1
|
Hu H, Gao H, Wang K, Jin Z, Zheng W, Wang Q, Yang Y, Yu C, Xu K, Gao C. Effective treatment of traumatic brain injury by injection of a selenium-containing ointment. Acta Biomater 2024; 187:161-171. [PMID: 39236795 DOI: 10.1016/j.actbio.2024.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Traumatic brain injury (TBI) is an incurable and overwhelming disease accompanied with serve disability and huge financial burden, where the overproduced reactive oxygen species (ROS) can exacerbate the secondary injury, leading to massive apoptosis of neurons. In this study, β-cyclodextrin (CD)-capped hyperbranched polymers containing selenium element (HSE-CD) were crosslinked with CD-modified hyaluronic acid (HA-CD) and amantadine-modified hyaluronic acid (HA-AD) to obtain a ROS-responsive ointment (R-O). The structures of synthesized polymers were characterized with 1H nuclear magnetic resonance, and the properties of ointment were investigated with rheology and antioxidation. Compared to non-ROS-responsive ointment (N-O), the R-O ointment had stronger efficiency in decreasing the ROS level in BV2 cells in vitro. In a controlled rat cortical impact (CCI) model, the R-O ointment could relieve the DNA damage and decrease apoptosis in injured area via reducing the ROS level. Besides, after the R-O treatment, the rats showed significantly less activated astrocytes and microglia, a lower level of pro-inflammatory cytokines and a higher ratio of M2/M1 macrophage and microglia. Moreover, compared to the TBI group the R-O ointment promoted the doublecortin (DCX) expression and tissue structure integrity around the cavity, and promoted the recovery of nerve function post TBI. STATEMENT OF SIGNIFICANCE: Traumatic brain injury (TBI) is an incurable and overwhelming disease, leading to severe disability and huge social burden, where reactive oxygen species (ROS) are considered as one of the most significant factors in the secondary injury of TBI. A ROS responsive supramolecular ointment containing di-selenide bonds was injected in rats with controlled cortical impact. It relieved the DNA damage and decreased apoptosis in the injured area via reducing the ROS levels, downregulated neuroinflammation, and improved neurological recovery of TBI in vivo. This designed self-adaptive biomaterial effectively regulated the pathological microenvironment in injured tissue, and achieved better therapeutic effect.
Collapse
Affiliation(s)
- Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huan Gao
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Kai Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zeyuan Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiaoxuan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yufang Yang
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Chaonan Yu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China.
| |
Collapse
|
2
|
Wu F, Liang T, Liu Y, Sun Y, Wang B. Hydrogen mitigates brain injury by prompting NEDD4-CX43- mediated mitophagy in traumatic brain injury. Exp Neurol 2024; 379:114876. [PMID: 38942265 DOI: 10.1016/j.expneurol.2024.114876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Hydrogen (H2) has emerged as a potential therapeutic intervention for traumatic brain injury (TBI). However, the precise mechanism underlying H2's neuroprotective effects in TBI remain incompletely understood. METHODS TBI mouse model was induced using the controlled cortical impact (CCI) method, and a cell model was established by exposing astrocytes to lipopolysaccharide (LPS). Cell viability was detected by CCK-8 kits. Cell apoptosis was measured by flow cytometry. ELISA was used to detect cytokine quantification. Protein and gene expression was detected by western blot and RT-PCR analysis. Co-immunoprecipitation (CO-IP) were employed for protein-protein interactions. Morris water maze test and rotarod test were applied for TBI mice. RESULTS H2 treatment effectively inhibited the LPS-induced cell injury and cell apoptosis in astrocytes. NEDD4 expression was increased following H2 treatment coupled with enhanced mitophagy in LPS-treated astrocytes. Overexpression of NEDD4 and down-regulation of connexin 43 (CX43) mirrored the protective effects of H2 treatment in LPS-exposed astrocytes. NEDD4 interacts CX43 to regulates the ubiquitinated degradation of CX43. While overexpression of CX43 reversed the protective effects of H2 treatment in LPS-exposed astrocytes. In addition, H2 treatment significantly alleviated brain injury in TBI mouse model. CONCLUSION H2 promoted NEDD4-CX43 mediated mitophagy to protect brain injury induced by TBI, highlighting a novel pathway underlying the therapeutic effects of H2 in TBI.
