1
|
Bonkovsky HL, Ma CD, Araque M, Tiley JB, Brouwer KLR, Stölzel U. Understanding Coproporphyrins and their Disposition: Coproporphyrinuria is Common, of Diverse Cause, and Rarely Indicates Porphyria. Am J Med 2025:S0002-9343(25)00225-6. [PMID: 40228600 DOI: 10.1016/j.amjmed.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025]
Abstract
Coproporphyrins [CPs] are often mildly increased in plasma and urine, which leads to erroneous over-diagnosis of porphyrias. Herein we provide an overview of normal CP metabolism and factors that influence its disposition. We reviewed extant literature and here summarize and put into context current knowledge of CP metabolism and its disposition. CPs are formed as byproducts of normal heme synthesis. Normally they are removed chiefly by hepatocytes into bile and then stool. Organic anion transporting peptides [OATPs] and multidrug resistance-associated proteins [MRPs] facilitate the uptake of CPs into epithelial cells and removal. Xenobiotics inhibit the activities of MRPs and/or OATPs and affect the metabolism and disposition of CPs. CP concentrations are used as endogenous probes for assessing altered functions of OATPs. Diverse liver diseases and disorders lead to decreased secretion of CPs into bile and thus to increased concentrations of CPs in plasma and urine. Usually, mild to moderate increases in urinary CPs are due to alcohol, heavy metals, drug effects on transporters, or non-porphyric liver diseases not to porphyrias or to other inherited syndromes.
Collapse
Affiliation(s)
- Herbert L Bonkovsky
- Section on Gastroenterology & Hepatology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medicine, Winston-Salem, NC, 27157, USA.
| | - Christopher D Ma
- Department of Medicine, University of Miami School of Medicine, Miami, FL, 33136, USA.
| | - Manuela Araque
- Department of Medicine, University of Miami School of Medicine, Miami, FL, 33136, USA.
| | - Jacqueline B Tiley
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Ulrich Stölzel
- Department of Internal Medicine II and Porphyria Center, Klinikum Chemnitz, Chemnitz, D-09116, Germany.
| |
Collapse
|
2
|
Rodrigues D, Wezalis S. Clinical Assessment of Drug Transporter Inhibition Using Biomarkers: Review of the Literature (2015-2024). J Clin Pharmacol 2025. [PMID: 39828904 DOI: 10.1002/jcph.6183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
As part of a narrative review of various publications describing the clinical use of urine- and plasma-based drug transporter biomarkers, it was determined that the utilization of coproporphyrin I, a hepatic organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 biomarker, has been reported for 28 different drug-drug interaction (DDI) perpetrator drugs. Similarly, biomarkers for liver organic cation transporter 1 (isobutyryl-l-carnitine, N = 7 inhibitors), renal organic cation transporter 2 and multidrug and toxin extrusion proteins (N1-methylnicotinamide, N = 13 inhibitors), renal organic anion transporter (OAT) 1 and 3 (pyridoxic acid, N = 7 inhibitors), and breast cancer resistance protein (riboflavin, N = 3 inhibitors) have also been described. Increased use of biomarkers has also been accompanied by modeling efforts to enable DDI predictions and development of multiplexed methods to facilitate their bioanalysis. Overall, there is consensus that exploratory biomarkers such as coproporphyrin I can be integrated into decision trees encompassing in vitro transporter inhibition data, DDI risk assessments, and follow-up Phase 1 studies. Therefore, sponsors can leverage biomarkers to evaluate dose-dependent inhibition of selected transporters, use them jointly with drug probes to deconvolute DDI mechanisms, and integrate in vitro data packages to establish calibrated (biomarker informed) DDI risk assessment cutoffs. Although transporter biomarker science has progressed, reflected by its inclusion in the recently issued International Council for Harmonisation DDI guidance document (M12), some biomarkers still require further validation. There is also a need for biomarkers that can differentiate specific transporters (e.g., OATP1B3 vs OATP1B1 and OAT1 vs OAT3).
Collapse
Affiliation(s)
- David Rodrigues
- Drug Metabolism and Nonclinical Pharmacokinetics, Translational Medicine, Incyte, Wilmington, DE, USA
| | - Stephanie Wezalis
- Drug Metabolism and Nonclinical Pharmacokinetics, Translational Medicine, Incyte, Wilmington, DE, USA
| |
Collapse
|
3
|
Wang Z, Luk KHY, Cheong EJY, Tham SM, Periaswami R, Toh PC, Wang Z, Wu QH, Tsang WC, Kesavan A, Wong ASC, Wong PT, Lim F, Chiong E, Chan ECY. Characterization and Prediction of Organic Anion Transporting Polypeptide 1B Activity in Prostate Cancer Patients on Abiraterone Acetate Using Endogenous Biomarker Coproporphyrin I. Drug Metab Dispos 2024; 52:1356-1362. [PMID: 39187385 DOI: 10.1124/dmd.124.001878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are important hepatic transporters. We previously identified OATP1B3 being critically implicated in the disposition of abiraterone. We aimed to further investigate the effects of abiraterone on the activities of OATP1B1 and OATP1B3 utilizing a validated endogenous biomarker coproporphyrin I (CP-I). We used OATP1B-transfected cells to characterize the inhibitory potential of abiraterone against OATP1B-mediated uptake of CP-I. Inhibition constant (K i) was incorporated into our physiologically based pharmacokinetic (PBPK) modeling to simulate the systemic exposures of CP-I among cancer populations receiving either our model-informed 500 mg or clinically approved 1000 mg abiraterone acetate (AA) dosage. Simulated data were compared with clinical CP-I concentrations determined among our nine metastatic prostate cancer patients receiving 500 mg AA treatment. Abiraterone inhibited OATP1B3-mediated, but not OATP1B1-mediated, uptake of CP-I in vitro, with an estimated K i of 3.93 μM. Baseline CP-I concentrations were simulated to be 0.81 ± 0.26 ng/ml and determined to be 0.72 ± 0.16 ng/ml among metastatic prostate cancer patients, both of which were higher than those observed for healthy subjects. PBPK simulations revealed an absence of OATP1B3-mediated interaction between abiraterone and CP-I. Our clinical observations confirmed that CP-I concentrations remained comparable to baseline levels up to 12 weeks post 500 mg AA treatment. Using CP-I as an endogenous biomarker, we identified the inhibition of abiraterone on OATP1B3 but not OATP1B1 in vitro, which was predicted and observed to be clinically insignificant. We concluded that the interaction risk between AA and substrates of OATP1Bs is low. SIGNIFICANCE STATEMENT: The authors used the endogenous biomarker coproporphyrin I (CP-I) and identified abiraterone as a moderate inhibitor of organic anion transporting polypeptide (OATP) 1B3 in vitro. Subsequent physiologically based pharmacokinetic (PBPK) simulations and clinical observations suggested an absence of OATP1B-mediated interaction between abiraterone and CP-I among prostate cancer patients. This multipronged study concluded that the interaction risk between abiraterone acetate and substrates of OATP1Bs is low, demonstrating the application of PBPK-CP-I modeling in predicting OATP1B-mediated interaction implicating abiraterone.
Collapse
Affiliation(s)
- Ziteng Wang
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Kylie Hoi Yan Luk
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Eleanor Jing Yi Cheong
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Sin Mun Tham
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Revathi Periaswami
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Poh Choo Toh
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Ziting Wang
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Qing Hui Wu
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Woon Chau Tsang
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Arshvin Kesavan
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Alvin Seng Cheong Wong
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Patrick Thomas Wong
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Felicia Lim
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Edmund Chiong
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| | - Eric Chun Yong Chan
- Department of Pharmacy and Pharmaceutical Sciences (Zite.W., K.H.Y.L., E.J.Y.C., E.C.Y.C.) and Department of Surgery, Yong Loo Lin School of Medicine (S.M.T., R.P., E.C.), National University of Singapore, Singapore; Department of Urology (P.C.T., Ziti.W., Q.H.W., W.C.T., A.K., E.C.) and Department of Pharmacy (P.T.W., F.L.), National University Hospital, National University Health System, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore (A.S.C.W.); and National University Cancer Institute, Singapore (P.T.W.)
| |
Collapse
|
4
|
Kinzi J, Grube M, Seibert I, Siegmund W, Meyer zu Schwabedissen HE. Increased coproporphyrin serum levels in healthy volunteers treated with the cholesterol uptake inhibitor ezetimibe. Clin Transl Sci 2024; 17:e70041. [PMID: 39382439 PMCID: PMC11476718 DOI: 10.1111/cts.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Ezetimibe undergoes glucuronidation that results in the active metabolite ezetimibe phenoxy-glucuronide (ezetimibe-glucuronide). This phase-II metabolite was shown to interact with the clinically relevant hepatic transporter organic anion transporting polypeptide (OATP) 1B1. In recent years, coproporphyrin I (CPI) was established as a Tier 1 biomarker for OATP1B-mediated interactions among other endogenous substrates like CPIII. To evaluate whether levels of the biomarker are affected by ezetimibe treatment, we assessed the impact of ezetimibe and ezetimibe-glucuronide on OATP1B1-mediated transport of CPs in vitro. Then, we quantified CP levels in serum samples of healthy volunteers treated with a single oral dose of ezetimibe (20 mg) alone or in combination with rifampin (600 mg). Results from our in vitro experiments showed a significant reduction in cellular CPI accumulation in the presence of ezetimibe-glucuronide with an IC50 of 1.97 μM [95% CI: 1.04 to 3.96], while CPIII accumulation was impacted by 10 μM and above. In the in vivo study, we observed peak CP concentrations 1.33 h after dosing, which is closest to the tmax of the ezetimibe metabolite. Co-administration of ezetimibe with rifampin resulted in even higher serum CP levels. The AUC0-24h of CPI and CPIII increased two- and threefold, respectively, after concomitant dosing compared to ezetimibe alone. Moreover, we quantified CP levels in cumulative urine from both study phases where the renally excreted amount (Ae) of CPI and CPIII increased after ezetimibe and rifampin co-administration compared to ezetimibe alone. In conclusion, our findings indicate that rifampin co-administration results in additional inhibition of OATP1B1 in vivo.
Collapse
Affiliation(s)
- Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Markus Grube
- Center of Drug Absorption and Transport, Institute for PharmacologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Werner Siegmund
- Center of Drug Absorption and Transport, Institute for PharmacologyUniversity Medicine GreifswaldGreifswaldGermany
| | | |
Collapse
|
5
|
Russell LE, Yadav J, Maldonato BJ, Chien HC, Zou L, Vergara AG, Villavicencio EG. Transporter-mediated drug-drug interactions: regulatory guidelines, in vitro and in vivo methodologies and translation, special populations, and the blood-brain barrier. Drug Metab Rev 2024:1-28. [PMID: 38967415 DOI: 10.1080/03602532.2024.2364591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
This review, part of a special issue on drug-drug interactions (DDIs) spearheaded by the International Society for the Study of Xenobiotics (ISSX) New Investigators, explores the critical role of drug transporters in absorption, disposition, and clearance in the context of DDIs. Over the past two decades, significant advances have been made in understanding the clinical relevance of these transporters. Current knowledge on key uptake and efflux transporters that affect drug disposition and development is summarized. Regulatory guidelines from the FDA, EMA, and PMDA that inform the evaluation of potential transporter-mediated DDIs are discussed in detail. Methodologies for preclinical and clinical testing to assess potential DDIs are reviewed, with an emphasis on the utility of physiologically based pharmacokinetic (PBPK) modeling. This includes the application of relative abundance and expression factors to predict human pharmacokinetics (PK) using preclinical data, integrating the latest regulatory guidelines. Considerations for assessing transporter-mediated DDIs in special populations, including pediatric, hepatic, and renal impairment groups, are provided. Additionally, the impact of transporters at the blood-brain barrier (BBB) on the disposition of CNS-related drugs is explored. Enhancing the understanding of drug transporters and their role in drug disposition and toxicity can improve efficacy and reduce adverse effects. Continued research is essential to bridge remaining gaps in knowledge, particularly in comparison with cytochrome P450 (CYP) enzymes.
Collapse
Affiliation(s)
- Laura E Russell
- Department of Quantitative, Translational, and ADME Sciences, AbbVie Inc, North Chicago, IL, USA
| | - Jaydeep Yadav
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc, Boston, MA, USA
| | - Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc, Redwood City, CA, USA
| | - Huan-Chieh Chien
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Ling Zou
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Ana G Vergara
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc, Rahway, NJ, USA
| | - Erick G Villavicencio
- Department of Biology-Discovery, Imaging and Functional Genomics, Merck & Co., Inc, Rahway, NJ, USA
| |
Collapse
|
6
|
Arya V, Ma JD, Kvitne KE. Expanding Role of Endogenous Biomarkers for Assessment of Transporter Activity in Drug Development: Current Applications and Future Horizon. Pharmaceutics 2024; 16:855. [PMID: 39065552 PMCID: PMC11280074 DOI: 10.3390/pharmaceutics16070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The evaluation of transporter-mediated drug-drug interactions (DDIs) during drug development and post-approval contributes to benefit-risk assessment and helps formulate clinical management strategies. The use of endogenous biomarkers, which are substrates of clinically relevant uptake and efflux transporters, to assess the transporter inhibitory potential of a drug has received widespread attention. Endogenous biomarkers, such as coproporphyrin (CP) I and III, have increased mechanistic understanding of complex DDIs. Other endogenous biomarkers are under evaluation, including, but not limited to, sulfated bile acids and 4-pyridoxic acid (PDA). The role of endogenous biomarkers has expanded beyond facilitating assessment of transporter-mediated DDIs and they have also been used to understand alterations in transporter activity in the setting of organ dysfunction and various disease states. We envision that endogenous biomarker-informed approaches will not only help to formulate a prudent and informed DDI assessment strategy but also facilitate quantitative predictions of changes in drug exposures in specific populations.
Collapse
Affiliation(s)
- Vikram Arya
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Joseph D. Ma
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | | |
Collapse
|
7
|
Izat N, Kaplan O, Çelebier M, Sahin S. An Isolated Perfused Rat Liver Model: Simultaneous LC-MS Quantification of Pitavastatin, Coproporphyrin I, and Coproporphyrin III Levels in the Rat Liver and Bile. ACS OMEGA 2024; 9:19250-19260. [PMID: 38708282 PMCID: PMC11064166 DOI: 10.1021/acsomega.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
The isolated perfused rat liver (IPRL) model provides a mechanistic understanding of the organic-anion-transporting polypeptide (OATP/Oatp)-mediated pharmacokinetics in the preclinical evaluation, which often requires the use of control substrates (i.e., pitavastatin) and monitoring endogenous biomarkers (coproporphyrin I and III). This study aimed to develop and validate an LC-MS method allowing the simultaneous quantification of pitavastatin, coproporphyrin I (CPI), and coproporphyrin III (CPIII) in rat liver perfusion matrices (perfusate, liver homogenate, bile). The analysis was performed on a C18 column at 60 °C with 20 μL of sample injection. The mobile phases consisted of water with 0.1% formic acid and acetonitrile with 0.1% formic acid with a gradient flow of 0.5 mL/min. The assay was validated according to the ICH M10 Bioanalytical Method Validation Guideline (2022) for selectivity, calibration curve and range, matrix effect, carryover, accuracy, precision, and reinjection reproducibility. The method allowing the simultaneous quantification of pitavastatin, CPI, and CPIII was selective without having carryover and matrix effects. The linear calibration curves were obtained within various calibration ranges for three analytes in different matrices. Accuracy and precision values fulfilled the required limits. After 60 min perfusion with pitavastatin (1 μM), the cumulative amounts of pitavastatin in the liver and bile were 5.770 ± 1.504 and 0.852 ± 0.430 nmol/g liver, respectively. CPIII was a more dominant marker than CPI in both liver (0.028 ± 0.017 vs 0.013 ± 0.008 nmol/g liver) and bile (0.016 ± 0.011 vs 0.009 ± 0.007 nmol/g liver). The novel and validated bioanalytical method can be applied in further IPRL preparations investigating Oatp-mediated pharmacokinetics and DDIs.
