1
|
He Y, Shen X, Zhu J, Zhang L, Wang X, Zhou T, Zhang J, Li W, Fan X. A comprehensive review of caffeine population pharmacokinetics in preterm infants: Factors affecting clearance. Eur J Pharm Biopharm 2025; 208:114659. [PMID: 39914572 DOI: 10.1016/j.ejpb.2025.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/23/2025]
Abstract
Caffeine is an FDA-approved drug for preventing and treating apnea in preterm infants. However, the pharmacokinetic (PK) characteristics of caffeine in preterm infants differ significantly from those in adults. Several population pharmacokinetic (PopPK) models have been developed to investigate potential covariates influencing PK parameters. This review aimed to summarize PopPK studies of caffeine in preterm infants and explore the identified influencing covariates. It has been observed that most caffeine pharmacokinetics followed a one-compartment model (1-CMT), although one study utilized a three-compartment model (3-CMT). Various covariates including birth weight, current weight, genetic polymorphism, combination medications, feeding patterns, and pathological conditions have been identified to affect caffeine PK parameters in preterm infants. Developing an individualized dosing regimen for preterm infants is essential for safe and effective treatment. Future PopPK studies of caffeine in preterm infants should focus on sampling and feeding patterns and further explore the effects of other covariates like gestational and postnatal age on caffeine PK parameters, which should be taken into account in the individualized dosing regimen of caffeine.
Collapse
Affiliation(s)
- Yaodong He
- Department of Pharmacy, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong 518102,China; Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xianhuan Shen
- Department of Pharmacy, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong 518102,China
| | - Jiahao Zhu
- Department of Pharmacy, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong 518102,China
| | - Lian Zhang
- Department of Pharmacy, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong 518102,China
| | - Xixuan Wang
- Department of Pharmacy, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong 518102,China; Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Tao Zhou
- Department of Pharmacy, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong 518102,China
| | - Jianping Zhang
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Wenzhou Li
- Department of Pharmacy, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong 518102,China.
| | - Xiaomei Fan
- Department of Pharmacy, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong 518102,China.
| |
Collapse
|
2
|
Olafuyi O, Michelet R, Garle M, Allegaert K. Exploring the Impact of Developmental Clearance Saturation on Propylene Glycol Exposure in Adults and Term Neonates Using Physiologically Based Pharmacokinetic Modeling. J Clin Pharmacol 2025; 65:272-284. [PMID: 39404076 PMCID: PMC11867916 DOI: 10.1002/jcph.6150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/25/2024] [Indexed: 03/01/2025]
Abstract
Propylene glycol (PG) is a pharmaceutical excipient which is generally regarded as safe (GRAS), though clinical toxicity has been reported. PG toxicity has been attributed to accumulation due to saturation of the alcohol dehydrogenase (ADH)-mediated clearance pathway. This study aims to explore the impact of the saturation of ADH-mediated PG metabolism on its developmental clearance in adults and neonates and assess the impact of a range of doses on PG clearance saturation and toxicity. Physiologically based pharmacokinetic (PBPK) models for PG in adults and term neonates were developed using maximum velocity (Vmax) and Michaelis-Menten's constant (Km) of ADH-mediated metabolism determined in vitro in human liver cytosol, published physicochemical, drug-related and ADH ontogeny parameters. The models were validated and used to determine the impact of dosing regimen on PG clearance saturation and toxicity in adults and neonates. The Vmax and Km of PG in human liver cytosol were 1.57 nmol/min/mg protein and 25.1 mM, respectively. The PG PBPK model adequately described PG PK profiles in adults and neonates. The PG dosing regimens associated with saturation and toxicity were dependent on both dose amount and cumulative in standard dosing frequencies. Doses resulting in saturation were higher than those associated with clinically observed toxicity. In individuals without impaired clearance or when PG exposure is through formulations that contain excipients with possible interaction with PG, a total daily dose of 100-200 mg/kg/day in adults and 25-50 mg/kg/day in neonates is unlikely to result in toxic PG levels or PG clearance saturation.