Collapse
Affiliation(s)
- Fan Wu
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing 100095, PR China
| | - Tao Liang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Yang Liu
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing 100095, PR China
| | - Yongxing Sun
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing 100095, PR China.
| | - Baoguo Wang
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing 100095, PR China.
| |
Collapse
|
3
|
Gervais C, Hjeij D, Fernández-Puerta L, Arbour C. Non-pharmacological interventions for sleep disruptions and fatigue after traumatic brain injury: a scoping review. Brain Inj 2024; 38:403-416. [PMID: 38402580 DOI: 10.1080/02699052.2024.2318599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE The aim of this study was to conduct a scoping review to determine the nature, variety, and volume of empirical evidence on nonpharmacological interventions for sleep disturbances with potential implications for fatigue in adults sustaining a traumatic brain injury (TBI). METHODS A systematic literature search was conducted across four databases to identify primary studies testing a single non-pharmacological intervention or a combination of non-pharmacological interventions for sleep disturbances and fatigue in community-dwelling adults with TBI. RESULTS Sixteen studies were reviewed addressing six non-pharmacological interventions for sleep disruptions and fatigue after TBI including light therapy, cognitive-behavioral therapy, warm footbath application, shiatsu, and sleep hygiene protocol. Non-pharmacological interventions involving light or cognitive-behavioral therapy were reported in 75% of the studies. Actigraphy-based estimation of total sleep time and subjective level of fatigue were frequent outcomes. CONCLUSION While this scoping review has utility in describing existing non-pharmacological approaches to manage sleep and fatigue after TBI, the findings suggest that interventions are often developed without considering TBI individuals' source of motivation and the need for support in self-administration. Future studies may achieve greater sustainability by considering the evolving needs of TBI patients and their families and the drivers and barriers that might influence non-pharmacological intervention use at home.
Collapse
Affiliation(s)
- Charles Gervais
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Danny Hjeij
- Faculty of Nursing, Université de Montréal, Montreal, Canada
| | | | - Caroline Arbour
- Faculty of Nursing, Université de Montréal, Montreal, Canada
| |
Collapse
|
4
|
Amlerova Z, Chmelova M, Anderova M, Vargova L. Reactive gliosis in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2024; 18:1335849. [PMID: 38481632 PMCID: PMC10933082 DOI: 10.3389/fncel.2024.1335849] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.
Collapse
Affiliation(s)
- Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Hasan GM, Anwar S, Shamsi A, Sohal SS, Hassan MI. The neuroprotective potential of phytochemicals in traumatic brain injury: mechanistic insights and pharmacological implications. Front Pharmacol 2024; 14:1330098. [PMID: 38239205 PMCID: PMC10794744 DOI: 10.3389/fphar.2023.1330098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Traumatic brain injury (TBI) leads to brain damage, comprising both immediate primary damage and a subsequent cascade of secondary injury mechanisms. The primary injury results in localized brain damage, while the secondary damage initiates inflammatory responses, followed by the disruption of the blood-brain barrier, infiltration of peripheral blood cells, brain edema, and the release of various immune mediators, including chemotactic factors and interleukins. TBI disrupts molecular signaling, cell structures, and functions. In addition to physical tissue damage, such as axonal injuries, contusions, and haemorrhages, TBI interferes with brain functioning, impacting cognition, decision-making, memory, attention, and speech capabilities. Despite a deep understanding of the pathophysiology of TBI, an intensive effort to evaluate the underlying mechanisms with effective therapeutic interventions is imperative to manage the repercussions of TBI. Studies have commenced to explore the potential of employing natural compounds as therapeutic interventions for TBI. These compounds are characterized by their low toxicity and limited interactions with conventional drugs. Moreover, many natural compounds demonstrate the capacity to target various aspects of the secondary injury process. While our understanding of the pathophysiology of TBI, there is an urgent need for effective therapeutic interventions to mitigate its consequences. Here, we aimed to summarize the mechanism of action and the role of phytochemicals against TBI progression. This review discusses the therapeutic implications of various phytonutrients and addresses primary and secondary consequences of TBI. In addition, we highlighted the roles of emerging phytochemicals as promising candidates for therapeutic intervention of TBI. The review highlights the neuroprotective roles of phytochemicals against TBI and the mechanistic approach. Furthermore, our efforts focused on the underlying mechanisms, providing a better understanding of the therapeutic potential of phytochemicals in TBI therapeutics.