Collapse
Affiliation(s)
- Nihan Izat
- Department
of Pharmaceutical Technology, Hacettepe
University Faculty of Pharmacy, Ankara 06800, Turkey
| | - Ozan Kaplan
- Department
of Analytical Chemistry, Hacettepe University
Faculty of Pharmacy, Ankara 06100, Turkey
| | - Mustafa Çelebier
- Department
of Analytical Chemistry, Hacettepe University
Faculty of Pharmacy, Ankara 06100, Turkey
| | - Selma Sahin
- Department
of Pharmaceutical Technology, Hacettepe
University Faculty of Pharmacy, Ankara 06800, Turkey
| |
Collapse
|
8
|
Piscitelli J, Reddy MB, Wollenberg L, Del Frari L, Gong J, Wood L, Zhang Y, Matschke K, Williams JH. Clinical Evaluation of the Effect of Encorafenib on Bupropion, Rosuvastatin, and Coproporphyrin I and Considerations for Statin Coadministration. Clin Pharmacokinet 2024; 63:483-496. [PMID: 38424308 PMCID: PMC11052825 DOI: 10.1007/s40262-024-01352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND AND OBJECTIVES Encorafenib is a kinase inhibitor indicated for the treatment of patients with unresectable or metastatic melanoma or metastatic colorectal cancer, respectively, with selected BRAF V600 mutations. A clinical drug-drug interaction (DDI) study was designed to evaluate the effect of encorafenib on rosuvastatin, a sensitive substrate of OATP1B1/3 and breast cancer resistance protein (BCRP), and bupropion, a sensitive CYP2B6 substrate. Coproporphyrin I (CP-I), an endogenous substrate for OATP1B1, was measured in a separate study to deconvolute the mechanism of transporter DDI. METHODS DDI study participants received a single oral dose of rosuvastatin (10 mg) and bupropion (75 mg) on days - 7, 1, and 14 and continuous doses of encorafenib (450 mg QD) and binimetinib (45 mg BID) starting on day 1. The CP-I data were collected from participants in a phase 3 study who received encorafenib (300 mg QD) and cetuximab (400 mg/m2 initial dose, then 250 mg/m2 QW). Pharmacokinetic and pharmacodynamic analysis was performed using noncompartmental and compartmental methods. RESULTS Bupropion exposure was not increased, whereas rosuvastatin Cmax and area under the receiver operating characteristic curve (AUC) increased approximately 2.7 and 1.6-fold, respectively, following repeated doses of encorafenib and binimetinib. Increase in CP-I was minimal, suggesting that the primary effect of encorafenib on rosuvastatin is through BCRP. Categorization of statins on the basis of their metabolic and transporter profile suggests pravastatin would have the least potential for interaction when coadministered with encorafenib. CONCLUSION The results from these clinical studies suggest that encorafenib does not cause clinically relevant CYP2B6 induction or inhibition but is an inhibitor of BCRP and may also inhibit OATP1B1/3 to a lesser extent. Based on these results, it may be necessary to consider switching statins or reducing statin dosage accordingly for coadministration with encorafenib. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT03864042, registered 6 March 2019.
Collapse
|
9
|
Watari R, Sawada H, Hashimoto H, Kasai Y, Oka R, Shimizu R, Matsuzaki T. Utility of Coproporphyrin-I Determination in First-in-Human Study for Early Evaluation of OATP1B Inhibitory Potential Based on Investigation of Ensitrelvir, an Oral SARS-CoV-2 3C-Like Protease Inhibitor. J Pharm Sci 2024; 113:798-805. [PMID: 37742997 DOI: 10.1016/j.xphs.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Coproporphyrin-I (CP-I) has been investigated as an endogenous biomarker of organic anion transporting polypeptide (OATP) 1B. Here, we determined the CP-I concentrations in a cocktail drug-drug interaction (DDI) study of ensitrelvir to evaluate the OATP1B inhibitory potential because ensitrelvir had increased plasma concentrations of rosuvastatin in this study, raising concerns about breast cancer resistance protein and OATP1B inhibition. Furthermore, CP-I concentrations were compared between active and placebo groups in a first-in-human (FIH) study of ensitrelvir to verify whether the OATP1B inhibitory potential could be estimated at an early drug development stage. In the cocktail DDI study, CP-I did not differ between with/without administration of ensitrelvir, indicating that ensitrelvir has no OATP1B inhibitory effect. Although there were some individual variabilities in CP-I concentrations among the treatment groups in the FIH study, the normalization of CP-I concentrations with pre-dose values minimized these variabilities, suggesting that this normalized method would be helpful for comparing the CP-I from different participants. Finally, we concluded that CP-I concentrations were not affected by ensitrelvir in the FIH study. These results suggested that the CP-I determination in an FIH study and its normalized method can be useful for an early evaluation of the OATP1B-mediated DDI potential in humans.
Collapse
Affiliation(s)
- Ryosuke Watari
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd, Japan.
| | - Hiromi Sawada
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd, Japan
| | - Hiroshi Hashimoto
- Department of ADMET and Analytical Chemistry II, Shionogi TechnoAdvance Research & Co., Ltd, Japan
| | - Yasuyuki Kasai
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd, Japan
| | - Ryoko Oka
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd, Japan
| | - Ryosuke Shimizu
- Clinical Pharmacology & Pharmacokinetics, Shionogi & Co., Ltd, Japan
| | - Takanobu Matsuzaki
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd, Japan
| |
Collapse
|
10
|
Liu R, Ma B, Mok MM, Murray BP, Subramanian R, Lai Y. Assessing Pleiotropic Effects of a Mixed-Mode Perpetrator Drug, Rifampicin, by Multiple Endogenous Biomarkers in Dogs. Drug Metab Dispos 2024; 52:236-241. [PMID: 38123963 DOI: 10.1124/dmd.123.001564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Rifampicin (RIF) is a mixed-mode perpetrator that produces pleiotropic effects on liver cytochrome P450 enzymes and drug transporters. To assess the complex drug-drug interaction liabilities of RIF in vivo, a known probe substrate, midazolam (MDZ), along with multiple endogenous biomarkers were simultaneously monitored in beagle dogs before and after a 7-day treatment period by RIF at 20 mg/kg per day. Confirmed by the reduced MDZ plasma exposure and elevated 4β-hydroxycholesterol (4β-HC, biomarker of CYP3A activities) level, CYP3A was significantly induced after repeated RIF doses, and such induction persisted for 3 days after cessation of the RIF administration. On the other hand, increased plasma levels of coproporphyrin (CP)-I and III [biomarkers of organic anion transporting polypeptides 1b (Oatp1b) activities] were observed after the first dose of RIF. Plasma CPs started to decline as RIF exposure decreased, and they returned to baseline 3 days after cessation of the RIF administration. The data suggested the acute (inhibitory) and chronic (inductive) effects of RIF on Oatp1b and CYP3A enzymes, respectively, and a 3-day washout period is deemed adequate to remove superimposed Oatp1b inhibition from CYP3A induction. In addition, apparent self-induction of RIF was observed as its terminal half-life was significantly altered after multiple doses. Overall, our investigation illustrated the need for appropriate timing of modulator dosing to differentiate between transporter inhibition and enzyme induction. As further indicated by the CP data, induction of Oatp1b activities was not likely after repeated RIF administration. SIGNIFICANCE STATEMENT: This investigation demonstrated the utility of endogenous biomarkers towards complex drug-drug interactions by rifampicin (RIF) and successfully determined the optimal timing to differentiate between transporter inhibition and enzyme induction. Based on experimental evidence, Oatp1b induction following repeated RIF administration was unlikely, and apparent self-induction of RIF elimination was observed.
Collapse
Affiliation(s)
- Renmeng Liu
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Bin Ma
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Marilyn M Mok
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | | | | | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| |
Collapse
|
11
|
Choi H, Huang F, Flack M. The Effect of BI 730357 (Retinoic Acid-Related Orphan Receptor Gamma t Antagonist, Bevurogant) on the Pharmacokinetics of a Transporter Probe Cocktail, Including Digoxin, Furosemide, Metformin, and Rosuvastatin: An Open-Label, Non-randomized, 2-Period Fixed-Sequence Trial in Healthy Subjects. Clin Pharmacol Drug Dev 2024; 13:197-207. [PMID: 37960990 DOI: 10.1002/cpdd.1344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
Evaluating Drug-Drug Interactions (DDIs) for new investigational compounds requires several trials evaluating different drugs with different transporter specificities. By using a cocktail of drugs with different transporter specificities, a single trial could evaluate the pharmacokinetics (PKs) of each cocktail drug simultaneously, reducing the number of clinical DDI trials required for clinical development. We aimed to investigate the effect of steady-state Boehringer Ingelheim (BI) 730357 (bevurogant) on the PKs of a validated and optimized 4-component transporter cocktail. This open-label, non-randomized, 2-period fixed-sequence phase I trial compared transporter cocktail (0.25 mg digoxin/1 mg furosemide/10 mg metformin hydrochloride/10 mg rosuvastatin) with and without BI 730357 in healthy subjects aged 18-55 years with body mass index 18.5-29.9 kg/m2 . During reference treatment/period 1, transporter cocktail was administered 90 minutes after breakfast. After a washout period, during test treatment/period 2, BI 730357 was dosed twice daily for 13 days, with transporter cocktail administered on day 1. The primary endpoints were the area under the concentration-time curve of the analyte in plasma over the time interval from 0 extrapolated to infinity (AUC0-∞ ) and the maximum measured concentration of the analyte in plasma (Cmax ), and the secondary endpoint was the area under the concentration-time curve of the analyte in plasma over the time interval from 0 to the last quantifiable data point (AUC0-tz ). Steady-state BI 730357 increased digoxin (+48% to +94%), minimally affected metformin (-2% to -9%), furosemide (+12% to +18%), and rosuvastatin (+19% to +39%) exposure. Therefore, no clinically relevant inhibition of transporters OCT2/MATE-1/MATE-2K, OAT1/OAT3, OATP1B1/OATP1B3 was observed. Potential inhibition of breast cancer resistance protein noted as PK parameters of coproporphyrin I/III (OATP1B1/OATP1B3 biomarkers) remained within bioequivalence boundaries while rosuvastatin PK parameters (AUC0-∞ /Cmax /AUC0-tz ) exceeded the bioequivalence boundary. BI 730357 was safe and well tolerated. This trial confirms the usefulness and tolerability of the transporter cocktail consisting of digoxin, furosemide, metformin, and rosuvastatin in assessing drug-transporter interactions in vivo.
Collapse
Affiliation(s)
- HeeJae Choi
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Fenglei Huang
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Mary Flack
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| |
Collapse
|
12
|
Kinzi J, Hussner J, Schäfer AM, Treyer A, Seibert I, Tillmann A, Mueller V, Gherardi C, Vonwyl C, Hamburger M, Meyer Zu Schwabedissen HE. Influence of Slco2b1-knockout and SLCO2B1-humanization on coproporphyrin I and III levels in rats. Br J Pharmacol 2024; 181:36-53. [PMID: 37533302 DOI: 10.1111/bph.16205] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/15/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Coproporphyrin (CP) I and III are byproducts of haem synthesis currently investigated as biomarkers for drug-drug interactions involving hepatic organic anion transporting polypeptide (OATP) 1B transporters. Another hepatically expressed OATP-member is OATP2B1. The aim of this study was to test the impact of OATP2B1, which specifically transports CPIII, on CP serum levels, applying novel rat models. EXPERIMENTAL APPROACH CPIII transport kinetics and the interplay between OATP2B1 and multidrug resistance-associated proteins (MRPs) were determined in vitro using the vTF7 expression system. Novel rSlco2b1-/- and SLCO2B1+/+ rat models were characterized for physiological parameters and for CP serum levels. Hepatic and renal expression of transporters involved in CP disposition were determined by real-time qPCR, Western blot analysis, and immunohistochemistry. KEY RESULTS In vitro experiments revealed differences in transport kinetics comparing human and rat OATP2B1 and showed a consistent, species-specific interplay with hMRP3/rMRP3. Deletion of rOATP2B1 was associated with a trend towards lower CPI serum levels compared with wildtype rats, while CPIII remained unchanged. Comparing SLCO2B1+/+ with knockout rats revealed an effect of sex: only in females the genetic modification influenced CP serum levels. Analysis of hepatic and renal transporters revealed marginal, but in part, statistically significant differences in rMRP2 abundance, which may contribute to the observed changes in CP serum levels. CONCLUSION AND IMPLICATIONS Our findings support that factors other than OATP1B transporters are of relevance for basal CP levels. Only in female rats, humanization of SLCO2B1 affects basal CPI and CPIII serum levels, despite isomer selectivity of OATP2B1.
Collapse
Affiliation(s)
- Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Janine Hussner
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anima M Schäfer
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Andrea Treyer
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Annika Tillmann
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Vanessa Mueller
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Clarisse Gherardi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Celina Vonwyl
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Matthias Hamburger
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | |
Collapse
|
13
|
Kikuchi R, Chothe PP, Chu X, Huth F, Ishida K, Ishiguro N, Jiang R, Shen H, Stahl SH, Varma MVS, Willemin ME, Morse BL. Utilization of OATP1B Biomarker Coproporphyrin-I to Guide Drug-Drug Interaction Risk Assessment: Evaluation by the Pharmaceutical Industry. Clin Pharmacol Ther 2023; 114:1170-1183. [PMID: 37750401 DOI: 10.1002/cpt.3062] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
Drug-drug interactions (DDIs) involving hepatic organic anion transporting polypeptides 1B1/1B3 (OATP1B) can be substantial, however, challenges remain for predicting interaction risk. Emerging evidence suggests that endogenous biomarkers, particularly coproporphyrin-I (CP-I), can be used to assess in vivo OATP1B activity. The present work under the International Consortium for Innovation and Quality in Pharmaceutical Development was aimed primarily at assessing CP-I as a biomarker for informing OATP1B DDI risk. Literature and unpublished CP-I data along with pertinent in vitro and clinical DDI information were collected to identify DDIs primarily involving OATP1B inhibition and assess the relationship between OATP1B substrate drug and CP-I exposure changes. Static models to predict changes in exposure of CP-I, as a selective OATP1B substrate, were also evaluated. Significant correlations were observed between CP-I area under the curve ratio (AUCR) or maximum concentration ratio (Cmax R) and AUCR of substrate drugs. In general, the CP-I Cmax R was equal to or greater than the CP-I AUCR. CP-I Cmax R < 1.25 was associated with absence of OATP1B-mediated DDIs (AUCR < 1.25) with no false negative predictions. CP-I Cmax R < 2 was associated with weak OATP1B-mediated DDIs (AUCR < 2). A correlation was identified between CP-I exposure changes and OATP1B1 static DDI predictions. Recommendations for collecting and interpreting CP-I data are discussed, including a decision tree for guiding DDI risk assessment. In conclusion, measurement of CP-I is recommended to inform OATP1B inhibition potential. The current analysis identified changes in CP-I exposure that may be used to prioritize, delay, or replace clinical DDI studies.
