1
|
Li C, Gong H, Shi P, Liu S, Zhang Q. Different Forms of Regulated Cell Death in Type-2-Diabetes-Mellitus-Related Osteoporosis: A Focus on Mechanisms and Therapeutic Strategies. Int J Mol Sci 2025; 26:4417. [PMID: 40362655 PMCID: PMC12072526 DOI: 10.3390/ijms26094417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder with a high prevalence and challenging treatment options. It significantly affects the function of various organs, including bones, and imposes substantial social and economic costs. Chronic hyperglycemia, insulin resistance, and abnormalities in glucolipid metabolism can lead to cellular damage within the body. Bone dysfunction represents a significant characteristic of diabetic osteoporosis (DOP). Recent studies confirm that cell death is a critical factor contributing to bone damage. Regulated cell death (RCD) is a highly controlled process that involves numerous proteins and specific signaling cascades. RCD processes, including apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis, may be linked to the dysfunction of bone cells in T2DM. In this review, the cell death types of bone cell populations during the pathogenic process of DOP were explored, and the link between cellular RCD processes and the pathogenesis of DOP was further explored. In addition, the research progress on targeting RCD for DOP was summarized in this paper. This may provide a foundation for additional explorations and drug development, as well as new therapeutic concepts for the clinical management of DOP.
Collapse
Affiliation(s)
- Chenchen Li
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (C.L.); (P.S.); (S.L.); (Q.Z.)
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, Beijing 100191, China
| | - He Gong
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (C.L.); (P.S.); (S.L.); (Q.Z.)
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, Beijing 100191, China
| | - Peipei Shi
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (C.L.); (P.S.); (S.L.); (Q.Z.)
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, Beijing 100191, China
| | - Shuyu Liu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (C.L.); (P.S.); (S.L.); (Q.Z.)
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, Beijing 100191, China
| | - Qi Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (C.L.); (P.S.); (S.L.); (Q.Z.)
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, Beijing 100191, China
| |
Collapse
|
2
|
Dario PP, Yamashita LHD, Salome KS, Kosinski GL, Justen GA, da S Rampon D, Lazarin-Bidoia D, Nakamura CV, Rosa FA, Montes D'Oca MG. Synthesis and in vitro antiprotozoal evaluation of novel Knoevenagel hydroxychloroquine derivatives. RSC Med Chem 2025:d4md00884g. [PMID: 40162204 PMCID: PMC11951163 DOI: 10.1039/d4md00884g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Leishmaniasis and Chagas diseases affect millions of people, particularly in developing countries, with conventional treatments proving unsatisfactory due to increasing drug resistance and high toxicity. Therefore, there is an urgent need for new drugs to combat neglected tropical diseases (NTDs). In this study, we synthesized 15 new Knoevenagel adducts derived from hydroxychloroquine and evaluated their antiprotozoal activity against Leishmania infantum, L. amazonensis, and Trypanosoma cruzi. The new adducts exhibited low toxicity in epithelial LLC-MK2 cells and J774A.1 macrophages. The Knoevenagel adducts derived from meta- and para-chloro benzaldehyde demonstrated antiprotozoal activity against T. cruzi epimastigotes, though with a lower selective index (SI) compared to the standard drug benznidazole. However, the adducts derived from isovaleraldehyde and ortho-, meta-, and para-chloro benzaldehyde showed SI values ranging from 10.97 to 8.11 against L. amazonensis, similar to amphotericin B (AmpB, SI = 9.37), with no statistically significant difference (p > 0.05). These same compounds inhibited L. infantum promastigotes, but with less activity compared to AmpB. These results suggest that Knoevenagel adducts derived from hydroxychloroquine may serve as selective antileishmanial agents.
Collapse
Affiliation(s)
- Priscila P Dario
- Chemistry Department, Kolbe Laboratory of Organic Synthesis, Federal University of Paraná- UFPR Curitiba PR Brazil
| | - Luis H D Yamashita
- Health Sciences Department, Laboratory of Technological Innovation in Pharmaceutical and Cosmetic Development (LITFaC), State University of Maringá - UEM Maringá PR Brazil
| | - Kahlil S Salome
- Chemistry Department, NMR Laboratory, Federal University of Paraná - UFPR Curitiba PR Brazil
| | - Gabriel L Kosinski
- Chemistry Department, Kolbe Laboratory of Organic Synthesis, Federal University of Paraná- UFPR Curitiba PR Brazil
| | - Guilherme A Justen
- Chemistry Department, Kolbe Laboratory of Organic Synthesis, Federal University of Paraná- UFPR Curitiba PR Brazil
| | - Daniel da S Rampon
- Chemistry Department, Kolbe Laboratory of Organic Synthesis, Federal University of Paraná- UFPR Curitiba PR Brazil
| | - Danielle Lazarin-Bidoia
- Health Sciences Department, Laboratory of Technological Innovation in Pharmaceutical and Cosmetic Development (LITFaC), State University of Maringá - UEM Maringá PR Brazil
| | - Celso V Nakamura
- Health Sciences Department, Laboratory of Technological Innovation in Pharmaceutical and Cosmetic Development (LITFaC), State University of Maringá - UEM Maringá PR Brazil
| | - Fernanda A Rosa
- Health Sciences Department, Laboratory of Technological Innovation in Pharmaceutical and Cosmetic Development (LITFaC), State University of Maringá - UEM Maringá PR Brazil
| | - Marcelo G Montes D'Oca
- Chemistry Department, Kolbe Laboratory of Organic Synthesis, Federal University of Paraná- UFPR Curitiba PR Brazil
| |
Collapse
|
3
|
Sharma V, Das R, Mehta DK, Sharma D, Aman S, Khan MU. Quinolone scaffolds as potential drug candidates against infectious microbes: a review. Mol Divers 2025; 29:711-737. [PMID: 38683488 DOI: 10.1007/s11030-024-10862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Prevalence of microbial infections and new rising pathogens are signified as causative agent for variety of serious and lethal health crisis in past years. Despite medical advances, bacterial and fungal infections continue to be a rising problem in the health care system. As more bacteria develop resistance to antibiotics used in therapy, and as more invasive microbial species develop resistance to conventional antimicrobial drugs. Relevant published publications from the last two decades, up to 2024, were systematically retrieved from the MEDLINE/PubMed, SCOPUS, EMBASE, and WOS databases using keywords such as quinolones, anti-infective, antibacterial, antimicrobial resistance and patents on quinolone derivatives. With an approach of considerable interest towards novel heterocyclic derivatives as novel anti-infective agents, researchers have explored these as essential tools in vistas of drug design and development. Among heterocycles, quinolones have been regarded extremely essential for the development of novel derivatives, even able to tackle the associated resistance issues. The quinolone scaffold with its bicyclic structure and specific functional groups such as the carbonyl and acidic groups, is indeed considered a valuable functionalities for further lead generation and optimization in drug discovery. Besides, the substitution at N-1, C-3 and C-7 positions also subjected to be having a significant role in anti-infective potential. In this article, we intend to highlight recent quinolone derivatives based on the SAR approach and anti-infective potential such as antibacterial, antifungal, antimalarial, antitubercular, antitrypanosomal and antiviral activities. Moreover, some recent patents granted on quinolone-containing derivatives as anti-infective agents have also been highlighted in tabular form. Due consideration of this, future research in this scaffold is expected to be useful for aspiring scientists to get pharmacologically significant leads.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Rina Das
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India.
| | - Diksha Sharma
- Swami Devidyal College of Pharmacy, Barwala, 134118, India
| | - Shahbaz Aman
- Department of Microbiology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - M U Khan
- Department of pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Uniazah, Al Qassim, Saudi Arabia
| |
Collapse
|
4
|
Moka MK, George M, Rathakrishnan D, Jagadeeshwaran V, D K S. Trends in drug repurposing: Advancing cardiovascular disease management in geriatric populations. Curr Res Transl Med 2025; 73:103496. [PMID: 39847829 DOI: 10.1016/j.retram.2025.103496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Drug repurposing is a promising strategy for managing cardiovascular disease (CVD) in geriatric populations, offering efficient and cost-effective solutions. CVDs are prevalent across all age groups, with a significant increase in prevalence among geriatric populations. The middle-age period (40-65 years) is critical due to factors like obesity, sedentary lifestyle, and psychosocial stress. In individuals aged 65 and older, the incidence of CVDs is highest due to age-related physiological changes and prolonged exposure to risk factors. In this review we find that certain drugs, such as non-cardiovascular drugs like anakinra, probenecid, N-acetyl cysteine, quercetin, resveratrol, rapamycin, colchicine, bisphosphonates, hydroxychloroquine, SGLT-2i drugs, GLP-1Ras drugs and sildenafil are recommended for drug repurposing to achieve cardiovascular benefits in geriatric patients. However, agents such as canakinumab, methotrexate, ivermectin, erythromycin, capecitabine, carglumic acid, chloroquine, and furosemide are constrained in their therapeutic use and warrant meticulous consideration, rendering them less favorable for this specific application. This review emphasizes the importance of exploring alternative therapeutic strategies to improve outcomes in geriatric populations and suggests drug repurposing as a promising avenue to enhance treatment efficacy.
Collapse
Affiliation(s)
- Murali Krishna Moka
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India
| | - Melvin George
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India.
| | - Deepalaxmi Rathakrishnan
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India
| | - V Jagadeeshwaran
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India
| | - Sriram D K
- Department of Diabetology and Endocrinology, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India
| |
Collapse
|
5
|
Villegas-Romero I, Millán-Cayetano JF, Jiménez-Gallo D, Fernández-Morano T, Navarro-Navarro I, Linares-Barrios M. Anti-PD-1 Induced Musculoskeletal Side Effects Successfully Treated With Hydroxychloroquine in Patients With Advanced Cutaneous Squamous Cell Carcinoma. ACTAS DERMO-SIFILIOGRAFICAS 2024; 115:1039-1041. [PMID: 38969170 DOI: 10.1016/j.ad.2023.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 07/07/2024] Open
Affiliation(s)
- I Villegas-Romero
- Department of Dermatology, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - J F Millán-Cayetano
- Department of Dermatology, Hospital Universitario Puerta del Mar, Cádiz, Spain.
| | - D Jiménez-Gallo
- Department of Dermatology, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - T Fernández-Morano
- Department of Dermatology, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - I Navarro-Navarro
- Department of Dermatology, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - M Linares-Barrios
- Department of Dermatology, Hospital Universitario Puerta del Mar, Cádiz, Spain
| |
Collapse
|
6
|
Villegas-Romero I, Millán-Cayetano JF, Jiménez-Gallo D, Fernández-Morano T, Navarro-Navarro I, Linares-Barrios M. Anti-PD-1 Induced Musculoskeletal Side Effects Successfully Treated With Hydroxychloroquine in Patients With Advanced Cutaneous Squamous Cell Carcinoma. ACTAS DERMO-SIFILIOGRAFICAS 2024; 115:T1039-T1041. [PMID: 39413912 DOI: 10.1016/j.ad.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2024] Open
Affiliation(s)
- I Villegas-Romero
- Servicio de Dermatología, Hospital Universitario Puerta del Mar, Cádiz, España
| | - J F Millán-Cayetano
- Servicio de Dermatología, Hospital Universitario Puerta del Mar, Cádiz, España.
| | - D Jiménez-Gallo
- Servicio de Dermatología, Hospital Universitario Puerta del Mar, Cádiz, España
| | - T Fernández-Morano
- Servicio de Dermatología, Hospital Universitario Puerta del Mar, Cádiz, España
| | - I Navarro-Navarro
- Servicio de Dermatología, Hospital Universitario Puerta del Mar, Cádiz, España
| | - M Linares-Barrios
- Servicio de Dermatología, Hospital Universitario Puerta del Mar, Cádiz, España
| |
Collapse
|
7
|
Qin J, Chen Y, Zhao X, Yu J. circCUL3 drives malignant progression of cervical cancer by activating autophagy through sponge miR-223-3p upregulation of ATG7. Gene 2024; 925:148572. [PMID: 38759738 DOI: 10.1016/j.gene.2024.148572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Circular RNA (circRNA) has emerged as a pivotal regulatory factor in cancer biology, yet its exact role in cervical cancer remains incompletely understood. In this study, we investigated the functional role of circCUL3 in cervical cancer and explored its potential as a therapeutic target. Functional gain and loss experiments were conducted in Hela and Siha cell lines to elucidate the biological functions of circCUL3 in cervical cancer. The results revealed that circCUL3 overexpression significantly enhanced cell viability, migration, and invasion while suppressing apoptosis, while circCUL3 knockout displayed the opposite effects. Mechanistically, we identified hsa-miR-223-3p as a target of circCUL3, with its expression being negatively regulated by circCUL3. Furthermore, we discovered that circCUL3 could sequester miR-223-3p, leading to the upregulation of ATG7 expression, and this was linked to the regulation of autophagy in cervical cancer cells. In vivo validation using a xenograft mouse model further supported our in vitro findings. Notably, we found that chloroquine (CQ), an autophagy inhibitor, restored miR-223-3p expression and counteracted the oncogenic effect of circCUL3 overexpression. In conclusion, circCUL3 potentially contributes to the malignant progression of cervical cancer by acting as a sponge for miR-223-3p, resulting in the upregulation of ATG7 and the activation of autophagy.
