1
|
Jie F, Shelke O, Yijie Z, Yulan C, Yongbo L. Q1 and Q2 selection, Q3, IVRT, IVPT, pharmacokinetic and pharmacodynamic evaluation of topical generic product. Drug Dev Ind Pharm 2025; 51:555-565. [PMID: 40176255 DOI: 10.1080/03639045.2025.2486487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/04/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
OBJECTIVE To establish a detailed step-by-step example for the topical development of generic products. SIGNIFICANCE Topical semisolids are complex products requiring extensive research for bioequivalence by establishing Q1/Q2/Q3. METHODS The detailed process establishes Q1/Q2 selection and Q3 evaluation of the innovator and proposed formulation. The proposed generic product along with the innovator formulation has been evaluated for physicochemical properties. Once the Q3 structure is matched with innovator formulation, the invitro release and in-vitro permeation study have been conducted to move forward for the bioequivalence study. Pharmacokinetic and pharmacodynamic studies were employed for bioequivalence with an innovator in humans. RESULTS Selection of Q1 and Q2 establish the formulation composition through literature search and reverse engineering. The test and reference products are pharmaceutically equivalent through Q3 characterization, IVRT, and IVPT. In the PK study, test and reference samples were compared for Cmax, Tmax, and t1/2 and found bioequivalent. The PD study was performed in pilot and pivotal study to establish dose duration response relationship and bioequivalence respectively without adverse events. A crucial study has exhibited that reference and test formulations are bioequivalent with a 90% confidence interval and results in 84.67%-101.09%. CONCLUSION The Cutivate® cream 0.05%, and proposed generic product Fluticasone Propionate cream 0.05% formulations are bioequivalent and have a favorable safety profile.
Collapse
Affiliation(s)
- Feng Jie
- R&D Center, Sinomune Pharmaceutical Co., Ltd, Wuxi, Jiangsu, China
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Om Shelke
- R&D Center, Sinomune Pharmaceutical Co., Ltd, Wuxi, Jiangsu, China
| | - Zhu Yijie
- R&D Center, Sinomune Pharmaceutical Co., Ltd, Wuxi, Jiangsu, China
| | - Chen Yulan
- R&D Center, Sinomune Pharmaceutical Co., Ltd, Wuxi, Jiangsu, China
| | - Liu Yongbo
- R&D Center, Sinomune Pharmaceutical Co., Ltd, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Gaiser A, Lunter D. Investigation of the suitability of confocal Raman spectroscopy for the demonstration of bioequivalence of topical products. Int J Pharm 2025; 671:125214. [PMID: 39809346 DOI: 10.1016/j.ijpharm.2025.125214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Bioequivalence studies of topical formulations have attracted increased interest as the European Medicines Agencies "Guideline on quality and equivalence on locally applied, locally acting cutaneous products" describes them in the context of the approval of generics. Since the guideline only proposes tape stripping as a destructive method for bioequivalence testing in in vitro skin penetration, the aim of this study was to investigate the suitability of confocal Raman spectroscopy (CRS) as a non-destructive alternative. To validate the CRS results, tape stripping and CRS experiments using ketoprofen as a model API were performed consecutively on the same samples of ex vivo porcine skin after frozen storage and compared. All experiments were also carried out on two different animal test subjects to investigate a possible influence of inter-individual variations. Furthermore, the influence of the chosen incubation times inside and outside of the steady state was determined. We were able to show that CRS and tape stripping results were very similar both in overall detected API amounts as well as in the results of bioequivalence testing, proving CRS is not only suitable for quantitative skin penetration experiments but also for bioequivalence testing. Inter-individual variations were found to be relevant when comparing formulations measured on different subjects. Bioequivalence testing however reached the same results on both subjects. Finally, the chosen incubation time was limited by skin disintegration, the reaching of steady state however did not influence the results of bioequivalence testing.
Collapse
Affiliation(s)
- Annette Gaiser
- University of Tuebingen, Pharmaceutical Technology, Auf Der Morgenstelle 8 72076 Tuebingen, Germany
| | - Dominique Lunter
- University of Tuebingen, Pharmaceutical Technology, Auf Der Morgenstelle 8 72076 Tuebingen, Germany.
| |
Collapse
|
3
|
Lourenço D, Miranda M, Sousa JJ, Vitorino C. Therapeutic-driven framework for bioequivalence assessment of complex topical generic drug products. Int J Pharm 2024; 661:124398. [PMID: 38964491 DOI: 10.1016/j.ijpharm.2024.124398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Despite the continuous research on understanding how topical drugs and the skin interact, the development of a topical generic product remains a challenge. Due to their local action effect rather than systemic, establishing suitable frameworks for documenting bioequivalence between reference and test formulations is anything but straightforward. In previous years, clinical endpoint trials were considered the gold standard method to demonstrate bioequivalence between topical products. Nevertheless, significant financial and time resources were required to be allocated owing to the inherent complexity of these studies. To address this problem, regulatory authorities have begun to accept alternative approaches that could lead to a biowaiver, avoiding the need for clinical endpoint trials. These alternatives encompass various in vitro and/or in vivo techniques that have been analysed and the benefits and drawbacks of each method have been considered. Furthermore, other factors like the integration of a quality by design framework to ensure a comprehensive understanding of the product and process quality attributes have also been taken into account. This review delves into international regulatory recommendations for semisolid topical products, with a focus on those established by the European Medicines Agency, as well as the Food and Drug Administration. Both approaches were carefully examined, discussing aspects such as acceptance criteria, sample size, and microstructure evaluation. Additionally, novel and innovative therapeutic-driven approaches based on in vitro disease models for the rapid and effective development of topical generic products are presented.
Collapse
Affiliation(s)
- Diogo Lourenço
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Margarida Miranda
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
4
|
Guy RH. Drug delivery to and through the skin. Drug Deliv Transl Res 2024; 14:2032-2040. [PMID: 38837116 PMCID: PMC11208237 DOI: 10.1007/s13346-024-01614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
Drug delivery technology has advanced significantly over >50 years, and has produced remarkable innovation, countless publications and conferences, and generations of talented and creative scientists. However, a critical review of the current state-of-the-art reveals that the translation of clever and sophisticated drug delivery technologies into products, which satisfy important, unmet medical needs and have been approved by the regulatory agencies, has - given the investment made in terms of time and money - been relatively limited. Here, this point of view is illustrated using a case study of technology for drug delivery into and through the skin and aims: to examine the historical development of this field and the current state-of-the-art; to understand why the translation of drug delivery technologies into products that improve clinical outcomes has been quite slow and inefficient; and to suggest how the impact of technology may be increased and the process of concept to approved product accelerated.
Collapse
Affiliation(s)
- Richard H Guy
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, U.K..
| |
Collapse
|
5
|
Luke MC. Locally acting dermatology drug products: Pharmaco-analytic considerations for bioequivalence. Eur J Pharm Sci 2024; 199:106815. [PMID: 38797441 DOI: 10.1016/j.ejps.2024.106815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Bioequivalence determinations for locally acting dermatology drug products rely on assessing product sameness thru physicochemical composition and structure comparison, comparing the concentration of the active ingredient at the putative site of action, or comparing the clinical performance of the test (would-be generic) and reference products. Topical product action on cutaneous disease may be confounded by the action of excipients and are also subject to the inherent variability of how product may interact with the skin, including thermodynamic factors such as evaporation, spreadability, and interaction with the local environment such as heat and light and skin moisture.
Collapse
Affiliation(s)
- Markham C Luke
- Division of Therapeutic Performance, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
6
|
Iliopoulos F, Tu D, Pence IJ, Li X, Ghosh P, Luke MC, Raney SG, Rantou E, Evans CL. Determining topical product bioequivalence with stimulated Raman scattering microscopy. J Control Release 2024; 367:864-876. [PMID: 38346503 DOI: 10.1016/j.jconrel.2024.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Generic drugs are essential for affordable medicine and improving accessibility to treatments. Bioequivalence (BE) is typically demonstrated by assessing a generic product's pharmacokinetics (PK) relative to a reference-listed drug (RLD). Accurately estimating cutaneous PK (cPK) at or near the site of action can be challenging for locally acting topical products. Certain cPK approaches are available for assessing local bioavailability (BA) in the skin. Stimulated Raman scattering (SRS) microscopy has unique capabilities enabling continuous, high spatial and temporal resolution and quantitative imaging of drugs within the skin. In this paper, we developed an approach based on SRS and a polymer-based standard reference for the evaluation of topical product BA and BE in human skin ex vivo. BE assessment of tazarotene-containing formulations was achieved using cPK parameters obtained within different skin microstructures. The establishment of BE between the RLD and an approved generic product was successfully demonstrated. Interestingly, within the constraints of the current study design the results suggest similar BA between the tested gel formulation and the reference cream formulation, despite the differences in the formulation/dosage form. Another formulation containing polyethylene glycol as the vehicle was demonstrated to be not bioequivalent to the RLD. Compared to using the SRS approach without a standard reference, the developed approach enabled more consistent and reproducible results, which is crucial in BE assessment. The abundant information from the developed approach can help to systematically identify key areas of study design that will enable a better comparison of topical products and support an assessment of BE.
Collapse
Affiliation(s)
- Fotis Iliopoulos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA
| | - Dandan Tu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA
| | - Xiaolei Li
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA
| | - Priyanka Ghosh
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring 20993, MD, USA
| | - Markham C Luke
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring 20993, MD, USA
| | - Sam G Raney
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring 20993, MD, USA
| | - Elena Rantou
- Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring 20993, MD, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA.
| |
Collapse
|
7
|
van Osdol WW, Novakovic J, Le Merdy M, Tsakalozou E, Ghosh P, Spires J, Lukacova V. Predicting Human Dermal Drug Concentrations Using PBPK Modeling and Simulation: Clobetasol Propionate Case Study. AAPS PharmSciTech 2024; 25:39. [PMID: 38366149 DOI: 10.1208/s12249-024-02740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024] Open
Abstract
Quantitative in silico tools may be leveraged to mechanistically predict the dermato-pharmacokinetics of compounds delivered from topical and transdermal formulations by integrating systems of rate equations that describe permeation through the formulation and layers of skin and pilo-sebaceous unit, and exchange with systemic circulation via local blood flow. Delivery of clobetasol-17 propionate (CP) from DermovateTM cream was simulated using the Transdermal Compartmental Absorption & Transit (TCATTM) Model in GastroPlus®. The cream was treated as an oil-in-water emulsion, with model input parameters estimated from publicly available information and quantitative structure-permeation relationships. From the ranges of values available for model input parameters, a set of parameters was selected by comparing model outputs to CP dermis concentration-time profiles measured by dermal open-flow microperfusion (Bodenlenz et al. Pharm Res. 33(9):2229-38, 2016). Predictions of unbound dermis CP concentrations were reasonably accurate with respect to time and skin depth. Parameter sensitivity analyses revealed considerable dependence of dermis CP concentration profiles on drug solubility in the emulsion, relatively less dependence on dispersed phase volume fraction and CP effective diffusivity in the continuous phase of the emulsion, and negligible dependence on dispersed phase droplet size. Effects of evaporative water loss from the cream and corticosteroid-induced vasoconstriction were also assessed. This work illustrates the applicability of computational modeling to predict sensitivity of dermato-pharmacokinetics to changes in thermodynamic and transport properties of a compound in a topical formulation, particularly in relation to rate-limiting steps in skin permeation. Where these properties can be related to formulation composition and processing, such a computational approach may support the design of topically applied formulations.