Collapse
Affiliation(s)
- Ryota Kikuchi
- Quantitative, Translational and ADME Sciences, AbbVie Inc., North Chicago, Illinois, USA
| | - Paresh P Chothe
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts, USA
| | - Xiaoyan Chu
- ADME and Discovery Toxicology, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Felix Huth
- PK Sciences, Novartis Pharma AG, Basel, Switzerland
| | - Kazuya Ishida
- Drug Metabolism, Gilead Sciences Inc., Foster City, California, USA
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Rongrong Jiang
- Drug Metabolism and Pharmacokinetics, Eisai Inc., Cambridge, Massachusetts, USA
| | - Hong Shen
- Departments of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb Research and Development, Princeton, New Jersey, USA
| | - Simone H Stahl
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Inc., Groton, Connecticut, USA
| | - Marie-Emilie Willemin
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Bridget L Morse
- Department of Drug Disposition, Eli Lilly, Indianapolis, Indiana, USA
| |
Collapse
|
14
|
Chothe PP, Mitra P, Nakakariya M, Ramsden D, Rotter CJ, Sandoval P, Tohyama K. Drug transporters in drug disposition - the year 2022 in review. Drug Metab Rev 2023; 55:343-370. [PMID: 37644867 DOI: 10.1080/03602532.2023.2252618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
On behalf of all the authors, I am pleased to share our third annual review on drug transporter science with an emphasis on articles published and deemed influential in signifying drug transporters' role in drug disposition in the year 2022. As the drug transporter field is rapidly evolving several key findings were noted including promising endogenous biomarkers, rhythmic activity, IVIVE approaches in transporter-mediated clearance, new modality interaction, and transporter effect on gut microbiome. As identified previously (Chothe et Cal. 2021, 2022) the goal of this review is to highlight key findings without a comprehensive overview of each article and to this end, each coauthor independently selected 1-3 peer-reviewed articles published or available online in the year 2022 (Table 1). Each article is summarized in synopsis and commentary with unbiased viewpoints by each coauthor. We strongly encourage readers to consult original articles for specifics of the study. Finally, I would like to thank all coauthors for their continued support in writing this annual review on drug transporters and invite anyone interested in contributing to future versions of this review.
Collapse
Affiliation(s)
- Paresh P Chothe
- Department of Drug Metabolism and Pharmacokinetics, Oncology Research and Development, AstraZeneca, Waltham, MA, USA
| | - Pallabi Mitra
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Diane Ramsden
- Department of Drug Metabolism and Pharmacokinetics, Oncology Research and Development, AstraZeneca, Waltham, MA, USA
| | - Charles J Rotter
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), San Diego, CA, USA
| | - Philip Sandoval
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Kimio Tohyama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
15
|
Kinzi J, Grube M, Brecht K, Seibert I, Siegmund W, Meyer zu Schwabedissen HE. Various effects of repeated rifampin dosing on coproporphyrin levels in humans. Clin Transl Sci 2023; 16:2289-2298. [PMID: 37705216 PMCID: PMC10651657 DOI: 10.1111/cts.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023] Open
Abstract
In recent years, the identification of endogenous substrates as biomarkers became an uprising topic. Particularly coproporphyrins (CPs), byproducts of heme biosynthesis, are intensely investigated as biomarkers for predicting interactions with the organic anion transporting polypeptide (OATP) 1B transporters. In the context of drug-drug interactions, several preclinical and clinical studies assessed the effect of the OATP1B-index inhibitor rifampin on CPI levels. However, rifampin is not only a "perpetrator" drug of transporters but is also known for its interaction with the nuclear receptor pregnane X receptor (PXR) leading to the efficient induction of PXR-target genes. These include hemoproteins like cytochrome P450 enzymes but also the δ-aminolevulinate synthase 1, which is the rate-limiting enzyme in heme biosynthesis. In this study, we showed that quantification of CPs in clinical serum samples was possible after long-term storage at -20°C. We quantified CPI, CPIII, and heme levels in clinical serum samples (at selected timepoints) that originated from a trial investigating the interaction potential of repeated rifampin administration in 12 healthy participants. In samples collected at the assumed time to maximum concentration of rifampin, higher CP levels were observed compared to baseline. Increased levels persisted even 14 h after discontinuation of rifampin. No impact on heme serum levels was observed. We found a correlation between CP isomers at baseline and at 14 h after rifampin intake. In summary, we show that multiple doses of rifampin affect CP levels. However, besides inhibition of hepatic OATP function there is evidence for an interaction with CP levels beyond the transporter level.
Collapse
Affiliation(s)
- Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Markus Grube
- Center of Drug Absorption and Transport, Institute for PharmacologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Karin Brecht
- Biopharmacy, Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Werner Siegmund
- Center of Drug Absorption and Transport, Institute for PharmacologyUniversity Medicine GreifswaldGreifswaldGermany
| | | |
Collapse
|
16
|
Nakayama S, Toshimoto K, Yamazaki S, Snoeys J, Sugiyama Y. Physiologically-based pharmacokinetic modeling for investigating the effect of simeprevir on concomitant drugs and an endogenous biomarker of OATP1B. CPT Pharmacometrics Syst Pharmacol 2023; 12:1461-1472. [PMID: 37667529 PMCID: PMC10583237 DOI: 10.1002/psp4.13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 09/06/2023] Open
Abstract
The orally available anti-hepatitis C virus (HCV) drug simeprevir exhibits nonlinear pharmacokinetics at the clinical doses due to saturation of cytochrome P450 (CYP) 3A4 metabolism and organic anion transporting peptide (OATP) 1B mediated hepatic uptake. Additionally, simeprevir increases exposures of concomitant drugs by CYP3A4 and OATP1B inhibition. The objective of this study was to develop physiologically-based pharmacokinetic (PBPK) models that could describe drug-drug interactions (DDIs) of simeprevir with concomitant drugs via CYP3A4 and OATP1B inhibition, and also to capture the effects on coproporphyrin-I (CP-I), an endogenous biomarker of OATP1B. PBPK modeling estimated unbound simeprevir inhibitory constant (Ki ) of 2.89 μM against CYP3A4 in the DDI results between simeprevir and midazolam in healthy volunteers. Then, we analyzed the DDIs between simeprevir and atorvastatin, a dual substrate of CYP3A4 and OATP1B, in healthy volunteers, and unbound Ki against OATP1B was estimated to be 0.00347 μM. Finally, we analyzed the increase in the blood level of CP-I by simeprevir to verify the Ki,OATP1B . Because CP-I was measured in subjects with HCV with various hepatic fibrosis state, Monte Carlo simulation was performed to involve the decreases in expression levels of hepatic CYP3A4 and OATP1B and their interindividual variabilities. The PBPK modeling coupled with Monte Carlo simulation using the Ki,OATP1B value obtained from atorvastatin study reasonably recovered the observed relationship between CP-I and simeprevir blood levels. In conclusion, the simeprevir PBPK model developed in this study can quantitatively describe the increase in exposures of concomitant drugs and an endogenous biomarker via inhibition of CYP3A4 and OATP1B.
Collapse
Affiliation(s)
- Shinji Nakayama
- DMPK Research Laboratories, Shoyaku, Innovative Research DivisionMitsubishi Tanabe Pharma CorporationYokohamaKanagawaJapan
| | - Kota Toshimoto
- Systems Pharmacology, Non‐Clinical Biomedical Science, Applied Research and OperationsAstellas Pharma Inc.IbarakiJapan
- Sugiyama Laboratory, RIKEN Cluster for ScienceRIKENYokohamaKanagawaJapan
| | - Shinji Yamazaki
- Drug Metabolism and PharmacokineticsJanssen Research and Development, LLCSan DiegoCaliforniaUSA
| | - Jan Snoeys
- Drug Metabolism and PharmacokineticsJanssen Research and DevelopmentBeerseBelgium
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Cluster for ScienceRIKENYokohamaKanagawaJapan
- Laboratory of Quantitative System Pharmacokinetics/PharmacodynamicsJosai International University (JIU)TokyoJapan
| |
Collapse
|
17
|
Mochizuki T, Kusuhara H. Progress in the Quantitative Assessment of Transporter-Mediated Drug-Drug Interactions Using Endogenous Substrates in Clinical Studies. Drug Metab Dispos 2023; 51:1105-1113. [PMID: 37169512 DOI: 10.1124/dmd.123.001285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023] Open
Abstract
Variations in drug transporter activities, caused by genetic polymorphism and drug-drug interactions (DDIs), alter the systemic exposure of substrate drugs, leading to differences in drug responses. Recently, some endogenous substrates of drug transporters, particularly the solute carrier family transporters such as OATP1B1, OATP1B3, OAT1, OAT3, OCT1, OCT2, MATE1, and MATE2-K, have been identified to investigate variations in drug transporters in humans. Clinical data obtained support their performance as surrogate probes in terms of specificity and reproducibility. Pharmacokinetic parameters of the endogenous biomarkers depend on the genotypes of drug transporters and the systemic exposure to perpetrator drugs. Furthermore, the development of physiologically based pharmacokinetic models for the endogenous biomarkers has enabled a top-down approach to obtain insights into the effect of perpetrators on drug transporters and to more precisely simulate the DDI with victim drugs, including probe drugs. The endogenous biomarkers can address the uncertainty in the DDI prediction in the preclinical and early phases of clinical development and have the potential to fulfill regulatory requirements. Therefore, the endogenous biomarkers should be able to predict disease effects on the variations in drug transporter activities observed in patients. This mini-review focuses on recent progress in the identification and use of the endogenous drug transporter substrate biomarkers and their application in drug development. SIGNIFICANCE STATEMENT: Advances in analytical methods have enabled the identification of endogenous substrates of drug transporters. Changes in the pharmacokinetic parameters (Cmax, AUC, or CLR) of these endogenous biomarkers relative to baseline values can serve as a quantitative index to assess variations in drug transporter activities during clinical studies and thereby provide more precise DDI predictions.
Collapse
Affiliation(s)
- Tatsuki Mochizuki
- Pharmaceutical Science Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Japan (T.M.); and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (H.K.)
| | - Hiroyuki Kusuhara
- Pharmaceutical Science Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama, Japan (T.M.); and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (H.K.)
| |
Collapse
|
18
|
Chan GH, Houle R, Zhang J, Katwaru R, Li Y, Chu X. Evaluation of the Selectivity of Several Organic Anion Transporting Polypeptide 1B Biomarkers Using Relative Activity Factor Method. Drug Metab Dispos 2023; 51:1089-1104. [PMID: 37137718 DOI: 10.1124/dmd.122.000972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023] Open
Abstract
In recent years, some endogenous substrates of organic anion transporting polypeptide 1B (OATP1B) have been identified and characterized as potential biomarkers to assess OATP1B-mediated clinical drug-drug interactions (DDIs). However, quantitative determination of their selectivity to OATP1B is still limited. In this study, we developed a relative activity factor (RAF) method to determine the relative contribution of hepatic uptake transporters OATP1B1, OATP1B3, OATP2B1, and sodium-taurocholate co-transporting polypeptide (NTCP) on hepatic uptake of several OATP1B biomarkers, including coproporphyrin I (CPI), coproporphyrin I CPIII, and sulfate conjugates of bile acids: glycochenodeoxycholic acid sulfate (GCDCA-S), glycodeoxycholic acid sulfate (GDCA-S), and taurochenodeoxycholic acid sulfate (TCDCA-S). RAF values for OATP1B1, OATP1B3, OATP2B1, and NTCP were determined in cryopreserved human hepatocytes and transporter transfected cells using pitavastatin, cholecystokinin, resveratrol-3-O-β-D-glucuronide, and taurocholic acid (TCA) as reference compounds, respectively. OATP1B1-specific pitavastatin uptake in hepatocytes was measured in the absence and presence of 1 µM estropipate, whereas NTCP-specific TCA uptake was measured in the presence of 10 µM rifampin. Our studies suggested that CPI was a more selective biomarker for OATP1B1 than CPIII, whereas GCDCA-S and TCDCA-S were more selective to OATP1B3. OATP1B1 and OATP1B3 equally contributed to hepatic uptake of GDCA-S. The mechanistic static model, incorporating the fraction transported of CPI/III estimated by RAF and in vivo elimination data, predicted several perpetrator interactions with CPI/III. Overall, RAF method combined with pharmacogenomic and DDI studies is a useful tool to determine the selectivity of transporter biomarkers and facilitate the selection of appropriate biomarkers for DDI evaluation. SIGNIFICANCE STATEMENT: The authors developed a new relative activity factor (RAF) method to quantify the contribution of hepatic uptake transporters organic anion transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, and sodium taurocholate co-transporting polypeptide (NTCP) on several OATP1B biomarkers and evaluated their predictive value on drug-drug interactions (DDI). These studies suggest that the RAF method is a useful tool to determine the selectivity of transporter biomarkers. This method combined with pharmacogenomic and DDI studies will mechanistically facilitate the selection of appropriate biomarkers for DDI prediction.
Collapse
Affiliation(s)
- Grace Hoyee Chan
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Robert Houle
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Jinghui Zhang
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Ravi Katwaru
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Yang Li
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Xiaoyan Chu
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| |
Collapse
|
19
|
Lai Y. The Role of Coproporphyrins As Endogenous Biomarkers for Organic Anion Transporting Polypeptide 1B Inhibition-Progress from 2016 to 2023. Drug Metab Dispos 2023; 51:950-961. [PMID: 37407093 DOI: 10.1124/dmd.122.001012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 07/07/2023] Open
Abstract
Since the initial clinical study investigating coproporphyrins I and III (CP-I and CP-III) as endogenous biomarkers for organic anion transporting polypeptide (OATP) inhibition drug-drug interactions (DDIs) published in 2016, significant progress has been made in confirming the usefulness of the CPs, particularly CP-I, as biomarkers in assessing OATP functions. CP-I exhibits selectivity toward OATP1B activity in human subjects with genetic variants of OATP1B1. Its sensitivity to a broad spectrum of clinical OATP1B inhibitors has been established from weak to vigorous. Dose-dependent CP-I changes in healthy human subjects show agreement with DDI magnitudes of probe substrates by rifampin treatment. Physiologically based pharmacokinetic models have been established for concentration changes of plasma CP-I with OATP inhibitors, demonstrating the usefulness of supporting the quantitative translation of the effect of CP-I levels into the DDI risk assessment of potential OATP inhibitors. As plasma CP-I's sensitivity, specificity, and selectivity have been validated in humans, monitoring CP-I levels in single and multiple clinical phase I dose escalation studies is recommended for early assessment of DDI risks and understanding the full dose-response of an investigational drug to OATP inhibitions. A decision tree is proposed to preclude the need to conduct a dedicated DDI study by administering a probe substrate drug to human subjects. SIGNIFICANCE STATEMENT: The minireview summarized the validation paths of coproporphyrins I and III (CP-I and CP-III) as biomarkers of organic anion transporting polypeptide 1B (OATP1B) inhibition in humans for their selectivity, specificity, and sensitivity. The utility of monitoring CP-I to assess drug-drug interactions of OATP1B inhibition in early drug development is proposed. Changes in plasma CP-I in phase I dose range studies can be used to frame plans for late-stage development and facilitate the mechanistic understanding of complex drug-drug interactions.
Collapse
Affiliation(s)
- Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| |
Collapse
|
20
|
Li Y, Drabison T, Nepal M, Ho RH, Leblanc AF, Gibson AA, Jin Y, Yang W, Huang KM, Uddin ME, Chen M, DiGiacomo DF, Chen X, Razzaq S, Tonniges JR, McTigue DM, Mims AS, Lustberg MB, Wang Y, Hummon AB, Evans WE, Baker SD, Cavaletti G, Sparreboom A, Hu S. Targeting a xenobiotic transporter to ameliorate vincristine-induced sensory neuropathy. JCI Insight 2023; 8:e164646. [PMID: 37347545 PMCID: PMC10443802 DOI: 10.1172/jci.insight.164646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Vincristine is a widely used chemotherapeutic drug for the treatment of multiple malignant diseases that causes a dose-limiting peripheral neurotoxicity. There is no clinically effective preventative treatment for vincristine-induced sensory peripheral neurotoxicity (VIPN), and mechanistic details of this side effect remain poorly understood. We hypothesized that VIPN is dependent on transporter-mediated vincristine accumulation in dorsal root ganglion neurons. Using a xenobiotic transporter screen, we identified OATP1B3 as a neuronal transporter regulating the uptake of vincristine. In addition, genetic or pharmacological inhibition of the murine orthologue transporter OATP1B2 protected mice from various hallmarks of VIPN - including mechanical allodynia, thermal hyperalgesia, and changes in digital maximal action potential amplitudes and neuronal morphology - without negatively affecting plasma levels or antitumor effects of vincristine. Finally, we identified α-tocopherol from an untargeted metabolomics analysis as a circulating endogenous biomarker of neuronal OATP1B2 function, and it could serve as a companion diagnostic to guide dose selection of OATP1B-type transport modulators given in combination with vincristine to prevent VIPN. Collectively, our findings shed light on the fundamental basis of VIPN and provide a rationale for the clinical development of transporter inhibitors to prevent this debilitating side effect.
