles, proteins, and nucleic acids. Furthermore, the application of ILs as extractants and catalysts in pharmaceutical engineering is introduced. In addition, we thoroughly review and analyze the applications of ILs in disease diagnosis and delivery systems. By offering an extensive analysis of recent research, our objective is to inspire new ideas and pathways for the design of innovative biomedical technologies based on ILs.
Collapse
Affiliation(s)
- Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Abbasi K, Tahamtan Y, Moazamian E, Hosseini MH. Formalin and ferric chloride inactivated Pasteurella multocida type a adjuvanted with bacterial DNA and alum as a new vaccine candidate in sheep pasteurellosis. Microb Pathog 2023; 183:106282. [PMID: 37591320 DOI: 10.1016/j.micpath.2023.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
The aim of the present study was to investigate humoral and cellular immune responses in sheep inoculated with inactivated P. multocida antigen with alum and bacterial DNA adjuvant by identifying IgG and cytokines from serum and cell culture. Sheep were immunized with iron and formalin-inactivated antigens at an interval of 2 weeks. These immunogens were mixed with alum adjuvant and P. multocida type A DNA (AbDNA). After injection and blood sampling, the serum antibody titer and cellular immune responses (IL-4, IFN-γ, and TNF-α) on serum samples and lymphocyte cell were tested by ELISA. The ELISA results showed a higher antibody titer in the bDNA adjuvant group compared to the alum adjuvant group and the control group. In general, the level of IgG in the serum of immunized animals was significantly increased compared to the control group. The peak antibody titer (1.794) was observed on the 28th day of injection in the IIV-AbDNA group. After immunization, inactivation with iron and bDNA adjuvant increased cytokine production compared to other experimental and control groups. High levels of lymphocyte and serum titers of IL-4, IFN-γ, and TNF-α were also obtained in the IIV-AbDNA group. The findings showed that killed P. multocida type A antigens formulated with bacterial DNA as an adjuvant are candidates for new immunogens against P. multocida infections in sheep. The inactivation of bacteria with iron also enhanced proper immune responses.
Collapse
Affiliation(s)
- Keivandokht Abbasi
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Yahya Tahamtan
- Department of Microbiology, Shiraz Branch, Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization, Shiraz, Iran.
| | - Elham Moazamian
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mohammad Hossein Hosseini
- Department of Microbiology, Shiraz Branch, Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization, Shiraz, Iran
| |
Collapse
|
14
|
Chau ECT, Kwong TC, Pang CK, Chan LT, Chan AML, Yao X, Tam JSL, Chan SW, Leung GPH, Tai WCS, Kwan YW. A Novel Probiotic-Based Oral Vaccine against SARS-CoV-2 Omicron Variant B.1.1.529. Int J Mol Sci 2023; 24:13931. [PMID: 37762235 PMCID: PMC10530581 DOI: 10.3390/ijms241813931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
COVID-19 pandemic, caused by the SARS-CoV-2 virus, is still affecting the entire world via the rapid emergence of new contagious variants. Vaccination remains the most effective prevention strategy for viral infection, yet not all countries have sufficient access to vaccines due to limitations in manufacturing and transportation. Thus, there is an urgent need to develop an easy-to-use, safe, and low-cost vaccination approach. Genetically modified microorganisms, especially probiotics, are now commonly recognized as attractive vehicles for delivering bioactive molecules via oral and mucosal routes. In this study, Lactobacillus casei has been selected as the oral vaccine candidate based on its' natural immunoadjuvant properties and the ability to resist acidic gastric environment, to express antigens of SARS-CoV-2 Omicron variant B.1.1.529 with B-cell and T-cell epitopes. This newly developed vaccine, OMGVac, was shown to elicit a robust IgG systemic immune response against the spike protein of Omicron variant B.1.1.529 in Golden Syrian hamsters. No adverse effects were found throughout this study, and the overall safety was evaluated in terms of physiological and histopathological examinations of different organs harvested. In addition, this study illustrated the use of the recombinant probiotic as a live delivery vector in the initiation of systemic immunity, which shed light on the future development of next-generation vaccines to combat emerging infectious diseases.
Collapse
Affiliation(s)
- Eddie Chung Ting Chau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (E.C.T.C.); (T.C.K.); (C.K.P.); (L.T.C.); (A.M.L.C.); (X.Y.)
| | - Tsz Ching Kwong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (E.C.T.C.); (T.C.K.); (C.K.P.); (L.T.C.); (A.M.L.C.); (X.Y.)
| | - Chun Keung Pang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (E.C.T.C.); (T.C.K.); (C.K.P.); (L.T.C.); (A.M.L.C.); (X.Y.)
| | - Lee Tung Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (E.C.T.C.); (T.C.K.); (C.K.P.); (L.T.C.); (A.M.L.C.); (X.Y.)
| | - Andrew Man Lok Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (E.C.T.C.); (T.C.K.); (C.K.P.); (L.T.C.); (A.M.L.C.); (X.Y.)