Collapse
Affiliation(s)
- William W van Osdol
- Simulations Plus, Incorporated, 42505 10th Street West, Lancaster, California, 93534, USA
| | - Jasmina Novakovic
- Simulations Plus, Incorporated, 42505 10th Street West, Lancaster, California, 93534, USA
| | - Maxime Le Merdy
- Simulations Plus, Incorporated, 42505 10th Street West, Lancaster, California, 93534, USA
| | - Eleftheria Tsakalozou
- Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Priyanka Ghosh
- Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Jessica Spires
- Simulations Plus, Incorporated, 42505 10th Street West, Lancaster, California, 93534, USA.
| | - Viera Lukacova
- Simulations Plus, Incorporated, 42505 10th Street West, Lancaster, California, 93534, USA
| |
Collapse
|
8
|
Bodenlenz M, Yeoh T, Berstein G, Mathew S, Shah J, Banfield C, Hollingshead B, Steyn SJ, Osgood SM, Beaumont K, Kainz S, Holeček C, Trausinger G, Raml R, Birngruber T. Comparative Study of Dermal Pharmacokinetics Between Topical Drugs Using Open Flow Microperfusion in a Pig Model. Pharm Res 2024; 41:223-234. [PMID: 38158503 PMCID: PMC10879402 DOI: 10.1007/s11095-023-03645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Accurate methods to determine dermal pharmacokinetics are important to increase the rate of clinical success in topical drug development. We investigated in an in vivo pig model whether the unbound drug concentration in the interstitial fluid as determined by dermal open flow microperfusion (dOFM) is a more reliable measure of dermal exposure compared to dermal biopsies for seven prescription or investigational drugs. In addition, we verified standard dOFM measurement using a recirculation approach and compared dosing frequencies (QD versus BID) and dose strengths (high versus low drug concentrations). METHODS Domestic pigs were topically administered seven different drugs twice daily in two studies. On day 7, drug exposures in the dermis were assessed in two ways: (1) dOFM provided the total and unbound drug concentrations in dermal interstitial fluid, and (2) clean punch biopsies after heat separation provided the total concentrations in the upper and lower dermis. RESULTS dOFM showed sufficient intra-study precision to distinguish interstitial fluid concentrations between different drugs, dose frequencies and dose strengths, and had good reproducibility between studies. Biopsy concentrations showed much higher and more variable values. Standard dOFM measurements were consistent with values obtained with the recirculation approach. CONCLUSIONS dOFM pig model is a robust and reproducible method to directly determine topical drug concentration in dermal interstitial fluid. Dermal biopsies were a less reliable measure of dermal exposure due to possible contributions from drug bound to tissue and drug associated with skin appendages.
Collapse
Affiliation(s)
- Manfred Bodenlenz
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Thean Yeoh
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Gabriel Berstein
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Shibin Mathew
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA.
| | - Jaymin Shah
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | | | - Brett Hollingshead
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Stefanus J Steyn
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Sarah M Osgood
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Kevin Beaumont
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Sonja Kainz
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Christian Holeček
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Gert Trausinger
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Reingard Raml
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Thomas Birngruber
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria.
| |
Collapse
|
9
|
Zarmpi P, Tabosa MAM, Vitry P, Bunge AL, Belsey NA, Tsikritsis D, Woodman TJ, Delgado-Charro MB, Guy RH. Confocal Raman Spectroscopic Characterization of Dermatopharmacokinetics Ex Vivo. Mol Pharm 2023; 20:5910-5920. [PMID: 37801410 PMCID: PMC10630943 DOI: 10.1021/acs.molpharmaceut.3c00755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Confocal Raman spectroscopy is being assessed as a tool with which to quantify the rate and extent of drug uptake to and its clearance from target sites of action within the viable epidermis below the skin's stratum corneum (SC) barrier. The objective of this research was to confirm that Raman can interrogate drug disposition within the living layers of the skin (where many topical drugs elicit their pharmacological effects) and to identify procedures by which Raman signal attenuation with increasing skin depth may be corrected and normalized so that metrics descriptive of topical bioavailability may be identified. It was first shown in experiments on skin cross-sections parallel to the skin surface that the amide I signal, originating primarily from keratin, was quite constant with depth into the skin and could be used to correct for signal attenuation when confocal Raman data were acquired in a "top-down" fashion. Then, using 4-cyanophenol (CP) as a model skin penetrant with a strong Raman-active C≡N functionality, a series of uptake and clearance experiments, performed as a function of time, demonstrated clearly that normalized spectroscopic data were able to detect the penetrant to at least 40-80 μm into the skin and to distinguish the disposition of CP from different vehicles. Metrics related to local bioavailability (and potentially bioequivalence) included areas under the normalized C≡N signal versus depth profiles and elimination rate constants deduced post-removal of the formulations. Finally, Raman measurements were made with an approved dermatological drug, crisaborole, for which delivery from a fully saturated formulation into the skin layers just below the SC was detectable.
Collapse
Affiliation(s)
- Panagiota Zarmpi
- Department
of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | | | - Pauline Vitry
- Department
of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Annette L. Bunge
- Department
of Chemical & Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Natalie A. Belsey
- National
Physical Laboratory, Teddington TW11 0LW, U.K.
- School
of Chemistry & Chemical Engineering, University of Surrey, Guildford GU2 7XH, U.K.
| | | | - Timothy J. Woodman
- Department
of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | | | - Richard H. Guy
- Department
of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| |
Collapse
|
10
|
Salminen AT, Manga P, Camacho L. Race, pigmentation, and the human skin barrier-considerations for dermal absorption studies. FRONTIERS IN TOXICOLOGY 2023; 5:1271833. [PMID: 37886124 PMCID: PMC10598584 DOI: 10.3389/ftox.2023.1271833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
A functional human skin barrier is critical in limiting harmful exposure to environmental agents and regulating the absorption of intentionally applied topical drug and cosmetic products. Inherent differences in the skin barrier between consumers due to extrinsic and intrinsic factors are an important consideration in the safety assessment of dermatological products. Race is a concept often used to describe a group of people who share distinct physical characteristics. The observed predisposition of specific racial groups to certain skin pathologies highlights the potential differences in skin physiology between these groups. In the context of the human skin barrier, however, the current data correlating function to race often conflict, likely as a consequence of the range of experimental approaches and controls used in the existing works. To date, a variety of methods have been developed for evaluating compound permeation through the human skin, both in vivo and in vitro. Additionally, great strides have been made in the development of reconstructed human pigmented skin models, with the flexibility to incorporate melanocytes from donors of different race and pigmentation levels. Together, the advances in the production of reconstructed human skin models and the increased adoption of in vitro methodologies show potential to aid in the standardization of dermal absorption studies for discerning racial- and skin pigmentation-dependent differences in the human skin barrier. This review analyzes the existing data on skin permeation, focusing on its interaction with race and skin pigmentation, and highlights the tools and research opportunities to better represent the diversity of the human populations in dermal absorption assessments.
Collapse
Affiliation(s)
- Alec T Salminen
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States
| | - Prashiela Manga
- U.S. Food and Drug Administration, Office of Cosmetics and Colors, Center for Food Safety and Applied Nutrition, College Park, MD, United States
| | - Luísa Camacho
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States
| |
Collapse
|
11
|
Salminen AT, Davis KJ, Felton RP, Nischal N, VonTungeln LS, Beland FA, Derr K, Brown PC, Ferrer M, Katz LM, Kleinstreuer NC, Leshin J, Manga P, Sadrieh N, Xia M, Fitzpatrick SC, Camacho L. Parallel evaluation of alternative skin barrier models and excised human skin for dermal absorption studies in vitro. Toxicol In Vitro 2023; 91:105630. [PMID: 37315744 PMCID: PMC10527924 DOI: 10.1016/j.tiv.2023.105630] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Skin permeation is a primary consideration in the safety assessment of cosmetic ingredients, topical drugs, and human users handling veterinary medicinal products. While excised human skin (EHS) remains the 'gold standard' for in vitro permeation testing (IVPT) studies, unreliable supply and high cost motivate the search for alternative skin barrier models. In this study, a standardized dermal absorption testing protocol was developed to evaluate the suitability of alternative skin barrier models to predict skin absorption in humans. Under this protocol, side-by-side assessments of a commercially available reconstructed human epidermis (RhE) model (EpiDerm-200-X, MatTek), a synthetic barrier membrane (Strat-M, Sigma-Aldrich), and EHS were performed. The skin barrier models were mounted on Franz diffusion cells and the permeation of caffeine, salicylic acid, and testosterone was quantified. Transepidermal water loss (TEWL) and histology of the biological models were also compared. EpiDerm-200-X exhibited native human epidermis-like morphology, including a characteristic stratum corneum, but had an elevated TEWL as compared to EHS. The mean 6 h cumulative permeation of a finite dose (6 nmol/cm2) of caffeine and testosterone was highest in EpiDerm-200-X, followed by EHS and Strat-M. Salicylic acid permeated most in EHS, followed by EpiDerm-200-X and Strat-M. Overall, evaluating novel alternative skin barrier models in the manner outlined herein has the potential to reduce the time from basic science discovery to regulatory impact.
Collapse
Affiliation(s)
- Alec T Salminen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kelly J Davis
- Toxicologic Pathology Associates, Jefferson, AR, USA
| | - Robert P Felton
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Nathania Nischal
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Linda S VonTungeln
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kristy Derr
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Paul C Brown
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Linda M Katz
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Nicole C Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jonathan Leshin
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, USA
| | - Prashiela Manga
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Nakissa Sadrieh
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Suzanne C Fitzpatrick
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA.
| |
Collapse
|
12
|
Biondo NE, Argenta DF, Caon T. A Comparative Analysis of Biological and Synthetic Skin Models for Drug Transport Studies. Pharm Res 2023; 40:1209-1221. [PMID: 36959412 DOI: 10.1007/s11095-023-03499-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/04/2023] [Indexed: 03/25/2023]
Abstract
Ethical restrictions as well as practical or economic issues related to use of animal and human skin has been the main reason the growth in the number of investigations with alternative models. Reconstructed skin models, for example, have been useful to evaluate the in vitro toxicity of compounds; however, these models usually overestimate the amount of drug permeated due to impaired barrier properties. In this review, the performance of synthetic and biological skin models in transport studies was compared by considering two compounds with different physicochemical properties. The advantages and limitations of each skin model are discussed in detail. Although synthetic and reconstructed skin models have shown to be useful in the formulation optimization step, they present many limitations: (1) impaired barrier properties; (2) lack of follicular transport; (3) no metabolism in synthetic membranes; (4) differences in terms of lipid organization; (5) more affected by formulation constituents. Therefore, animal and human tissues should still be prioritized in drug transport studies until new advances in alternative models are achieved. Investigations of the impact of cell-culture conditions on skin formation, in turn, bring perspectives related to the development of unhealthy/injured skin models (an aspect that still deserves attention).