Collapse
Affiliation(s)
- Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Li N, Wang R, Ai X, Guo J, Bai Y, Guo X, Zhang R, Du X, Chen J, Li H. Electroacupuncture Inhibits Neural Ferroptosis in Rat Model of Traumatic Brain Injury via Activating System Xc -/GSH/GPX4 Axis. Curr Neurovasc Res 2024; 21:86-100. [PMID: 38629369 DOI: 10.2174/0115672026297775240405073502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Ferroptosis is an iron-dependent regulating programmed cell death discovered recently that has been receiving much attention in traumatic brain injury (TBI). xCT, a major functional subunit of Cystine/glutamic acid reverse transporter (System Xc-), promotes cystine intake and glutathione biosynthesis, thereby protecting against oxidative stress and ferroptosis. OBJECTIVE The intention of this research was to verify the hypothesis that electroacupuncture (EA) exerted an anti-ferroptosis effect via an increase in the expression of xCT and activation of the System Xc-/GSH/GPX4 axis in cortical neurons of TBI rats. METHODS After the TBI rat model was prepared, animals received EA treatment at GV20, GV26, ST36 and PC6, for 15 min. The xCT inhibitor Sulfasalazine (SSZ) was administered 2h prior to model being prepared. The degree of neurological impairment was evaluated by means of TUNEL staining and the modified neurological severity score (mNSS). Specific indicators of ferroptosis (Ultrastructure of mitochondria, Iron and ROS) were detected by transmission electron microscopy (TEM), Prussian blue staining (Perls stain) and flow cytometry (FCM), respectively. GSH synthesis and metabolism-related factors in the content of the cerebral cortex were detected by an assay kit. Real-time quantitative PCR (RT-QPCR), Western blot (WB), and immunofluorescence (IF) were used for detecting the expression of System Xc-/GSH/GPX4 axisrelated proteins in injured cerebral cortex tissues. RESULTS EA successfully relieved nerve damage within 7 days after TBI, significantly inhibited neuronal ferroptosis, upregulated the expression of xCT and System Xc-/GSH/GPX4 axis forward protein and promoted glutathione (GSH) synthesis and metabolism in the injured area of the cerebral cortex. However, aggravation of nerve damage and increased ferroptosis effect were found in TBI rats injected with xCT inhibitors. CONCLUSIONS EA inhibits neuronal ferroptosis by up-regulated xCT expression and by activating System Xc-/GSH/GPX4 axis after TBI, confirming the relevant theories regarding the EA effect in treating TBI and providing theoretical support for clinical practice.
Collapse
Affiliation(s)
- Na Li
- School of Acupuncture-Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Ruihui Wang
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Xia Ai
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Jie Guo
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Yuwang Bai
- Department of Pneumology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, 710001, China
| | - Xinrong Guo
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Rongchao Zhang
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Xu Du
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Jingxuan Chen
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Hua Li
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| |
Collapse
|
7
|
Bell A, Hewins B, Bishop C, Fortin A, Wang J, Creamer JL, Collen J, Werner JK. Traumatic Brain Injury, Sleep, and Melatonin-Intrinsic Changes with Therapeutic Potential. Clocks Sleep 2023; 5:177-203. [PMID: 37092428 PMCID: PMC10123665 DOI: 10.3390/clockssleep5020016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of morbidity in the United States and is associated with numerous chronic sequelae long after the point of injury. One of the most common long-term complaints in patients with TBI is sleep dysfunction. It is reported that alterations in melatonin follow TBI and may be linked with various sleep and circadian disorders directly (via cellular signaling) or indirectly (via free radicals and inflammatory signaling). Work over the past two decades has contributed to our understanding of the role of melatonin as a sleep regulator and neuroprotective anti-inflammatory agent. Although there is increasing interest in the treatment of insomnia following TBI, a lack of standardization and rigor in melatonin research has left behind a trail of non-generalizable data and ambiguous treatment recommendations. This narrative review describes the underlying biochemical properties of melatonin as they are relevant to TBI. We also discuss potential benefits and a path forward regarding the therapeutic management of TBI with melatonin treatment, including its role as a neuroprotectant, a somnogen, and a modulator of the circadian rhythm.