Collapse
Affiliation(s)
- Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
- Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Thomas Drabison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Mahesh Nepal
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
- Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Richard H. Ho
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alix F. Leblanc
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Alice A. Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kevin M. Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Mingqing Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Duncan F. DiGiacomo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Xihui Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Sobia Razzaq
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | | | - Dana M. McTigue
- The Belford Center for Spinal Cord Injury & Department of Neuroscience, College of Medicine, and
| | - Alice S. Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Maryam B. Lustberg
- The Breast Center at Smilow Cancer Hospital at Yale, New Haven, Connecticut, USA
| | - Yijia Wang
- Department of Chemistry and Biochemistry & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - William E. Evans
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Guido Cavaletti
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
- Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
21
|
Zhu T, Pawlak S, Toussi SS, Hackman F, Thompson K, Song W, Salageanu J, Winter E, Shi H, Winton J, Binks M. Safety, Tolerability, and Pharmacokinetics of Intravenous Doses of PF-07304814, a Phosphate Prodrug Protease Inhibitor for the Treatment of SARS-CoV-2, in Healthy Adult Participants. Clin Pharmacol Drug Dev 2022; 11:1382-1393. [PMID: 36285536 PMCID: PMC9874748 DOI: 10.1002/cpdd.1174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/16/2022] [Indexed: 01/28/2023]
Abstract
Studies on targeted antivirals for treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the ongoing pandemic, are limited. PF-07304814 (lufotrelvir) is the phosphate prodrug of PF-00835231, a protease inhibitor targeting the 3C-like protease of SARS-CoV-2. This phase 1 study evaluated the safety, tolerability, and pharmacokinetics (PK) of single ascending intravenous doses of lufotrelvir (continuous 24-hour infusion of 50, 150, 500, or 700 mg) versus placebo in healthy volunteers (2 interleaving cohorts: 1, n = 8; 2, n = 7). Each dosing period was separated by a washout interval (≥5 days). Treatment-emergent adverse events, PK, and biomarker concentrations were estimated from plasma/urine samples. Lufotrelvir was administered to 15 volunteers (mean [SD] age 39.7 [11.8] years). No serious adverse events, discontinuations, or deaths were reported. Mean maximum observed concentration of PF-00835231 (active moiety; 97.0 ng/mL to 1288 ng/mL) were observed between median time to maximum concentration of 14 to 16 hours after the start of the lufotrelvir infusion. Near-maximum plasma concentrations of PF-00835231 were observed ≈6 hours after infusion start and sustained until infusion end. PF-00835231 plasma concentrations declined rapidly after infusion end (mean terminal half-life: 500 mg, 2.0 hours; 700 mg, 1.7 hours). Approximately 9%-11% of the dose was recovered in urine as PF-00835231 across doses. A continuous, single-dose, 24-hour infusion of lufotrelvir (50-700 mg) was rapidly converted to PF-00835231 (active moiety), with dose-proportional PK exposures and no significant safety concerns. A daily, 24-hour continuous infusion of 270 to 350 mg is expected to maintain PF-00835231 concentration at steady state/above effective antiviral concentrations. Further studies exploring lufotrelvir efficacy in patients with coronavirus disease 2019 are ongoing.
Collapse
Affiliation(s)
- Tong Zhu
- Pfizer Worldwide ResearchDevelopment and MedicalCambridgeMassachusettsUSA
| | | | - Sima S. Toussi
- Pfizer Worldwide ResearchDevelopment and Medical, Pearl RiverNew YorkUSA
| | | | | | - Wei Song
- Pfizer Worldwide ResearchDevelopment and MedicalGrotonConnecticutUSA
| | | | - Erica Winter
- Pfizer Global Product DevelopmentGrotonConnecticutUSA
| | - Haihong Shi
- Pfizer Global Product DevelopmentGrotonConnecticutUSA
| | | | - Michael Binks
- Pfizer Worldwide ResearchDevelopment and MedicalCambridgeMassachusettsUSA
| |
Collapse
|
22
|
Heinig R, Fricke R, Wertz S, Nagelschmitz J, Loewen S. Results From Drug-Drug Interaction Studies In Vitro and In Vivo Investigating the Inhibitory Effect of Finerenone on the Drug Transporters BCRP, OATP1B1, and OATP1B3. Eur J Drug Metab Pharmacokinet 2022; 47:803-815. [PMID: 36029368 PMCID: PMC9418647 DOI: 10.1007/s13318-022-00794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVES In vitro and in vivo studies were performed with the novel, selective, nonsteroidal mineralocorticoid receptor antagonist finerenone to assess the relevance of inhibitory effects on the transporters breast cancer resistance protein (BCRP), organic anion transporting polypeptide 1B1 (OATP1B1), and OATP1B3. These transporters are involved in the disposition of a number of drugs, including statins. Statins are also a frequent comedication in patients receiving finerenone. Therefore, inhibitory effects on BCRP and OATPs are of potential clinical relevance. METHODS The effect on the transport of specific substrates of BCRP and OATP1B1/1B3 was assessed in cell-based in vitro assays with finerenone or its metabolites. A fixed-sequence crossover study in 14 healthy male volunteers investigated the effects of finerenone (40 mg once daily) on the pharmacokinetics of the index substrate rosuvastatin (5 mg) administered alone, simultaneously with, or approximately 4 h before finerenone. The effect of finerenone on the endogenous OATP substrates coproporphyrin I and III was also assessed. RESULTS Based on in vitro findings and threshold values proposed in regulatory guidelines, finerenone appeared to be a potentially relevant inhibitor of all three transporters. Relevant inhibition could also not be ruled out for the finerenone metabolites M1a (OATP1B1) and M3a (OATP1B1 and OAT1B3), which prompted an investigation into the relevance of these findings in vivo. After administration on a background of finerenone 40 mg, all point estimates of area under the curve ratios (114.47% [rosuvastatin], 99.62% [coproporphyrin I; simultaneous], and 105.28% [rosuvastatin; 4 h separation]) and maximum concentration ratios (111.24% [rosuvastatin], 101.22% [coproporphyrin I], 89.14% [coproporphyrin III; simultaneous], and 96.84% [rosuvastatin; 4 h separation]) of the investigated substrates were within 80.0-125%. In addition, the 90% confidence intervals of the ratios were within the conventional no-effect boundaries of 80.0% and 125% for rosuvastatin after temporally separated administration, and for coproporphyrin I and III. CONCLUSION Administration of finerenone 40 mg once daily confers no risk of clinically relevant drug-drug interactions with substrates of BCRP, OATP1B1, or OATP1B3. The potential for relevant inhibition of these transporters suggested by in vitro findings was not confirmed in vivo.
Collapse
Affiliation(s)
- Roland Heinig
- Bayer AG, Research & Development, Pharmaceuticals, Translational Medicine, 42096, Wuppertal, Germany.
| | - Robert Fricke
- Bayer AG, Research & Development, Pharmaceuticals, Preclinical Development, 42096, Wuppertal, Germany
| | - Sebastian Wertz
- Bayer AG, Research & Development, Pharmaceuticals, Preclinical Development, 42096, Wuppertal, Germany
| | - Johannes Nagelschmitz
- Bayer AG, Research & Development, Pharmaceuticals, Translational Medicine, 42096, Wuppertal, Germany
| | | |
Collapse
|
23
|
Arya V, Reynolds KS, Yang X. Utilizing Endogenous Biomarkers to Derisk Assessment of Transporter Mediated Drug-Drug Interactions: A Scientific Perspective. J Clin Pharmacol 2022; 62:1501-1506. [PMID: 35778968 DOI: 10.1002/jcph.2119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
Comprehensive characterization of transporter mediated drug-drug interactions (DDIs) is important to formulate clinical management strategies and ensure the safe and effective use of concomitantly administered drugs. The potential of a drug to inhibit transporters is predicted by comparing the ratio of the relevant concentration (depending on the transporter) and the half maximum inhibitory concentration (IC50 ) to a pre-defined "cut off" value. If the ratio is greater than the cut off value, modeling approaches such as Physiologically Based Pharmacokinetic (PBPK) Modeling or a clinical DDI trial may be recommended. Because false positive (in vitro data suggests the potential for a DDI, whereas no significant DDI is observed in vivo) and false negative (in vitro data does not suggest the potential for a DDI, whereas significant DDI is observed in vivo) outcomes have been observed, there is interest in exploring additional approaches to facilitate prediction of transporter mediated DDIs. The idea of assessing changes in the concentration of endogenous biomarkers (which are substrates of clinically relevant transporters) to gain insight on the potential for a drug to inhibit transporter activity has received widespread attention. This brief report describes how endogenous biomarkers may help to expand the DDI assessment toolkit, highlights some current knowledge gaps, and outlines a conceptual framework that may complement the current paradigm of predicting the potential for transporter mediated DDIs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vikram Arya
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kellie S Reynolds
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Xinning Yang
- Guidance and Policy Team, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
24
|
Yadav AS, Stevison F, Kosaka M, Wong S, Kenny JR, Amory JK, Isoherranen N. Isotretinoin and its Metabolites Alter mRNA of Multiple Enzyme and Transporter Genes In Vitro, but Downregulation of Organic Anion Transporting Polypeptide Does Not Translate to the Clinic. Drug Metab Dispos 2022; 50:1042-1052. [PMID: 35545255 PMCID: PMC11022860 DOI: 10.1124/dmd.122.000882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/23/2022] [Indexed: 11/22/2022] Open
Abstract
Isotretinoin [13-cis-retinoic acid (13cisRA)] is widely used for the treatment of neuroblastoma and acne. It acts via regulating gene transcription through binding to retinoic acid receptors. Yet, the potential for isotretinoin to cause transcriptionally mediated drug-drug interactions (DDIs) has not been fully explored. We hypothesized that isotretinoin and its active metabolites all-trans-retinoic acid (atRA) and 4-oxo-13cisRA would alter the transcription of enzymes and transporters in the human liver via binding to nuclear receptors. The goal of this study was to define the DDI potential of isotretinoin and its metabolites resulting from transcriptional regulation of cytochrome P450 and transporter mRNAs. In human hepatocytes (n = 3), 13cisRA, atRA, and 4-oxo-13cisRA decreased OATP1B1, CYP1A2, CYP2C9, and CYP2D6 mRNA and increased CYP2B6 and CYP3A4 mRNA in a concentration-dependent manner. The EC50 values for OATP1B1 mRNA downregulation ranged from 2 to 110 nM, with maximum effect (Emax ) ranging from 0.17- to 0.54-fold. Based on the EC50 and Emax values and the known circulating concentrations of 13cisRA and its metabolites after isotretinoin dosing, a 55% decrease in OATP1B1 activity was predicted in vivo. In vivo DDI potential was evaluated clinically in participants dosed with isotretinoin for up to 32 weeks using coproporphyrin-I (CP-I) as an OATP1B1 biomarker. CP-I steady-state serum concentrations were unaltered following 2, 8, or 16 weeks of isotretinoin treatment. These data show that isotretinoin and its metabolites alter transcription of multiple enzymes and transporters in vitro, but translation of these changes to in vivo drug-drug interactions requires clinical evaluation for each enzyme. SIGNIFICANCE STATEMENT: Isotretinoin and its metabolites alter the mRNA expression of multiple cytochrome P450s (CYPs) and transporters in human hepatocytes, suggesting that isotretinoin may cause clinically significant drug-drug interactions (DDIs). Despite the observed changes in organic anion transporting polypeptide 1B1 (OATP1B1) mRNA in human hepatocytes, no clinical DDI was observed when measuring a biomarker, coproporphyrin-I. Further work is needed to determine whether these findings can be extrapolated to a lack of a DDI with CYP1A2, CYP2B6, and CYP2C9 substrates.
Collapse
Affiliation(s)
- Aprajita S Yadav
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - Faith Stevison
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - Mika Kosaka
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - Susan Wong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - Jane R Kenny
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - John K Amory
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (A.S.Y., F.S., N.I.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (M.K., S.W., J.R.K.); and Department of Medicine, University of Washington, Seattle, Washington (J.K.A.)
| |
Collapse
|
25
|
Takita H, Scotcher D, Chu X, Yee KL, Ogungbenro K, Galetin A. Coproporphyrin I as an Endogenous Biomarker to Detect Reduced OATP1B Activity and Shift in Elimination Route in Chronic Kidney Disease. Clin Pharmacol Ther 2022; 112:615-626. [PMID: 35652251 PMCID: PMC9540787 DOI: 10.1002/cpt.2672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/22/2022] [Indexed: 01/29/2023]
Abstract
Coproporphyrin I (CPI) is an endogenous biomarker of organic anion transporting polypeptide 1B transporter (OATP1B). CPI plasma baseline was reported to increase with severity of chronic kidney disease (CKD). Further, ratio of CPI area under the plasma concentration-time curve (AUCR) in the presence/absence of OATP1B inhibitor rifampin was higher in patients with CKD compared with healthy participants, in contrast to pitavastatin (a clinical OATP1B probe). This study investigated mechanism(s) contributing to altered CPI baseline in patients with CKD by extending a previously developed physiologically-based pharmacokinetic (PBPK) model to this patient population. CKD-related covariates were evaluated in a stepwise manner on CPI fraction unbound in plasma (fu,p ), OATP1B-mediated hepatic uptake clearance (CLactive ), renal clearance (CLR ), and endogenous synthesis (ksyn ). The CPI model successfully recovered increased baseline and rifampin-mediated AUCR in patients with CKD by accounting for the following disease-related changes: 13% increase in fu,p , 29% and 39% decrease in CLactive in mild and moderate to severe CKD, respectively, decrease in CLR proportional to decline in glomerular filtration rate, and 27% decrease in ksyn in severe CKD. Almost complete decline in CPI renal elimination in severe CKD increased its fraction transported by OATP1B, rationalizing differences in the CPI-rifampin interaction observed between healthy participants and patients with CKD. In conclusion, mechanistic modeling performed here supports CKD-related decrease in OATP1B function to inform prospective PBPK modeling of OATP1B-mediated drug-drug interaction in these patients. Monitoring of CPI allows detection of CKD-drug interaction risk for OATP1B drugs with combined hepatic and renal elimination which may be underestimated by extrapolating the interaction risk based on pitavastatin data in healthy participants.
Collapse
Affiliation(s)
- Hiroyuki Takita
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Development Planning, Clinical Development Center, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Xiaoyan Chu
- ADME and Discovery Toxicology, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Ka Lai Yee
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Takubo H, Bessho K, Watari R, Shigemi R. Quantitative prediction of OATP1B-mediated drug-drug interactions using endogenous biomarker coproporphyrin I. Xenobiotica 2022; 52:397-404. [PMID: 35638858 DOI: 10.1080/00498254.2022.2085210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
1. Evaluation of the organic anion transporting polypeptide (OATP) 1B-mediated drug-drug interaction (DDI) potential is important for drug development. The focus of this study was coproporphyrin I (CP-I), an endogenous OATP1B biomarker.2. We investigated a new approach to OATP1B-mediated DDI prediction based on the mechanistic static pharmacokinetics (MSPK) model.3. The ratio of the area under the plasma concentration-time curve (AUCR) with and without co-administration of rifampicin (a typical OATP1B inhibitor) was found for CP-I and OATP1B substrate, respectively, and was then used to derive the correlation curve equation. The AUCR with and without co-administration of another OATP1B inhibitor than rifampicin was then predicted for the OATP1B substrates by substituting the AUCR of CP-I in the correlation curve equation to verify the predictability of the AUCR of the OATP1B substrates.4. The derived correlation curve equation between CP-I and the OATP1B substrates of the AUCRs with and without co-administration of rifampicin matched the observed AUCRs well. Regarding pitavastatin, rosuvastatin and pravastatin, 92.9% of the predicted AUCR values were within a two-fold range of the observed values, indicating that this approach may be a good way to quantitatively predict DDI potential.