Collapse
Affiliation(s)
- Nicole Esposto Biondo
- Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, S/N - Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Débora Fretes Argenta
- Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, S/N - Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Thiago Caon
- Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, S/N - Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
13
|
Advanced harmonization techniques result in accurate establishment of in vitro-in vivo correlations for oxybenzone from four complex dermal formulations with reapplication. Drug Deliv Transl Res 2023; 13:275-291. [PMID: 35763195 DOI: 10.1007/s13346-022-01186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 12/13/2022]
Abstract
Due to high variability during clinical pharmacokinetic (PK) evaluation, the prediction of in vivo exposure from in vitro absorption testing of topical semisolid and liquid dermal products has historically proven difficult. Since absorption from unoccluded formulations can be influenced by environmental factors such as temperature and humidity, maximal effort must be placed on the harmonization of experimental parameters between in vitro and in vivo testing conditions to establish accurate in vitro/in vivo correlations (IVIVC). Using four different sunscreen formulations as a model, we performed in vitro permeation testing (IVPT) studies with excised human skin and maintained strict harmonization techniques to control application time, occlusion, temperature, and humidity during in vivo human serum PK evaluation. The goal was to investigate if increased control over experimental parameters would result in decreased inter-subject variability of common topical formulations leading to acceptable IVIVC establishment. Using a deconvolution-based approach, excellent point-to-point (Level A correlation) IVIVC for the entire 12-h study duration was achieved for all four sunscreen formulations with < 10% prediction error of both area under the curve (AUC) and peak concentration (Cmax) estimation. The low variability of in vivo absorption data presents a proof-of-concept protocol design for testing of complex semisolid and liquid topical formulations applied over a large surface area with reapplication in a reliable manner. This work also presents the opportunity for expanded development of testing for the impact of altered temperature and humidity conditions on product absorption in vivo with a high degree of precision.
Collapse
|
14
|
Krombholz R, Fressle S, Nikolić I, Pantelić I, Savić S, Sakač MC, Lunter D. ex vivo-in vivo comparison of drug penetration analysis by confocal Raman microspectroscopy and tape stripping. Exp Dermatol 2022; 31:1908-1919. [PMID: 36055759 DOI: 10.1111/exd.14672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
When it comes to skin penetration analysis of a topically applied formulation, the number of suitable methods is limited, and they often lack in spatial resolution. In vivo studies are pivotal, especially in the approval of a new product, but high costs and ethical difficulties are limiting factors. For that reason, good ex vivo models for testing skin penetration are crucial. In this study, caffeine was used as a hydrophilic model drug, applied as a 2% (w/w) hydrogel, to compare different techniques for skin penetration analysis. Confocal Raman microspectroscopy (CRM) and tape stripping with subsequent HPLC analysis were used to quantify caffeine. Experiments were performed ex vivo and in vivo. Furthermore, the effect of 5% (w/w) 1,2-pentanediol on caffeine skin penetration was tested, to compare those methods regarding their effectiveness in detecting differences between both formulations.
Collapse
Affiliation(s)
- Richard Krombholz
- Department of Pharmaceutical Technology, Eberhard Karls University, Tuebingen, Germany
| | - Stefanie Fressle
- Department of Pharmaceutical Technology, Eberhard Karls University, Tuebingen, Germany
| | - Ines Nikolić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade, Belgrade, Serbia
| | - Ivana Pantelić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade, Belgrade, Serbia
| | - Snežana Savić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade, Belgrade, Serbia
| | - Milkica Crevar Sakač
- Department of Pharmaceutical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Dominique Lunter
- Department of Pharmaceutical Technology, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
15
|
Topical Semisolid Products-Understanding the Impact of Metamorphosis on Skin Penetration and Physicochemical Properties. Pharmaceutics 2022; 14:pharmaceutics14112487. [PMID: 36432678 PMCID: PMC9692522 DOI: 10.3390/pharmaceutics14112487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Recently, the United States Food and Drug Administration published a series of product-specific guidance for the development of topical drugs, with in vitro options consisting of qualitative sameness (Q1) and quantitative sameness (Q2) assessment of formulations, physiochemical and structural characterization of formulations (Q3), and, potentially, in vitro drug release and permeation tests. In these tests, the topical semisolid product's critical quality attributes (CQAs), such as rheological properties, thermodynamic activity, particle size, globule size, and rate/extent of drug release/permeation, are evaluated to ensure the desired product quality. However, alterations in these CQAs of the drug products may occur under 'in use' conditions because of various metamorphosis events, such as evaporation that leads to supersaturation and crystallization, which may eventually result in specific failure modes of semisolid products. Under 'in use' conditions, a limited amount of formulation is applied to the skin, where physicochemical characteristics of the formulation are substantially altered from primary state to secondary and, eventually, tertiary state on the skin. There is an urgent need to understand the behavior of topical semisolid products under 'in use' conditions. In this review, we attempt to cover a series of metamorphosis events and their impact on CQAs (Q3 attributes), such as viscosity, drug activity, particle size, globule size, and drug release/permeation of topical semisolid products.
Collapse
|
16
|
Iliopoulos F, Goh CF, Haque T, Rahma A, Lane ME. Dermal Delivery of Diclofenac Sodium-In Vitro and In Vivo Studies. Pharmaceutics 2022; 14:2106. [PMID: 36297542 PMCID: PMC9607602 DOI: 10.3390/pharmaceutics14102106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Previously, we reported the use of confocal Raman spectroscopy (CRS) as a novel non-invasive approach to determine drug disposition in the skin in vivo. Results obtained by CRS were found to correlate with data from the well-established in vitro permeation test (IVPT) model using human epidermis. However, these studies used simple vehicles comprising single solvents and binary or ternary solvent mixtures; to date, the utility of CRS for monitoring dermal absorption following application of complex marketed formulations has not been examined. In the present work, skin delivery of diclofenac sodium (DFNa) from two topical dermatological drug products, namely Diclac® Lipogel 10 mg/g and Primofenac® Emulsion gel 1%, was determined by IVPT and in vivo by both CRS and tape stripping (TS) methodologies under similar experimental conditions. The in vivo data were evaluated against the in vitro findings, and a direct comparison between CRS and TS was performed. Results from all methodologies showed that Diclac promoted significantly greater DFNa delivery to the skin (p < 0.05). The cumulative amounts of DFNa which permeated at 24 h in vitro for Diclac (86.5 ± 9.4 µg/cm2) were 3.6-fold greater than the corresponding amounts found for Primofenac (24.4 ± 2.7 µg/cm2). Additionally, total skin uptake of DFNa in vivo, estimated by the area under the depth profiles curves (AUC), or the signal intensity of the drug detected in the upper stratum corneum (SC) (4 µm) ranged from 3.5 to 3.6-fold greater for Diclac than for Primofenac. The shape of the distribution profiles and the depth of DFNa penetration to the SC estimated by CRS and TS were similar for the two methods. However, TS data indicated a 4.7-fold greater efficacy of Diclac relative to Primofenac, with corresponding total amounts of drug penetrated, 94.1 ± 22.6 µg and 20.2 ± 7.0 µg. The findings demonstrate that CRS is a methodology that is capable of distinguishing skin delivery of DFNa from different formulations. The results support the use of this approach for non-invasive evaluation of topical products in vivo. Future studies will examine additional formulations with more complex compositions and will use a wider range of drugs with different physicochemical properties. The non-invasive nature of CRS coupled with the ability to monitor drug permeation in real time offer significant advantages for testing and development of topical dermatological products.
Collapse
Affiliation(s)
- Fotis Iliopoulos
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Tasnuva Haque
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Annisa Rahma
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
- Pharmaceutics Department, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Majella E. Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
17
|
Garvie-Cook H, Hoppel M, Guy RH. Raman Spectroscopic Tools to Probe the Skin-(Trans)dermal Formulation Interface. Mol Pharm 2022; 19:4010-4016. [PMID: 36066005 DOI: 10.1021/acs.molpharmaceut.2c00480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Medicines designed to deliver the active pharmaceutical ingredient either into or through the skin─often referred to as topicals and transdermals, respectively─are generally considered to be complex drug products. A particular challenge faced by these formulations is identifying a suitable method (ideally, in terms of specificity, accuracy, precision, and robustness) or combination of methods with which to assess the amount and rate of drug delivery to the target site. Significant research currently aims to identify and validate relevant and minimally invasive techniques that can be used to quantify both the levels of the drug attained within different parts of the skin and the kinetics with which the drug is taken up into the skin and cleared therefrom into the systemic circulation. Here, the application of confocal Raman microspectroscopy and imaging to interrogate events integral to the performance of topical and transdermal drug products at the formulation-skin interface is illustrated. Visualization, depth slicing, and profiling are used (a) to elucidate key chemical properties of both the delivery system and the skin that have impact on their interaction and the manner in which drug transfer from one to the other may occur, (b) for the transformation of a drug product from that manufactured into a residual phase post-application and inunction into the skin (including the potential for important changes in solubility of the active compound), and (c) for drug absorption into the skin and its subsequent '"clearance" into deeper layers and beyond. Overall, the Raman tools described offer both qualitative and potentially semi-quantitative insights into topical and transdermal drug product performance and provide information useful for formulation improvement and optimization.