Collapse
Affiliation(s)
- Allen Bell
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Bryson Hewins
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Courtney Bishop
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Amanda Fortin
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Jonathan Wang
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | | | - Jacob Collen
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - J. Kent Werner
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| |
Collapse
|
8
|
Annexin A5 ameliorates traumatic brain injury-induced neuroinflammation and neuronal ferroptosis by modulating the NF-ĸB/HMGB1 and Nrf2/HO-1 pathways. Int Immunopharmacol 2023; 114:109619. [PMID: 36700781 DOI: 10.1016/j.intimp.2022.109619] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Traumatic brain injury often causes poor outcomes and has few established treatments. Neuroinflammation and ferroptosis hinder therapeutic progress in this domain. Annexin A5 (A5) has anticoagulant, anti-apoptotic and anti-inflammatory bioactivities. However, its protective effects on traumatic brain injury remain unclear. Thus, we explored whether inhibiting ferroptosis and neuroinflammation using A5 could ameliorate traumatic brain injury. We injected recombinant A5 (50 µg/kg) in the tail vein of mice 30 min after fluid percussion injury. We then assessed modified neurologic severity scores, Morris water maze performance, rotarod test performance, brain water content, and blood-brain barrier permeability to document the neuroprotective effects of A5. Two days after the traumatic brain injury, we collected injured cortex tissues for western blot, Perl's staining, apoptosis staining, Nissl staining, immunofluorescence/immunohistochemistry, and enzyme-linked immunosorbent assay. We also quantified superoxide dismutase and glutathione peroxidase activity and glutathione and malondialdehyde levels. A5 improved neurological deficits, weight loss, cerebral hypoperfusion, brain edema, blood-brain barrier disruption, neuronal apoptosis, and ferroptosis. It also increased the ratio of M2/M1 phenotype microglia, reduced interleukin 1β and 6 levels, decreased peripheral immune cell infiltration, and increased interleukin 10 levels. A5 reduced neuronal iron accumulation, p53-related cell death, and oxidative stress damage. Finally, A5 downregulated HMGB1 and NF-ĸB pathways and upregulated the nuclear erythroid 2-related factor (Nrf2) and HO-1 pathways. These results suggest that A5 exerts neuroprotection in traumatic brain injury mice and ameliorates neuroinflammation, oxidative stress, and ferroptosis by regulating the NF-kB/HMGB1 pathway and the Nrf2/HO-1 antioxidant system.
Collapse
|
9
|
Antioxidant Therapeutic Strategies in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23169328. [PMID: 36012599 PMCID: PMC9409201 DOI: 10.3390/ijms23169328] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 12/14/2022] Open
Abstract
The distinguishing pathogenic features of neurodegenerative diseases include mitochondrial dysfunction and derived reactive oxygen species generation. The neural tissue is highly sensitive to oxidative stress and this is a prominent factor in both chronic and acute neurodegeneration. Based on this, therapeutic strategies using antioxidant molecules towards redox equilibrium have been widely used for the treatment of several brain pathologies. Globally, polyphenols, carotenes and vitamins are among the most typical exogenous antioxidant agents that have been tested in neurodegeneration as adjunctive therapies. However, other types of antioxidants, including hormones, such as the widely used melatonin, are also considered neuroprotective agents and have been used in different neurodegenerative contexts. This review highlights the most relevant mitochondrial antioxidant targets in the main neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease and also in the less represented amyotrophic lateral sclerosis, as well as traumatic brain injury, while summarizing the latest randomized placebo-controlled trials.