Collapse
Affiliation(s)
- Olusola Olafuyi
- Division of Physiology, Pharmacology and Neuroscience, School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Robin Michelet
- Department of Clinical Pharmacy and BiochemistryInstitute of PharmacyFreie Universität BerlinBerlinGermany
- qharmetra LLCBerlinGermany
| | - Michael Garle
- Division of Physiology, Pharmacology and Neuroscience, School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Karel Allegaert
- Department of Development and RegenerationKU LeuvenLeuvenBelgium
- Department of Pharmaceutical and Pharmacological SciencesKU LeuvenLeuvenBelgium
- Department of Hospital PharmacyErasmus Medical CenterRotterdamThe Netherlands
| |
Collapse
|
3
|
Chen X, Yu G, Wang G, Li GF. Pediatric off-label use and nonadherence management for nadolol: A mechanistic PBPK model Incorporating Ontogeny Scaling from Interracial Adults to Children. J Pharm Sci 2025:103707. [PMID: 40010493 DOI: 10.1016/j.xphs.2025.103707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Nadolol has demonstrated its superior efficacy over other β-blockers in the treatment of specific cardiovascular diseases in children. The clinical development of nadolol for pediatric use was prioritized by Chinese healthcare authorities in May 2023 while there was a lack of clear medication instructions for children. To expedite the pediatric development of nadolol and provide insights into its off-label applications, we developed a physiologically based pharmacokinetic model incorporating mechanistic disposition knowledge. This model integrates key processes of nadolol including P-glycoprotein (P-gp) transporter mediated the absorption of efflux, multidrug and toxin extrusion protein (MATE) 1 transporter and organic cation (OCT) 2 transporter mediated active renal excretion, organic anion transporting polypeptides (OATP) 1A2 mediated transport, along with biliary excretion. The model accurately captured the pharmacokinetic profiles of nadolol in both Western and East Asian populations following a wide dose range (2-160 mg), including the plasma concentration, urine excretion, and drug-drug interactions with the P-gp inhibitor. After our good validation on interracial adult populations, simulations of nadolol pharmacokinetic profiles in the Chinese population were performed by adjusting the liver volume of the Chinese to 0.9 of the Japanese population. Then, with the consideration of physiological changes and plasma protein ontogeny in pediatrics, the nadolol model for pediatrics was also well-verified on several children aged 3 months to 121 months. Accordingly, specific optimal dosages for children across various ages and racial backgrounds with or without obesity were offered by exposure matching with adults. Multiple remedial regimen simulations were also compared to obtain the best nonadherence management in the case of missed dosages, in which resuming a regular dose as soon as possible was the most recommended.
Collapse
Affiliation(s)
- Xiang Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guo Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, China
| | - Guo-Fu Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Subei People's Hospital, Yangzhou, China.
| |
Collapse
|
4
|
Thompson EJ, Jeong A, Helfer VE, Shakhnovich V, Edginton A, Balevic SJ, James LP, Collier DN, Anand R, Gonzalez D. Physiologically-based pharmacokinetic modeling of pantoprazole to evaluate the role of CYP2C19 genetic variation and obesity in the pediatric population. CPT Pharmacometrics Syst Pharmacol 2024; 13:1394-1408. [PMID: 38837864 PMCID: PMC11330186 DOI: 10.1002/psp4.13167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Pantoprazole is a proton pump inhibitor indicated for the treatment of gastroesophageal reflux disease, a condition that disproportionately affects children with obesity. Appropriately dosing pantoprazole in children with obesity requires understanding the body size metric that best guides dosing, but pharmacokinetic (PK) trials using traditional techniques are limited by the need for larger sample sizes and frequent blood sampling. Physiologically-based PK (PBPK) models are an attractive alternative that can account for physiologic-, genetic-, and drug-specific changes without the need for extensive clinical trial data. In this study, we explored the effect of obesity on pantoprazole PK and evaluated label-suggested dosing in this population. An adult PBPK model for pantoprazole was developed using data from the literature and accounting for genetic variation in CYP2C19. The adult PBPK model was scaled to children without obesity using age-associated changes in anatomical and physiological parameters. Lastly, the pediatric PBPK model was expanded to children with obesity. Three pantoprazole dosing strategies were evaluated: 1 mg/kg total body weight, 1.2 mg/kg lean body weight, and US Food and Drug Administration-recommended weight-tiered dosing. Simulated concentration-time profiles from our model were compared with data from a prospective cohort study (PAN01; NCT02186652). Weight-tiered dosing resulted in the most (>90%) children with pantoprazole exposures in the reference range, regardless of obesity status or CYP2C19 phenotype, confirming results from previously published population PK models. PBPK models may allow for the efficient study of physiologic and developmental effects of obesity on PK in special populations where clinical trial data may be limited.