Collapse
Affiliation(s)
- Jiahui Qin
- Department of Gynecology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China.
| | - Yan Chen
- Department of Gynecology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| | - Xia Zhao
- Department of Gynecology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| | - Jingmin Yu
- Department of Gynecology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Padovani CM, Tao J, Fardos MI, Brecher L. Reversible Dilated Cardiomyopathy in a Male Patient With Rheumatoid Arthritis: A Case Report. Cureus 2024; 16:e72216. [PMID: 39583411 PMCID: PMC11584035 DOI: 10.7759/cureus.72216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
This case describes a rare instance of reversible dilated cardiomyopathy (DCM) in a 65-year-old Caucasian male with a significant past medical history of inflammatory rheumatoid arthritis (RA) controlled with rituximab and hydroxychloroquine (HCQ). The patient presented with acute onset of dyspnea on exertion and palpitations and was diagnosed with congestive heart failure in the context of DCM. Despite having no prior cardiac abnormalities, an EKG revealed a new left bundle branch block, and an echocardiogram demonstrated a severely reduced left ventricular ejection fraction (LVEF) of 10-15%. Left heart catheterization and coronary angiography revealed no evidence of coronary artery disease. Given the absence of an overt cause, drug-induced DCM was suspected; hence, rituximab and HCQ were discontinued. Other common causes of DCM, including alcohol abuse and virus-induced DCM, were excluded based on relevant testing. Seven to nine months after cessation of HCQ and rituximab, the patient's RA progressed, and treatment was initiated with IV tocilizumab, resulting in a good clinical response. At the 26-month follow-up, a repeat echocardiogram revealed mild mitral regurgitation with an LVEF which improved to 55%. At this point, Takotsubo cardiomyopathy was considered a potential cause of this patient's DCM due to its reversible nature. This case highlights the importance of comprehensive cardiac monitoring in symptomatic patients at high risk for cardiovascular disease, such as this patient with long-standing inflammatory disease. Physicians should work together to closely monitor and consider the serious potential risks of all treatment regimens.
Collapse
Affiliation(s)
| | - Jennifer Tao
- Internal Medicine, Jefferson Health, Stratford, USA
- Rheumatology, Rowan-Virtua School of Osteopathic Medicine, Stratford, USA
| | - Mohammad I Fardos
- Dermatology, HCA Florida Largo Hospital, Largo, USA
- Dermatology, Rowan-Virtua School of Osteopathic Medicine, Stratford, USA
| | - Linda Brecher
- Rheumatology, Orlando College of Osteopathic Medicine, Orlando, USA
- Rheumatology, Rowan-Virtua School of Osteopathic Medicine, Stratford, USA
| |
Collapse
|
9
|
Snow Z, Seely K, Barrett S, Pecha J, Goldhardt R. Target in Sight: A Comprehensive Review of Hydroxychloroquine-Induced Bull's Eye Maculopathy. CURRENT OPHTHALMOLOGY REPORTS 2024; 12:38-48. [PMID: 39371107 PMCID: PMC11452169 DOI: 10.1007/s40135-024-00321-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 10/08/2024]
Abstract
Purpose of Review We review the latest screening and diagnostic techniques, and the most recent recommendations on the management of hydroxychloroquine retinopathy. Recent Findings Hydroxychloroquine (HCQ) has been shown to cause retinal toxicity in a dose-dependent fashion. Early diagnosis is critical as the resultant retinopathy is not reversible. New imaging modalities, such as adaptive optics (AO), microperimetry, and retro-mode imaging, may show promise in the timely diagnosis of HCQ retinopathy. Summary Automated visual fields and spectral-domain optical coherence tomography (SD-OCT) are the primary tests used in routine screening for HCQ retinopathy, but fundus autofluorescence (FAF) and multifocal electroretinogram (mfERG) have also been shown to be useful. A baseline ophthalmologic examination is recommended in all patients beginning long-term hydroxychloroquine therapy within the first year of starting therapy. Automated visual fields and SD-OCT should be included during this baseline exam in patients with pre-existing macular conditions. Afterwards, annual screening can be deferred for the first 5 years of HCQ treatment unless the patient has a major risk factor.
Collapse
Affiliation(s)
- Zachary Snow
- University of Miami Miler School of Medicine - Bascom Palmer Eye Institute
| | - Kai Seely
- University of Miami Miler School of Medicine - Bascom Palmer Eye Institute
| | - Spencer Barrett
- University of Miami Miler School of Medicine - Bascom Palmer Eye Institute
| | - Joseph Pecha
- University of Miami Miler School of Medicine - Bascom Palmer Eye Institute
| | - Raquel Goldhardt
- University of Miami Miler School of Medicine - Bascom Palmer Eye Institute
| |
Collapse
|
10
|
Odena C, Santiago TG, Linares ML, Castellanos-Blanco N, McGuire RT, Chaves-Arquero B, Alonso JM, Diéguez-Vázquez A, Tan E, Alcázar J, Buijnsters P, Cañellas S, Martin R. Late-Stage C( sp2)-C( sp3) Diversification via Nickel Oxidative Addition Complexes. J Am Chem Soc 2024; 146:21264-21270. [PMID: 39052124 DOI: 10.1021/jacs.4c08404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Herein, we describe nickel oxidative addition complexes (Ni-OACs) of drug-like molecules as a platform to rapidly generate lead candidates with enhanced C(sp3) fraction. The potential of Ni-OACs to access new chemical space has been assessed not only in C(sp2)-C(sp3) couplings but also in additional bond formations without recourse to specialized ligands and with improved generality when compared to Ni-catalyzed reactions. The development of an automated diversification process further illustrates the robustness of Ni-OACs, thus offering a new gateway to expedite the design-make-test-analyze (DMTA) cycle in drug discovery.
Collapse
Affiliation(s)
- Carlota Odena
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Orgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Tomás G Santiago
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
| | | | - Nahury Castellanos-Blanco
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
| | - Ryan T McGuire
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
| | - Belén Chaves-Arquero
- Janssen-Cilag, S.A., a Johnson & Johnson Company, C/Jarama 75A, 45007 Toledo, Spain
| | - Jose Manuel Alonso
- Janssen-Cilag, S.A., a Johnson & Johnson Company, C/Jarama 75A, 45007 Toledo, Spain
| | | | - Eric Tan
- Janssen Pharmaceutica Nv, A Johnson & Johnson Company, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Jesús Alcázar
- Janssen-Cilag, S.A., a Johnson & Johnson Company, C/Jarama 75A, 45007 Toledo, Spain
| | - Peter Buijnsters
- Janssen Pharmaceutica Nv, A Johnson & Johnson Company, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Santiago Cañellas
- Janssen-Cilag, S.A., a Johnson & Johnson Company, C/Jarama 75A, 45007 Toledo, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
11
|
Liu Y, Meng Y, Zhang J, Gu L, Shen S, Zhu Y, Wang J. Pharmacology Progresses and Applications of Chloroquine in Cancer Therapy. Int J Nanomedicine 2024; 19:6777-6809. [PMID: 38983131 PMCID: PMC11232884 DOI: 10.2147/ijn.s458910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 07/11/2024] Open
Abstract
Chloroquine is a common antimalarial drug and is listed in the World Health Organization Standard List of Essential Medicines because of its safety, low cost and ease of use. Besides its antimalarial property, chloroquine also was used in anti-inflammatory and antivirus, especially in antitumor therapy. A mount of data showed that chloroquine mainly relied on autophagy inhibition to exert its antitumor effects. However, recently, more and more researches have revealed that chloroquine acts through other mechanisms that are autophagy-independent. Nevertheless, the current reviews lacked a comprehensive summary of the antitumor mechanism and combined pharmacotherapy of chloroquine. So here we focused on the antitumor properties of chloroquine, summarized the pharmacological mechanisms of antitumor progression of chloroquine dependent or independent of autophagy inhibition. Moreover, we also discussed the side effects and possible application developments of chloroquine. This review provided a more systematic and cutting-edge knowledge involved in the anti-tumor mechanisms and combined pharmacotherapy of chloroquine in hope of carrying out more in-depth exploration of chloroquine and obtaining more clinical applications.
Collapse
Affiliation(s)
- Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Department of Pharmacological Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| |
Collapse
|
12
|
Gómez-Gaviria M, Contreras-López LM, Aguilera-Domínguez JI, Mora-Montes HM. Strategies of Pharmacological Repositioning for the Treatment of Medically Relevant Mycoses. Infect Drug Resist 2024; 17:2641-2658. [PMID: 38947372 PMCID: PMC11214559 DOI: 10.2147/idr.s466336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Fungal infections represent a worldwide concern for public health, due to their prevalence and significant increase in cases each year. Among the most frequent mycoses are those caused by members of the genera Candida, Cryptococcus, Aspergillus, Histoplasma, Pneumocystis, Mucor, and Sporothrix, which have been treated for years with conventional antifungal drugs, such as flucytosine, azoles, polyenes, and echinocandins. However, these microorganisms have acquired the ability to evade the mechanisms of action of these drugs, thus hindering their treatment. Among the most common evasion mechanisms are alterations in sterol biosynthesis, modifications of drug transport through the cell wall and membrane, alterations of drug targets, phenotypic plasticity, horizontal gene transfer, and chromosomal aneuploidies. Taking into account these problems, some research groups have sought new therapeutic alternatives based on drug repositioning. Through repositioning, it is possible to use existing pharmacological compounds for which their mechanism of action is already established for other diseases, and thus exploit their potential antifungal activity. The advantage offered by these drugs is that they may be less prone to resistance. In this article, a comprehensive review was carried out to highlight the most relevant repositioning drugs to treat fungal infections. These include antibiotics, antivirals, anthelmintics, statins, and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Luisa M Contreras-López
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Julieta I Aguilera-Domínguez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| |
Collapse
|
13
|
Ivey AD, Pratt HG, Niemann B, Ranson K, Puleo A, Fagan BM, Rao P, Landreth KM, Liu TW, Boone BA. Pancreatectomy Induces Cancer-Promoting Neutrophil Extracellular Traps. Ann Surg Oncol 2024; 31:3707-3717. [PMID: 38238536 PMCID: PMC12079189 DOI: 10.1245/s10434-023-14841-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/13/2023] [Indexed: 05/09/2024]
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) occur when neutrophil chromatin is decondensed and extruded into the extracellular space in a web-like structure. Originally described as an anti-microbial function, this process has been implicated in the pathogenesis of pancreatic disease. In addition, NETs are upregulated during physiologic wound-healing and coagulation. This study evaluated how the inflammatory response to pancreatic surgery influences NET formation. METHODS For this study, 126 patients undergoing pancreatectomy gave consent before participation. Plasma was collected at several time points (preoperatively and through the postoperative outpatient visit). Plasma levels of NET markers, including cell-free DNA (cfDNA), citrullinated histone H3 (CitH3), interleukin (IL)-8, IL-6, and granulocyte colony-stimulating factor (G-CSF) were measured using enzyme-linked immunosorbent assay (ELISA). Patient clinical data were retrospectively collected from a prospectively maintained database. RESULTS After pancreatic resection, NET markers (cfDNA and CitH3) were elevated, peaking on postoperative days 3 and 4. This increase in NETs was due to an inherent change in neutrophil biology. Postoperatively, NET-inducing cytokines (IL-8, IL-6, and G-CSF) were increased, peaking early in the postoperative course. The patients undergoing the robotic approach had a reduction in NETs during the postoperative period compared with those who underwent the open approach. The patients who experienced a pancreatic leak had an increase in NET markers during the postoperative period. CONCLUSIONS Pancreatectomy induces cancer-promoting NET formation. The minimally invasive robotic approach may induce fewer NETs, although the current analysis was limited by selection bias. Pancreatic leak resulted in increased NETs. Further study into the potential for NET inhibition during the perioperative period is warranted.