Collapse
|
10
|
Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 2022; 36:612-662. [PMID: 35118714 DOI: 10.1111/fcp.12767] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of permanent physical and cognitive disabilities. TBI pathology results from primary insults and a multi-mechanistic biochemical process, termed as secondary brain injury. Currently, there are no pharmacological agents for definitive treatment of patients with TBI. This article is presented with the purpose of reviewing molecular mechanisms of TBI pathology, as well as potential strategies and agents against pathological pathways. In this review article, materials were obtained by searching PubMed, Scopus, Elsevier, Web of Science, and Google Scholar. This search was considered without time limitation. Evidence indicates that oxidative stress and mitochondrial dysfunction are two key mediators of the secondary injury cascade in TBI pathology. TBI-induced oxidative damage results in the structural and functional impairments of cellular and subcellular components, such as mitochondria. Impairments of mitochondrial electron transfer chain and mitochondrial membrane potential result in a vicious cycle of free radical formation and cell apoptosis. The results of some preclinical and clinical studies, evaluating mitochondria-targeted therapies, such as mitochondria-targeted antioxidants and compounds with pleiotropic effects after TBI, are promising. As a proposed strategy in recent years, mitochondria-targeted multipotential therapy is a new hope, waiting to be confirmed. Moreover, based on the available findings, biologics, such as stem cell-based therapy and transplantation of mitochondria are novel potential strategies for the treatment of TBI; however, more studies are needed to clearly confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Huang X, Ye Y, Zhang J, Zhang X, Ma H, Zhang Y, Fu X, Tang J, Jiang N, Han Y, Liu H, Chen H. Reactive Oxygen Species Scavenging Functional Hydrogel Delivers Procyanidins for the Treatment of Traumatic Brain Injury in Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33756-33767. [PMID: 35833273 DOI: 10.1021/acsami.2c04930] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traumatic brain injury (TBI) is accompanied by the overload of reactive oxygen species (ROS), which can result in secondary brain injury. Although procyanidins (PCs) have a powerful free radical scavenging capability and have been widely studied in the treatment of TBI, conventional systemic drug therapy cannot make the drug reach the targeted area in the early stage of TBI and will cause systemic side effects because of the presence of the blood-brain barrier (BBB). To address this tissue, we designed and fabricated a ROS-scavenging functional hydrogel loaded PC (GelMA-PPS/PC) to deliver the drug by responding to the traumatic microenvironment. In situ injection of the GelMA-PPS/PC hydrogel effectively avoided the BBB and was directly applied to the surface of brain tissue to target the traumatic area. Hydrophobic poly(propylene sulfide)60 (PPS60), an ROS quencher and H2O2-responsive substance, was covalently bound to GelMA and exposed in response to the trauma microenvironment. At the same time, the H2O2 response of PPS60 further caused the structure of the hydrogel to degrade and release the encapsulated PC. Then PC could regulate the oxidative stress response in the cells and synergistically deplete ROS to play a neurotrophic protective role. This work suggests a novel method for the treatment of secondary brain injury by inhibiting the oxidative stress response after TBI.
Collapse
Affiliation(s)
- Xuyang Huang
- Department of Neurosurgery, The Suqian Clinical College of Xuzhou Medical University, Jiangsu University, Suqian 223800, People's Republic of China
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yongqing Ye
- Department of Neurosurgery, The Suqian Clinical College of Xuzhou Medical University, Jiangsu University, Suqian 223800, People's Republic of China
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Jianyong Zhang
- Department of Neurosurgery, The Suqian Clinical College of Xuzhou Medical University, Jiangsu University, Suqian 223800, People's Republic of China
| | - Xuefeng Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Hongwei Ma
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yongkang Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Xianhua Fu
- Department of Neurosurgery, The Suqian Clinical College of Xuzhou Medical University, Jiangsu University, Suqian 223800, People's Republic of China
| | - JiaJia Tang
- Department of Neurosurgery, The Suqian Clinical College of Xuzhou Medical University, Jiangsu University, Suqian 223800, People's Republic of China