Collapse
Affiliation(s)
- Elizabeth J. Thompson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of PediatricsDuke University Medical CenterDurhamNorth CarolinaUSA
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
| | - Angela Jeong
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Victória E. Helfer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Valentina Shakhnovich
- University of Missouri‐Kansas City School of MedicineKansas CityMissouriUSA
- Divisions of Gastroenterology, Hepatology and Nutrition & Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas CityKansas CityMissouriUSA
- Ironwood PharmaceuticalsBostonMassachusettsUSA
| | - Andrea Edginton
- School of PharmacyUniversity of WaterlooWaterlooOntarioCanada
| | - Stephen J. Balevic
- Department of PediatricsDuke University Medical CenterDurhamNorth CarolinaUSA
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
| | - Laura P. James
- Department of PediatricsUniversity of Arkansas for Medical Sciences, Section of Clinical Pharmacology and Toxicology, Arkansas Children's HospitalLittle RockArkansasUSA
| | - David N. Collier
- Department of Pediatrics and Center for Health Disparities, Division of General PediatricsEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | | | - Daniel Gonzalez
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
- Division of Clinical Pharmacology, Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
5
|
van der Heijden JEM, de Hoop-Sommen M, Hoevenaars N, Freriksen JJM, Joosten K, Greupink R, de Wildt SN. Getting the dose right using physiologically-based pharmacokinetic modeling: dexamethasone to prevent post-extubation stridor in children as proof of concept. Front Pediatr 2024; 12:1416440. [PMID: 39035463 PMCID: PMC11257885 DOI: 10.3389/fped.2024.1416440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Critically ill patients show large variability in drug disposition due to e.g., age, size, disease and treatment modalities. Physiologically-based pharmacokinetic (PBPK) models can be used to design individualized dosing regimens taking this into account. Dexamethasone, prescribed for the prevention post-extubation stridor (PES), is metabolized by the drug metabolizing enzyme CYP3A. As CYP3A4 undergoes major changes during childhood, we aimed to develop age-appropriate dosing recommendations for children of dexamethasone for PES, as proof of concept for PBPK modeling to individualize dosing for critically ill patients. Methods All simulations were conducted in Simcyp™ v21 (a population-based PBPK modeling platform), using an available dexamethasone compound model and pediatric population model in which CYP3A4 ontogeny is incorporated. Published pharmacokinetic (PK) data was used for model verification. Evidence for the dose to prevent post-extubation stridor was strongest for 2-6 year old children, hence simulated drug concentrations resulting from this dose from this age group were targeted when simulating age-appropriate doses for the whole pediatric age range. Results Dexamethasone plasma concentrations upon single and multiple intravenous administration were predicted adequately across the pediatric age range. Exposure-matched predictions of dexamethasone PK indicated that doses (in mg/kg) for the 2-6 years olds can be applied in 3 month-2 year old children, whereas lower doses are needed in children of other age groups (60% lower for 0-2 weeks, 40% lower for 2-4 weeks, 20% lower for 1-3 months, 20% lower for 6-12 year olds, 40% lower for 12-18 years olds). Discussion We show that PBPK modeling is a valuable tool that can be used to develop model-informed recommendations using dexamethasone to prevent PES in children. Based on exposure matching, the dose of dexamethasone should be reduced compared to commonly used doses, in infants <3 months and children ≥6 years, reflecting age-related variation in drug disposition. PBPK modeling is an promising tool to optimize dosing of critically ill patients.