Collapse
Affiliation(s)
- Abby D Ivey
- Cancer Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Hillary G Pratt
- Cancer Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Britney Niemann
- Department of Surgery, West Virginia University, Morgantown, WV, USA
| | - Kristen Ranson
- Department of Surgery, West Virginia University, Morgantown, WV, USA
| | - Amanda Puleo
- Department of Surgery, West Virginia University, Morgantown, WV, USA
| | - B Matthew Fagan
- Department of Surgery, West Virginia University, Morgantown, WV, USA
| | - Pavan Rao
- Department of Surgery, West Virginia University, Morgantown, WV, USA
- Department of Surgery, Allegheny Health Network, Pittsburgh, PA, USA
| | - Kaitlyn M Landreth
- Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Tracy W Liu
- Cancer Cell Biology, West Virginia University, Morgantown, WV, USA
- Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Brian A Boone
- Cancer Cell Biology, West Virginia University, Morgantown, WV, USA.
- Department of Surgery, West Virginia University, Morgantown, WV, USA.
- Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
14
|
Mathuria A, Ali N, Kataria N, Mani I. Drug repurposing for fungal infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:59-78. [PMID: 38942545 DOI: 10.1016/bs.pmbts.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The rise of multidrug-resistant bacteria is a well-recognized threat to world health, necessitating the implementation of effective treatments. This issue has been identified as a top priority on the global agenda by the World Health Organization. Certain strains, such as Candida glabrata, Candida krusei, Candida lusitaniae, Candida auris, select cryptococcal species, and opportunistic Aspergillus or Fusarium species, have significant intrinsic resistance to numerous antifungal medicines. This inherent resistance and subsequent suboptimal clinical outcomes underscore the critical imperative for enhanced therapeutic alternatives and management protocols. The challenge of effectively treating fungal infections, compounded by the protracted timelines involved in developing novel drugs, underscores the pressing need to explore alternative therapeutic avenues. Among these, drug repurposing emerges as a particularly promising and expeditious solution, providing cost-effective solutions and safety benefits. In the fight against life-threatening resistant fungal infections, the idea of repurposing existing medications has encouraged research into both established and new compounds as a last-resort therapy. This chapter seeks to provide a comprehensive overview of contemporary antifungal drugs, as well as their key resistance mechanisms. Additionally, it seeks to provide insight into the antimicrobial properties of non-traditional drugs, thereby offering a holistic perspective on the evolving landscape of antifungal therapeutics.
Collapse
Affiliation(s)
- Anshu Mathuria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Namra Ali
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India
| | - Naina Kataria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
15
|
Abdullah KM, Sharma G, Qais FA, Khan I, Takkar S, Kaushal JB, Kanchan RK, Sarwar T, Chakravarti B, Siddiqui JA. Hydroxychloroquine interaction with phosphoinositide 3-kinase modulates prostate cancer growth in bone microenvironment: In vitro and molecular dynamics based approach. Int J Biol Macromol 2024; 266:130912. [PMID: 38513896 DOI: 10.1016/j.ijbiomac.2024.130912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Patients with advanced prostate cancer (PCa) are more likely to develop bone metastases. Tumor cells thrive in the bone microenvironment, interacting with osteoblasts and osteoclasts. Given the PI3K/AKT pathway's metastatic potential and signal integration's ability to modulate cell fates in PCa development, drugs targeting this system have great therapeutic promise. Hydroxychloroquine (HCQ) is an anti-malarial medication commonly used to treat clinical conditions such as rheumatology and infectious disorders. We explored the anti-neoplastic effect of HCQ on PC3 and C4-2B cell lines in the bone microenvironment. Interestingly, HCQ treatment substantially decreases the viability, proliferation, and migration potential of PCa cells in the bone microenvironment. HCQ induces apoptosis and cell cycle arrest, even in the presence of osteoblast-secreted factors. Mechanistically, HCQ inhibited the activity of the PI3K/AKT signaling pathway, which ultimately regulates the proliferation and migration of PCa cells in the bone. The binding energy for docking HCQ with PI3K was -6.7 kcal/mol, and the complex was stabilized by hydrogen bonds, hydrophobic forces, and van der Waals forces. Molecular simulations further validated the structural integrity of the HCQ-PI3K complex without altering PI3K's secondary structure. Our findings underscore the efficacy of HCQ as a potential therapeutic agent in treating PCa.
Collapse
Affiliation(s)
- K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Imran Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Saudi Arabia
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE-68198, USA.
| |
Collapse
|
16
|
Liao JH, He Q, Huang ZW, Yu XB, Yang JY, Zhang Y, Song WJ, Luo J, Tao QW. Network pharmacology-based strategy to investigate the mechanisms of artemisinin in treating primary Sjögren's syndrome. BMC Immunol 2024; 25:16. [PMID: 38347480 PMCID: PMC10860289 DOI: 10.1186/s12865-024-00605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE The study aimed to explore the mechanism of artemisinin in treating primary Sjögren's syndrome (pSS) based on network pharmacology and experimental validation. METHODS Relevant targets of the artemisinin and pSS-related targets were integrated by public databases online. An artemisinin-pSS network was constructed by Cytoscape. The genes of artemisinin regulating pSS were imported into STRING database to construct a protein-protein interaction (PPI) network in order to predict the key targets. The enrichment analyses were performed to predict the crucial mechanism and pathway of artemisinin against pSS. The active component of artemisinin underwent molecular docking with the key proteins. Artemisinin was administered intragastrically to SS-like NOD/Ltj mice to validate the efficacy and critical mechanisms. RESULTS Network Pharmacology analysis revealed that artemisinin corresponded to 412 targets, and pSS related to 1495 genes. There were 40 intersection genes between artemisinin and pSS. KEGG indicated that therapeutic effects of artemisinin on pSS involves IL-17 signaling pathway, HIF-1 signaling pathway, apoptosis signaling pathway, Th17 cell differentiation, PI3K-Akt signaling pathway, and MAPK signaling pathway. Molecular docking results further showed that the artemisinin molecule had higher binding energy by combining with the key nodes in IL-17 signaling pathway. In vivo experiments suggested artemisinin can restored salivary gland secretory function and improve the level of glandular damage of NOD/Ltj mice. It contributed to the increase of regulatory T cells (Tregs) and the downregulated secretion of IL-17 in NOD/Ltj model. CONCLUSION The treatment of pSS with artemisinin is closely related to modulating the balance of Tregs and Th17 cells via T cell differentiation.
Collapse
Affiliation(s)
- Jia-He Liao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Qian He
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Zi-Wei Huang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Xin-Bo Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Jian-Ying Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Yan Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Wei-Jiang Song
- Traditional Chinese Medicine Department, Peking University Third Hospital, Beijing, China
| | - Jing Luo
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China.
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China.
| | - Qing-Wen Tao
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China.
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
17
|
Gajić M, Schröder-Heurich B, Mayer-Pickel K. Deciphering the immunological interactions: targeting preeclampsia with Hydroxychloroquine's biological mechanisms. Front Pharmacol 2024; 15:1298928. [PMID: 38375029 PMCID: PMC10875033 DOI: 10.3389/fphar.2024.1298928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Preeclampsia (PE) is a complex pregnancy-related disorder characterized by hypertension, followed by organ dysfunction and uteroplacental abnormalities. It remains a major cause of maternal and neonatal morbidity and mortality worldwide. Although the pathophysiology of PE has not been fully elucidated, a two-stage model has been proposed. In this model, a poorly perfused placenta releases various factors into the maternal circulation during the first stage, including pro-inflammatory cytokines, anti-angiogenic factors, and damage-associated molecular patterns into the maternal circulation. In the second stage, these factors lead to a systemic vascular dysfunction with consecutive clinical maternal and/or fetal manifestations. Despite advances in feto-maternal management, effective prophylactic and therapeutic options for PE are still lacking. Since termination of pregnancy is the only curative therapy, regardless of gestational age, new treatment/prophylactic options are urgently needed. Hydroxychloroquine (HCQ) is mainly used to treat malaria as well as certain autoimmune conditions such as systemic lupus and rheumatoid arthritis. The exact mechanism of action of HCQ is not fully understood, but several mechanisms of action have been proposed based on its pharmacological properties. Interestingly, many of them might counteract the proposed processes involved in the development of PE. Therefore, based on a literature review, we aimed to investigate the interrelated biological processes of HCQ and PE and to identify potential molecular targets in these processes.
Collapse
Affiliation(s)
- Maja Gajić
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | | | | |
Collapse
|
18
|
Low LE, Kong CK, Yap WH, Siva SP, Gan SH, Siew WS, Ming LC, Lai-Foenander AS, Chang SK, Lee WL, Wu Y, Khaw KY, Ong YS, Tey BT, Singh SK, Dua K, Chellappan DK, Goh BH. Hydroxychloroquine: Key therapeutic advances and emerging nanotechnological landscape for cancer mitigation. Chem Biol Interact 2023; 386:110750. [PMID: 37839513 DOI: 10.1016/j.cbi.2023.110750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/12/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Hydroxychloroquine (HCQ) is a unique class of medications that has been widely utilized for the treatment of cancer. HCQ plays a dichotomous role by inhibiting autophagy induced by the tumor microenvironment (TME). Preclinical studies support the use of HCQ for anti-cancer therapy, especially in combination with conventional anti-cancer treatments since they sensitize tumor cells to drugs, potentiating the therapeutic activity. However, clinical evidence has suggested poor outcomes for HCQ due to various obstacles, including non-specific distribution, low aqueous solubility and low bioavailability at target sites, transport across tissue barriers, and retinal toxicity. These issues are addressable via the integration of HCQ with nanotechnology to produce HCQ-conjugated nanomedicines. This review aims to discuss the pharmacodynamic, pharmacokinetic and antitumor properties of HCQ. Furthermore, the antitumor performance of the nanoformulated HCQ is also reviewed thoroughly, aiming to serve as a guide for the HCQ-based enhanced treatment of cancers. The nanoencapsulation or nanoconjugation of HCQ with nanoassemblies appears to be a promising method for reducing the toxicity and improving the antitumor efficacy of HCQ.
Collapse
Affiliation(s)
- Liang Ee Low
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Chee Kei Kong
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Wei-Hsum Yap
- School of Biosciences, Taylor's University, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Sangeetaprivya P Siva
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Siew Hua Gan
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Wei Sheng Siew
- School of Biosciences, Taylor's University, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia.
| | - Ashley Sean Lai-Foenander
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia.
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Kooi-Yeong Khaw
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Yong Sze Ong
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), 57000 Bukit Jalil, Kuala Lumpur, Malaysia.