| | - Ning Jiang
- The Suqian Clinical College of Xuzhou Medical University, Jiangsu University, Suqian 223800, People's Republic of China
| | - Yuhan Han
- Department of Neurosurgery, The Suqian Clinical College of Xuzhou Medical University, Jiangsu University, Suqian 223800, People's Republic of China
| | - Hongmei Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Guangdong 518055, People's Republic of China
| | - Honglin Chen
- Department of Neurosurgery, The Suqian Clinical College of Xuzhou Medical University, Jiangsu University, Suqian 223800, People's Republic of China
| |
Collapse
|
12
|
Han Z, Han Y, Huang X, Ma H, Zhang X, Song J, Dong J, Li S, Yu R, Liu H. A Novel Targeted Nanoparticle for Traumatic Brain Injury Treatment: Combined Effect of ROS Depletion and Calcium Overload Inhibition. Adv Healthc Mater 2022; 11:e2102256. [PMID: 35118827 DOI: 10.1002/adhm.202102256] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/25/2021] [Indexed: 12/11/2022]
Abstract
Survival after severe traumatic brain injury (TBI) depends on minimizing or avoiding secondary insults to the brain. Overproduction of reactive oxygen species (ROS) and Ca2+ influx at the damaged site are the key factors that cause secondary injury upon TBI. Herein, a TBI-targeted lipid covered radical scavenger nanoparticle is developed to deliver nimodipine (Np) (CL-PPS/Np), in order to inhibit Ca2+ influx in neurons by Np and to scavenge ROS in the brain trauma microenvironment by poly(propylene sulfide)60 (PPS60 ) and thus prevent TBI-associated secondary injury. In post-TBI models, CL-PPS/Np effectively accumulates into the wound cavity and prolongs the time of systemic circulation of Np. CL-PPS/Np can markedly protect the integrity of blood-brain barrier, prevent brain edema, reduce cell death and inflammatory responses, and promote functional recovery after TBI. These findings may provide a new therapy for TBI to prevent the spread of the secondary injury.
Collapse
Affiliation(s)
- Zhengzhong Han
- Institute of Nervous System Diseases Xuzhou Medical University Xuzhou 221002 P. R. China
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Yuhan Han
- Institute of Nervous System Diseases Xuzhou Medical University Xuzhou 221002 P. R. China
| | - Xuyang Huang
- Institute of Nervous System Diseases Xuzhou Medical University Xuzhou 221002 P. R. China
- Department of Neurosurgery Affiliated Hospital of Xuzhou Medical University Xuzhou 221002 P. R. China
| | - Hongwei Ma
- Institute of Nervous System Diseases Xuzhou Medical University Xuzhou 221002 P. R. China
| | - Xuefeng Zhang
- Institute of Nervous System Diseases Xuzhou Medical University Xuzhou 221002 P. R. China
| | - Jingyuan Song
- School of Nursing Xuzhou Medical University Xuzhou 221002 P. R. China
| | - Jun Dong
- Department of Neurosurgery the Second Affiliated Hospital of Suzhou University Suzhou 215000 China
| | - Shanshan Li
- Jiangsu Medical Engineering Research Center of Gene Detection and Department of Forensic Medicine Xuzhou Medical University Xuzhou 221002 P. R. China
| | - Rutong Yu
- Institute of Nervous System Diseases Xuzhou Medical University Xuzhou 221002 P. R. China
- Department of Neurosurgery Affiliated Hospital of Xuzhou Medical University Xuzhou 221002 P. R. China
| | - Hongmei Liu
- Institute of Nervous System Diseases Xuzhou Medical University Xuzhou 221002 P. R. China
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
13
|
Sutkowy P, Woźniak A, Mila-Kierzenkowska C, Szewczyk-Golec K, Wesołowski R, Pawłowska M, Nuszkiewicz J. Physical Activity vs. Redox Balance in the Brain: Brain Health, Aging and Diseases. Antioxidants (Basel) 2021; 11:antiox11010095. [PMID: 35052600 PMCID: PMC8773223 DOI: 10.3390/antiox11010095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
It has been proven that physical exercise improves cognitive function and memory, has an analgesic and antidepressant effect, and delays the aging of the brain and the development of diseases, including neurodegenerative disorders. There are even attempts to use physical activity in the treatment of mental diseases. The course of most diseases is strictly associated with oxidative stress, which can be prevented or alleviated with regular exercise. It has been proven that physical exercise helps to maintain the oxidant–antioxidant balance. In this review, we present the current knowledge on redox balance in the organism and the consequences of its disruption, while focusing mainly on the brain. Furthermore, we discuss the impact of physical activity on aging and brain diseases, and present current recommendations and directions for further research in this area.