Collapse
Affiliation(s)
- Joyce E. M. van der Heijden
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marika de Hoop-Sommen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Noa Hoevenaars
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jolien J. M. Freriksen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Koen Joosten
- Department of Neonatal and Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Rick Greupink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Saskia N. de Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Neonatal and Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| |
Collapse
|
6
|
de Waal T, Handin N, Brouwers J, Miserez M, Hoffman I, Rayyan M, Artursson P, Augustijns P. Expression of intestinal drug transporter proteins and metabolic enzymes in neonatal and pediatric patients. Int J Pharm 2024; 654:123962. [PMID: 38432450 DOI: 10.1016/j.ijpharm.2024.123962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The development of pediatric oral drugs is hampered by a lack of predictive simulation tools. These tools, in turn, require data on the physiological variables that influence oral drug absorption, including the expression of drug transporter proteins (DTPs) and drug-metabolizing enzymes (DMEs) in the intestinal tract. The expression of hepatic DTPs and DMEs shows age-related changes, but there are few data on protein levels in the intestine of children. In this study, tissue was collected from different regions of the small and large intestine from neonates (i.e., surgically removed tissue) and from pediatric patients (i.e., gastroscopic duodenal biopsies). The protein expression of clinically relevant DTPs and DMEs was determined using a targeted mass spectrometry approach. The regional distribution of DTPs and DMEs was similar to adults. Most DTPs, with the exception of MRP3, MCT1, and OCT3, and all DMEs showed the highest protein expression in the proximal small intestine. Several proteins (i.e., P-gp, ASBT, CYP3A4, CYP3A5, CYP2C9, CYP2C19, and UGT1A1) showed an increase with age. Such increase appeared to be even more pronounced for DMEs. This exploratory study highlights the developmental changes in DTPs and DMEs in the intestinal tract of the pediatric population. Additional evaluation of protein function in this population would elucidate the implications of the presented changes in protein expression on absorption of orally administered drugs in neonates and pediatric patients.
Collapse
Affiliation(s)
- Tom de Waal
- Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Marc Miserez
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Ilse Hoffman
- Pediatric Gastroenterology, Hepatology and Nutrition, University Hospitals Leuven, Leuven, Belgium
| | - Maissa Rayyan
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
7
|
van Borselen MD, Sluijterman LAÆ, Greupink R, de Wildt SN. Towards More Robust Evaluation of the Predictive Performance of Physiologically Based Pharmacokinetic Models: Using Confidence Intervals to Support Use of Model-Informed Dosing in Clinical Care. Clin Pharmacokinet 2024; 63:343-355. [PMID: 38361163 PMCID: PMC10954928 DOI: 10.1007/s40262-023-01326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND AND OBJECTIVE With the rise in the use of physiologically based pharmacokinetic (PBPK) modeling over the past decade, the use of PBPK modeling to underpin drug dosing for off-label use in clinical care has become an attractive option. In order to use PBPK models for high-impact decisions, thorough qualification and validation of the model is essential to gain enough confidence in model performance. Currently, there is no agreed method for model acceptance, while clinicians demand a clear measure of model performance before considering implementing PBPK model-informed dosing. We aim to bridge this gap and propose the use of a confidence interval for the predicted-to-observed geometric mean ratio with predefined boundaries. This approach is similar to currently accepted bioequivalence testing procedures and can aid in improved model credibility and acceptance. METHODS Two different methods to construct a confidence interval are outlined, depending on whether individual observations or aggregate data are available from the clinical comparator data sets. The two testing procedures are demonstrated for an example evaluation of a midazolam PBPK model. In addition, a simulation study is performed to demonstrate the difference between the twofold criterion and our proposed method. RESULTS Using midazolam adult pharmacokinetic data, we demonstrated that creating a confidence interval yields more robust evaluation of the model than a point estimate, such as the commonly used twofold acceptance criterion. Additionally, we showed that the use of individual predictions can reduce the number of required test subjects. Furthermore, an easy-to-implement software tool was developed and is provided to make our proposed method more accessible. CONCLUSIONS With this method, we aim to provide a tool to further increase confidence in PBPK model performance and facilitate its use for directly informing drug dosing in clinical care.