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia.
| |
Collapse
|
19
|
Xiong A, Luo W, Tang X, Cao Y, Xiang Q, Deng R, Shuai S. Risk factors for invasive fungal infections in patients with connective tissue disease: Systematic review and meta-analysis. Semin Arthritis Rheum 2023; 63:152257. [PMID: 37633041 DOI: 10.1016/j.semarthrit.2023.152257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/25/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
OBJECTIVE Invasive fungal infections (IFIs) are life-threatening opportunistic infections in patients with connective tissue disease CTD) that cause significant morbidity and mortality. We attempted to determine the potential risk factors associated with IFIs in CTD. METHODS We systematically searched PubMed, Embase, and the Cochrane Library databases for relevant articles published from the database inception to February 1, 2023. RESULTS Twenty-six studies were included in this systematic review and meta-analysis. Risk factors identified for IFIs were diabetes (odds ratio [OR], 1.62; 95% confidence interval [CI], 1.00 to 2.64), pulmonary diseases (OR 3.43; 95% CI 2.49 to 4.73), interstitial lung disease (ILD; OR, 4.06; 95% CI, 2.22 to 7.41), renal disease (OR, 4.41; 95% CI, 1.84 to 10.59), glucocorticoid (GC) use (OR, 4.15; 95% CI, 2.74 to 6.28), especially moderate to high-dose GC, azathioprine (AZA) use (OR, 1.50; 95% CI, 1.12 to 2.01), calcineurin inhibitor (CNI) use (OR, 2.49; 95% CI, 1.59 to 3.91), mycophenolate mofetil (MMF) use (OR, 2.83; 95% CI, 1.59 to 5.03), cyclophosphamide (CYC) use (OR, 3.35; 95% CI, 2.47 to 4.54), biologics use (OR, 3.43; 95% CI, 2.36 to 4.98), and lymphopenia (OR, 4.26; 95% CI, 2.08 to 8.73). Hydroxychloroquine (HCQ) use reduced risk of IFIs (OR, 0.67; 95% CI, 0.54 to 0.84). Furthermore, 17 of the 26 studies only reported risk factors for Pneumocystis jiroveci pneumonia (PJP) in patients with CTD. Pulmonary disease; ILD; and the use of GC, CNIs, CYC, methotrexate (MTX), MMF and biologics, and lymphopenia increased the risk of PJP, whereas the use of HCQ reduced its risk. CONCLUSION Diabetes, pulmonary disease, ILD, renal disease, use of GC (especially at moderate to high dose) and immunosuppressive drugs, and lymphopenia were found to be associated with significant risk for IFIs (especially PJP) in patients with CTD. Furthermore, the use of HCQ may reduce the risk of IFIs in patients with CTD.
Collapse
Affiliation(s)
- Anji Xiong
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, Sichuan, China; Inflammation and Immunology Key Laboratory of Nanchong, Nanchong, China.
| | - Wenxuan Luo
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaoyu Tang
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yuzi Cao
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qilang Xiang
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ruiting Deng
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shiquan Shuai
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, Sichuan, China; Inflammation and Immunology Key Laboratory of Nanchong, Nanchong, China
| |
Collapse
|
20
|
Xie NN, Zhang WC, Chen J, Tian FB, Song JX. Clinical Characteristics, Diagnosis, and Therapeutics of COVID-19: A Review. Curr Med Sci 2023; 43:1066-1074. [PMID: 37837572 DOI: 10.1007/s11596-023-2797-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/03/2023] [Indexed: 10/16/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that suddenly emerged at the end of December 2019 and caused coronavirus disease 2019 (COVID-19) continues to afflict humanity, not only seriously affecting healthcare systems but also leading to global social and economic imbalances. As of August 2022, there were approximately 580 million confirmed cases of COVID-19 and approximately 6.4 million confirmed deaths due to this disease. The data are sufficient to highlight the seriousness of SARS-CoV-2 infection. Although most patients with COVID-19 present primarily with respiratory symptoms, an increasing number of extrapulmonary systemic symptoms and manifestations have been associated with COVID-19. Since the outbreak of COVID-19, much has been learned about the disease and its causative agent. Therefore, great effort has been aimed at developing treatments and drug interventions to treat and reduce the incidence of COVID-19. In this narrative review, we provide a brief overview of the epidemiology, mechanisms, clinical manifestations, diagnosis, and therapeutics of COVID-19.
Collapse
Affiliation(s)
- Na-Na Xie
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen-Cong Zhang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Chen
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang-Bing Tian
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Xin Song
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
21
|
Abdelmageed N, Twafik WAA, Morad OAR, Haridy M, Hassan R, Ahmed M, El-Zorba HY, El-Banna HA, Seddek AL, Ghallab A, Morad SARF. Vinpocetine protects against chloroquine-induced cardiotoxicity by mitigating oxidative stress. Arch Toxicol 2023; 97:2763-2770. [PMID: 37401952 DOI: 10.1007/s00204-023-03546-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are classical antimalarial drugs, and recently have been used for other applications including coronavirus disease 2019 (COVID-19). Although they are considered safe, cardiomyopathy may associate CQ and HCQ applications particularly at overdoses. The goal of the present study was to evaluate the potential protective effect of the nootropic agent vinpocetine against CQ and HCQ adverse effects with a specific focus on the heart. For this purpose, a mouse model of CQ (0.5 up to 2.5 g/kg)/HCQ (1 up to 2 g/kg) toxicity was used, and the effect of vinpocetine was evaluated by survival, biochemical, as well as histopathological analyses. Survival analysis revealed that CQ and HCQ caused dose-dependent lethality, which was prevented by co-treatment with vinpocetine (100 mg/kg, oral or intraperitoneal). To gain deeper understanding, a dose of 1 g/kg CQ-which did not cause death within the first 24 h after administration-was applied with and without vinpocetine administration (100 mg/kg, intraperitoneal). The CQ vehicle group showed marked cardiotoxicity as evidenced by significant alterations of blood biomarkers including troponione-1, creatine phosphokinase (CPK), creatine kinase-myocardial band (CK-MB), ferritin, and potassium levels. This was confirmed at the tissue level by massive alteration of the heart tissue morphology and coincided with massive oxidative stress. Interestingly, co-administration of vinpocetine strongly ameliorated CQ-induced alterations and restored the antioxidant-defense system of the heart. These data suggest that vinpocetine could be used as an adjuvant therapy together with CQ/HCQ applications.
Collapse
Affiliation(s)
- Noha Abdelmageed
- Department of Pharmacology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | | | | | - Mohie Haridy
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 6622, Qassim, Saudi Arabia
| | - Reham Hassan
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Madeha Ahmed
- Department of Histology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | | | - Hossny Awad El-Banna
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdel-Latief Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Ahmed Ghallab
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | | |
Collapse
|
22
|
Chhonker YS, Aldhafiri WN, Soni D, Trivedi N, Steinbronn C, Johnson C, Karita HCS, Paasche-Orlow MK, Barnabas R, Arnold SL, Murry DJ. Simultaneous LC-MS/MS method for the quantitation of Azithromycin, Hydroxychloroquine and its metabolites in SARS-CoV-2(-/ +) populations using dried blood spots. Sci Rep 2023; 13:16428. [PMID: 37777555 PMCID: PMC10542348 DOI: 10.1038/s41598-023-43185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/20/2023] [Indexed: 10/02/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to a global pandemic of coronavirus disease 2019 (COVID-19). Early in the pandemic, efforts were made to test the SARS-CoV-2 antiviral efficacy of repurposed medications that were already approved and available for other indications, including hydroxychloroquine (HCQ) and azithromycin (AZI). To reduce the risk of SARS-CoV-2 exposure for clinical-trial study participants and to conform with lockdowns and social distancing guidelines, biospecimen collection for HCQ and AZI included at-home dried blood spot (DBS) collection rather than standard venipuncture by trained clinicians. In this study, we developed and validated the first sensitive and selective simultaneous LC-MS/MS method to accurately quantitate the concentration of HCQ, HCQ metabolites (Desethylchloroquine [DCQ], Bisdesethylchloroquine [BDCQ], Monodesethylhydroxychloroquine [DHCQ]) and AZI extracted from DBS. The validated method was successfully applied for the quantification of over 2000 DBS specimens to evaluate the pharmacokinetic profile of AZI, HQC, and its metabolites. This new method has a small sample volume requirement (~ 10 µL), results in high sensitivity (1 ng/mL), and would facilitate remotely conducted therapeutic drug monitoring.
Collapse
Affiliation(s)
- Yashpal S Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198-6025, USA.
| | - Wafaa N Aldhafiri
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198-6025, USA
| | - Dhruvkumar Soni
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198-6025, USA
| | - Neerja Trivedi
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198-6025, USA
| | - Claire Steinbronn
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Christine Johnson
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | | | | | - Ruanne Barnabas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Samuel L Arnold
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Daryl J Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198-6025, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
23
|
Al-kuraishy HM, Al-Gareeb AI, Albezrah NKA, Bahaa HA, El-Bouseary MM, Alexiou A, Al-Ziyadi SH, Batiha GES. Pregnancy and COVID-19: high or low risk of vertical transmission. Clin Exp Med 2023; 23:957-967. [PMID: 36251144 PMCID: PMC9574177 DOI: 10.1007/s10238-022-00907-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/25/2022] [Indexed: 11/03/2022]
Abstract
Coronavirus disease 19 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome 2 (SARS-CoV-2). Throughout the pandemic, evidence on the effects of COVID-19 during pregnancy has been inadequate due to the limited number of studies published. Therefore, the objective of this systematic review was to evaluate current literature regarding the effects of COVID-19 during pregnancy and establish pregnancy outcomes and vertical and perinatal transmission during pregnancy. Multiple databases were searched, including Embase, Medline, Web of Science, Scopus, and Cochrane Central Register of Control Clinical Trials, using the following keywords: [Pregnancy] AND [COVID-19 OR SARS-CoV-2 OR nCoV-19] OR [Perinatal transmission, Vertical transmission (VT), Pregnancy complications], [Pregnancy] AND [Hyperinflammation OR Cytokine storm]. We excluded in vitro and experimental studies, but also ex-vivo and animal study methods. To exclude the risk of bias during data collection and interpretation, all included studies were peer-reviewed publications. This review is estimated to tabulate the study intervention characteristics and compare them against the planned groups for each synthesis. Our findings showed that pregnant women are commonly susceptible to respiratory viral infections and severe pneumonia due to physiological immune suppression and pregnancy-induced changes. VT of SARS-CoV-2 infection during pregnancy is associated with a great deal of controversy and conflict. However, there is still no robust clinical evidence of VT. Furthermore, the clinical presentation and management of COVID-19 during pregnancy are nearly identical to those of non-pregnant women. Finally, chloroquine and remdesivir are the only two drugs evaluated as adequate for the management of COVID-19 during pregnancy.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyah University, Baghdad, Iraq
| | | | - Haitham Ahmed Bahaa
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Maisra M. El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Shatha Hallal Al-Ziyadi
- Saudi Board Certified in Obstetrics & Gynecology, Assistant Professor at Taif University, Taif, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| |
Collapse
|
24
|
Kaushik S, Paliwal SK, Iyer MR, Patil VM. Promising Schiff bases in antiviral drug design and discovery. Med Chem Res 2023; 32:1063-1076. [PMID: 37305208 PMCID: PMC10171175 DOI: 10.1007/s00044-023-03068-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
Emerging and re-emerging illnesses will probably present a new hazard of infectious diseases and have fostered the urge to research new antiviral agents. Most of the antiviral agents are analogs of nucleosides and only a few are non-nucleoside antiviral agents. There is quite a less percentage of marketed/clinically approved non-nucleoside antiviral medications. Schiff bases are organic compounds that possess a well-demonstrated profile against cancer, viruses, fungus, and bacteria, as well as in the management of diabetes, chemotherapy-resistant cases, and malarial infections. Schiff bases resemble aldehydes or ketones with an imine/azomethine group instead of a carbonyl ring. Schiff bases have a broad application profile not only in therapeutics/medicine but also in industrial applications. Researchers have synthesized and screened various Schiff base analogs for their antiviral potential. Some of the important heterocyclic compounds like istatin, thiosemicarbazide, quinazoline, quinoyl acetohydrazide, etc. have been used to derive novel Schiff base analogs. Keeping in view the outbreak of viral pandemics and epidemics, this manuscript compiles a review of Schiff base analogs concerning their antiviral properties and structural-activity relationship analysis.