Collapse
Affiliation(s)
- Hiroaki Takubo
- Japan Pharmaceutical Manufacturers Association.,Torii Pharmaceutical Co., Ltd., Osaka, Japan
| | - Koji Bessho
- Japan Pharmaceutical Manufacturers Association.,Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Ryosuke Watari
- Japan Pharmaceutical Manufacturers Association.,Shionogi & Co., Ltd., Osaka, Japan
| | - Ryota Shigemi
- Japan Pharmaceutical Manufacturers Association.,Bayer Yakuhin, Ltd., Osaka, Japan
| |
Collapse
|
27
|
Mukker JK, Dukes G, Tolkoff M, Wang L, Almansa C, Huh SY, Nishihara M, Ramsden D, Chen C. The pharmacokinetics of oral trazpiroben (TAK-906) after organic anion transporting polypeptide 1B1/1B3 inhibition: A phase I, randomized study. Clin Transl Sci 2022; 15:1532-1543. [PMID: 35460165 PMCID: PMC9199876 DOI: 10.1111/cts.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
Trazpiroben is a dopamine D2/D3 receptor antagonist under development for the treatment of gastroparesis. This phase I, open‐label, randomized, two‐way crossover study (NCT04121078) evaluated the effect of single‐dose intravenous rifampin, a potent inhibitor of the organic anion transporting polypeptides (OATPs) 1B1 and 1B3, on the pharmacokinetics and safety of trazpiroben in healthy adults. The utility of coproporphyrin (CP) I and CPIII as biomarkers of OATP inhibition was also assessed. Overall, 12 participants were enrolled and randomized (1:1) into one of two treatment sequences (AB and BA). Participants received either a single oral dose of trazpiroben 25 mg (treatment A) or a single oral dose of trazpiroben 25 mg immediately after a single 30‐min intravenous infusion of rifampin 600 mg (treatment B). After a washout period of at least 7 days, participants received the other treatment. Geometric mean area under the curve from time 0 extrapolated to infinity (AUC∞) and maximum serum concentration (Cmax) of plasma trazpiroben were higher in participants receiving treatment B than those receiving treatment A (AUC∞, 168.5 vs. 32.68 ng*h/ml; Cmax, 89.62 vs. 14.37 ng/ml); corresponding geometric mean ratios (90% confidence interval) showed 5.16 (4.25–6.25) and 6.24 (4.62–8.42)‐fold increases in these parameters, respectively. In this study, trazpiroben was confirmed as a substrate of OATP1B1/1B3, and therefore co‐administration of trazpiroben with moderate to strong inhibitors of OATP1B1/1B3 is not recommended. This is also the first assessment of the utility of CPI and CPIII as endogenous biomarkers of OATP1B1/1B3 inhibition after a single intravenous dose of rifampin.
Collapse
Affiliation(s)
- Jatinder K Mukker
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | - George Dukes
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA.,Takeda Pharmaceutical Company, Limited, Fujisawa, Japan
| | - Max Tolkoff
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | - Lisi Wang
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | - Cristina Almansa
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | - Susanna Y Huh
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | | | - Diane Ramsden
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | - Chunlin Chen
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
28
|
Mochizuki T, Aoki Y, Yoshikado T, Yoshida K, Lai Y, Hirabayashi H, Yamaura Y, Rockich K, Taskar K, Takashima T, Chu X, Zamek-Gliszczynski MJ, Mao J, Maeda K, Furihata K, Sugiyama Y, Kusuhara H. Physiologically-based pharmacokinetic model-based translation of OATP1B-mediated drug-drug interactions from coproporphyrin I to probe drugs. Clin Transl Sci 2022; 15:1519-1531. [PMID: 35421902 DOI: 10.1111/cts.13272] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 11/28/2022] Open
Abstract
The accurate prediction of OATP1B-mediated drug-drug interactions (DDIs) is challenging for drug development. Here, we report physiologically-based pharmacokinetic (PBPK) model analysis for clinical DDI data generated in heathy subjects who received oral doses of cyclosporin A (CysA; 20 and 75 mg) as an OATP1B inhibitor, and the probe drugs (pitavastatin, rosuvastatin and valsartan). PBPK models of CysA and probe compounds were combined assuming inhibition of hepatic uptake of endogenous coproporphyrin I (CP-I) by CysA. In vivo Ki of unbound CysA for OATP1B (Ki,OATP1B ), and the overall intrinsic hepatic clearance per body weight of CP-I (CLint,all,unit ) were optimized to account for the CP-I data (Ki,OATP1B , 0.657 ± 0.048 nM; CLint,all,unit , 57.0 ± 6.3 L/h/kg). DDI simulation using Ki,OATP1B reproduced the dose-dependent effect of CysA (20 and 75 mg) and the dosing interval (1 h and 3 h) on the time profiles of blood concentrations of pitavastatin and rosuvastatin, but DDI simulation using in vitro Ki,OATP1B failed. The Cluster Gauss-Newton method was used to conduct parameter optimization using 1,000 initial parameter sets for the seven pharmacokinetic parameters of CP-I (β, CLint,all , Fa Fg , Rdif , fbile , fsyn , and vsyn ), and Ki,OATP1B , and Ki,MRP2 of CysA. Based on the accepted 498 parameter sets, the range of CLint,all and Ki,OATP1B was narrowed, with coefficients of variation (CVs) of 9.3% and 11.1%, respectively, indicating that these parameters were practically identifiable. These results suggest that PBPK model analysis of CP-I is a promising translational approach to predict OATP1B-mediated DDIs in drug development.
Collapse
Affiliation(s)
- Tatsuki Mochizuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo
| | - Yasunori Aoki
- Laboratory of quantitative system pharmacokinetics / pharmacodynamics, Josai International University, School of Pharmacy, Tokyo, Japan
| | - Takashi Yoshikado
- Laboratory of Clinical Pharmacology, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan
| | - Kenta Yoshida
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California, USA
| | - Hideki Hirabayashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yoshiyuki Yamaura
- Pharmacokinetic Research Laboratories , Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Kevin Rockich
- Drug Metabolism, Pharmacokinetics and Clinical Pharmacology, Incyte Research Institute, Wilmington, Delaware, USA
| | - Kunal Taskar
- Drug Metabolism and Pharmacokinetics, IVIVT, GlaxoSmithKline, Stevenage, UK
| | - Tadayuki Takashima
- Laboratory for Safety Assessment & ADME, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Jialin Mao
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo
| | | | - Yuichi Sugiyama
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo.,Laboratory of quantitative system pharmacokinetics / pharmacodynamics, Josai International University, School of Pharmacy, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo
| |
Collapse
|
29
|
Chu X, Chan GH, Houle R, Lin M, Yabut J, Fandozzi C. In Vitro Assessment of Transporter Mediated Perpetrator DDIs for Several Hepatitis C Virus Direct-Acting Antiviral Drugs and Prediction of DDIs with Statins Using Static Models. AAPS J 2022; 24:45. [DOI: 10.1208/s12248-021-00677-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023] Open
|
30
|
Robbins JA, Menzel K, Lassman M, Zhao T, Fancourt C, Chu X, Mostoller K, Witter R, Marceau West R, Stoch SA, McCrea JB, Iwamoto M. Acute and Chronic Effects of Rifampin on Letermovir Suggest Transporter Inhibition and Induction Contribute to Letermovir Pharmacokinetics. Clin Pharmacol Ther 2021; 111:664-675. [PMID: 34888851 DOI: 10.1002/cpt.2510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/06/2021] [Indexed: 11/06/2022]
Abstract
Rifampin has acute inhibitory and chronic inductive effects that can cause complex drug-drug interactions. Rifampin inhibits transporters including organic-anion-transporting polypeptide (OATP)1B and P-glycoprotein (P-gp), and induces enzymes and transporters including cytochrome P450 3A, UDP-glucuronosyltransferase (UGT)1A, and P-gp. This study aimed at separating inhibitory and inductive effects of rifampin on letermovir disposition and elimination (indicated for cytomegalovirus prophylaxis in hematopoietic stem cell transplant recipients). Letermovir is a substrate of UGT1A1/3, P-gp, and OATP1B, with its clearance primarily mediated by OATP1B. Letermovir (single-dose) administered with rifampin (single-dose) resulted in increased letermovir exposure through transporter inhibition. Chronic coadministration with rifampin (inhibition plus potential OATP1B induction) resulted in modestly decreased letermovir exposure versus letermovir alone. Letermovir administered 24 hours after last rifampin dose (potential OATP1B induction) resulted in markedly decreased letermovir exposure. These data suggest rifampin may induce transporters that clear letermovir; the modestly reduced letermovir exposure with chronic rifampin coadministration likely reflects the net effect of inhibition and induction. OATP1B endogenous biomarkers coproporphyrin (CP) I and glycochenodeoxycholic acid-sulfate (GCDCA-S) were also analyzed; their exposures increased after single-dose rifampin plus letermovir, consistent with OATP1B inhibition and prior reports of inhibition by rifampin alone. CP I and GCDCA-S exposures were substantially reduced with letermovir administered 24 hours after the last dose of rifampin versus letermovir plus chronic rifampin coadministration, This study suggests that OATP1B induction may contribute to reduced letermovir exposure after chronic rifampin administration, although given the complexity of letermovir disposition, alternative mechanisms are not fully excluded.
Collapse
Affiliation(s)
| | | | | | - Tian Zhao
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kimoto E, Costales C, West MA, Bi YA, Vourvahis M, David Rodrigues A, Varma MVS. Biomarker-Informed Model-Based Risk Assessment of Organic Anion Transporting Polypeptide 1B Mediated Drug-Drug Interactions. Clin Pharmacol Ther 2021; 111:404-415. [PMID: 34605015 DOI: 10.1002/cpt.2434] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/15/2021] [Indexed: 11/08/2022]
Abstract
Quantitative prediction of drug-drug interactions (DDIs) involving organic anion transporting polypeptide (OATP)1B1/1B3 inhibition is limited by uncertainty in the translatability of experimentally determined in vitro inhibition potency (half-maximal inhibitory concentration (IC50 )). This study used an OATP1B endogenous biomarker-informed physiologically-based pharmacokinetic (PBPK) modeling approach to predict the effect of inhibitor drugs on the pharmacokinetics (PKs) of OATP1B substrates. Initial static analysis with about 42 inhibitor drugs, using in vitro IC50 values and unbound liver inlet concentrations (Iin,max,u ), suggested in vivo OATP1B inhibition risk for drugs with R-value (1+ Iin,max,u /IC50 ) above 1.5. A full-PBPK model accounting for transporter-mediated hepatic disposition was developed for coproporphyrin I (CP-I), an endogenous OATP1B biomarker. For several inhibitors (cyclosporine, diltiazem, fenebrutinib, GDC-0810, itraconazole, probenecid, and rifampicin at 3 different doses), PBPK models were developed and verified against available CP-I plasma exposure data to obtain in vivo OATP1B inhibition potency-which tend to be lower than the experimentally measured in vitro IC50 by about 2-fold (probenecid and rifampicin) to 37-fold (GDC-0810). Models verified with CP-I data are subsequently used to predict DDIs with OATP1B probe drugs, rosuvastatin and pitavastatin. The predicted and observed area under the plasma concentration-time curve ratios are within 20% error in 55% cases, and within 30% error in 89% cases. Collectively, this comprehensive study illustrates the adequacy and utility of endogenous biomarker-informed PBPK modeling in mechanistic understanding and quantitative predictions of OATP1B-mediated DDIs in drug development.
Collapse
Affiliation(s)
- Emi Kimoto
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Chester Costales
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Mark A West
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Yi-An Bi
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Manoli Vourvahis
- Clinical Pharmacology, Global Product Development, Pfizer Inc, New York, New York, USA
| | - A David Rodrigues
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| |
Collapse
|
32
|
Medwid S, Price HR, Taylor DP, Mailloux J, Schwarz UI, Kim RB, Tirona RG. Organic Anion Transporting Polypeptide 2B1 (OATP2B1) Genetic Variants: In Vitro Functional Characterization and Association With Circulating Concentrations of Endogenous Substrates. Front Pharmacol 2021; 12:713567. [PMID: 34594217 PMCID: PMC8476882 DOI: 10.3389/fphar.2021.713567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Organic anion transporting polypeptide 2B1 (OATP2B1, gene SLCO2B1) is an uptake transporter that is thought to determine drug disposition and in particular, the oral absorption of medications. At present, the clinical relevance of SLCO2B1 genetic variation on pharmacokinetics is poorly understood. We sought to determine the functional activity of 5 of the most common missense OATP2B1 variants (c.76_84del, c.601G>A, c.917G>A, c.935G>A, and c.1457C>T) and a predicted dysfunctional variant (c.332G>A) in vitro. Furthermore, we measured the basal plasma concentrations of endogenous OATP2B1 substrates, namely estrone sulfate, dehydroepiandrosterone sulfate (DHEAS), pregnenolone sulfate, coproporphyrin I (CPI), and CPIII, and assessed their relationships with SLCO2B1 genotypes in 93 healthy participants. Compared to reference OATP2B1, the transport activities of the c.332G>A, c.601G>A and c.1457C>T variants were reduced among the substrates examined (estrone sulfate, DHEAS, CPI, CPIII and rosuvastatin), although there were substrate-dependent effects. Lower transport function of OATP2B1 variants could be explained by diminished cell surface expression. Other OATP2B1 variants (c.76-84del, c.917G>A and c.935G>A) had similar activity to the reference transporter. In the clinical cohort, the SLCO2B1 c.935G>A allele was associated with both higher plasma CPI (42%) and CPIII (31%) concentrations, while SLCO2B1 c.917G>A was linked to lower plasma CPIII by 28% after accounting for the effects of age, sex, and SLCO1B1 genotypes. No association was observed between SLCO2B1 variant alleles and estrone sulfate or DHEAS plasma concentrations, however 45% higher plasma pregnenolone sulfate level was associated with SLCO2B1 c.1457C>T. Taken together, we found that the impacts of OATP2B1 variants on transport activities in vitro were not fully aligned with their associations to plasma concentrations of endogenous substrates in vivo. Additional studies are required to determine whether circulating endogenous substrates reflect OATP2B1 activity.