Collapse
Affiliation(s)
- Marjolein D van Borselen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| | | | - Rick Greupink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Saskia N de Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Department of Pediatric and Neonatal Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Zhang W, Zhang Q, Cao Z, Zheng L, Hu W. Physiologically Based Pharmacokinetic Modeling in Neonates: Current Status and Future Perspectives. Pharmaceutics 2023; 15:2765. [PMID: 38140105 PMCID: PMC10747965 DOI: 10.3390/pharmaceutics15122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Rational drug use in special populations is a clinical problem that doctors and pharma-cists must consider seriously. Neonates are the most physiologically immature and vulnerable to drug dosing. There is a pronounced difference in the anatomical and physiological profiles be-tween neonates and older people, affecting the absorption, distribution, metabolism, and excretion of drugs in vivo, ultimately leading to changes in drug concentration. Thus, dose adjustments in neonates are necessary to achieve adequate therapeutic concentrations and avoid drug toxicity. Over the past few decades, modeling and simulation techniques, especially physiologically based pharmacokinetic (PBPK) modeling, have been increasingly used in pediatric drug development and clinical therapy. This rigorously designed and verified model can effectively compensate for the deficiencies of clinical trials in neonates, provide a valuable reference for clinical research design, and even replace some clinical trials to predict drug plasma concentrations in newborns. This review introduces previous findings regarding age-dependent physiological changes and pathological factors affecting neonatal pharmacokinetics, along with their research means. The application of PBPK modeling in neonatal pharmacokinetic studies of various medications is also reviewed. Based on this, we propose future perspectives on neonatal PBPK modeling and hope for its broader application.
Collapse
Affiliation(s)
| | | | | | - Liang Zheng
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (W.Z.); (Q.Z.); (Z.C.)
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (W.Z.); (Q.Z.); (Z.C.)
| |
Collapse
|
9
|
de Hoop-Sommen MA, van der Heijden JEM, Freriksen JJM, Greupink R, de Wildt SN. Pragmatic physiologically-based pharmacokinetic modeling to support clinical implementation of optimized gentamicin dosing in term neonates and infants: proof-of-concept. Front Pediatr 2023; 11:1288376. [PMID: 38078320 PMCID: PMC10702772 DOI: 10.3389/fped.2023.1288376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/02/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction Modeling and simulation can support dosing recommendations for clinical practice, but a simple framework is missing. In this proof-of-concept study, we aimed to develop neonatal and infant gentamicin dosing guidelines, supported by a pragmatic physiologically-based pharmacokinetic (PBPK) modeling approach and a decision framework for implementation. Methods An already existing PBPK model was verified with data of 87 adults, 485 children and 912 neonates, based on visual predictive checks and predicted-to-observed pharmacokinetic (PK) parameter ratios. After acceptance of the model, dosages now recommended by the Dutch Pediatric Formulary (DPF) were simulated, along with several alternative dosing scenarios, aiming for recommended peak (i.e., 8-12 mg/L for neonates and 15-20 mg/L for infants) and trough (i.e., <1 mg/L) levels. We then used a decision framework to weigh benefits and risks for implementation. Results The PBPK model adequately described gentamicin PK. Simulations of current DPF dosages showed that the dosing interval for term neonates up to 6 weeks of age should be extended to 36-48 h to reach trough levels <1 mg/L. For infants, a 7.5 mg/kg/24 h dose will reach adequate peak levels. The benefits of these dose adaptations outweigh remaining uncertainties which can be minimized by routine drug monitoring. Conclusion We used a PBPK model to show that current DPF dosages for gentamicin in term neonates and infants needed to be optimized. In the context of potential uncertainties, the risk-benefit analysis proved positive; the model-informed dose is ready for clinical implementation.