Collapse
Affiliation(s)
- Shikha Kaushik
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
- Department of Pharmacy, Banasthali Vidyapith, Tonk, Rajasthan India
| | | | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, NIAAA/NIH, Rockville, MD USA
| | - Vaishali M. Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
| |
Collapse
|
25
|
Yang X, Forstner M, Rapp CK, Rothenaigner I, Li Y, Hadian K, Griese M. ABCA3 Deficiency-Variant-Specific Response to Hydroxychloroquine. Int J Mol Sci 2023; 24:ijms24098179. [PMID: 37175887 PMCID: PMC10179277 DOI: 10.3390/ijms24098179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Biallelic variants in ABCA3, the gene encoding the lipid transporter ATP-binding cassette subfamily A member 3 (ABCA3) that is predominantly expressed in alveolar type II cells, may cause interstitial lung diseases in children (chILD) and adults. Currently, there is no proven therapy, but, frequently, hydroxychloroquine (HCQ) is used empirically. We hypothesized that the in vitro responsiveness to HCQ might correlate to patients' clinical outcomes from receiving HCQ therapy. The clinical data of the subjects with chILD due to ABCA3 deficiency and treated with HCQ were retrieved from the literature and the Kids Lung Register data base. The in vitro experiments were conducted on wild type (WT) and 16 mutant ABCA3-HA-transfected A549 cells. The responses of the functional read out were assessed as the extent of deviation from the untreated WT. With HCQ treatment, 19 patients had improved or unchanged respiratory conditions, and 20 had respiratory deteriorations, 5 of whom transiently improved then deteriorated. The in vitro ABCA3 functional assays identified two variants with complete response, five with partial response, and nine with no response to HCQ. The variant-specific HCQ effects in vivo closely correlated to the in vitro data. An ABCA3+ vesicle volume above 60% of the WT volume was linked to responsiveness to HCQ; the HCQ treatment response was concentration dependent and differed for variants in vitro. We generated evidence for an ABCA3 variant-dependent impact of the HCQ in vitro. This may also apply for HCQ treatment in vivo, as supported by the retrospective and uncontrolled data from the treatment of chILD due to ABCA3 deficiency.
Collapse
Affiliation(s)
- Xiaohua Yang
- Dr. von Haunersches Kinderspital, German Center for Lung Research, University of Munich, Lindwurmstr. 4a, 80337 Munich, Germany
| | - Maria Forstner
- Dr. von Haunersches Kinderspital, German Center for Lung Research, University of Munich, Lindwurmstr. 4a, 80337 Munich, Germany
| | - Christina K Rapp
- Dr. von Haunersches Kinderspital, German Center for Lung Research, University of Munich, Lindwurmstr. 4a, 80337 Munich, Germany
| | - Ina Rothenaigner
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Yang Li
- Dr. von Haunersches Kinderspital, German Center for Lung Research, University of Munich, Lindwurmstr. 4a, 80337 Munich, Germany
- Medical College, Chongqing University, Chongqing 400044, China
| | - Kamyar Hadian
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Matthias Griese
- Dr. von Haunersches Kinderspital, German Center for Lung Research, University of Munich, Lindwurmstr. 4a, 80337 Munich, Germany
| |
Collapse
|
26
|
Bedard M, van der Niet S, Bernard EM, Babunovic G, Cheng TY, Aylan B, Grootemaat AE, Raman S, Botella L, Ishikawa E, O'Sullivan MP, O'Leary S, Mayfield JA, Buter J, Minnaard AJ, Fortune SM, Murphy LO, Ory DS, Keane J, Yamasaki S, Gutierrez MG, van der Wel N, Moody DB. A terpene nucleoside from M. tuberculosis induces lysosomal lipid storage in foamy macrophages. J Clin Invest 2023; 133:161944. [PMID: 36757797 PMCID: PMC10014106 DOI: 10.1172/jci161944] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Induction of lipid-laden foamy macrophages is a cellular hallmark of tuberculosis (TB) disease, which involves the transformation of infected phagolysosomes from a site of killing into a nutrient-rich replicative niche. Here, we show that a terpenyl nucleoside shed from Mycobacterium tuberculosis, 1-tuberculosinyladenosine (1-TbAd), caused lysosomal maturation arrest and autophagy blockade, leading to lipid storage in M1 macrophages. Pure 1-TbAd, or infection with terpenyl nucleoside-producing M. tuberculosis, caused intralysosomal and peribacillary lipid storage patterns that matched both the molecules and subcellular locations known in foamy macrophages. Lipidomics showed that 1-TbAd induced storage of triacylglycerides and cholesterylesters and that 1-TbAd increased M. tuberculosis growth under conditions of restricted lipid access in macrophages. Furthermore, lipidomics identified 1-TbAd-induced lipid substrates that define Gaucher's disease, Wolman's disease, and other inborn lysosomal storage diseases. These data identify genetic and molecular causes of M. tuberculosis-induced lysosomal failure, leading to successful testing of an agonist of TRPML1 calcium channels that reverses lipid storage in cells. These data establish the host-directed cellular functions of an orphan effector molecule that promotes survival in macrophages, providing both an upstream cause and detailed picture of lysosome failure in foamy macrophages.
Collapse
Affiliation(s)
- Melissa Bedard
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sanne van der Niet
- Electron Microscopy Centre Amsterdam, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Elliott M Bernard
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Gregory Babunovic
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Beren Aylan
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Anita E Grootemaat
- Electron Microscopy Centre Amsterdam, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Sahadevan Raman
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laure Botella
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Mary P O'Sullivan
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, Dublin, Ireland
| | - Seónadh O'Leary
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, Dublin, Ireland
| | - Jacob A Mayfield
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey Buter
- Department of Chemical Biology, Stratingh Institute for Chemistry, Groningen, Netherlands
| | - Adriaan J Minnaard
- Department of Chemical Biology, Stratingh Institute for Chemistry, Groningen, Netherlands
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Daniel S Ory
- Casma Therapeutics, Cambridge, Massachusetts, USA
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, Dublin, Ireland
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Nicole van der Wel
- Electron Microscopy Centre Amsterdam, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - D Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Paludetto MN, Kurkela M, Kahma H, Backman JT, Niemi M, Filppula AM. Hydroxychloroquine is Metabolized by Cytochrome P450 2D6, 3A4, and 2C8, and Inhibits Cytochrome P450 2D6, while its Metabolites also Inhibit Cytochrome P450 3A in vitro. Drug Metab Dispos 2023; 51:293-305. [PMID: 36446607 DOI: 10.1124/dmd.122.001018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
This study aimed to explore the cytochrome P450 (CYP) metabolic and inhibitory profile of hydroxychloroquine (HCQ). Hydroxychloroquine metabolism was studied using human liver microsomes (HLMs) and recombinant CYP enzymes. The inhibitory effects of HCQ and its metabolites on nine CYPs were also determined in HLMs, using an automated substrate cocktail method. Our metabolism data indicated that CYP3A4, CYP2D6, and CYP2C8 are the key enzymes involved in HCQ metabolism. All three CYPs formed the primary metabolites desethylchloroquine (DCQ) and desethylhydroxychloroquine (DHCQ) to various degrees. Although the intrinsic clearance (CLint) value of HCQ depletion by recombinant CYP2D6 was > 10-fold higher than that by CYP3A4 (0.87 versus 0.075 µl/min/pmol), scaling of recombinant CYP CLint to HLM level resulted in almost equal HLM CLint values for CYP2D6 and CYP3A4 (11 and 14 µl/min/mg, respectively). The scaled HLM CLint of CYP2C8 was 5.7 µl/min/mg. Data from HLM experiments with CYP-selective inhibitors also suggested relatively equal roles for CYP2D6 and CYP3A4 in HCQ metabolism, with a smaller contribution by CYP2C8. In CYP inhibition experiments, HCQ, DCQ, DHCQ, and the secondary metabolite didesethylchloroquine were direct CYP2D6 inhibitors, with 50% inhibitory concentration (IC50) values between 18 and 135 µM. HCQ did not inhibit other CYPs. Furthermore, all metabolites were time-dependent CYP3A inhibitors (IC50 shift 2.2-3.4). To conclude, HCQ is metabolized by CYP3A4, CYP2D6, and CYP2C8 in vitro. HCQ and its metabolites are reversible CYP2D6 inhibitors, and HCQ metabolites are time-dependent CYP3A inhibitors. These data can be used to improve physiologically-based pharmacokinetic models and update drug-drug interaction risk estimations for HCQ. SIGNIFICANCE STATEMENT: While CYP2D6, CYP3A4, and CYP2C8 have been shown to mediate chloroquine biotransformation, it appears that the role of CYP enzymes in hydroxychloroquine (HCQ) metabolism has not been studied. In addition, little is known about the CYP inhibitory effects of HCQ. Here, we demonstrate that CYP2D6, CYP3A4, and CYP2C8 are the key enzymes involved in HCQ metabolism. Furthermore, our findings show that HCQ and its metabolites are inhibitors of CYP2D6, which likely explains the previously observed interaction between HCQ and metoprolol.
Collapse
Affiliation(s)
- Marie-Noëlle Paludetto
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Finland (M.-N.P., M.K., H.K., J.T.B., M.N., A.M.F.); HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N.); and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland (A.M.F.)
| | - Mika Kurkela
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Finland (M.-N.P., M.K., H.K., J.T.B., M.N., A.M.F.); HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N.); and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland (A.M.F.)
| | - Helinä Kahma
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Finland (M.-N.P., M.K., H.K., J.T.B., M.N., A.M.F.); HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N.); and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland (A.M.F.)
| | - Janne T Backman
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Finland (M.-N.P., M.K., H.K., J.T.B., M.N., A.M.F.); HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N.); and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland (A.M.F.)
| | - Mikko Niemi
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Finland (M.-N.P., M.K., H.K., J.T.B., M.N., A.M.F.); HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N.); and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland (A.M.F.)
| | - Anne M Filppula
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Finland (M.-N.P., M.K., H.K., J.T.B., M.N., A.M.F.); HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N.); and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland (A.M.F.)
| |
Collapse
|
28
|
Kukreja RC, Wang R, Koka S, Das A, Samidurai A, Xi L. Treating diabetes with combination of phosphodiesterase 5 inhibitors and hydroxychloroquine-a possible prevention strategy for COVID-19? Mol Cell Biochem 2023; 478:679-696. [PMID: 36036333 PMCID: PMC9421626 DOI: 10.1007/s11010-022-04520-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/30/2022] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes (T2D) is one of the major risk factors for developing cardiovascular disease and the resultant devastating morbidity and mortality. The key features of T2D are hyperglycemia, hyperlipidemia, insulin resistance, and impaired insulin secretion. Patients with diabetes and myocardial infarction have worse prognosis than those without T2D. Moreover, obesity and T2D are recognized risk factors in developing severe form of COVID-19 with higher mortality rate. The current lines of drug therapy are insufficient to control T2D and its serious cardiovascular complications. Phosphodiesterase 5 (PDE5) is a cGMP specific enzyme, which is the target of erectile dysfunction drugs including sildenafil, vardenafil, and tadalafil. Cardioprotective effects of PDE5 inhibitors against ischemia/reperfusion (I/R) injury were reported in normal and diabetic animals. Hydroxychloroquine (HCQ) is a widely used antimalarial and anti-inflammatory drug and its hyperglycemia-controlling effect in diabetic patients is also under investigation. This review provides our perspective of a potential use of combination therapy of PDE5 inhibitor with HCQ to reduce cardiovascular risk factors and myocardial I/R injury in T2D. We previously observed that diabetic mice treated with tadalafil and HCQ had significantly reduced fasting blood glucose and lipid levels, increased plasma insulin and insulin-like growth factor-1 levels, and improved insulin sensitivity, along with smaller myocardial infarct size following I/R. The combination treatment activated Akt/mTOR cellular survival pathway, which was likely responsible for the salutary effects. Therefore, pretreatment with PDE5 inhibitor and HCQ may be a potentially useful therapy not only for controlling T2D but also reducing the rate and severity of COVID-19 infection in the vulnerable population of diabetics.