Collapse
Affiliation(s)
- Hazel Garvie-Cook
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Magdalena Hoppel
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Richard H Guy
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
18
|
Mittapelly N, Polak S. Modelling and Simulation Approaches to Support Formulation Optimization, Clinical Development and Regulatory Assessment of the Topically Applied Formulations- Nimesulide Solution Gel Case Study. Eur J Pharm Biopharm 2022; 178:140-149. [PMID: 35985454 DOI: 10.1016/j.ejpb.2022.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/21/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022]
Abstract
The objective of the study was to show how mechanistic modelling can be used to characterize the skin absorption of Nimesulide (NIM) in both in vitro systems and in vivo subjects. A basic PBPK model for oral absorption to characterize the systemic disposition of NIM and MPML MechDermATM models for in vitro permeation and in vivo, topical absorption was developed and verified using published data. The developed models utilize drug physicochemical properties, formulation attributes and physiology information either collected from literature and/or from Simcyp databases (systems' data). Following the verification of the PBPK models virtual bioequivalence (VBE) trials were performed both at systemic and local exposure levels (dermis concentrations) to compare these formulations. A parameter sensitivity analysis was conducted to understand the impact of vehicle-related attributes on IVPT (in vitro permeation test) data. The vehicle-stratum corneum lipids partition coefficient in the formulation layer (Kpsc_lip:vehicle) was identified to be an appropriate parameter to take into account the differences in dermal absorption of marketed preparations based on the qualitative composition. Thus, this parameter was optimized for each marketed product based on the published in vitro data. After verification of the IVPT model, IVIVE was performed to assess the predictability of the model for studying the in vivo pharmacokinetics of NIM. The VBE analysis concluded that these formulations are bioequivalent at the level of systemic and local dermis exposure. To summarize, the study shows the use of modelling and simulation (M&S) tools to better understand the behaviour of formulations and their interaction with human physiology.
Collapse
Affiliation(s)
- Naresh Mittapelly
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Sebastian Polak
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK; Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| |
Collapse
|
19
|
Arora S, Clarke J, Tsakalozou E, Ghosh P, Alam K, Grice JE, Roberts MS, Jamei M, Polak S. Mechanistic Modeling of In Vitro Skin Permeation and Extrapolation to In Vivo for Topically Applied Metronidazole Drug Products Using a Physiologically Based Pharmacokinetic Model. Mol Pharm 2022; 19:3139-3152. [PMID: 35969125 DOI: 10.1021/acs.molpharmaceut.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) modeling has increasingly been employed in dermal drug development and regulatory assessment, providing a framework to integrate relevant information including drug and drug product attributes, skin physiology parameters, and population variability. The current study aimed to develop a stepwise modeling workflow with knowledge gained from modeling in vitro skin permeation testing (IVPT) to describe in vivo exposure of metronidazole locally in the stratum corneum following topical application of complex semisolid drug products. The initial PBPK model of metronidazole in vitro skin permeation was developed using infinite and finite dose aqueous metronidazole solution. Parameters such as stratum corneum lipid-water partition coefficient (Ksclip/water) and stratum corneum lipid diffusion coefficient (Dsclip) of metronidazole were optimized using IVPT data from simple aqueous solutions (infinite) and MetroGel (10 mg/cm2 dose application), respectively. The optimized model, when parameterized with physical and structural characteristics of the drug products, was able to accurately predict the mean cumulative amount permeated (cm2/h) and flux (μg/cm2/h) profiles of metronidazole following application of different doses of MetroGel and MetroCream. Thus, the model was able to capture the impact of differences in drug product microstructure and metamorphosis of the dosage form on in vitro metronidazole permeation. The PBPK model informed by IVPT study data was able to predict the metronidazole amount in the stratum corneum as reported in clinical studies. In summary, the proposed model provides an enhanced understanding of the potential impact of drug product attributes in influencing in vitro skin permeation of metronidazole. Key kinetic parameters derived from modeling the metronidazole IVPT data improved the predictions of the developed PBPK model of in vivo local metronidazole concentrations in the stratum corneum. Overall, this work improves our confidence in the proposed workflow that accounts for drug product attributes and utilizes IVPT data toward improving predictions from advanced modeling and simulation tools.
Collapse
Affiliation(s)
- Sumit Arora
- Certara UK Ltd, Simcyp Division, Sheffield S1 2BJ, U.K
| | - James Clarke
- Certara UK Ltd, Simcyp Division, Sheffield S1 2BJ, U.K
| | - Eleftheria Tsakalozou
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States
| | - Priyanka Ghosh
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States
| | - Khondoker Alam
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States
| | - Jeffery E Grice
- Therapeutics Research Centre, Diamantina Institute, University of Queensland, Brisbane 4102, Australia
| | - Michael S Roberts
- Therapeutics Research Centre, Diamantina Institute, University of Queensland, Brisbane 4102, Australia.,Clinical and Health Sciences, University of South Australia, Adelaide 5005, Australia
| | - Masoud Jamei
- Certara UK Ltd, Simcyp Division, Sheffield S1 2BJ, U.K
| | - Sebastian Polak
- Certara UK Ltd, Simcyp Division, Sheffield S1 2BJ, U.K.,Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| |
Collapse
|
20
|
Alinaghi A, Macedo A, Cheruvu HS, Holmes A, Roberts MS. Human epidermal in vitro permeation test (IVPT) analyses of alcohols and steroids. Int J Pharm 2022; 627:122114. [PMID: 35973591 DOI: 10.1016/j.ijpharm.2022.122114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/22/2022]
Abstract
This study examined a number of factors that can impact the outcomes of in vitro human epidermal permeation coefficients for aliphatic alcohols and steroids, including receptor phase composition and study conditions. We determined experimentally the solubilities and IVPT permeation of a homologous series of 14C labeled aliphatic alcohols (ethanol, propanol, pentanol, heptanol, octanol and decanol) in different receptor fluids as recommended by Organisation Economic Co-operation and Development (OECD). We used human epidermal membranes at 25°C and phosphate-buffered saline (PBS), 2% w/v bovine serum albumin (2%w/v BSA), 50% v/v ethanol and 0.1, 2 and 6% w/v Oleth-20 receptor phases. We also explored and confirmed the discrepancies between in vitro human epidermal permeability coefficients (kp) and diffusion lag times for steroids from Scheuplein's group with our own work and that of others. The main reason for the observed differences is not clear but is likely to be multifactorial, including the effects of diffusion cell design, receptor phase solubility, unstirred receptor phase effects, epidermal membrane hydration, diffusion cell configuration, transport through appendageal pathways and steroid lipophilicity. We conclude with a summary of experimental conditions that should be considered in undertaking IVPT studies.
Collapse
Affiliation(s)
- Azadeh Alinaghi
- Clinical and Medical Sciences, University of South Australia, Adelaide, Australia and The Basil Hetzel Institute for Translational Health Research, Adelaide, Australia
| | - Ana Macedo
- Clinical and Medical Sciences, University of South Australia, Adelaide, Australia and The Basil Hetzel Institute for Translational Health Research, Adelaide, Australia
| | - Hanumanth S Cheruvu
- Diamantina Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Amy Holmes
- Clinical and Medical Sciences, University of South Australia, Adelaide, Australia and The Basil Hetzel Institute for Translational Health Research, Adelaide, Australia
| | - Michael S Roberts
- Clinical and Medical Sciences, University of South Australia, Adelaide, Australia and The Basil Hetzel Institute for Translational Health Research, Adelaide, Australia; Diamantina Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia.
| |
Collapse
|
21
|
Patel N, Clarke JF, Salem F, Abdulla T, Martins F, Arora S, Tsakalozou E, Hodgkinson A, Arjmandi-Tash O, Cristea S, Ghosh P, Alam K, Raney SG, Jamei M, Polak S. Multi-phase multi-layer mechanistic dermal absorption (MPML MechDermA) model to predict local and systemic exposure of drug products applied on skin. CPT Pharmacometrics Syst Pharmacol 2022; 11:1060-1084. [PMID: 35670226 PMCID: PMC9381913 DOI: 10.1002/psp4.12814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/15/2022] [Accepted: 04/26/2022] [Indexed: 01/31/2023] Open
Abstract
Physiologically-based pharmacokinetic models combine knowledge about physiology, drug product properties, such as physicochemical parameters, absorption, distribution, metabolism, excretion characteristics, formulation attributes, and trial design or dosing regimen to mechanistically simulate drug pharmacokinetics (PK). The current work describes the development of a multiphase, multilayer mechanistic dermal absorption (MPML MechDermA) model within the Simcyp Simulator capable of simulating uptake and permeation of drugs through human skin following application of drug products to the skin. The model was designed to account for formulation characteristics as well as body site- and sex- population variability to predict local and systemic bioavailability. The present report outlines the structure and assumptions of the MPML MechDermA model and includes results from simulations comparing absorption at multiple body sites for two compounds, caffeine and benzoic acid, formulated as solutions. Finally, a model of the Feldene (piroxicam) topical gel, 0.5% was developed and assessed for its ability to predict both plasma and local skin concentrations when compared to in vivo PK data.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eleftheria Tsakalozou
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | | | | | | | - Priyanka Ghosh
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Khondoker Alam
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Sam G Raney
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | | | - Sebastian Polak
- Simcyp Division, Certara UK, Sheffield, UK.,Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
22
|
Raney SG, Ghosh P, Ramezanli T, Lehman PA, Franz TJ. Cutaneous Pharmacokinetic Approaches to Compare Bioavailability and/or Bioequivalence for Topical Drug Products. Dermatol Clin 2022; 40:319-332. [PMID: 35750415 DOI: 10.1016/j.det.2022.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The evaluation of bioequivalence (BE) involves comparing the test product to its reference product in a study whose fundamental scientific principles allow inferring of the clinical performance of the products. Several test methods have been discussed and developed to evaluate topical bioavailability (BA) and BE. Pharmacokinetics-based approaches characterize the rate and extent to which an active ingredient becomes available at or near its site of action in the skin. Such methodologies are considered to be among the most accurate, sensitive, and reproducible approaches for determining the BA or BE of a product.
Collapse
Affiliation(s)
- Sam G Raney
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Priyanka Ghosh
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Tannaz Ramezanli
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Paul A Lehman
- QPS Holdings, LLC, 3 Innovation Way, Suite 240, Newark, DE 19711, USA
| | | |
Collapse
|
23
|
Ghosh P, Raney SG, Luke MC. How Does the Food and Drug Administration Approve Topical Generic Drugs Applied to the Skin? Dermatol Clin 2022; 40:279-287. [DOI: 10.1016/j.det.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Pulsoni I, Lubda M, Aiello M, Fedi A, Marzagalli M, von Hagen J, Scaglione S. Comparison Between Franz Diffusion Cell and a novel Micro-physiological System for In Vitro Penetration Assay Using Different Skin Models. SLAS Technol 2022; 27:161-171. [PMID: 35058208 DOI: 10.1016/j.slast.2021.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In vitro diffusive models are an important tool to screen the penetration ability of active ingredients in various formulations. A reliable assessment of skin penetration enhancing properties, mechanism of action of carrier systems, and an estimation of a bioavailability are essential for transdermal delivery. Given the importance of testing the penetration kinetics of different compounds across the skin barrier, several in vitro models have been developedThe aim of this study was to compare the Franz Diffusion Cell (FDC) with a novel fluid-dynamic platform (MIVO) by evaluating penetration ability of caffeine, a widely used reference substance, and LIP1, a testing molecule having the same molecular weight but a different lipophilicity in the two diffusion chamber systems. A 0.7% caffeine or LIP1 formulation in either water or propylene glycol (PG) containing oleic acid (OA) was topically applied on the Strat-M® membrane or pig ear skin, according to the infinite-dose experimental condition (780 ul/cm2). The profile of the penetration kinetics was determined by quantify the amount of molecule absorbed at different time-points (1, 2, 4, 6, 8 hours), by means of HPLC analysis. Both diffusive systems show a similar trend for caffeine and LIP1 penetration kinetics. The Strat-M® skin model shows a lower barrier function than the pig skin biopsies, whereby the PGOA vehicle exhibits a higher penetration, enhancing the effect for both diffusive chambers and skin surrogates. Most interestingly, MIVO diffusive system better predicts the lipophilic molecules (i.e. LIP1) permeation through highly physiological fluid flows resembled below the skin models.