Collapse
Affiliation(s)
- Samantha Medwid
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Hayley R Price
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Daniel P Taylor
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Jaymie Mailloux
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Ute I Schwarz
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Richard B Kim
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada.,Department of Oncology, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
| | - Rommel G Tirona
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.,Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London, ON, Canada
| |
Collapse
|
33
|
Neuvonen M, Tornio A, Hirvensalo P, Backman JT, Niemi M. Performance of Plasma Coproporphyrin I and III as OATP1B1 Biomarkers in Humans. Clin Pharmacol Ther 2021; 110:1622-1632. [PMID: 34580865 PMCID: PMC9292572 DOI: 10.1002/cpt.2429] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022]
Abstract
A previous study in 356 healthy Finnish volunteers showed that glycochenodeoxycholate 3‐O‐glucuronide (GCDCA‐3G) and glycodeoxycholate 3‐O‐glucuronide (GDCA‐3G) are promising biomarkers of organic anion transporting polypeptide 1B1 (OATP1B1). In the same cohort, we now evaluated the performances of two other OATP1B1 biomarkers, coproporphyrin I (CPI) and III (CPIII), and compared them with GCDCA‐3G and GDCA‐3G. Based on decreased (*5 and *15) and increased (*14 and *20) function SLCO1B1 haplotypes, we stratified the participants to poor, decreased, normal, increased, and highly increased OATP1B1 function groups. Fasting plasma CPI concentration was 68% higher in the poor (95% confidence interval, 44%, 97%; P = 1.74 × 10−10), 7% higher in the decreased (0%, 15%; P = 0.0385), 10% lower in the increased (3%, 18%; P = 0.0087), and 23% lower in the highly increased (1%, 40%; P = 0.0387) function group than in the normal function group. CPIII concentration was 27% higher (7%, 51%; P = 0.0071) in the poor function group than in the normal function group. CPI and CPIII detected poor OATP1B1 function with areas under the precision‐recall curve (AUPRC) of 0.388 (95% confidence interval, 0.197, 0.689) and 0.0798 (0.0485, 0.203), and receiver operating characteristic curve (AUROC) of 0.888 (0.851, 0.919) and 0.731 (0.682, 0.776). The AUPRC and AUROC of GCDCA‐3G were, however, 0.389 (0.258, 0.563) and 0.100 (−0.0046, 0.204; P = 0.0610) larger than those of CPI, and 0.697 (0.555, 0.831) and 0.257 (0.141, 0.373; P < 0.0001) larger than those of CPIII. In conclusion, these data indicate that plasma CPI outperforms CPIII in detecting altered OATP1B1 function, but GCDCA‐3G is an even more sensitive OATP1B1 biomarker than CPI.
Collapse
Affiliation(s)
- Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Päivi Hirvensalo
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
34
|
Li Y, Talebi Z, Chen X, Sparreboom A, Hu S. Endogenous Biomarkers for SLC Transporter-Mediated Drug-Drug Interaction Evaluation. Molecules 2021; 26:5500. [PMID: 34576971 PMCID: PMC8466752 DOI: 10.3390/molecules26185500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
Membrane transporters play an important role in the absorption, distribution, metabolism, and excretion of xenobiotic substrates, as well as endogenous compounds. The evaluation of transporter-mediated drug-drug interactions (DDIs) is an important consideration during the drug development process and can guide the safe use of polypharmacy regimens in clinical practice. In recent years, several endogenous substrates of drug transporters have been identified as potential biomarkers for predicting changes in drug transport function and the potential for DDIs associated with drug candidates in early phases of drug development. These biomarker-driven investigations have been applied in both preclinical and clinical studies and proposed as a predictive strategy that can be supplanted in order to conduct prospective DDIs trials. Here we provide an overview of this rapidly emerging field, with particular emphasis on endogenous biomarkers recently proposed for clinically relevant uptake transporters.
Collapse
Affiliation(s)
| | | | | | | | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (Y.L.); (Z.T.); (X.C.); (A.S.)
| |
Collapse
|
35
|
Sane RS, Cheung KWK, Cho E, Liederer BM, Hanover J, Malhi V, Plise E, Wong S, Musib L. Evaluation of Ipatasertib Interactions with Itraconazole and Coproporphyrin I and III in a Single Drug Interaction Study in Healthy Subjects. J Pharmacol Exp Ther 2021; 378:87-95. [PMID: 34049965 DOI: 10.1124/jpet.121.000620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022] Open
Abstract
Ipatasertib is a pan-AKT inhibitor in development for the treatment of cancer. Ipatasertib was metabolized by CYP3A4 to its major metabolite, M1 (G-037720), and was a P-gp substrate and OATP1B1/1B3 inhibitor in vitro. A phase I drug-drug interaction (DDI) study (n = 15) was conducted in healthy subjects to evaluate the effect of itraconazole (200-mg solution QD, 4 days), a strong CYP3A4 and P-gp inhibitor, on pharmacokinetics of ipatasertib (100-mg single dose). Itraconazole increased the Cmax and AUC0 -∞ of ipatasertib by 2.3- and 5.5-fold, respectively, increased the half-life by 53%, and delayed the tmax by 1 hour. The Cmax and AUC0-72h of its metabolite M1 (G-037720) reduced by 91% and 68%, respectively. This study confirmed that CYP3A4 plays a major role in ipatasertib clearance. Furthermore, the interaction of ipatasertib with coproporphyrin (CP) I and CPIII, the two endogenous substrates of OATP1B1/1B3, was evaluated in this study. CPI and CPIII plasma levels were unchanged in the presence of ipatasertib, both at exposures of 100 mg and at higher exposures in combination with itraconazole. This indicated no in vivo inhibition of OATP1B1/1B3 by ipatasertib. Additionally, it was shown that CPI and CPIII were not P-gp substrates in vitro, and itraconazole had no effect on CPI and CPIII concentrations in vivo. The latter is an important finding because it will simplify interpretation of future DDI studies using CPI/CPIII as OATP1B1/1B3 biomarkers. SIGNIFICANCE STATEMENT: This drug-drug interaction study in healthy volunteers demonstrated that CYP3A4 plays a major role in ipatasertib clearance, and that ipatasertib is not an organic anion transporting polypeptide 1B1/1B3 inhibitor. Furthermore, it was demonstrated that itraconazole, an inhibitor of CYP3A4 and several transporters, did not affect CPI/CPIII levels in vivo. This increases the understanding and application of these endogenous substrates as well as itraconazole in complex drug interaction studies.
Collapse
Affiliation(s)
| | | | - Eunpi Cho
- Genentech, South San Francisco, California
| | | | | | | | | | - Susan Wong
- Genentech, South San Francisco, California
| | - Luna Musib
- Genentech, South San Francisco, California
| |
Collapse
|
36
|
Cheng Y, Liang X, Hao J, Niu C, Lai Y. Application of a PBPK model to elucidate the changes of systemic and liver exposures for rosuvastatin, carotegrast, and bromfenac followed by OATP inhibition in monkeys. Clin Transl Sci 2021; 14:1924-1934. [PMID: 34058067 PMCID: PMC8504809 DOI: 10.1111/cts.13047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022] Open
Abstract
The impact of organic anion‐transporting polypeptide (OATP) inhibition on systemic and liver exposures of three OATP substrates was investigated in cynomolgus monkeys. A monkey physiologically‐based pharmacokinetic (PBPK) model was constructed to describe the exposure changes followed by OATP functional attenuation. Rosuvastatin, bromfenac, and carotegrast were administered as a single intravenous cassette dose (0.5 mg/kg each) in monkeys with and without predosing with rifampin (RIF; 20 mg/kg) orally. The plasma exposure of rosuvastatin, bromfenac, carotegrast, and OATP biomarkers, coproporphyrin I (CP‐I) and CP‐III were increased 2.3, 2.1, 9.1, 5.4, and 8.8‐fold, respectively, when compared to the vehicle group. The liver to plasma ratios of rosuvastatin and bromfenac were reduced but the liver concentration of the drugs remained unchanged by RIF treatment. The liver concentrations of carotegrast, CP‐I, and CP‐III were unchanged at 1 h but increased at 6 h in the RIF‐treated group. The passive permeability, active uptake, and biliary excretion were characterized in suspended and sandwich‐cultured monkey hepatocytes and then incorporated into the monkey PBPK model. As demonstrated by the PBPK model, the plasma exposure is increased through OATP inhibition while liver exposure is maintained by passive permeability driven from an elevated plasma level. Liver exposure is sensitive to the changes of metabolism and biliary clearances. The model further suggested the involvement of additional mechanisms for hepatic uptakes of rosuvastatin and bromfenac, and of the inhibition of biliary excretion for carotegrast, CP‐I, and CP‐III by RIF. Collectively, impaired OATP function would not reduce the liver exposure of its substrates in monkeys.
Collapse
Affiliation(s)
- Yaofeng Cheng
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Xiaomin Liang
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Jia Hao
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Congrong Niu
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| |
Collapse
|
37
|
Abstract
OBJECTIVES Dubin-Johnson syndrome (DJS) is an autosomal recessive disorder in which multidrug-resistance-associated protein 2 (MRP2) deficiency causes an excretion disorder of conjugated bilirubin from hepatocytes into bile canaliculi. Its clinical presentation as neonatal cholestasis (NC) is rare but represents an important differential diagnosis. We aimed to define DJS-specific characteristics in NC, in particular in contrast to biliary atresia (BA) patients, and to highlight diagnostic tools that can help to avoid invasive diagnostic tests. METHODS We performed a review of case records from 2006 to 2020 and compared 4 DJS patients to 26 patients with proven BA consecutively diagnosed from 2014 to 2017. DJS was diagnosed by urine coproporphyrin analysis (UCA) and by genetic analysis (GA) for disease-associated ABCC2 variants. RESULTS Four male patients with NC were diagnosed with DJS by UCA and GA. DJS patients presenting as NC showed significantly lower values for aspartate aminotransferase (AST) (P < 0.001), for alanine aminotransferase (ALT) (P = 0.002) and for gamma-glutamyl transferase (GGT) (P < 0.001) compared with BA patients. Other examinations, however, could not clearly discriminate them (e.g.: stool colour, serum bile acids, total serum bilirubin). CONCLUSIONS DJS is not only a rare differential diagnosis in NC with a suspicious phenotype (almost normal AST, ALT) but also shows overlapping features with BA. It should, therefore, be considered in every infant with NC and an atypical liver enzyme pattern to protect patients from unnecessary, invasive examinations. For this, UCA is a fast and reliable diagnostic tool. Confirmation based on GA is recommended. DJS patients have a good long-term prognosis.
Collapse
|
38
|
Ahmad A, Ogungbenro K, Kunze A, Jacobs F, Snoeys J, Rostami-Hodjegan A, Galetin A. Population pharmacokinetic modeling and simulation to support qualification of pyridoxic acid as endogenous biomarker of OAT1/3 renal transporters. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:467-477. [PMID: 33704919 PMCID: PMC8129719 DOI: 10.1002/psp4.12610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
Renal clearance of many drugs is mediated by renal organic anion transporters OAT1/3 and inhibition of these transporters may lead to drug‐drug interactions (DDIs). Pyridoxic acid (PDA) and homovanillic acid (HVA) were indicated as potential biomarkers of OAT1/3. The objective of this study was to develop a population pharmacokinetic model for PDA and HVA to support biomarker qualification. Simultaneous fitting of biomarker plasma and urine data in the presence and absence of potent OAT1/3 inhibitor (probenecid, 500 mg every 6 h) was performed. The impact of study design (multiple vs. single dose of OAT1/3 inhibitor) and ability to detect interactions in the presence of weak/moderate OAT1/3 inhibitors was investigated, together with corresponding power calculations. The population models developed successfully described biomarker baseline and PDA/HVA OAT1/3‐mediated interaction data. No prominent effect of circadian rhythm on PDA and HVA individual baseline levels was evident. Renal elimination contributed greater than 80% to total clearance of both endogenous biomarkers investigated. Estimated probenecid unbound in vivo OAT inhibitory constant was up to 6.4‐fold lower than in vitro values obtained with PDA as a probe. The PDA model was successfully verified against independent literature reported datasets. No significant difference in power of DDI detection was found between multiple and single dose study design when using the same total daily dose of 2000 mg probenecid. Model‐based simulations and power calculations confirmed sensitivity and robustness of plasma PDA data to identify weak, moderate, and strong OAT1/3 inhibitors in an adequately powered clinical study to support optimal design of prospective clinical OAT1/3 interaction studies.
Collapse
Affiliation(s)
- Amais Ahmad
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Annett Kunze
- DMPK, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Frank Jacobs
- DMPK, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Jan Snoeys
- DMPK, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK.,Simcyp Limited (A Certara Company), Sheffield, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
39
|
Feng S, Bo Q, Coleman HA, Charoin JE, Zhu M, Xiao J, Jin Y. Further Evaluation of Coproporphyrins as Clinical Endogenous Markers for OATP1B. J Clin Pharmacol 2021; 61:1027-1034. [PMID: 33460165 DOI: 10.1002/jcph.1817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
Coproporphyrins (CP-I and CP-III) in plasma are considered potential markers for assessing liver organic anion-transporting polypeptide transporter OATP1B activity and monitoring OATP1B-mediated drug-drug interactions (DDIs) in clinical settings. However, the effect of altered renal clearance (CLrenal ) on CP-I and CP-III plasma exposure has rarely been examined. Therefore, the purpose of this study is to further evaluate CP-I and CP-III as clinical endogenous markers for OATP1B activity and to investigate the impact of CLrenal on DDI assessments for the first time. In this study, 18 healthy participants were recruited to receive RO7049389 (a potential inhibitor of OATP1B) 800 mg twice daily for 6 days and a single dose of pitavastatin (a probe drug of OATP1B) before and after RO7049389 treatment. Plasma concentrations of pitavastatin, CP I, CP III, and the amounts of CP-I and CP-III excreted in urine were measured. Seventeen healthy participants completed the study. After multiple doses of RO7049389, the area under the plasma concentration-time curve from time 0 to 12 hours of pitavastatin increased 1.95-fold (90% confidence interval [CI], 1.58-2.41), while for CP-I and CP-III it increased 3.00-fold (90%CI, 2.35-3.82) and 2.84-fold (90%CI, 2.22-3.65), respectively. Concurrently, the CLrenal of CP-I decreased by 31% (90%CI, 23%-39%), and that of CP-III decreased by 70% (90%CI, 61%-77%). In conclusion, CP-I and CP-III in plasma display the potential to be applied as endogenous markers for the evaluation of OATP1B inhibition in clinical trials. While renal transporters contribute significantly to the CLrenal of CP-III, it would be better to investigate the impact of the CLrenal on plasma exposure of CP-III during clinical DDI assessments.
Collapse
Affiliation(s)
- Sheng Feng
- Pharmaceutical Sciences, Roche Innovation Center Shanghai, Shanghai, China
| | - Qingyan Bo
- I2O DTA, Roche Innovation Center Shanghai, Shanghai, China
| | | | - Jean Eric Charoin
- Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Mingfen Zhu
- I2O DTA, Roche Innovation Center Shanghai, Shanghai, China
| | - Jim Xiao
- Frontage Laboratories, Exton, Pennsylvania, USA
| | - Yuyan Jin
- Pharmaceutical Sciences, Roche Innovation Center Shanghai, Shanghai, China
| |
Collapse
|
40
|
Willemin ME, Van Der Made TK, Pijpers I, Dillen L, Kunze A, Jonkers S, Steemans K, Tuytelaars A, Jacobs F, Monshouwer M, Scotcher D, Rostami-Hodjegan A, Galetin A, Snoeys J. Clinical Investigation on Endogenous Biomarkers to Predict Strong OAT-Mediated Drug-Drug Interactions. Clin Pharmacokinet 2021; 60:1187-1199. [PMID: 33840062 DOI: 10.1007/s40262-021-01004-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Endogenous biomarkers are promising tools to assess transporter-mediated drug-drug interactions early in humans. METHODS We evaluated on a common and validated in vitro system the selectivity of 4-pyridoxic acid (PDA), homovanillic acid (HVA), glycochenodeoxycholate-3-sulphate (GCDCA-S) and taurine towards different renal transporters, including multidrug resistance-associated protein, and assessed the in vivo biomarker sensitivity towards the strong organic anion transporter (OAT) inhibitor probenecid at 500 mg every 6 h to reach close to complete OAT inhibition. RESULTS PDA and HVA were substrates of the OAT1/2/3, OAT4 (PDA only) and multidrug resistance-associated protein 4; GCDCA-S was more selective, having affinity only towards OAT3 and multidrug resistance-associated protein 2. Taurine was not a substrate of any of the investigated transporters under the in vitro conditions tested. Plasma exposure of PDA and HVA significantly increased and the renal clearance of GCDCA-S, PDA and HVA decreased; the magnitude of these changes was comparable to those of known clinical OAT probe substrates. PDA and GCDCA-S were the most promising endogenous biomarkers of the OAT pathway activity: PDA plasma exposure was the most sensitive to probenecid inhibition, and, in contrast, GCDCA-S was the most sensitive OAT biomarker based on renal clearance, with higher selectivity towards the OAT3 transporter. CONCLUSIONS The current findings illustrate a clear benefit of measuring PDA plasma exposure during phase I studies when a clinical drug candidate is suspected to be an OAT inhibitor based on in vitro data. Subsequently, combined monitoring of PDA and GCDCA-S in both urine and plasma is recommended to tease out the involvement of OAT1/3 in the inhibition interaction. CLINICAL TRIAL REGISTRATION EudraCT number: 2016-003923-49.