Collapse
Affiliation(s)
- Marika A. de Hoop-Sommen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joyce E. M. van der Heijden
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jolien J. M. Freriksen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rick Greupink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Saskia N. de Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Intensive Care, Radboud University Medical Center, Nijmegen, Netherlands
- Intensive Care and Pediatric Surgery, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
10
|
van der Heijden JEM, Freriksen JJM, de Hoop-Sommen MA, Greupink R, de Wildt SN. Physiologically-Based Pharmacokinetic Modeling for Drug Dosing in Pediatric Patients: A Tutorial for a Pragmatic Approach in Clinical Care. Clin Pharmacol Ther 2023; 114:960-971. [PMID: 37553784 DOI: 10.1002/cpt.3023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
It is well-accepted that off-label drug dosing recommendations for pediatric patients should be based on the best available evidence. However, the available traditional evidence is often low. To bridge this gap, physiologically-based pharmacokinetic (PBPK) modeling is a scientifically well-founded tool that can be used to enable model-informed dosing (MID) recommendations in children in clinical practice. In this tutorial, we provide a pragmatic, PBPK-based pediatric modeling workflow. For this approach to be successfully implemented in pediatric clinical practice, a thorough understanding of the model assumptions and limitations is required. More importantly, careful evaluation of an MID approach within the context of overall benefits and the potential risks is crucial. The tutorial is aimed to help modelers, researchers, and clinicians, to effectively use PBPK simulations to support pediatric drug dosing.
Collapse
Affiliation(s)
- Joyce E M van der Heijden
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jolien J M Freriksen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marika A de Hoop-Sommen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rick Greupink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Saskia N de Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatric and Neonatal Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Khan D, Badhan R, Kirby DJ, Bryson S, Shah M, Mohammed AR. Virtual Clinical Trials Guided Design of an Age-Appropriate Formulation and Dosing Strategy of Nifedipine for Paediatric Use. Pharmaceutics 2023; 15:pharmaceutics15020556. [PMID: 36839878 PMCID: PMC9961156 DOI: 10.3390/pharmaceutics15020556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
The rapid onset of action of nifedipine causes a precipitous reduction in blood pressure leading to adverse effects associated with reflex sympathetic nervous system (SNS) activation, including tachycardia and worsening myocardial and cerebrovascular ischemia. As a result, short acting nifedipine preparations are not recommended. However, importantly, there are no modified release preparations of nifedipine authorised for paediatric use, and hence a paucity of clinical studies reporting pharmacokinetics data in paediatrics. Pharmacokinetic parameters may differ significantly between children and adults due to anatomical and physiological differences, often resulting in sub therapeutic and/or toxic plasma concentrations of medication. However, in the field of paediatric pharmacokinetics, the use of pharmacokinetic modelling, particularly physiological-based pharmacokinetics (PBPK), has revolutionised the ability to extrapolate drug pharmacokinetics across age groups, allowing for pragmatic determination of paediatric plasma concentrations to support drug licensing and clinical dosing. In order to pragmatically assess the translation of resultant dissolution profiles to the paediatric populations, virtual clinical trials simulations were conducted. In the context of formulation development, the use of PBPK modelling allowed the determination of optimised formulations that achieved plasma concentrations within the target therapeutic window throughout the dosing strategy. A 5 mg sustained release mini-tablet was successfully developed with the duration of release extending over 24 h and an informed optimised dosing strategy of 450 µg/kg twice daily. The resulting formulation provides flexible dosing opportunities, improves patient adherence by reducing frequent administration burden and enhances patient safety profiles by maintaining efficacious levels of consistent drug plasma levels over a sustained period of time.
Collapse
Affiliation(s)
- Dilawar Khan
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Raj Badhan
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Daniel J. Kirby
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Simon Bryson
- Proveca Ltd., No. 1 Spinningfields, Quay Street, Manchester M3 3JE, UK
| | - Maryam Shah
- Proveca Ltd., No. 1 Spinningfields, Quay Street, Manchester M3 3JE, UK
| | - Afzal Rahman Mohammed
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Correspondence:
| |
Collapse
|