Collapse
Affiliation(s)
| | | | - Maurizio Aiello
- React4life Srl, Genoa, Italy; CNR -National Research Council of Italy, Genova, Italy
| | - Arianna Fedi
- CNR -National Research Council of Italy, Genova, Italy
| | | | | | - Silvia Scaglione
- React4life Srl, Genoa, Italy; CNR -National Research Council of Italy, Genova, Italy.
| |
Collapse
|
25
|
Jung N, Namjoshi S, Mohammed Y, Grice JE, Benson HAE, Raney SG, Roberts MS, Windbergs M. Application of Confocal Raman Microscopy for the Characterization of Topical Semisolid Formulations and their Penetration into Human Skin Ex Vivo. Pharm Res 2022; 39:935-948. [PMID: 35411509 PMCID: PMC9160154 DOI: 10.1007/s11095-022-03245-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/21/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE The quality testing and approval procedure for most pharmaceutical products is a streamlined process with standardized procedures for the determination of critical quality attributes. However, the evaluation of semisolid dosage forms for topical drug delivery remains a challenging task. The work presented here highlights confocal Raman microscopy (CRM) as a valuable tool for the characterization of such products. METHODS CRM, a laser-based method, combining chemically-selective analysis and high resolution imaging, is used for the evaluation of different commercially available topical acyclovir creams. RESULTS We show that CRM enables the spatially resolved analysis of microstructural features of semisolid products and provides insights into drug distribution and polymorphic state as well as the composition and arrangement of excipients. Further, we explore how CRM can be used to monitor phase separation and to study skin penetration and the interaction with fresh and cryopreserved excised human skin tissue. CONCLUSION This study presents a comprehensive overview and illustration of how CRM can facilitate several types of key analyses of semisolid topical formulations and of their interaction with their biological target site, illustrating that CRM is a useful tool for research, development as well as for quality testing in the pharmaceutical industry.
Collapse
Affiliation(s)
- Nathalie Jung
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Sarika Namjoshi
- Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Yousuf Mohammed
- Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Jeffrey E Grice
- Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Heather A E Benson
- Curtin Medical School, Curtin University, Perth, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Basil Hetzel Institute for Translational Health Research, Woodville South, Australia
| | - Sam G Raney
- Office of Research and Standards, Office of Generic Drugs, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael S Roberts
- Diamantina Institute, The University of Queensland, Brisbane, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Basil Hetzel Institute for Translational Health Research, Woodville South, Australia
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.
| |
Collapse
|
26
|
Shukla S, Bunge AL, Hassan HE, Stinchcomb AL. Investigator Impact on Reproducibility of Drug Bioavailability in Stratum Corneum Sampling by Tape Stripping. Pharm Res 2022; 39:703-719. [PMID: 35411510 DOI: 10.1007/s11095-022-03199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/11/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Skin sampling by tape stripping measures the local bioavailability of topical drug products in the stratum corneum (SC). The goal of the current study was to evaluate the impact of different investigators in studies that utilize a tape stripping protocol designed to minimize investigator variability. METHODS Two open-label clinical studies compared two lidocaine patches and a diclofenac patch and solution in twelve healthy volunteers. The mass of drug was determined in SC samples collected on tape strips at three time points following product removal in duplicate by two investigators. Investigator results were compared with each other and with results for the diclofenac solution measured by another laboratory using a similar protocol. RESULTS For drug mass, the geometric mean ratio comparing two investigators is within the acceptable bioequivalence interval for most measurement times and drug products. Drug uptake into the SC from the diclofenac solution was not statistically different from that determined in another laboratory. The average flux from the SC over the clearance intervals for the four drug products correspond well with flux measurements from in vitro permeation tests. CONCLUSIONS Results from different investigators are reproducible within the limitations of measurement variability, which can be managed by increasing volunteer numbers.
Collapse
Affiliation(s)
- Sagar Shukla
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Annette L Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Hazem E Hassan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Audra L Stinchcomb
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
27
|
Krombholz R, Fressle S, Lunter D. Ex vivo - in vivo correlation of Retinol stratum corneum penetration studies by confocal Raman microspectroscopy and tape stripping. Int J Cosmet Sci 2022; 44:299-308. [PMID: 35396727 DOI: 10.1111/ics.12775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/28/2022]
Abstract
Skin penetration studies of topically applied drugs are a challenging topic in the development of semisolid formulations. The most commonly used methods can be differentiated by their character into ex-vivo/in-vivo, invasive/non-invasive and off-line/in-line measurements. In this study we compare ex-vivo tape stripping, an invasive technique, which is often used, to confocal Raman microspectroscopy (CRM), ex- and in-vivo, to establish a correlation between those methods. Retinol was used as a model drug, applied in an oil in water emulsion, to compare the skin penetration profiles obtained by the different methods.
Collapse
Affiliation(s)
- Richard Krombholz
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, Tuebingen, Germany
| | - Stefanie Fressle
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, Tuebingen, Germany
| | - Dominique Lunter
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, Tuebingen, Germany
| |
Collapse
|
28
|
Hummer J, Birngruber T, Sinner F, Page L, Toner F, Roper CS, Moore DJ, Baker MB, Boncheva Bettex M. Optimization of topical formulations using a combination of in vitro methods to quantify the transdermal passive diffusion of drugs. Int J Pharm 2022; 620:121737. [PMID: 35413396 DOI: 10.1016/j.ijpharm.2022.121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
This paper describes a new approach to the early-stage optimization of topical products and selection of lead formulation candidates. It demonstrates the application of open flow microperfusion in vitro in conjunction with the Franz diffusion cell to compare time-resolved, 24-hour profiles of diclofenac passive diffusion through all skin layers (including the skin barrier, dermis, and subcutis) resulting from nine topical formulations of different composition. The technique was successfully validated for in vitro sampling of diclofenac in interstitial fluid. A multi-compartmental model integrating the two datasets was analyzed and revealed that the passive diffusion of diclofenac through the dermis and subcutis does not correlate with its diffusion through the skin barrier and cannot be predicted using Franz diffusion cell data alone. The combined application of the two techniques provides a new, convenient tool for product development and selection enabling the comparison of topical formulation candidates and their impact on drug delivery through all skin layers. This approach can also generate the experimental data required to improve the robustness of mechanistic PBPK models, and when combined with clinical sampling via open flow microperfusion - for the development of better in vivo-in vitro correlative models.
Collapse
Affiliation(s)
- Joanna Hummer
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Thomas Birngruber
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Frank Sinner
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Leanne Page
- Charles River Laboratories, Tranent, Edinburgh, EH33 2NE, UK
| | - Frank Toner
- Charles River Laboratories, Tranent, Edinburgh, EH33 2NE, UK
| | - Clive S Roper
- Roper Toxicology Consulting Limited, 6 St Colme Street, Edinburgh, EH3 6AD, UK
| | - David J Moore
- GSK Consumer Healthcare, 184 Liberty Corner Rd, Warren, NJ 07059, USA
| | - Mark B Baker
- GSK Consumer Healthcare SARL, Route de l'Etraz 2, Case postale 1279, 1260 Nyon 1, Switzerland
| | - Mila Boncheva Bettex
- GSK Consumer Healthcare SARL, Route de l'Etraz 2, Case postale 1279, 1260 Nyon 1, Switzerland.
| |
Collapse
|
29
|
Miranda M, Veloso C, Brown M, A. C. C. Pais A, Cardoso C, Vitorino C. Topical bioequivalence: Experimental and regulatory considerations following formulation complexity. Int J Pharm 2022; 620:121705. [DOI: 10.1016/j.ijpharm.2022.121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
|
30
|
Tabosa MAM, Cordery SF, Jane White KA, Bunge AL, Guy RH, Delgado-Charro MB. Skin pharmacokinetics of diclofenac and co-delivered functional excipients. Int J Pharm 2022; 614:121469. [PMID: 35031414 DOI: 10.1016/j.ijpharm.2022.121469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
An important question in the development of a dermatological drug product is whether a target concentration has been achieved in, for example, the viable epidermis following topical administration. When attempting to address this challenge, it is essential to consider the role of excipients in the formulation that may influence drug partitioning and diffusion in the different layers of the skin. The objective, therefore, was to correlate, in human subjects, the skin pharmacokinetics of diclofenac (specifically, its uptake into and clearance from the stratum corneum (SC)) from an approved drug product (Voltaren® medicated plaster) with the in vivo co-uptake of two key excipients, namely propylene glycol and butylene glycol. SC sampling was used to assess diclofenac input into the skin during patch application, and its subsequent clearance post-removal of the delivery system. In parallel the uptake of the two glycol excipients was also measured. Drug and excipient amounts in the SC increased with time of application up to 6 h and, for diclofenac, no further increase was observed when the administration was prolonged to 12 h. When the plaster was removed after 6 h of wear, diclofenac cleared relatively slowly from the SC suggesting that drug binding with a slow off-rate had occurred. The results indicate that the optimisation of drug delivery from a topical formulation must take into account the disposition of key excipients and their impact on dermato-pharmacokinetics in general.