Collapse
Affiliation(s)
- Marie-Emilie Willemin
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Thomas K Van Der Made
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, Division of Pharmacy and Optometry, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ils Pijpers
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Lieve Dillen
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Annett Kunze
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Sophie Jonkers
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Kathleen Steemans
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - An Tuytelaars
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Frank Jacobs
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Mario Monshouwer
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, Division of Pharmacy and Optometry, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, Division of Pharmacy and Optometry, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, Division of Pharmacy and Optometry, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jan Snoeys
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
41
|
Kinzi J, Grube M, Meyer Zu Schwabedissen HE. OATP2B1 - The underrated member of the organic anion transporting polypeptide family of drug transporters? Biochem Pharmacol 2021; 188:114534. [PMID: 33794186 DOI: 10.1016/j.bcp.2021.114534] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022]
Abstract
The organic anion transporting polypeptide 2B1 (OATP2B1) was one of the first cloned members of the SLCO family. However, its physiological and pharmacological role is still poorly understood, and object of a current debate on the transporter's relevance. Within this commentary, we summarize the data currently available on the transporter's expression and its substrates and highlight the strength and difficulties of the methods that have been applied to gather these data. The conclusion drawn from these findings was that OATP2B1 due to its intestinal expression is most likely involved in oral drug absorption of its substrate and therefore prone for interactions. This has been tested in in vivo drug interaction and/or pharmacogenetic studies. While some of these support the notion of OATP2B1 being of relevance in drug absorption, the pharmacogenetic findings are rather inconclusive. We will explain our thoughts why OATP2B1 may not influence the general systemic pharmacokinetic of certain substrates, but possibly local distribution processes, like the transfer across the blood-brain-barrier. Besides the pharmacokinetic aspects, there are data on endogenous molecules like coproporphyrins and sulfated steroids. Therefore, we will also highlight possible physiological roles of OATP2B1, which are driven by its expression pattern in the tubular cells of the kidney as well as its expression in the blood brain barrier. Finally we also deal with the advantages and disadvantages in the use of animal models to decipher the role of OATP2B1 in pharmacokinetics of its substrates and beyond.
Collapse
Affiliation(s)
- Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Markus Grube
- Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
42
|
Suzuki Y, Sasamoto Y, Koyama T, Yoshijima C, Oda A, Nakatochi M, Kubo M, Momozawa Y, Uehara R, Ohno K. Relationship of hemoglobin level and plasma coproporphyrin-I concentrations as an endogenous probe for phenotyping OATP1B. Clin Transl Sci 2021; 14:1403-1411. [PMID: 33650309 PMCID: PMC8301560 DOI: 10.1111/cts.12996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma coproporphyrin‐I (CP‐I) concentration is used as a sensitive and selective endogenous probe for phenotyping organic anion transporting polypeptides 1B (OATP1B) activity in many studies. CP‐I is produced in the process of heme synthesis, but the relationship between plasma CP‐I concentrations and heme synthesis activity is unknown. In this study, we evaluated the relationship between plasma CP‐I concentration and hemoglobin level as a biomarker of heme synthesis activity. The data of 391 subjects selected from the Japanese general population were analyzed. One hundred twenty‐six participants had OATP1B1*15 allele, 11 of whom were homozygous (OATP1B1*15/*15). Multiple regression analysis identified hemoglobin level as an independent variable associated with plasma CP‐I concentration (p < 0.0001). A significant positive correlation was observed between hemoglobin level and plasma CP‐I concentration in participants without OATP1B1*15 allele (n = 265; rs = 0.35, p < 0.0001) and with OATP1B1*15 allele (n = 126; rs =0.27, p = 0.0022). However, Kruskal–Wallis test showed no large difference in Kruskal–Wallis statistics between the distribution of plasma CP‐I concentrations and that of ratio of plasma CP‐I to hemoglobin among six OATP1B1 polymorphism groups. These findings suggest that the hemoglobin level seems to reflect biosynthesis of CP‐I. However, correction by hemoglobin level is not required when using basal plasma CP‐I concentration for phenotyping OATP1B activity.
Collapse
Affiliation(s)
- Yosuke Suzuki
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Japan
| | - Yuri Sasamoto
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chisato Yoshijima
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Japan
| | - Ayako Oda
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ritei Uehara
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiko Ohno
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Japan
| |
Collapse
|
43
|
Izat N, Sahin S. Hepatic transporter-mediated pharmacokinetic drug-drug interactions: Recent studies and regulatory recommendations. Biopharm Drug Dispos 2021; 42:45-77. [PMID: 33507532 DOI: 10.1002/bdd.2262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Transporter-mediated drug-drug interactions are one of the major mechanisms in pharmacokinetic-based drug interactions and correspondingly affecting drugs' safety and efficacy. Regulatory bodies underlined the importance of the evaluation of transporter-mediated interactions as a part of the drug development process. The liver is responsible for the elimination of a wide range of endogenous and exogenous compounds via metabolism and biliary excretion. Therefore, hepatic uptake transporters, expressed on the sinusoidal membranes of hepatocytes, and efflux transporters mediating the transport from hepatocytes to the bile are determinant factors for pharmacokinetics of drugs, and hence, drug-drug interactions. In parallel with the growing research interest in this area, regulatory guidances have been updated with detailed assay models and criteria. According to well-established preclinical results, observed or expected hepatic transporter-mediated drug-drug interactions can be taken into account for clinical studies. In this paper, various methods including in vitro, in situ, in vivo, in silico approaches, and combinational concepts and several clinical studies on the assessment of transporter-mediated drug-drug interactions were reviewed. Informative and effective evaluation by preclinical tools together with the integration of pharmacokinetic modeling and simulation can reduce unexpected clinical outcomes and enhance the success rate in drug development.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
44
|
Takita H, Barnett S, Zhang Y, Ménochet K, Shen H, Ogungbenro K, Galetin A. PBPK Model of Coproporphyrin I: Evaluation of the Impact of SLCO1B1 Genotype, Ethnicity, and Sex on its Inter-Individual Variability. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:137-147. [PMID: 33289952 PMCID: PMC7894406 DOI: 10.1002/psp4.12582] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Coproporphyrin I (CPI) is an endogenous biomarker of OATP1B activity and associated drug-drug interactions. In this study, a minimal physiologically-based pharmacokinetic model was developed to investigate the impact of OATP1B1 genotype (c.521T>C), ethnicity, and sex on CPI pharmacokinetics and interindividual variability in its baseline. The model implemented mechanistic descriptions of CPI hepatic transport between liver blood and liver tissue and renal excretion. Key model parameters (e.g., endogenous CPI synthesis rate, and CPI hepatic uptake clearance) were estimated by fitting the model simultaneously to three independent CPI clinical datasets (plasma and urine data) obtained from white (n = 16, men and women) and Asian-Indian (n = 26, all men) subjects, with c.521 variants (TT, TC, and CC). The optimized CPI model successfully described the observed data using c.521T>C genotype, ethnicity, and sex as covariates. CPI hepatic active was 79% lower in 521CC relative to the wild type and 42% lower in Asian-Indians relative to white subjects, whereas CPI synthesis was 23% higher in male relative to female subjects. Parameter sensitivity analysis showed marginal impact of the assumption of CPI synthesis site (blood or liver), resulting in comparable recovery of plasma and urine CPI data. Lower magnitude of CPI-drug interaction was simulated in 521CC subjects, suggesting the risk of underestimation of CPI-drug interaction without prior OATP1B1 genotyping. The CPI model incorporates key covariates contributing to interindividual variability in its baseline and highlights the utility of the CPI modeling to facilitate the design of prospective clinical studies to maximize the sensitivity of this biomarker.
Collapse
Affiliation(s)
- Hiroyuki Takita
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Laboratory for Safety Assessment and ADME, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Shelby Barnett
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Yueping Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | | | - Hong Shen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
45
|
Chatterjee S, Mukherjee S, Sankara Sivaprasad LVJ, Naik T, Gautam SS, Murali BV, Hadambar AA, Gunti GR, Kuchibhotla V, Deyati A, Basavanthappa S, Ramarao M, Mariappan TT, Zinker BA, Zhang Y, Sinz M, Shen H. Transporter Activity Changes in Nonalcoholic Steatohepatitis: Assessment with Plasma Coproporphyrin I and III. J Pharmacol Exp Ther 2021; 376:29-39. [PMID: 33127749 DOI: 10.1124/jpet.120.000291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Expression and functional changes in the organic anion transporting polypeptide (OATP)-multidrug resistance-associated protein (MRP) axis of transporters are well reported in patients with nonalcoholic steatohepatitis (NASH). These changes can impact plasma and tissue disposition of endo- and exogenous compounds. The transporter alterations are often assessed by administration of a xenobiotic or by transporter proteomic analysis from liver biopsies. Using gene expression, proteomics, and endogenous biomarkers, we show that the gene expression and activity of OATP and MRP transporters are associated with disease progression and recovery in humans and in preclinical animal models of NASH. Decreased OATP and increased MRP3/4 gene expression in two cohorts of patients with steatosis and NASH, as well as gene and protein expression in multiple NASH rodent models, have been established. Coproporphyrin I and III (CP I and III) were established as substrates of MRP4. CP I plasma concentration increased significantly in four animal models of NASH, indicating the transporter changes. Up to a 60-fold increase in CP I plasma concentration was observed in the mouse bile duct-ligated model compared with sham controls. In the choline-deficient amino acid-defined high-fat diet (CDAHFD) model, CP I plasma concentrations increased by >3-fold compared with chow diet-fed mice. In contrast, CP III plasma concentrations remain unaltered in the CDAHFD model, although they increased in the other three NASH models. These results suggest that tracking CP I plasma concentrations can provide transporter modulation information at a functional level in NASH animal models and in patients. SIGNIFICANCE STATEMENT: Our analysis demonstrates that multidrug resistance-associated protein 4 (MRP4) transporter gene expression tracks with nonalcoholic steatohepatitis (NASH) progression and intervention in patients. Additionally, we show that coproporphyrin I and III (CP I and III) are substrates of MRP4. CP I plasma and liver concentrations increase in different diet- and surgery-induced rodent NASH models, likely explained by both gene- and protein-level changes in transporters. CP I and III are therefore potential plasma-based biomarkers that can track NASH progression in preclinical models and in humans.
Collapse
Affiliation(s)
- Sagnik Chatterjee
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Sambuddho Mukherjee
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - L V J Sankara Sivaprasad
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Tanvi Naik
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Shashyendra Singh Gautam
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Bokka Venkata Murali
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Avinash Annasao Hadambar
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Gowtham Raj Gunti
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Vijaykumar Kuchibhotla
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Avisek Deyati
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Sushma Basavanthappa
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Manjunath Ramarao
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - T Thanga Mariappan
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Bradley A Zinker
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Yueping Zhang
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Michael Sinz
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| | - Hong Shen
- Pharmaceutical Candidate Optimization (S.C., S.S.L.V.J., T.N., S.S.G., B.V.M.) and Discovery and Translational Medicine (S.M., A.A.H., G.R.G., V.K., A.D., S.B.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India; Pharmaceutical Candidate Optimization (T.T.M.) and Discovery and Translational Medicine, Bristol-Myers Squibb India Pvt. Ltd. (M.R.), Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India; BMS Fibrosis Drug Discovery, Research and Early Development, Princeton, New Jersey (B.A.Z.); and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, New Jersey (Y.Z., M.S., H.S.)
| |
Collapse
|
46
|
Bezençon J, Saran C, Hussner J, Beaudoin JJ, Zhang Y, Shen H, Fallon JK, Smith PC, Meyer Zu Schwabedissen HE, Brouwer KLR. Endogenous Coproporphyrin I and III are Altered in Multidrug Resistance-Associated Protein 2-Deficient (TR -) Rats. J Pharm Sci 2021; 110:404-411. [PMID: 33058892 PMCID: PMC7767637 DOI: 10.1016/j.xphs.2020.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Recent studies have focused on coproporphyrin (CP)-I and CP-III (CPs) as endogenous biomarkers for organic anion transporting polypeptides (OATPs). Previous data showed that CPs are also substrates of multidrug resistance-associated protein (MRP/Mrp) 2 and 3. This study was designed to examine the impact of loss of Mrp2 function on the routes of excretion of endogenous CPs in wild-type (WT) Wistar compared to Mrp2-deficient TR- rats. To exclude possible confounding effects of rat Oatps, the transport of CPs was investigated in Oatp-overexpressing HeLa cells. Results indicated that CPs are substrates of rodent Oatp1b2, and that CP-III is a substrate of Oatp2b1. Quantitative targeted absolute proteomic (QTAP) analysis revealed no differences in Oatps, but an expected significant increase in Mrp3 protein levels in TR- compared to WT rat livers. CP-I and CP-III concentrations measured by LC-MS/MS were elevated in TR- compared to WT rat liver, while CP-I and CP-III estimated biliary clearance was decreased 75- and 840-fold in TR- compared to WT rats, respectively. CP-III concentrations were decreased 14-fold in the feces of TR- compared to WT rats, but differences in CP-I were not significant. In summary, the disposition of CPs was markedly altered by loss of Mrp2 and increased Mrp3 function as measured in TR- rats.
Collapse
Affiliation(s)
- Jacqueline Bezençon
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Chitra Saran
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janine Hussner
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Yueping Zhang
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb Company, Princeton, NJ, USA
| | - Hong Shen
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb Company, Princeton, NJ, USA
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Philip C Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
47
|
Kalluri HV, Kikuchi R, Coppola S, Schmidt J, Mohamed MEF, Bow DAJ, Salem AH. Coproporphyrin I Can Serve as an Endogenous Biomarker for OATP1B1 Inhibition: Assessment Using a Glecaprevir/Pibrentasvir Clinical Study. Clin Transl Sci 2020; 14:373-381. [PMID: 33048456 PMCID: PMC7877830 DOI: 10.1111/cts.12888] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are involved in the disposition of a variety of commonly prescribed drugs. The evaluation of OATP1B1/1B3 inhibition potential by investigational drugs is of interest during clinical drug development due to various adverse events associated with increased exposures of their substrates. Regulatory guidance documents on the in vitro assessment of OATP1B1/1B3 inhibition potential are conservative with up to a third of predictions resulting in false positives. This work investigated the utility of OATP1B1/1B3 endogenous biomarkers, coproporphyrin (CP)‐I and CP‐III, to assess clinical inhibition of OATP1B1/1B3 and potentially eliminate the need for prospective clinical drug‐drug interaction (DDI) studies. Correlations between CP‐I exposures and various OATP1B1 static DDI predictions were also evaluated. Glecaprevir/pibrentasvir (GLE/PIB) 300/120 mg fixed‐dose combination is known to cause clinical inhibition of OATP1B1/1B3. In a clinical study evaluating the relative bioavailability of various formulations of GLE/PIB regimen, CP‐I peak plasma concentration (Cmax) ratio and 0–16‐hour area under the concentration‐time curve (AUC0–16) ratio relative to baseline increased with increasing GLE exposures, whereas there was a modest correlation between GLE exposure and CP‐III Cmax ratio but no correlation with CP‐III AUC0–16 ratio. This suggests that CP‐I is superior to CP‐III as an endogenous biomarker for evaluation of OATP1B1 inhibition. There was a significant correlation between CP‐I and GLE Cmax (R2 = 0.65; P < 0.001) across individual subjects. Correlation analysis between GLE OATP1B1 R values and CP‐I exposures (Cmax ratio and AUC0–16 ratio) suggests that an R value of > 3 can predict a biologically meaningful inhibition of OATP1B1 when the inhibitor clinical pharmacokinetic parameters are available.