Collapse
Affiliation(s)
- Rakesh C Kukreja
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA.
| | - Rui Wang
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA
| | - Saisudha Koka
- Department of Microbiology, Immunology and Pharmacology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916-6024, USA
| | - Anindita Das
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA
| | - Arun Samidurai
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA
| | - Lei Xi
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA.
| |
Collapse
|
29
|
Mlejnek P. What Is the Significance of Lysosomal-Mediated Resistance to Imatinib? Cells 2023; 12:cells12050709. [PMID: 36899844 PMCID: PMC10000661 DOI: 10.3390/cells12050709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The lysosomal sequestration of hydrophobic weak-base anticancer drugs is one proposed mechanism for the reduced availability of these drugs at target sites, resulting in a marked decrease in cytotoxicity and consequent resistance. While this subject is receiving increasing emphasis, it is so far only in laboratory experiments. Imatinib is a targeted anticancer drug used to treat chronic myeloid leukaemia (CML), gastrointestinal stromal tumours (GISTs), and a number of other malignancies. Its physicochemical properties make it a typical hydrophobic weak-base drug that accumulates in the lysosomes of tumour cells. Further laboratory studies suggest that this might significantly reduce its antitumor efficacy. However, a detailed analysis of published laboratory studies shows that lysosomal accumulation cannot be considered a clearly proven mechanism of resistance to imatinib. Second, more than 20 years of clinical experience with imatinib has revealed a number of resistance mechanisms, none of which is related to its accumulation in lysosomes. This review focuses on the analysis of salient evidence and raises a fundamental question about the significance of lysosomal sequestration of weak-base drugs in general as a possible resistance mechanism both in clinical and laboratory settings.
Collapse
Affiliation(s)
- Petr Mlejnek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 77515 Olomouc, Czech Republic
| |
Collapse
|
30
|
Pharmacological Efficacy of Repurposing Drugs in the Treatment of Prostate Cancer. Int J Mol Sci 2023; 24:ijms24044154. [PMID: 36835564 PMCID: PMC9959639 DOI: 10.3390/ijms24044154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Worldwide, prostate cancer (PC) is the second most frequent cancer among men and the fifth leading cause of death; moreover, standard treatments for PC have several issues, such as side effects and mechanisms of resistance. Thus, it is urgent to find drugs that can fill these gaps, and instead of developing new molecules requiring high financial and time investments, it would be useful to select non-cancer approved drugs that have mechanisms of action that could help in PC treatment, a process known as repurposing drugs. In this review article, drugs that have potential pharmacological efficacy are compiled to be repurposed for PC treatment. Thus, these drugs will be presented in the form of pharmacotherapeutic groups, such as antidyslipidemic drugs, antidiabetic drugs, antiparasitic drugs, antiarrhythmic drugs, anti-inflammatory drugs, antibacterial drugs, antiviral drugs, antidepressant drugs, antihypertensive drugs, antifungal drugs, immunosuppressant drugs, antipsychotic drugs, antiepileptic and anticonvulsant drugs, bisphosphonates and drugs for alcoholism, among others, and we will discuss their mechanisms of action in PC treatment.
Collapse
|
31
|
Lu JY, Chen KH, Shih SR, Wen FY, Wu WC, Chen TC, Hu FC. Predictors of Prolonged Euthyroidism After Radioactive Iodine Treatment for Graves' Disease: A Pilot Study. Endocr Pract 2023; 29:89-96. [PMID: 36396015 DOI: 10.1016/j.eprac.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Patients with Graves' disease who remain hyperthyroid under the treatment of antithyroid drugs (ATD) or cannot tolerate ATD usually receive radioactive iodine (RAI) to control disease activity. This pilot study aimed to identify predictors of prolonged euthyroidism > 12 months after receiving RAI. METHODS Demographic, clinical, and laboratory data from 117 patients receiving RAI were retrospectively collected, including age, gender, body surface area, smoking status, free thyroxine, thyrotropin, thyrotropin binding inhibiting immunoglobulin, microsomal antibody, thyroglobulin antibody, medication history, and thyroid volume. Only 85 patients without missing values were included in statistical analysis. The calculated RAI dose was the estimated thyroid volume × 0.4. The difference and ratio between the actual and calculated RAI doses were examined. A stepwise logistic regression analysis was conducted to identify important predictors of prolonged euthyroidism > 12 months. The cut-off values for discretizing continuous covariates were estimated by fitting generalized additive models. RESULTS Among the 85 patients on RAI, 18 (21.2%) achieved prolonged euthyroidism > 12 months, 38 (44.7%) remained hyperthyroid with decreased ATD doses, but 29 (34.1%) suffered permanent hypothyroidism and needed long-term levothyroxine. Logistic regression analysis revealed that patients with age > 66 years, 33 < age ≤ 66 years, quitting smoking vs nonsmoking or current smoking, 600 < micorsomal antibody ≤ 1729 IU/mL, 47% < thyrotropin binding inhibiting immunoglobulin ≤ 81%, 7 < thyroglobulin antibody ≤ 162 IU/mL, 0.63 < ratio between actual and calculated RAI doses ≤ 1.96, or taking hydroxychloroquine would have a higher chance of reaching prolonged euthyroidism > 12 months after receiving RAI. Its area under the Receiver Operating Characteristic (ROC) curve was 0.932. CONCLUSION Patients with Graves' disease who received an actual RAI dose close to the calculated RAI dose achieved prolonged euthyroidism > 12 months if they also took hydroxychloroquine during RAI treatment.
Collapse
Affiliation(s)
- Jin-Ying Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Kuan-Hua Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shyang-Rong Shih
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Center of Anti-Aging and Health Consultation, National Taiwan University Hospital, Taipei, Taiwan
| | - Fang-Yu Wen
- Statistical Consulting Clinic, International-Harvard (I-H) Statistical Consulting Company, Taipei, Taiwan
| | - Wan-Chen Wu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Chu Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Fu-Chang Hu
- Statistical Consulting Clinic, International-Harvard (I-H) Statistical Consulting Company, Taipei, Taiwan; Graduate Institute of Clinical Medicine and School of Nursing, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
32
|
Hu Z, Gao R, Huang W, Wang H, Qin L. Effect of Hydroxychloroquine on Lupus Activity, Preeclampsia and Intrauterine Growth Restriction in Pregnant Women with Systemic Lupus Erythematosus and/or Antiphospholipid Syndrome: A Systematic Review and Meta-Analysis. J Clin Med 2023; 12:jcm12020485. [PMID: 36675415 PMCID: PMC9866542 DOI: 10.3390/jcm12020485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Hydroxychloroquine (HCQ) has been used in the treatment of systematic lupus erythematosus (SLE) and antiphospholipid syndrome (APS), but its effect on lupus activity during pregnancy, preeclampsia and intrauterine growth restriction (IUGR) remains unclear. METHODS PubMed, Embase and Cochrane databases were searched before 11 September 2022 for randomized clinical trials (RCT) or observational studies involving additional HCQ treatment and pregnant women diagnosed as having SLE and/or APS/positive antiphospholipid antibodies (aPLs). Risks of high lupus activity, preeclampsia and IUGR were explored. RESULTS One RCT and 13 cohort studies were included. A total of 1764 pregnancies were included in the pooled meta-analysis (709 in the HCQ group vs. 1055 in the control group). After the additional use of HCQ, the risk of high lupus activity decreased (RR: 0.74, 95% CI: 0.57-0.97, p = 0.03). For preeclampsia, the total incidence decreased (RR: 0.54, 95% CI: 0.37-0.78, p = 0.001). The subgroup analysis showed statistical significance in the SLE subgroup (RR: 0.51, 95% CI: 0.34-0.78, p = 0.002) but not in the APS/aPLs subgroup (RR: 0.66, 95% CI: 0.29-1.54, p = 0.34). For IUGR, the decrease in incidence was not statistically significant (RR: 0.80, 95% CI: 0.47-1.35, p = 0.46), neither in the SLE subgroup (RR: 0.74, 95% CI: 0.40-1.36, p = 0.33) nor in the APS/aPLs subgroup (RR: 1.26, 95% CI: 0.34-4.61, p = 0.73). CONCLUSION The additional use of HCQ may decrease the risk of high lupus activity during pregnancy and the incidence of preeclampsia for SLE patients, but the results do not support that using HCQ decreases the incidence of preeclampsia for APS/aPLs patients or reduces IUGR risk for SLE and/or APS/aPLs patients.
Collapse
Affiliation(s)
- Zhengyan Hu
- The Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Rui Gao
- The Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Wanrong Huang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Huiqing Wang
- Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Medical Simulation Centre, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (H.W.); (L.Q.)
| | - Lang Qin
- The Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (H.W.); (L.Q.)
| |
Collapse
|
33
|
Dos Santos VHP, Dos Santos WT, Ionta M, de Paula ACC, Silva EDO. Biotransformation of hydroxychloroquine to evaluate the cytotoxicity of its metabolites and mimic mammalian metabolism. RESULTS IN CHEMISTRY 2023; 5:100761. [PMID: 36619209 PMCID: PMC9806929 DOI: 10.1016/j.rechem.2022.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023] Open
Abstract
Hydroxychloroquine (HCQ) displays attractive anti-inflammatory and antiviral effects. Because of that, such a drug made part of some clinical trials for combating Sars-CoV-2 during the COVID-19 pandemic. The present study aimed to conduct the biotransformation of HCQ by filamentous fungi reported as microbial models of mammalian drug metabolism to evaluate its cytotoxic after metabolization. Cunninghamella echinulata var. elegans ATCC 8688a could efficiently biotransform HCQ into one main metabolite identified as the new 4-(1,2,3,4-tetrahydroquinolin-4-ylamino)pentan-1-ol (HCQ-M). The microbial transformation occurred through N-dealkylation, 7-chloro-elimination, and reduction of the two conjugated double-bond from the quinoline system of HCQ. The cytotoxic profiles of HCQ and its metabolite were evaluated using CCD-1059Sk cells (human fibroblasts) through sulforhodamine B, trypan blue, and Live/Dead assays. Both HCQ and HCQ-M displayed cytotoxic activities in human fibroblasts, but HCQ-M was significantly more toxic than HCQ. The reported findings should be considered for further clinical studies of HCQ and will be important for guidance in achieving new derivatives from it.
Collapse
Affiliation(s)
| | | | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil
| | | | - Eliane de Oliveira Silva
- Organic Chemistry Department, Chemistry Institute, Federal University of Bahia, Salvador, BA, Brazil
| |
Collapse
|
34
|
Kodama K, Saitoh T. Surfactant-free air bubble flotation-coagulation for the rapid purification of chloroquine. ANAL SCI 2023; 39:43-49. [PMID: 36219371 DOI: 10.1007/s44211-022-00196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023]
Abstract
A simple and rapid separation method based on surfactant-free air bubble flotation and coagulation was designed for the purification of chloroquine (CQ) from its crude product. An open glass column having a sintered glass filter (for column chromatography) was used as a flotation vessel. The flotation was conducted by pouring the crude CQ into the aqueous solution containing 0.1% (v/v) of 2-propanol followed by feeding air through the glass filter to generate air bubbles. At pH 12, CQ was enriched into the foam temporary generating on the surface of water to form the coagulates within 90 s after the start of the air bubble flotation. On the other hand, reactants; 4,7-dichloroquinoline and 4-amino-1-diethylaminopentane, as well as generated impurities remained in the bulk aqueous solution. The result of dynamic surface tension measurement indicated that CQ molecules selectively adsorbed on the air-water interface and the coagulates more strongly adsorbed the interface. Adsorption and coagulation of CQ molecules on the air-water interface were also reproduced in the calculation results of a molecular dynamic simulation. The coagulates were collected from the surface of water by suction and then poured into another flotation vessel for conducting repeated separation. The time required for the respective separation process including air bubble flotation and collection by suction was within 5 min. After three-times separation, highly purified (> 99.0%) CQ was obtained with a yield of 72 ± 8%. The amounts of reactants and other impurities reduced into undetectable levels.