Collapse
Affiliation(s)
- M Alice Maciel Tabosa
- University of Bath, Department of Pharmacy & Pharmacology, Claverton Down, Bath BA2 7AY, UK
| | - Sarah F Cordery
- University of Bath, Department of Pharmacy & Pharmacology, Claverton Down, Bath BA2 7AY, UK
| | - K A Jane White
- University of Bath, Department of Mathematical Sciences, Claverton Down, Bath BA2 7AY, UK
| | - Annette L Bunge
- Colorado School of Mines, Department of Chemical & Biological Engineering, Golden, CO 80401, USA
| | - Richard H Guy
- University of Bath, Department of Pharmacy & Pharmacology, Claverton Down, Bath BA2 7AY, UK
| | - M Begoña Delgado-Charro
- University of Bath, Department of Pharmacy & Pharmacology, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
31
|
Chagas SCC, Pimenta CDAP, Kishishita J, Barbosa ICF, Bedor DCG, Aquino KADS, Santana DPD, Leal LB. Mupirocin ointments: In vitro x In vivo bioequivalence evaluation. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
32
|
Shin SH, Yu M, Hammell DC, Ghosh P, Raney SG, Hassan HE, Stinchcomb AL. Evaluation of in vitro/in vivo correlations for three fentanyl transdermal delivery systems using in vitro skin permeation testing and human pharmacokinetic studies under the influence of transient heat application. J Control Release 2021; 342:134-147. [PMID: 34838928 DOI: 10.1016/j.jconrel.2021.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022]
Abstract
The value of developing an in vitro/in vivo correlation (IVIVC) is substantial in biopharmaceutical drug development because once the model is developed and validated, an in vitro method may be used to efficiently assess and predict drug product performance in vivo. In this study, three bioequivalent, matrix-type, fentanyl transdermal delivery systems (TDS) were evaluated in vitro using an in vitro permeation test (IVPT) and dermatomed human skin, and in vivo in human pharmacokinetic (PK) studies under harmonized study designs to evaluate IVIVC. The study designs included 1 h of transient heat application (42 ± 2 °C) at either 11 h or 18 h after TDS application to concurrently investigate the influence of heat on drug bioavailability from TDS and the feasibility of IVPT to predict the effects of heat on TDS in vivo. Level A (point-to-point) and Level C (single point) IVIVCs were evaluated by using PK-based mathematical equations and building IVIVC models between in vitro fraction of drug permeation and in vivo fraction of drug absorption. The study results showed that the three differently formulated fentanyl TDS have comparable (p > 0.05) heat effects both in vitro and in vivo. In addition, the predicted steady-state concentration (Css) from in vitro flux data and the observed Css in vivo showed no significant differences (p > 0.05). However, the effects of heat on enhancement of fentanyl bioavailability observed in vivo were found to be greater compared to those observed in vitro for all three drug products, resulting in a weak prediction of the impact of heat on bioavailability from the in vitro data. The results from the current work suggest that while IVPT can be a useful tool to evaluate the performance of fentanyl TDS in vivo with a relatively good predictability at a normal temperature condition and to compare the effect of heat on drug delivery from differently formulated TDS, additional testing measures would enhance the ability to predict the heat effects in vivo with a lower prediction error.
Collapse
Affiliation(s)
- Soo Hyeon Shin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, United States of America
| | - Mingming Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, United States of America
| | - Dana C Hammell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, United States of America
| | - Priyanka Ghosh
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, U.S. Food and Drug Administration, Silver Spring, MD 20993, United States of America
| | - Sam G Raney
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, U.S. Food and Drug Administration, Silver Spring, MD 20993, United States of America
| | - Hazem E Hassan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, United States of America; Department of Pharmaceutics, Industrial Pharmacy Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Audra L Stinchcomb
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, United States of America.
| |
Collapse
|
33
|
Tsakalozou E, Alam K, Babiskin A, Zhao L. Physiologically-Based Pharmacokinetic Modeling to Support Determination of Bioequivalence for Dermatological Drug Products: Scientific and Regulatory Considerations. Clin Pharmacol Ther 2021; 111:1036-1049. [PMID: 34231211 DOI: 10.1002/cpt.2356] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022]
Abstract
Physiologically-based pharmacokinetic (PBPK) modeling and simulation provides mechanism-based predictions of the pharmacokinetics of an active ingredient following its administration in humans. Dermal PBPK models describe the skin permeation and disposition of the active ingredient following the application of a dermatological product on the skin of virtual healthy and diseased human subjects. These models take into account information on product quality attributes, physicochemical properties of the active ingredient and skin (patho)physiology, and their interplay with each other. Regulatory and product development decision makers can leverage these quantitative tools to identify factors impacting local and systemic exposure. In the realm of generic drug products, the number of US Food and Drug Administratioin (FDA) interactions that use dermal PBPK modeling to support alternative bioequivalence (BE) approaches is increasing. In this report, we share scientific considerations on the development, verification and validation (V&V), and application of PBPK models within the context of a virtual BE assessment for dermatological drug products. We discuss the challenges associated with model V&V for these drug products stemming from the fact that target-site active ingredient concentrations are typically not measurable. Additionally, there are no established relationships between local and systemic PK profiles, when the latter are quantifiable. To that end, we detail a multilevel model V&V approach involving validation for the model of the drug product of interest coupled with the overall assessment of the modeling platform in use while leveraging in vitro and in vivo data related to local and systemic bioavailability.
Collapse
Affiliation(s)
- Eleftheria Tsakalozou
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Khondoker Alam
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Andrew Babiskin
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
34
|
Pensado A, Hattam L, White KAJ, McGrogan A, Bunge AL, Guy RH, Delgado-Charro MB. Skin Pharmacokinetics of Transdermal Scopolamine: Measurements and Modeling. Mol Pharm 2021; 18:2714-2723. [PMID: 34124907 DOI: 10.1021/acs.molpharmaceut.1c00238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prediction of skin absorption and local bioavailability from topical formulations remains a difficult task. An important challenge in forecasting topical bioavailability is the limited information available about local and systemic drug concentrations post application of topical drug products. Commercially available transdermal patches, such as Scopoderm (Novartis Consumer Health UK), offer an opportunity to test these experimental approaches as systemic pharmacokinetic data are available with which to validate a predictive model. The long-term research aim, therefore, is to develop a physiologically based pharmacokinetic model (PBPK) to predict the dermal absorption and disposition of actives included in complex dermatological products. This work explored whether in vitro release and skin permeation tests (IVRT and IVPT, respectively), and in vitro and in vivo stratum corneum (SC) and viable tissue (VT) sampling data, can provide a satisfactory description of drug "input rate" into the skin and subsequently into the systemic circulation. In vitro release and skin permeation results for scopolamine were consistent with the previously reported performance of the commercial patch investigated. New skin sampling data on the dermatopharmacokinetics (DPK) of scopolamine also accurately reflected the rapid delivery of a "priming" dose from the patch adhesive, superimposed on a slower, rate-controlled input from the drug reservoir. The scopolamine concentration versus time profiles in SC and VT skin compartments, in vitro and in vivo, taken together with IVRT release and IVPT penetration kinetics, reflect the input rate and drug delivery specifications of the Scopoderm transdermal patch and reveal the importance of skin binding with respect to local drug disposition. Further data analysis and skin PK modeling are indicated to further refine and develop the approach outlined.
Collapse
Affiliation(s)
- Andrea Pensado
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Laura Hattam
- Institute for Mathematical Innovation, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - K A Jane White
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Anita McGrogan
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Annette L Bunge
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Richard H Guy
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - M Begoña Delgado-Charro
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
35
|
Ilić T, Pantelić I, Savić S. The Implications of Regulatory Framework for Topical Semisolid Drug Products: From Critical Quality and Performance Attributes towards Establishing Bioequivalence. Pharmaceutics 2021; 13:710. [PMID: 34068036 PMCID: PMC8152494 DOI: 10.3390/pharmaceutics13050710] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/05/2022] Open
Abstract
Due to complex interdependent relationships affecting their microstructure, topical semisolid drug formulations face unique obstacles to the development of generics compared to other drug products. Traditionally, establishing bioequivalence is based on comparative clinical trials, which are expensive and often associated with high degrees of variability and low sensitivity in detecting formulation differences. To address this issue, leading regulatory agencies have aimed to advance guidelines relevant to topical generics, ultimately accepting different non-clinical, in vitro/in vivo surrogate methods for topical bioequivalence assessment. Unfortunately, according to both industry and academia stakeholders, these efforts are far from flawless, and often upsurge the potential for result variability and a number of other failure modes. This paper offers a comprehensive review of the literature focused on amending regulatory positions concerning the demonstration of (i) extended pharmaceutical equivalence and (ii) equivalence with respect to the efficacy of topical semisolids. The proposed corrective measures are disclosed and critically discussed, as they span from mere demands to widen the acceptance range (e.g., from ±10% to ±20%/±25% for rheology and in vitro release parameters highly prone to batch-to-batch variability) or reassess the optimal number of samples required to reach the desired statistical power, but also rely on specific data modeling or novel statistical approaches.
Collapse
Affiliation(s)
| | | | - Snežana Savić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11 221 Belgrade, Serbia; (T.I.); (I.P.)
| |
Collapse
|
36
|
In Vitro-In Vivo Correlation in Dermal Delivery: The Role of Excipients. Pharmaceutics 2021; 13:pharmaceutics13040542. [PMID: 33924434 PMCID: PMC8069833 DOI: 10.3390/pharmaceutics13040542] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 04/10/2021] [Indexed: 11/30/2022] Open
Abstract
The composition of topical and transdermal formulations is known to determine the rate and the extent of drug delivery to and through the skin. However, to date, the role of excipients in these formulations on skin delivery of actives has received little attention from scientists in the field. Monitoring skin absorption of both drug and vehicle may provide insights into the mechanism by which excipients promote permeation and may facilitate the design of effective and safer products. Previously, we have investigated the use of quantitative Confocal Raman Spectroscopy (CRS) to investigate the delivery of an active to the skin, and we also reported the first fully quantitative study that compared this method with the well-established in vitro permeation test (IVPT) model. To further explore the potential of quantitative CRS in assessing topical delivery, the present work investigated the effects of commonly used excipients on the percutaneous absorption of a model drug, ibuprofen (IBU). Permeation of IBU and selected solvents following finite dose applications to human skin was determined in vitro and in vivo by Franz diffusion studies and quantitative CRS, respectively. The solvents used were propylene glycol (PG), dipropylene glycol (DPG), tripropylene glycol (TPG), and polyethylene glycol 300 (PEG 300). Overall, the cumulative amounts of IBU that permeated at 24 h in vitro were similar for PG, DPG, and TPG (p > 0.05). These three vehicles outperformed PEG 300 (p < 0.05) in terms of drug delivery. Concerning the vehicles, the rank order for in vitro skin permeation was DPG ≥ PG > TPG, while PEG 300 did not permeate the skin. A linear relationship between maximum vehicle and IBU flux in vitro was found, with a correlation coefficient (R2) of 0.95. When comparing in vitro with in vivo data, a positive in vitro–in vivo (IVIV) correlation between the cumulative permeation of IBU in vitro and the total amount of IBU that penetrated the stratum corneum (SC) in vivo was observed, with a Pearson correlation coefficient (R2) of 0.90. A strong IVIV correlation, R2 = 0.82, was found following the linear regression of the cumulative number of solvents permeated in vitro and the corresponding skin uptake in vivo measured with CRS. This is the first study to correlate in vivo permeation of solvents measured by CRS with data obtained by in vitro diffusion studies. The IVIV correlations suggest that CRS is a powerful tool for profiling drug and vehicle delivery from dermal formulations. Future studies will examine additional excipients with varying physicochemical properties. Ultimately, these findings are expected to lead to new approaches for the design, evaluation, and optimization of formulations that target actives to and through the skin.