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (E.C.T.C.); (T.C.K.); (C.K.P.); (L.T.C.); (A.M.L.C.); (X.Y.)
| | - John Siu Lun Tam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (J.S.L.T.); (W.C.S.T.)
| | - Shun Wan Chan
- Department of Food and Health Sciences, Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong, China;
| | - George Pak Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China;
| | - William Chi Shing Tai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (J.S.L.T.); (W.C.S.T.)
| | - Yiu Wa Kwan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; (E.C.T.C.); (T.C.K.); (C.K.P.); (L.T.C.); (A.M.L.C.); (X.Y.)
| |
Collapse
|
15
|
Li D, Zhu L, Wang Y, Zhou X, Li Y. Bacterial outer membrane vesicles in cancer: Biogenesis, pathogenesis, and clinical application. Biomed Pharmacother 2023; 165:115120. [PMID: 37442066 DOI: 10.1016/j.biopha.2023.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Outer membrane vesicles (OMVs) are spherical, nano-sized particles of bilayer lipid structure secreted by Gram-negative bacteria. They contain a series of cargos from bacteria and are important messengers for communication between bacteria and their environment. OMVs play multiple roles in bacterial survival and adaptation and can affect host physiological functions and disease development by acting on host cell membranes and altering host cell signaling pathways. This paper summarizes the mechanisms of OMV genesis and the multiple roles of OMVs in the tumor microenvironment. Also, this paper discusses the prospects of OMVs for a wide range of applications in drug delivery, tumor diagnosis, and therapy.
Collapse
Affiliation(s)
- Deming Li
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Lisi Zhu
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Yuxiao Wang
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Xiangyu Zhou
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China.
| | - Yan Li
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
16
|
Hashemi P, Mahmoodi S, Ghasemian A. An updated review on oral protein-based antigen vaccines efficiency and delivery approaches: a special attention to infectious diseases. Arch Microbiol 2023; 205:289. [PMID: 37468763 DOI: 10.1007/s00203-023-03629-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Various infectious agents affect human health via the oral entrance. The majority of pathogens lack approved vaccines. Oral vaccination is a convenient, safe and cost-effective approach with the potential of provoking mucosal and systemic immunity and maintaining individual satisfaction. However, vaccines should overcome the intricate environment of the gastrointestinal tract (GIT). Oral protein-based antigen vaccines (OPAVs) are easier to administer than injectable vaccines and do not require trained healthcare professionals. Additionally, the risk of needle-related injuries, pain, and discomfort is eliminated. However, OPAVs stability at environmental and GIT conditions should be considered to enhance their stability and facilitate their transport and storage. These vaccines elicit the local immunity, protecting GIT, genital tract and respiratory epithelial surfaces, where numerous pathogens penetrate the body. OPAVs can also be manipulated (such as using specific incorporated ligand and receptors) to elicit targeted immune response. However, low bioavailability of OPAVs necessitates development of proper protein carriers and formulations to enhance their stability and efficacy. There are several strategies to improve their efficacy or protective effects, such as incorporation of adjuvants, enzyme inhibitors, mucoadhesive or penetrating devices and permeation enhancers. Hence, efficient delivery of OPAVs into GIT require proper delivery systems mainly including smart target systems, probiotics, muco-adhesive carriers, lipid- and plant-based delivery systems and nano- and microparticles.
Collapse
Affiliation(s)
- Parisa Hashemi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
17
|
Aroffu M, Manca ML, Pedraz JL, Manconi M. Liposome-based vaccines for minimally or noninvasive administration: an update on current advancements. Expert Opin Drug Deliv 2023; 20:1573-1593. [PMID: 38015659 DOI: 10.1080/17425247.2023.2288856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Vaccination requires innovation to provide effective protection. Traditional vaccines have several drawbacks, which can be overcome with advanced technologies and different administration routes. Over the past 10 years, a significant amount of research has focussed on the delivery of antigens into liposomes due to their dual role as antigen-carrying systems and vaccine adjuvants able to increase the immunogenicity of the carried antigen. AREAS COVERED This review encompasses the progress made over the last 10 years with liposome-based vaccines designed for minimally or noninvasive administration, filling the gaps in previous reviews and providing insights on composition, administration routes, results achieved, and Technology Readiness Level of the most recent formulations. EXPERT OPINION Liposome-based vaccines administered through minimally or noninvasive routes are expected to improve efficacy and complacency of vaccination programs. However, the translation from lab-scale production to large-scale production and collaborations with hospitals, research centers, and companies are needed to allow new products to enter the market and improve the vaccination programs in the future.
Collapse
Affiliation(s)
- Matteo Aroffu
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- BioAraba, NanoBioCel research Group, Vitoria-Gasteiz, Spain
| | - Maria Manconi
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| |
Collapse
|
18
|
Saggese A, Baccigalupi L, Donadio G, Ricca E, Isticato R. The Bacterial Spore as a Mucosal Vaccine Delivery System. Int J Mol Sci 2023; 24:10880. [PMID: 37446054 DOI: 10.3390/ijms241310880] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The development of efficient mucosal vaccines is strongly dependent on the use of appropriate vectors. Various biological systems or synthetic nanoparticles have been proposed to display and deliver antigens to mucosal surfaces. The Bacillus spore, a metabolically quiescent and extremely resistant cell, has also been proposed as a mucosal vaccine delivery system and shown able to conjugate the advantages of live and synthetic systems. Several antigens have been displayed on the spore by either recombinant or non-recombinant approaches, and antigen-specific immune responses have been observed in animals immunized by the oral or nasal route. Here we review the use of the bacterial spore as a mucosal vaccine vehicle focusing on the advantages and drawbacks of using the spore and of the recombinant vs. non-recombinant approach to display antigens on the spore surface. An overview of the immune responses induced by antigen-displaying spores so far tested in animals is presented and discussed.
Collapse
Affiliation(s)
- Anella Saggese
- Department of Biology, Federico II University, 80126 Naples, Italy
| | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80131 Naples, Italy
| | - Giuliana Donadio
- Department of Pharmacy, University of Salerno, 84084 Salerno, Italy
| | - Ezio Ricca
- Department of Biology, Federico II University, 80126 Naples, Italy
| | - Rachele Isticato
- Department of Biology, Federico II University, 80126 Naples, Italy
| |
Collapse
|