Collapse
Affiliation(s)
- Koki Kodama
- Graduate School of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507, Japan
| | - Tohru Saitoh
- Graduate School of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507, Japan.
| |
Collapse
|
35
|
Singh R, Kumar Tyagi Y, Yadav N. Hydroxychloroquine: Chemistry and Medicinal Applications. HETEROCYCLES 2023. [DOI: 10.3987/rev-22-993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Ko KM, Moon SJ. Prevalence, incidence, and risk factors of malignancy in patients with rheumatoid arthritis: a nationwide cohort study from Korea. Korean J Intern Med 2023; 38:113-124. [PMID: 34407599 PMCID: PMC9816677 DOI: 10.3904/kjim.2021.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/06/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND/AIMS This study aims to evaluate the incidence of malignancy in patients with rheumatoid arthritis (RA) and to investigate risk factors for such in a nationwide, population-based cohort. METHODS In a large, prospective, observational cohort study, 5,077 patients with RA were enrolled from July 2009 to December 2011 and followed until February 2017. Standardized incidence ratios (SIRs) for malignancy were calculated using age- and sex-specific cancer rates in the Korean general population. Poisson regression was used to identify the risk of incident malignancy. RESULTS The cohort included 5,023 participants with RA contributing 16,689 person-years of follow-up. A total of 148 malignancies were recorded. The risks of stomach cancer (SIR, 0.41; 95% confidence interval [CI], 0.21 to 0.74), colon cancer (SIR, 0.13; 95% CI, 0.03 to 0.37), and lung cancer (SIR, 0.35; 95% CI, 0.14 to 0.72) were lower in RA patients than in the general population. Poisson regression modeling demonstrated that the malignancy risk was more than two-fold greater in patients with thyroid disease than in those without thyroid disease. Hydroxychloroquine therapy was associated with a reduced risk (relative risk, 0.39; 95% CI, 0.189 to 0.801) of malignancy development. CONCLUSION The overall risk of malignancy in patients with RA is decreased relative to in the general population. In particular, stomach, colon, and lung cancers in Korean RA patients are less common, while brain and central nervous system cancers in male RA patients are more frequent. The patients with thyroid disease and longer RA disease duration were at increased risk for developing malignancy, while hydroxychloroquine users were at lower risk.
Collapse
Affiliation(s)
- Kyung Min Ko
- Division of Rheumatology, Department of Internal Medicine, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon,
Korea
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu,
Korea
| |
Collapse
|
37
|
Mlakić M, Odak I, Faraho I, Bosnar M, Banjanac M, Lasić Z, Marinić Ž, Barić D, Škorić I. Synthesis, Photochemistry, Computational Study and Potential Application of New Styryl-Thiophene and Naphtho-Thiophene Benzylamines. Int J Mol Sci 2022; 24:ijms24010610. [PMID: 36614053 PMCID: PMC9820070 DOI: 10.3390/ijms24010610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
In this research, the synthesis, photochemistry, and computational study of new cis- and trans-isomers of amino-thienostilbenes is performed to test the efficiency of their production and acid resistance, and to investigate their electronic structure, photoreactivity, photophysical characteristics, and potential biological activity. The electronic structure and conformations of synthesized thienostilbene amines and their photocyclization products are examined computationally, along with molecular modeling of amines possessing two thiophene rings that showed inhibitory potential toward cholinesterases. New amino-styryl thiophenes, with favorable photophysical properties and proven acid resistance, represent model compounds for their water-soluble ammonium salts as potential styryl optical dyes. The comparison with organic dyes possessing a trans-aminostilbene subunit as the scaffold shows that the newly synthesized trans-aminostilbenes have very similar absorbance wavelengths. Furthermore, their functionalized cis-isomers and photocyclization products are good candidates for cholinesterase inhibitors because of the structural similarity of the molecular skeleton to some already proven bioactive derivatives.
Collapse
Affiliation(s)
- Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Ilijana Odak
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
| | - Ivan Faraho
- Pharmacology In Vitro, Selvita Ltd., Prilaz Baruna Filipovića 29, HR-10000 Zagreb, Croatia
| | - Martina Bosnar
- Pharmacology In Vitro, Selvita Ltd., Prilaz Baruna Filipovića 29, HR-10000 Zagreb, Croatia
| | - Mihailo Banjanac
- Pharmacology In Vitro, Selvita Ltd., Prilaz Baruna Filipovića 29, HR-10000 Zagreb, Croatia
| | - Zlata Lasić
- Teva api Analytical R&D, Pliva, Prilaz Baruna Filipovića 25, HR-10000 Zagreb, Croatia
| | - Željko Marinić
- NMR Center, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
- Correspondence: (D.B.); (I.Š.); Tel.: +385-1-4571-385 (D.B.); +385-1-4597-241 (I.Š.)
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
- Correspondence: (D.B.); (I.Š.); Tel.: +385-1-4571-385 (D.B.); +385-1-4597-241 (I.Š.)
| |
Collapse
|
38
|
Maghsoudi S, Taghavi Shahraki B, Rameh F, Nazarabi M, Fatahi Y, Akhavan O, Rabiee M, Mostafavi E, Lima EC, Saeb MR, Rabiee N. A review on computer-aided chemogenomics and drug repositioning for rational COVID-19 drug discovery. Chem Biol Drug Des 2022; 100:699-721. [PMID: 36002440 PMCID: PMC9539342 DOI: 10.1111/cbdd.14136] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/07/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Abstract
Application of materials capable of energy harvesting to increase the efficiency and environmental adaptability is sometimes reflected in the ability of discovery of some traces in an environment-either experimentally or computationally-to enlarge practical application window. The emergence of computational methods, particularly computer-aided drug discovery (CADD), provides ample opportunities for the rapid discovery and development of unprecedented drugs. The expensive and time-consuming process of traditional drug discovery is no longer feasible, for nowadays the identification of potential drug candidates is much easier for therapeutic targets through elaborate in silico approaches, allowing the prediction of the toxicity of drugs, such as drug repositioning (DR) and chemical genomics (chemogenomics). Coronaviruses (CoVs) are cross-species viruses that are able to spread expeditiously from the into new host species, which in turn cause epidemic diseases. In this sense, this review furnishes an outline of computational strategies and their applications in drug discovery. A special focus is placed on chemogenomics and DR as unique and emerging system-based disciplines on CoV drug and target discovery to model protein networks against a library of compounds. Furthermore, to demonstrate the special advantages of CADD methods in rapidly finding a drug for this deadly virus, numerous examples of the recent achievements grounded on molecular docking, chemogenomics, and DR are reported, analyzed, and interpreted in detail. It is believed that the outcome of this review assists developers of energy harvesting materials and systems for detection of future unexpected kinds of CoVs or other variants.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Faculty of Medicine, Department of Physiology and PathophysiologyUniversity of ManitobaWinnipegManitobaCanada
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba (CHRIM), University of ManitobaWinnipegManitobaCanada
| | | | | | - Masoomeh Nazarabi
- Faculty of Organic Chemistry, Department of ChemistryUniversity of KashanKashanIran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of PharmacyTehran University of Medical SciencesTehranIran
- Nanotechnology Research Center, Faculty of PharmacyTehran University of Medical SciencesTehranIran
| | - Omid Akhavan
- Department of PhysicsSharif University of TechnologyTehranIran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordCaliforniaUSA
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Eder C. Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS)Porto AlegreBrazil
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyNew South WalesAustralia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangSouth Korea
| |
Collapse
|
39
|
Hage A, de Vries M, Leffler A, Stoetzer C. Local Anesthetic Like Inhibition of the Cardiac Na+ Channel Nav1.5 by Chloroquine and Hydroxychloroquine. J Exp Pharmacol 2022; 14:353-365. [DOI: 10.2147/jep.s375349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
|
40
|
Novel 7-Chloro-(4-thioalkylquinoline) Derivatives: Synthesis and Antiproliferative Activity through Inducing Apoptosis and DNA/RNA Damage. Pharmaceuticals (Basel) 2022; 15:ph15101234. [PMID: 36297346 PMCID: PMC9607427 DOI: 10.3390/ph15101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
A series of 78 synthetic 7-chloro-(4-thioalkylquinoline) derivatives were investigated for cytotoxic activity against eight human cancer as well as 4 non-tumor cell lines. The results showed, with some exceptions, that sulfanyl 5-40 and sulfinyl 41-62 derivatives exhibited lower cytotoxicity for cancer cell lines than those of well-described sulfonyl N-oxide derivatives 63-82. As for compound 81, the most pronounced selectivity (compared against BJ and MRC-5 cells) was observed for human cancer cells from HCT116 (human colorectal cancer with wild-type p53) and HCT116p53-/- (human colorectal cancer with deleted p53), as well as leukemia cell lines (CCRF-CEM, CEM-DNR, K562, and K562-TAX), lung (A549), and osteosarcoma cells (U2OS). A good selectivity was also detected for compounds 73 and 74 for leukemic and colorectal (with and without p53 deletion) cancer cells (compared to MRC-5). At higher concentrations (5 × IC50) against the CCRF-CEM cancer cell line, we observe the accumulation of the cells in the G0/G1 cell phase, inhibition of DNA and RNA synthesis, and induction of apoptosis. In addition, X-ray data for compound 15 is being reported. These results provide useful scientific data for the development of 4-thioalkylquinoline derivatives as a new class of anticancer candidates.
Collapse
|
41
|
Su JB, Wu WL, Dong CE, Yang S, Feng YY, Qin T, Chen KQ, Qian JJ, Zou JP, Liu YH, Liu SM, Liu WW, Da-hua S. Synthesis, characterization, crystal structure and biological evaluation of 1,3,5-triazine-quinoline derivatives as butyrylcholinesterase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Jahanbani A. Results about Molecular Structure of Chloroquine and Hydroxychloroquine for the Treatment Coronavirus. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1934047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Akbar Jahanbani
- Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
43
|
Rebolledo UA, Rico-Martínez R, Fernández R, Páez-Osuna F. Synergistic effect of chloroquine and copper to the euryhaline rotifer Proales similis. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1035-1043. [PMID: 35831720 DOI: 10.1007/s10646-022-02570-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Chloroquine (CQ) has been widely used for many years against malaria and various viral diseases. Its important use and high potential to being persistent make it of particular concern for ecotoxicological studies. Here, we evaluated the toxicity of CQ alone and in combination with copper (Cu) to the euryhaline rotifer Proales similis. All experiments were carried out using chronic toxicity reproductive five-day tests and an application factor (AF) of 0.05, 0.1, 0.3, and 0.5 by multiplying the 24-h LC50 values of CQ (4250 µg/L) and Cu (68 µg/L), which were administered in solution. The rate of population increase (r, d-1) ranged from 0.50 to 52 (controls); 0.20 to 0.40 (CQ); 0.09 to 0.43 (Cu); and -0.03 to 0.30 (CQ-Cu) and showed significant decrease as the concentration of both chemicals in the medium increased. Almost all tested mixtures induced synergistic effects, mainly as the AF increased. We found that the presence of Cu intensifies the vulnerability of organisms to CQ and vice versa. These results stress the potential hazard that these combined chemicals may have on the aquatic systems. This research suggests that P. similis is sensitive to CQ as other standardized zooplankton species and may serve as a potential test species in the risk assessment of emerging pollutants in marine environments.