Collapse
|
37
|
Chaturvedi S, Garg A. An insight of techniques for the assessment of permeation flux across the skin for optimization of topical and transdermal drug delivery systems. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Hoppel M, Tabosa MAM, Bunge AL, Delgado-Charro MB, Guy RH. Assessment of Drug Delivery Kinetics to Epidermal Targets In Vivo. AAPS JOURNAL 2021; 23:49. [PMID: 33782803 PMCID: PMC8007522 DOI: 10.1208/s12248-021-00571-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/10/2021] [Indexed: 11/30/2022]
Abstract
It has proven challenging to quantify ‘drug input’ from a formulation to the viable skin because the epidermal and dermal targets of topically applied drugs are difficult, if not impossible, to access in vivo. Defining the drug input function to the viable skin with a straightforward and practical experimental approach would enable a key component of dermal pharmacokinetics to be characterised. It has been hypothesised that measuring drug uptake into and clearance from the stratum corneum (SC) by tape-stripping allows estimation of a topical drug’s input function into the viable tissue. This study aimed to test this idea by determining the input of nicotine and lidocaine into the viable skin, following the application of commercialised transdermal patches to healthy human volunteers. The known input rates of these delivery systems were used to validate and assess the results from the tape-stripping protocol. The drug input rates from in vivo tape-stripping agreed well with the claimed delivery rates of the patches. The experimental approach was then used to determine the input of lidocaine from a marketed cream, a typical topical product for which the amount of drug absorbed has not been well-characterised. A significantly higher delivery of lidocaine from the cream than from the patch was found. The different input rates between drugs and formulations in vivo were confirmed qualitatively and quantitatively in vitro in conventional diffusion cells using dermatomed abdominal pig skin.
Collapse
Affiliation(s)
- M Hoppel
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 4LZ, UK
| | - M A M Tabosa
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 4LZ, UK
| | - A L Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, 80401, USA
| | - M B Delgado-Charro
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 4LZ, UK
| | - R H Guy
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 4LZ, UK.
| |
Collapse
|
39
|
Tsakalozou E, Babiskin A, Zhao L. Physiologically-based pharmacokinetic modeling to support bioequivalence and approval of generic products: A case for diclofenac sodium topical gel, 1. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:399-411. [PMID: 33547863 PMCID: PMC8129718 DOI: 10.1002/psp4.12600] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/08/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Establishing bioequivalence (BE) for dermatological drug products by conducting comparative clinical end point studies can be costly and the studies may not be sufficiently sensitive to detect certain formulation differences. Quantitative methods and modeling, such as physiologically‐based pharmacokinetic (PBPK) modeling, can support alternative BE approaches with reduced or no human testing. To enable PBPK modeling for regulatory decision making, models should be sufficiently verified and validated (V&V) for the intended purpose. This report illustrates the US Food and Drug Administration (FDA) approval of a generic diclofenac sodium topical gel that was based on a totality of evidence, including qualitative and quantitative sameness and physical and structural similarity to the reference product, an in vivo BE study with PK end points, and, more importantly, for the purposes of this report, a virtual BE assessment leveraging dermal PBPK modeling and simulation instead of a comparative clinical end point study in patients. The modeling approach characterized the relationship between systemic (plasma) and local (skin and synovial fluid) diclofenac exposure and demonstrated BE between the generic and reference products at the presumed site of action. Based on the fit‐for‐purpose modeling principle, the V&V process involved assessing observed data of diclofenac concentrations in skin tissues and plasma, and the overall performance of the modeling platform for relevant products. Using this case as an example, this report provides current scientific considerations on good practices for model V&V and the establishment of BE for dermatological drug products when leveraging PBPK modeling and simulation for regulatory decision making.
Collapse
Affiliation(s)
- Eleftheria Tsakalozou
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Andrew Babiskin
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
40
|
Negari IP, Keshari S, Huang CM. Probiotic Activity of Staphylococcus epidermidis Induces Collagen Type I Production through FFaR2/p-ERK Signaling. Int J Mol Sci 2021; 22:ijms22031414. [PMID: 33572500 PMCID: PMC7866835 DOI: 10.3390/ijms22031414] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/07/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Collagen type I is a key structural component of dermis tissue and is produced by fibroblasts and the extracellular matrix. The skin aging process, which is caused by intrinsic or extrinsic factors, such as natural aging or free radical exposure, greatly reduces collagen expression, thereby leading to obstructed skin elasticity. We investigated the effective fermentation of Cetearyl isononanoate (CIN), a polyethylene glycol (PEG) analog, as a carbon source with the skin probiotic bacterium Staphylococcus epidermidis (S.epidermidis) or butyrate, as their fermentation metabolites could noticeably restore collagen expression through phosphorylated extracellular signal regulated kinase (p-ERK) activation in mouse fibroblast cells and skin. Both the in vitro and in vivo knockdown of short-chain fatty acid (SCFA) or free fatty acid receptor 2 (FFaR2) considerably blocked the probiotic effect of S. epidermidis on p-ERK-induced collagen type I induction. These results demonstrate that butyric acid (BA) in the metabolites of fermenting skin probiotic bacteria mediates FFaR2 to induce the synthesis of collagen through p-ERK activation. We hereby imply that metabolites from the probiotic S. epidermidis fermentation of CIN as a potential carbon source could restore impaired collagen in the dermal extracellular matrix (ECM), providing integrity and elasticity to skin.
Collapse
Affiliation(s)
- Indira Putri Negari
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan;
| | - Sunita Keshari
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan;
| | - Chun-Ming Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan;
- Correspondence: ; Tel.: +886-3-422-7151 (ext. 36101); Fax: +886-3-425-3427
| |
Collapse
|
41
|
Skin permeation and penetration of crisaborole when coapplied with emollients. J Am Acad Dermatol 2020; 83:1801-1803. [DOI: 10.1016/j.jaad.2020.03.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/18/2020] [Accepted: 03/30/2020] [Indexed: 11/24/2022]
|
42
|
Shin SH, Rantou E, Raney SG, Ghosh P, Hassan H, Stinchcomb A. Cutaneous Pharmacokinetics of Acyclovir Cream 5% Products: Evaluating Bioequivalence with an In Vitro Permeation Test and an Adaptation of Scaled Average Bioequivalence. Pharm Res 2020; 37:210. [PMID: 33001286 DOI: 10.1007/s11095-020-02821-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/09/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE The in vitro permeation test (IVPT) with a new statistical approach was investigated to evaluate the utility of an IVPT methodology as a sensitive tool to support a demonstration of bioequivalence (BE) for topical dermatological drug products. METHODS IVPT experiments were performed utilizing ex vivo human skin. The initial screening tests involved four differently formulated acyclovir 5% creams: the U.S. Zovirax® as the reference product and the U.K. Zovirax®, Aciclovir 1A Pharma® and Aciclostad® as test products. Subsequently, a pivotal BE study was conducted comparing the two Zovirax® creams. The resulting data was used to evaluate BE of test (T) versus reference (R), T versus T, and R versus R, with an adaption of scaled average BE approach to address high variability in IVPT data. RESULTS More acyclovir permeated into and through the skin from the two Zovirax® creams compared to the two non-Zovirax® creams. The U.S. Zovirax® cream showed a significantly higher Jmax and total amount permeated over 48 h, compared to the U.K. Zovirax® cream. The statistical analysis indicated that the test and reference products were not bioequivalent, whereas each product tested against itself was shown to be bioequivalent. CONCLUSIONS The current study demonstrated that the IVPT method, with an appropriate statistical analysis of the results, is a sensitive and discriminating test that can detect differences in the rate and extent of acyclovir bioavailability in the skin from differently formulated cream products.
Collapse
Affiliation(s)
- Soo Hyeon Shin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 N. Pine Street PHN521, MD, 21201, Baltimore, USA
| | - Elena Rantou
- Office of Biostatistics Office of Translational Sciences Center for Drug Evaluation and Research, United States Food and Drug Administration, White Oak Campus, MD, Silver Spring, USA
| | - Sam G Raney
- Office of Research and Standards Office of Generic Drugs Center for Drug Evaluation and Research, United States Food and Drug Administration, MD, 20993, Silver Spring, United States
| | - Priyanka Ghosh
- Office of Research and Standards Office of Generic Drugs Center for Drug Evaluation and Research, United States Food and Drug Administration, MD, 20993, Silver Spring, United States
| | - Hazem Hassan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 N. Pine Street PHN521, MD, 21201, Baltimore, USA
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Audra Stinchcomb
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 N. Pine Street PHN521, MD, 21201, Baltimore, USA.
| |
Collapse
|
43
|
Bodenlenz M, Augustin T, Birngruber T, Tiffner KI, Boulgaropoulos B, Schwingenschuh S, Raney SG, Rantou E, Sinner F. Variability of Skin Pharmacokinetic Data: Insights from a Topical Bioequivalence Study Using Dermal Open Flow Microperfusion. Pharm Res 2020; 37:204. [PMID: 32989514 PMCID: PMC7522073 DOI: 10.1007/s11095-020-02920-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/28/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Dermal open flow microperfusion (dOFM) has previously demonstrated its utility to assess the bioequivalence (BE) of topical drug products in a clinical study. We aimed to characterize the sources of variability in the dermal pharmacokinetic data from that study. METHODS Exploratory statistical analyses were performed with multivariate data from a clinical dOFM-study in 20 healthy adults evaluating the BE, or lack thereof, of Austrian test (T) and U.S. reference (R) acyclovir cream, 5% products. RESULTS The overall variability of logAUC values (CV: 39% for R and 45% for T) was dominated by inter-subject variability (R: 82%, T: 91%) which correlated best with the subject's skin conductance. Intra-subject variability was 18% (R) and 9% (T) of the overall variability; skin treatment sites or methodological factors did not significantly contribute to that variability. CONCLUSIONS Inter-subject variability was the major component of overall variability for acyclovir, and treatment site location did not significantly influence intra-subject variability. These results support a dOFM BE study design with T and R products assessed simultaneously on the same subject, where T and R treatment sites do not necessarily need to be next to each other. Localized variation in skin microstructure may be primarily responsible for intra-subject variability.
Collapse
Affiliation(s)
- Manfred Bodenlenz
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Thomas Augustin
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Thomas Birngruber
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Katrin I Tiffner
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Beate Boulgaropoulos
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Simon Schwingenschuh
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Sam G Raney
- Division of Therapeutic Performance Office of Research and Standards Office of Generic Drugs, United States (U.S.) Food and Drug Administration, 10903 New Hampshire Avenue, MD, 20993, Silver Spring, USA
| | - Elena Rantou
- Division of Biostatistics VIII, Office of Biostatistics, Office of Translational Sciences, United States (U.S.) Food and Drug Administration, 10903 New Hampshire Avenue, MD, 20993, Silver Spring, USA
| | - Frank Sinner
- HEALTH - Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria.