Collapse
Affiliation(s)
- Hari V Kalluri
- Clinical Pharmacology and Pharmacometrics, AbbVie Inc., North Chicago, Illinois, USA
| | - Ryota Kikuchi
- Drug Metabolism and Pharmacokinetics, AbbVie Inc., North Chicago, Illinois, USA
| | - Sheryl Coppola
- Clinical Pharmacology and Pharmacometrics, AbbVie Inc., North Chicago, Illinois, USA
| | - Jeffrey Schmidt
- Drug Metabolism and Pharmacokinetics, AbbVie Inc., North Chicago, Illinois, USA
| | | | - Daniel A J Bow
- Drug Metabolism and Pharmacokinetics, AbbVie Inc., North Chicago, Illinois, USA
| | - Ahmed H Salem
- Clinical Pharmacology and Pharmacometrics, AbbVie Inc., North Chicago, Illinois, USA.,Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
48
|
Suzuki Y, Sasamoto Y, Koyama T, Yoshijima C, Nakatochi M, Kubo M, Momozawa Y, Uehara R, Ohno K. Substantially Increased Plasma Coproporphyrin-I Concentrations Associated With OATP1B1*15 Allele in Japanese General Population. Clin Transl Sci 2020; 14:382-388. [PMID: 32961019 PMCID: PMC7877856 DOI: 10.1111/cts.12889] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Coproporphyrin-I (CP-I) in plasma is a sensitive and specific endogenous probe for phenotyping organic anion transporting polypeptides 1B (OATP1B, encoded by SLCO1B). A few small-scale studies suggested that plasma CP-I concentration is affected by OATP1B1 polymorphism, but detailed studies are lacking. In this large-scale study, we measured plasma CP-I concentrations in 391 subjects from the Japanese general population, and evaluated the relationship between plasma CP-I concentrations and OATP1B1 polymorphisms to further assess the utility of plasma CP-I concentrations as an endogenous OATP1B probe. Plasma CP-I concentrations were 0.45 ± 0.12, 0.47 ± 0.16, 0.47 ± 0.20, 0.50 ± 0.15, 0.54 ± 0.14, and 0.74 ± 0.31 ng/mL in participants with OATP1B1*1b/*1b (n = 103), *1a/*1b (n = 122), *1a/*1a (n = 40), *1b/*15 (n = 74), *1a/*15 (n = 41), and *15/*15 (n = 11), respectively, showing an ascending rank order with significant difference (P < 0.0001). Post hoc analysis revealed significant increases in plasma CP-I concentration in OATP1B1*1b/*15 (P = 0.036), *1a/*15 (P = 0.0005), and *15/*15 (P = 0.0003) groups compared with the OATP1B1*1b/*1b group. There was no significant difference among OATP1B genotypes in plasma concentration of 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, a uremic toxin reported to decrease OATP1B activity in vivo. These findings confirm the utility of plasma CP-I concentrations as an endogenous biomarker for phenotyping of OATP1B activity. Plasma CP-I concentration is potentially useful for the study of drug-drug interactions via OATP1B or individual dose adjustment of OATP1B substrates.
Collapse
Affiliation(s)
- Yosuke Suzuki
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yuri Sasamoto
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Tokyo, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chisato Yoshijima
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Tokyo, Japan
| | - Masahiro Nakatochi
- Department of Nursing, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ritei Uehara
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiko Ohno
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
49
|
Zhang Y, Chen C, Chen SJ, Chen XQ, Shuster DJ, Puszczalo PD, Fancher RM, Yang Z, Sinz M, Shen H. Absence of OATP1B (Organic Anion-Transporting Polypeptide) Induction by Rifampin in Cynomolgus Monkeys: Determination Using the Endogenous OATP1B Marker Coproporphyrin and Tissue Gene Expression. J Pharmacol Exp Ther 2020; 375:139-151. [PMID: 32719071 DOI: 10.1124/jpet.120.000139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/14/2020] [Indexed: 12/30/2022] Open
Abstract
Organic anion-transporting polypeptide (OATP) 1B induction is an evolving mechanism of drug disposition and interaction. However, there are contradictory reports describing OATP1B expression in hepatocytes and liver biopsies after administration of an inducer. This study investigated the in vivo effects of the common inducer rifampin (RIF) on the activity and expression of cynomolgus monkey OATP1B1 and OATP1B3 transporters, which are structurally and functionally similar their human OATP1B counterparts. Multiple doses of oral RIF (15 mg/kg) resulted in a steady 3.9-fold increase of CYP3A biomarker, 4β-hydroxycholesterol (4βHC), in the plasma samples collected before each RIF dose during the treatment period (i.e., predose). In contrast, the predose plasma levels of OATP1B biomarkers coproporphyrin (CP) I and CPIII did not change when compared with RIF treatment. The trough concentration, area under plasma concentration-time curve (AUC), and half-life of RIF decreased markedly during RIF treatment, suggesting that RIF induced its own clearance. Consequently, RIF treatment increased CPI and CPIII AUCs substantially after a single administration and, to a lesser extent, after multiple administrations compared with preadministration AUCs. In addition, OATP1B1 and OATP1B3 mRNA expressions were not modulated by RIF treatment (0.85-1.3-fold), whereas CYP3A8 expression was increased 3.7-5.0-fold, which correlated well with the predose levels of CP and 4βHC. Rifampin treatment showed 2.0-3.3-fold increases in P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 2 (MRP2) expression in the small intestine. Collectively, these findings indicate that monkey OATP1B and OATP1B3 are not induced by RIF, and further investigation of OATP1B induction by RIF and other nuclear receptor activators in humans is warranted. SIGNIFICANCE STATEMENT: In this study, combined endogenous biomarker and gene expression data suggested that RIF did not induce OATP1B in cynomolgus monkeys. For the first time, the study determines transporter gene expression in the nonhuman primate liver, gut, and kidney tissues after administration of RIF for 7 days, leading to a better understanding of the induction of OATP1B and other major drug transporters. Finally, it provides evidence to strengthen the claim that coproporphyrin is a suitable endogenous probe of OATP1B activity.
Collapse
Affiliation(s)
- Yueping Zhang
- Departments of Metabolism and Pharmacokinetics (Y.Z., C.C., R.M.F., Z.Y., M.S., H.S.), Discovery Toxicology (S.-J.C.), Discovery Pharmaceutics (X.-Q.C.), and Veterinary Sciences (D.J.S., P.D.P.), Bristol Myers Squibb Company, Princeton, New Jersey
| | - Cliff Chen
- Departments of Metabolism and Pharmacokinetics (Y.Z., C.C., R.M.F., Z.Y., M.S., H.S.), Discovery Toxicology (S.-J.C.), Discovery Pharmaceutics (X.-Q.C.), and Veterinary Sciences (D.J.S., P.D.P.), Bristol Myers Squibb Company, Princeton, New Jersey
| | - Shen-Jue Chen
- Departments of Metabolism and Pharmacokinetics (Y.Z., C.C., R.M.F., Z.Y., M.S., H.S.), Discovery Toxicology (S.-J.C.), Discovery Pharmaceutics (X.-Q.C.), and Veterinary Sciences (D.J.S., P.D.P.), Bristol Myers Squibb Company, Princeton, New Jersey
| | - Xue-Qing Chen
- Departments of Metabolism and Pharmacokinetics (Y.Z., C.C., R.M.F., Z.Y., M.S., H.S.), Discovery Toxicology (S.-J.C.), Discovery Pharmaceutics (X.-Q.C.), and Veterinary Sciences (D.J.S., P.D.P.), Bristol Myers Squibb Company, Princeton, New Jersey
| | - David J Shuster
- Departments of Metabolism and Pharmacokinetics (Y.Z., C.C., R.M.F., Z.Y., M.S., H.S.), Discovery Toxicology (S.-J.C.), Discovery Pharmaceutics (X.-Q.C.), and Veterinary Sciences (D.J.S., P.D.P.), Bristol Myers Squibb Company, Princeton, New Jersey
| | - Pawel D Puszczalo
- Departments of Metabolism and Pharmacokinetics (Y.Z., C.C., R.M.F., Z.Y., M.S., H.S.), Discovery Toxicology (S.-J.C.), Discovery Pharmaceutics (X.-Q.C.), and Veterinary Sciences (D.J.S., P.D.P.), Bristol Myers Squibb Company, Princeton, New Jersey
| | - R Marcus Fancher
- Departments of Metabolism and Pharmacokinetics (Y.Z., C.C., R.M.F., Z.Y., M.S., H.S.), Discovery Toxicology (S.-J.C.), Discovery Pharmaceutics (X.-Q.C.), and Veterinary Sciences (D.J.S., P.D.P.), Bristol Myers Squibb Company, Princeton, New Jersey
| | - Zheng Yang
- Departments of Metabolism and Pharmacokinetics (Y.Z., C.C., R.M.F., Z.Y., M.S., H.S.), Discovery Toxicology (S.-J.C.), Discovery Pharmaceutics (X.-Q.C.), and Veterinary Sciences (D.J.S., P.D.P.), Bristol Myers Squibb Company, Princeton, New Jersey
| | - Michael Sinz
- Departments of Metabolism and Pharmacokinetics (Y.Z., C.C., R.M.F., Z.Y., M.S., H.S.), Discovery Toxicology (S.-J.C.), Discovery Pharmaceutics (X.-Q.C.), and Veterinary Sciences (D.J.S., P.D.P.), Bristol Myers Squibb Company, Princeton, New Jersey
| | - Hong Shen
- Departments of Metabolism and Pharmacokinetics (Y.Z., C.C., R.M.F., Z.Y., M.S., H.S.), Discovery Toxicology (S.-J.C.), Discovery Pharmaceutics (X.-Q.C.), and Veterinary Sciences (D.J.S., P.D.P.), Bristol Myers Squibb Company, Princeton, New Jersey
| |
Collapse
|
50
|
Zhang Y, Holenarsipur VK, Kandoussi H, Zeng J, Mariappan TT, Sinz M, Shen H. Detection of Weak Organic Anion-Transporting Polypeptide 1B Inhibition by Probenecid with Plasma-Based Coproporphyrin in Humans. Drug Metab Dispos 2020; 48:841-848. [PMID: 32723847 DOI: 10.1124/dmd.120.000076] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/13/2020] [Indexed: 02/13/2025] Open
Abstract
Probenecid (PROB) is a clinical probe inhibitor of renal organic anion transporter (OAT) 1 and OAT3 that inhibits in vitro activity of hepatic drug transporters OATP1B1 and OATP1B3. It was hypothesized that PROB could potentially affect the disposition of OATP1B drug substrates. The plasma levels of the OATP1B endogenous biomarker candidates, including coproporphyrin I (CPI), CPIII, hexadecanedioate (HDA), and tetradecanedioate (TDA), were examined in 14 healthy subjects treated with PROB. After oral administration with 1000 mg PROB alone and in combination with furosemide (FSM), AUC (0-24 h) values were 1.39 ± 0.21-fold and 1.57 ± 0.41-fold higher than predose levels for CPI and 1.34 ± 0.16-fold and 1.45 ± 0.57-fold higher for CPIII. Despite increased systemic exposures, no decreases in CPI and CPIII renal clearance were observed (0.97 ± 0.38-fold and 1.16 ± 0.51-fold for CPI, and 1.34 ± 0.53-fold and 1.50 ± 0.69-fold for CPIII, respectively). These results suggest that the increase of CP systemic exposure is caused by OATP1B inhibition. Consistent with this hypothesis, PROB inhibited OATP1B1- and OATP1B3-mediated transport of CPI in a concentration-dependent manner, with IC50 values of 167 ± 42.0 and 76.0 ± 17.2 µM, respectively, in transporter-overexpressing human embryonic kidney cell assay. The inhibition potential was further confirmed by CPI and CPIII hepatocyte uptake experiments. In contrast, administration of PROB alone did not change AUC (0-24 h) of HDA and TDA relative to prestudy levels, although the administration of PROB in combination with FSM increased HDA and TDA levels compared with FSM alone (1.02 ± 0.18-fold and 0.90 ± 0.20-fold vs. 1.71 ± 0.43-fold and 1.62 ± 0.40-fold). Taken together, these findings indicate that PROB displays weak OATP1B inhibitory effects in vivo and that coproporphyrin is a sensitive endogenous probe of OATP1B inhibition. This study provides an explanation for the heretofore unknown mechanism responsible for PROB's interaction with other xenobiotics. SIGNIFICANCE STATEMENT: This study suggested that PROB is a weak clinical inhibitor of OATP1B based on the totality of evidence from the clinical interaction between PROB and CP and the in vitro inhibitory effect of PROB on OATP1B-mediated CP uptake. It demonstrates a new methodology of utilizing endogenous biomarkers to evaluate complex drug-drug interaction, providing explanation for the heretofore unknown mechanism responsible for PROB's inhibition. It provides evidence to strengthen the claim that CP is a sensitive circulating endogenous biomarker of OATP1B inhibition.
Collapse
Affiliation(s)
- Yueping Zhang
- Departments of Metabolism and Pharmacokinetics (Y.Z., M.S., H.S.) and Bioanalytical Sciences (H.K., J.Z.), Bristol Myers Squibb Company, Princeton, New Jersey; and Departments of Metabolism and Pharmacokinetics (V.K.H., T.T.M.), Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, India
| | - Vinay K Holenarsipur
- Departments of Metabolism and Pharmacokinetics (Y.Z., M.S., H.S.) and Bioanalytical Sciences (H.K., J.Z.), Bristol Myers Squibb Company, Princeton, New Jersey; and Departments of Metabolism and Pharmacokinetics (V.K.H., T.T.M.), Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, India
| | - Hamza Kandoussi
- Departments of Metabolism and Pharmacokinetics (Y.Z., M.S., H.S.) and Bioanalytical Sciences (H.K., J.Z.), Bristol Myers Squibb Company, Princeton, New Jersey; and Departments of Metabolism and Pharmacokinetics (V.K.H., T.T.M.), Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, India
| | - Jianing Zeng
- Departments of Metabolism and Pharmacokinetics (Y.Z., M.S., H.S.) and Bioanalytical Sciences (H.K., J.Z.), Bristol Myers Squibb Company, Princeton, New Jersey; and Departments of Metabolism and Pharmacokinetics (V.K.H., T.T.M.), Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, India
| | - T Thanga Mariappan
- Departments of Metabolism and Pharmacokinetics (Y.Z., M.S., H.S.) and Bioanalytical Sciences (H.K., J.Z.), Bristol Myers Squibb Company, Princeton, New Jersey; and Departments of Metabolism and Pharmacokinetics (V.K.H., T.T.M.), Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, India
| | - Michael Sinz
- Departments of Metabolism and Pharmacokinetics (Y.Z., M.S., H.S.) and Bioanalytical Sciences (H.K., J.Z.), Bristol Myers Squibb Company, Princeton, New Jersey; and Departments of Metabolism and Pharmacokinetics (V.K.H., T.T.M.), Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, India
| | - Hong Shen
- Departments of Metabolism and Pharmacokinetics (Y.Z., M.S., H.S.) and Bioanalytical Sciences (H.K., J.Z.), Bristol Myers Squibb Company, Princeton, New Jersey; and Departments of Metabolism and Pharmacokinetics (V.K.H., T.T.M.), Biocon Bristol Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Bommasandra IV Phase, Bangalore, India
| |
Collapse
|