Collapse
Affiliation(s)
- Uriel Arreguin Rebolledo
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, C.P., Aguascalientes, 20131, Ags., Mexico
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México, P.O. Box 811, C.P, 82000, Mazatlán, Sinaloa, México
| | - Roberto Rico-Martínez
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, C.P., Aguascalientes, 20131, Ags., Mexico
| | - Rocío Fernández
- Grupo de Investigación en Limnología Tropical, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, Mexico
| | - Federico Páez-Osuna
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México, P.O. Box 811, C.P, 82000, Mazatlán, Sinaloa, México.
| |
Collapse
|
44
|
Ojbag J, Ilmakchi M. On Physical Analysis of Some Topological Indices for Hydroxychloroquine and Chloroquine. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2092874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- J. Ojbag
- Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - M. Ilmakchi
- Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
45
|
Mlakić M, Odak I, Faraho I, Talić S, Bosnar M, Lasić K, Barić D, Škorić I. New naphtho/thienobenzo-triazoles with interconnected anti-inflammatory and cholinesterase inhibitory activity. Eur J Med Chem 2022; 241:114616. [PMID: 35870364 DOI: 10.1016/j.ejmech.2022.114616] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
New 1,2,3-triazolo(thieno)stilbenes were synthesized by Wittig reaction and photochemically transformed to corresponding substituted thienobenzo/naphtho-triazoles in high isolated yields. They were prepared to study the acetyl- and butyrylcholinesterase inhibition associated with the inhibition of TNFα cytokine production and anti-inflammatory activity. The best experimental results were achieved with the allyl-thienobenzotriazole and isopropyl, p-methoxybenzyl, and hydroxybutyl substituted naphthotriazoles bearing additional chloro or methoxy groups. The allyl-thienobenzotriazole photoproduct is twice as potent an inhibitor of eqBChE compared to the standard galantamine. At the same time, this compound strongly inhibited TNFα production in PBMCs in response to the LPS stimulus. The complexes between selected compounds with the active site of BChE and AChE are assessed by docking, providing insight into the stabilizing interactions between the potential inhibitor and the active site.
Collapse
Affiliation(s)
- Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10 000, Zagreb, Croatia
| | - Ilijana Odak
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88 000, Mostar, Bosnia and Herzegovina
| | - Ivan Faraho
- Pharmacology in vitro, Selvita Ltd., Prilaz baruna Filipovića 29, HR-10 000, Zagreb, Croatia.
| | - Stanislava Talić
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88 000, Mostar, Bosnia and Herzegovina
| | - Martina Bosnar
- Pharmacology in vitro, Selvita Ltd., Prilaz baruna Filipovića 29, HR-10 000, Zagreb, Croatia
| | - Kornelija Lasić
- Teva api Chemical R&D, Pliva, Prilaz Baruna Filipovića 25, HR-10 000, Zagreb, Croatia
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10 000, Zagreb, Croatia
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10 000, Zagreb, Croatia.
| |
Collapse
|
46
|
Willems S, Merk D. Medicinal Chemistry and Chemical Biology of Nurr1 Modulators: An Emerging Strategy in Neurodegeneration. J Med Chem 2022; 65:9548-9563. [PMID: 35797147 DOI: 10.1021/acs.jmedchem.2c00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nuclear receptor related 1 (Nurr1) is a transcription factor with neuroprotective and antineuroinflammatory properties. Observations from genetic studies and human patients support potential of Nurr1 as a therapeutic target in neurodegeneration, but due to a lack of high-quality chemical tools for pharmacological control of Nurr1, its target validation is pending. Nevertheless, considerable progress has recently been made in elucidating structural and functional characteristics of Nurr1, and several ligand scaffolds have been discovered. Here, we analyze Nurr1's structure and mechanisms compared to other nuclear receptors, summarize the known small molecule Nurr1 ligands, and discuss the available evidence for the therapeutic potential of Nurr1 in neurodegeneration.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
47
|
Calvo-Alvarez E, Dolci M, Perego F, Signorini L, Parapini S, D’Alessandro S, Denti L, Basilico N, Taramelli D, Ferrante P, Delbue S. Antiparasitic Drugs against SARS-CoV-2: A Comprehensive Literature Survey. Microorganisms 2022; 10:1284. [PMID: 35889004 PMCID: PMC9320270 DOI: 10.3390/microorganisms10071284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/09/2023] Open
Abstract
More than two years have passed since the viral outbreak that led to the novel infectious respiratory disease COVID-19, caused by the SARS-CoV-2 coronavirus. Since then, the urgency for effective treatments resulted in unprecedented efforts to develop new vaccines and to accelerate the drug discovery pipeline, mainly through the repurposing of well-known compounds with broad antiviral effects. In particular, antiparasitic drugs historically used against human infections due to protozoa or helminth parasites have entered the main stage as a miracle cure in the fight against SARS-CoV-2. Despite having demonstrated promising anti-SARS-CoV-2 activities in vitro, conflicting results have made their translation into clinical practice more difficult than expected. Since many studies involving antiparasitic drugs are currently under investigation, the window of opportunity might be not closed yet. Here, we will review the (controversial) journey of these old antiparasitic drugs to combat the human infection caused by the novel coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Sarah D’Alessandro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Luca Denti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| |
Collapse
|
48
|
Rahman MA, Ahmed KR, Rahman MDH, Parvez MAK, Lee IS, Kim B. Therapeutic Aspects and Molecular Targets of Autophagy to Control Pancreatic Cancer Management. Biomedicines 2022; 10:1459. [PMID: 35740481 PMCID: PMC9220066 DOI: 10.3390/biomedicines10061459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
Pancreatic cancer (PC) begins within the organ of the pancreas, which produces digestive enzymes, and is one of the formidable cancers for which appropriate treatment strategies are urgently needed. Autophagy occurs in the many chambers of PC tissue, including cancer cells, cancer-related fibroblasts, and immune cells, and can be fine-tuned by various promotive and suppressive signals. Consequently, the impacts of autophagy on pancreatic carcinogenesis and progression depend greatly on its stage and conditions. Autophagy inhibits the progress of preneoplastic damage during the initial phase. However, autophagy encourages tumor formation during the development phase. Several studies have reported that both a tumor-promoting and a tumor-suppressing function of autophagy in cancer that is likely cell-type dependent. However, autophagy is dispensable for pancreatic ductal adenocarcinoma (PDAC) growth, and clinical trials with autophagy inhibitors, either alone or in combination with other therapies, have had limited success. Autophagy's dual mode of action makes it therapeutically challenging despite autophagy inhibitors providing increased longevity in medical studies, highlighting the need for a more rigorous review of current findings and more precise targeting strategies. Indeed, the role of autophagy in PC is complicated, and numerous factors must be considered when transitioning from bench to bedside. In this review, we summarize the evidence for the tumorigenic and protective role of autophagy in PC tumorigenesis and describe recent advances in the understanding of how autophagy may be regulated and controlled in PDAC.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
| | - MD. Hasanur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
| | | | - In-Seon Lee
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
49
|
Villa Zapata L, Boyce RD, Chou E, Hansten PD, Horn JR, Gephart SM, Subbian V, Romero A, Malone DC. QTc Prolongation with the Use of Hydroxychloroquine and Concomitant Arrhythmogenic Medications: A Retrospective Study Using Electronic Health Records Data. Drugs Real World Outcomes 2022; 9:415-423. [PMID: 35665910 PMCID: PMC9167427 DOI: 10.1007/s40801-022-00307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Hydroxychloroquine can induce QT/QTc interval prolongation for some patients; however, little is known about its interactions with other QT-prolonging drugs. Objective The purpose of this retrospective electronic health records study was to evaluate changes in the QTc interval in patients taking hydroxychloroquine with or without concomitant QT-prolonging medications. Methods De-identified health records were obtained from the Cerner Health Facts® database. Variables of interest included demographics, diagnoses, clinical procedures, laboratory tests, and medications. Patients were categorized into six cohorts based on exposure to hydroxychloroquine, methotrexate, or sulfasalazine alone, or the combination of any those drugs with any concomitant drug known to prolong the QT interval. Tisdale QTc risk score was calculated for each patient cohort. Two-sample paired t-tests were used to test differences between the mean before and after QTc measurements within each group and ANOVA was used to test for significant differences across the cohort means. Results A statistically significant increase in QTc interval from the last measurement prior to concomitant exposure of 18.0 ms (95% CI 3.5–32.5; p < 0.05) was found in the hydroxychloroquine monotherapy cohort. QTc changes varied considerably across cohorts, with standard deviations ranging from 40.9 (hydroxychloroquine monotherapy) to 57.8 (hydroxychloroquine + sulfasalazine). There was no difference in QTc measurements among cohorts. The hydroxychloroquine + QTc-prolonging agent cohort had the highest average Tisdale Risk Score compared with those without concomitant exposure (p < 0.05). Conclusion Our analysis of retrospective electronic health records found hydroxychloroquine to be associated with a moderate increase in the QTc interval compared with sulfasalazine or methotrexate. However, the QTc was not significantly increased with concomitant exposure to other drugs known to increase QTc interval.
Collapse
Affiliation(s)
- Lorenzo Villa Zapata
- Department of Pharmacy Practice, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Richard D Boyce
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, The Offices@Baum, 5607 Baum Blvd, Pittsburgh, PA, 15202, USA.
| | - Eric Chou
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, The Offices@Baum, 5607 Baum Blvd, Pittsburgh, PA, 15202, USA
| | | | - John R Horn
- Department of Pharmacy Practice, School of Pharmacy and Pharmacy Services UW Medicine, University of Washington, Seattle, WA, USA
| | - Sheila M Gephart
- Community and Health Systems Science, College of Nursing, The University of Arizona, Tucson, AZ, USA
| | - Vignesh Subbian
- Department of Biomedical Engineering and Department of Systems and Industrial Engineering, College of Engineering, The University of Arizona, Tucson, AZ, USA
| | - Andrew Romero
- Department of Pharmacy, Banner University Medical Center, Tucson, AZ, USA
| | - Daniel C Malone
- College of Pharmacy, L.S. Skaggs Research Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
50
|
Agusti A, Guillen E, Ayora A, Anton A, Aguilera C, Vidal X, Andres C, Alonso M, Espuga M, Esperalba J, Gorgas MQ, Almirante B, Ribera E. Efficacy and safety of hydroxychloroquine in healthcare professionals with mild SARS-CoV-2 infection: Prospective, non-randomized trial. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2022; 40:289-295. [PMID: 35680347 PMCID: PMC9167951 DOI: 10.1016/j.eimce.2020.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/29/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To assess the efficacy and safety of hydroxychloroquine (HCQ) compared with no treatment in healthcare workers with mild SARS-CoV-2 infection. METHODS Prospective, non-randomized study. All health professionals with confirmed COVID-19 between April 7 and May 6, 2020, non-requiring initial hospitalization were asked to participate. Patients who accepted treatment were given HCQ for five days (loading dose of 400mg q12h the first day followed by200mg q12h). Control group included patients with contraindications for HCQ or who rejected treatment. Study outcomes were negative conversion and viral dynamics of SARS-CoV-2, symptoms duration and disease progression. RESULT Overall, 142 patients were enrolled: 87 in treatment group and 55 in control group. The median age was 37 years and 75% were female, with few comorbidities. There were no significant differences in time to negative conversion of PCR between both groups. The only significant difference in the probability of negative conversion of PCR was observed at day 21 (18.7%, 95%CI 2.0-35.4). The decrease of SARS-CoV-2 viral load during follow-up was similar in both groups. A non significant reduction in duration of some symptoms in HCQ group was observed. Two patients with HCQ and 4 without treatment developed pneumonia. No patients required admission to the Intensive Care Unit or died. About 50% of patients presented mild side effects of HCQ, mainly diarrhea. CONCLUSIONS Our study failed to show a substantial benefit of HCQ in viral dynamics and in resolution of clinical symptoms in health care workers with mild COVID-19.
Collapse
Affiliation(s)
- Antonia Agusti
- Clinical Pharmacology Service, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain; Departament de Farmacologia, Terapèutica I Toxicologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Elena Guillen
- Clinical Pharmacology Service, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain; Departament de Farmacologia, Terapèutica I Toxicologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alfonso Ayora
- Occupational Health Service, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Andres Anton
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Cristina Aguilera
- Clinical Pharmacology Service, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain; Departament de Farmacologia, Terapèutica I Toxicologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Vidal
- Clinical Pharmacology Service, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain; Departament de Farmacologia, Terapèutica I Toxicologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Cristina Andres
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Manuel Alonso
- Occupational Health Service, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Meritxell Espuga
- Occupational Health Service, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Juliana Esperalba
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mª Queralt Gorgas
- Departament de Farmacologia, Terapèutica I Toxicologia, Universitat Autònoma de Barcelona, Bellaterra, Spain; Clinical Pharmacy Service, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Benito Almirante
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Esteban Ribera
- Infectious Diseases Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|