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| |
Collapse
|
44
|
Mohamed LA, Kamal N, Elfakhri KH, Ibrahim S, Ashraf M, Zidan AS. Application of synthetic membranes in establishing bio-predictive IVPT for testosterone transdermal gel. Int J Pharm 2020; 586:119572. [PMID: 32599131 DOI: 10.1016/j.ijpharm.2020.119572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/28/2022]
Abstract
The current study investigated the use of synthetic membranes in developing a bio-predictive in vitro permeation testing (IVPT) method for 1.62% testosterone gel. The IVPT studies were carried out using both Franz (FC), and Flow-through (FTC) diffusion cells. The experimental variables included the type of synthetic membranes (hydrophilic polyamide nylon, polysulfone tuffryn and STRAT-M (SM) membrane) and the type of receiver media (phosphate buffer containing various concentrations of sodium lauryl sulfate). In vivo drug release rates were obtained from published reports for 1.62% testosterone gel applied to either abdominal area (treatment group A), upper arms/shoulders (treatment group B), or alternating between abdomen and arms/shoulders (treatment group C). The in vitro-in vivo correlations were established using GastroPlus software. The best IVPT method was selected based on establishing point-to-point correlation with the in vivo data of treatment group A with minimal prediction errors (%PE) of AUC0-24 and Cmax. The results showed that the IVPT method which employed the FTC diffusion system, SM membrane and phosphate buffer without surfactant established the best IVIVR model with a correlation coefficient (R2) of 0.9966 and an exponential function of Y = (1.35)5 × X3.6. The in vivo data obtained from treatment group A and B was used for internal validation of the prediction model. The validation data was acceptable, with %PE of less than 10% for both AUC0-24 and Cmax. In conclusion, these results suggest that bio-predictive IVPT methods for testosterone gels may be developed using synthetic membranes and diffusion apparatus by varying the composition of the receiver medium.
Collapse
Affiliation(s)
- Loqman A Mohamed
- Division of Pharmaceutical Manufacturing II, Office of Pharmaceutical Manufacturing Assessment, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD 20993, USA
| | - Nahid Kamal
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD 20993, USA
| | - Khaled H Elfakhri
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD 20993, USA
| | - Sarah Ibrahim
- Division of Bioequivalence, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD 20993, USA
| | - Muhammad Ashraf
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD 20993, USA
| | - Ahmed S Zidan
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD 20993, USA.
| |
Collapse
|
45
|
Kwa MC, Tegtmeyer K, Welty LJ, Raney SG, Luke MC, Xu S, Kong B. The relationship between the number of available therapeutic options and government payer (medicare part D) spending on topical drug products. Arch Dermatol Res 2020; 312:559-565. [PMID: 32055932 DOI: 10.1007/s00403-020-02042-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 11/26/2022]
Abstract
The cost of prescription drugs has increased at rates far exceeding general inflation in recent history, with topical drugs increasing at a disproportionate rate compared to other routes of administration. We assessed the relationship between net changes in the number of therapeutic options, defined as any approved drug or therapeutic equivalent on the market, and prescription topical drug spending. Drugs were divided based on the category of use through pairing of Medicare Part D Prescriber Public Use and Food and Drug Administration (FDA) approved drug products databases. Across drug classes, we modeled the log of the ratio of total spending per unit in 2015 to total spending per unit in 2011 as a linear function of net number of topical therapeutic options over this time period. Primary outcomes include total Medicaid Part D spending on topical drugs and net change in the number of available therapeutic options within each category of use. Total spending on topical drugs increased by 61%, while the number of units dispensed increased by only 18% from 2011-2015. The greatest total spending increases were in categories with few new therapeutic options, such as topical corticosteroid and antifungal medications. Each net additional therapeutic option during 2011-2015 was associated with an reduction in how much relative spending per unit increased (95% CI 2.5%-14.4%, p = 0.013). Stimulating greater competition through increasing the net number of therapeutic options within each major topical category of use may place downward pressure on topical prescription drug spending under medicare Part D.
Collapse
Affiliation(s)
- Michael C Kwa
- Department of Dermatology, Northwestern University Feinberg School of Medicine, 2701 Patrio Blvd, Glenview, Chicago, IL, USA
| | - Kyle Tegtmeyer
- Department of Dermatology, Northwestern University Feinberg School of Medicine, 2701 Patrio Blvd, Glenview, Chicago, IL, USA
| | - Leah J Welty
- Division of Biostatistics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sam G Raney
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Markham C Luke
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Shuai Xu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, 2701 Patrio Blvd, Glenview, Chicago, IL, USA.
- Center for Bio-Integrated Electronics, Simpson Querrey Institute, Northwestern University, 676 N. St. Clair St., Suite 1600, Chicago, IL, 60611, USA.
| | - Betty Kong
- Department of Dermatology, Northwestern University Feinberg School of Medicine, 2701 Patrio Blvd, Glenview, Chicago, IL, USA.
| |
Collapse
|
46
|
Sensitivity of Different In Vitro Performance Tests and Their In Vivo Relevance for Calcipotriol/Betamethasone Ointment. Pharm Res 2020; 37:52. [PMID: 32043181 DOI: 10.1007/s11095-020-2766-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/19/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE We compared results of in vitro performance testing with results of therapeutic equivalence study for calcipotriol/betamethasone ointment, to evaluate their sensitivity and in vivo relevance. METHODS Different in vitro methods were used to evaluate drug release and permeation from the test and reference ointment. Moreover, 444 psoriasis patients were randomized in the therapeutic equivalence study and the parameters of efficacy and safety were compared with in vitro results. RESULTS In vitro release and permeation rate of calcipotriol and betamethasone from the test formulation was higher than from the reference product for all methods used (p ≤ 0.05 for calcipotriol and p < 0.01 for betamethasone). Observed batch-to-batch variability of reference product confirmed high sensitivity and discriminatory power of in vitro methods. Higher release and permeation rate of calcipotriol and betamethasone from test product was reflected in the efficacy assessment (mean response difference 4.78 mPASI percentage points), but the observed difference was within the equivalence margins. Systemic exposure to calcipotriol and betamethasone was similar in both treatment groups. CONCLUSION The results of in vitro experiments rank orderly correlated with the results of clinical study. In vitro methods are more sensitive and highly discriminatory when compared to in vivo performance.
Collapse
|
47
|
Raney SG, Luke MC. A new paradigm for topical generic drug products: Impact on therapeutic access. J Am Acad Dermatol 2020; 82:1570-1571. [PMID: 32032691 DOI: 10.1016/j.jaad.2020.01.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Affiliation(s)
- Sam G Raney
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Markham C Luke
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland.
| |
Collapse
|
48
|
Shabbir M, Nagra U, Zaman M, Mahmood A, Barkat K. Lipid Vesicles and Nanoparticles for Non-invasive Topical and Transdermal Drug Delivery. Curr Pharm Des 2020; 26:2149-2166. [PMID: 31931691 DOI: 10.2174/1381612826666200114090659] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/23/2019] [Indexed: 11/22/2022]
Abstract
The delivery of drugs, via different layers of skin, is challenging because it acts as a natural barrier and exerts hindrance against molecules to permeate into or through it. To overcome such obstacles, different noninvasive methods, like vehicle-drug interaction, modifications of the horny layer and nanoparticles have been suggested. The aim of the present review is to highlight some of the non-invasive methods for topical, diadermal and transdermal delivery of drugs. Special emphasis has been made on the information available in numerous research articles that put efforts in overcoming obstacles associated with barrier functions imposed by various layers of skin. Advances have been made in improving patient compliance that tends to avoid hitches involved in oral administration. Of particular interest is the use of lipid-based vesicles and nanoparticles for dermatological applications. These particulate systems can effectively interact and penetrate into the stratum corneum via lipid exchange and get distributed in epidermis and dermis. They also have the tendency to exert a systemic effect by facilitating the absorption of an active moiety into general circulation.
Collapse
Affiliation(s)
- Maryam Shabbir
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Uzair Nagra
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Asif Mahmood
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| |
Collapse
|
49
|
Ozdin D, Kanfer I, Ducharme MP. Novel Approach for the Bioequivalence Assessment of Topical Cream Formulations: Model-Based Analysis of Tape Stripping Data Correctly Concludes BE and BIE. Pharm Res 2020; 37:20. [PMID: 31897770 DOI: 10.1007/s11095-019-2724-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE The purpose of this study was (a) to suggest a novel dermatopharmacokinetic (DPK) approach from which pharmacokinetic parameters relevant to the bioequivalence (BE) assessment of a topical formulation can be deduced while circumventing the need for numerous measurements and assumptions, and (b) to investigate whether this approach enables the correct conclusion of BE and bioinequivalence (BIE). METHODS Bioequivalent and bioinequivalent formulations of acyclovir were compared versus a reference product (Zovirax®). Tape Stripping was conducted at only one dose duration during the uptake phase to generate drug content in stratum corneum versus time profiles, each time point corresponding to one stripped layer. Nonlinear mixed effect modeling (ADAPT5®) (MLEM algorithm) was used to fit the DPK data and to estimate the rate (Kin) and extent (FS) of drug absorption/input into the skin. Results were evaluated using the average BE approach. RESULTS Estimated exposure metrics were within the usual BE limits for the bioequivalent formulation (FS: 102.4 [90%CI: 97.5-107.7]; Kin: 94.2 [90%CI: 83.7-106.0]), but outside those limits for the bioinequivalent formulation (FS: 43.4 [90%CI: 27.9-67.6]; Kin: 54.5 [90%CI: 36.6-81.1]). CONCLUSIONS The proposed novel DPK approach was shown to be successful, robust and applicable to assess BE and BIE correctly between topical formulations.
Collapse
Affiliation(s)
- Deniz Ozdin
- Faculté de pharmacie, Université de Montréal, Pavillon Jean Coutu, 2940 Chemin de la polytechnique, Montréal, Quebec, Canada.,Learn and Confirm Inc., 750 Marcel-Laurin Suite 235, St-Laurent, Quebec, Canada
| | - Isadore Kanfer
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, Ontario, Canada.,Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| | - Murray P Ducharme
- Faculté de pharmacie, Université de Montréal, Pavillon Jean Coutu, 2940 Chemin de la polytechnique, Montréal, Quebec, Canada. .,Learn and Confirm Inc., 750 Marcel-Laurin Suite 235, St-Laurent, Quebec, Canada.
| |
Collapse
|
50
|
Alkyl polyglucoside-based adapalene-loaded microemulsions for targeted dermal delivery: Structure, stability and comparative biopharmaceutical characterization with a conventional dosage form. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|