Collapse
|
14
|
Ruan Z, Lu Q, Wang JE, Zhou M, Liu S, Zhang H, Durvasula A, Wang Y, Wang Y, Luo W, Wang Y. MIF promotes neurodegeneration and cell death via its nuclease activity following traumatic brain injury. Cell Mol Life Sci 2021; 79:39. [DOI: 10.1007/s00018-021-04037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
|
15
|
Isaev NK, Stelmashook EV, Genrikhs EE. Role of zinc and copper ions in the pathogenetic mechanisms of traumatic brain injury and Alzheimer's disease. Rev Neurosci 2021; 31:233-243. [PMID: 31747384 DOI: 10.1515/revneuro-2019-0052] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/24/2019] [Indexed: 12/24/2022]
Abstract
The disruption of homeostasis of zinc (Zn2+) and copper (Cu2+) ions in the central nervous system is involved in the pathogenesis of many neurodegenerative diseases, such as amyotrophic lateral sclerosis, Wilson's, Creutzfeldt-Jakob, Parkinson's, and Alzheimer's diseases (AD), and traumatic brain injury (TBI). The last two pathological conditions of the brain are the most common; moreover, it is possible that TBI is a risk factor for the development of AD. Disruptions of Zn2+ and Cu2+ homeostasis play an important role in the mechanisms of pathogenesis of both TBI and AD. This review attempts to summarize and systematize the currently available research data on this issue. The neurocytotoxicity of Cu2+ and Zn2+, the synergism of the toxic effect of calcium and Zn2+ ions on the mitochondria of neurons, and the interaction of Zn2+ and Cu2+ with β-amyloid (Abeta) and tau protein are considered.
Collapse
Affiliation(s)
- Nickolay K Isaev
- M.V. Lomonosov Moscow State University, N.A. Belozersky Institute of Physico-Chemical Biology, Biological Faculty, Moscow 119991, Russia.,Research Center of Neurology, Moscow 125367, Russia
| | | | | |
Collapse
|
16
|
Slezak J, Kura B, LeBaron TW, Singal PK, Buday J, Barancik M. Oxidative Stress and Pathways of Molecular Hydrogen Effects in Medicine. Curr Pharm Des 2021; 27:610-625. [PMID: 32954996 DOI: 10.2174/1381612826666200821114016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/02/2020] [Indexed: 11/22/2022]
Abstract
There are many situations of excessive production of reactive oxygen species (ROS) such as radiation, ischemia/reperfusion (I/R), and inflammation. ROS contribute to and arises from numerous cellular pathologies, diseases, and aging. ROS can cause direct deleterious effects by damaging proteins, lipids, and nucleic acids as well as exert detrimental effects on several cell signaling pathways. However, ROS are important in many cellular functions. The injurious effect of excessive ROS can hypothetically be mitigated by exogenous antioxidants, but clinically this intervention is often not favorable. In contrast, molecular hydrogen provides a variety of advantages for mitigating oxidative stress due to its unique physical and chemical properties. H2 may be superior to conventional antioxidants, since it can selectively reduce ●OH radicals while preserving important ROS that are otherwise used for normal cellular signaling. Additionally, H2 exerts many biological effects, including antioxidation, anti-inflammation, anti-apoptosis, and anti-shock. H2 accomplishes these effects by indirectly regulating signal transduction and gene expression, each of which involves multiple signaling pathways and crosstalk. The Keap1-Nrf2-ARE signaling pathway, which can be activated by H2, plays a critical role in regulating cellular redox balance, metabolism, and inducing adaptive responses against cellular stress. H2 also influences the crosstalk among the regulatory mechanisms of autophagy and apoptosis, which involve MAPKs, p53, Nrf2, NF-κB, p38 MAPK, mTOR, etc. The pleiotropic effects of molecular hydrogen on various proteins, molecules and signaling pathways can at least partly explain its almost universal pluripotent therapeutic potential.
Collapse
Affiliation(s)
- Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Tyler W LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Jozef Buday
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, 121 08 Prague 2, Czech Republic
| | - Miroslav Barancik
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| |
Collapse
|
17
|
Qian F, Han Y, Han Z, Zhang D, Zhang L, Zhao G, Li S, Jin G, Yu R, Liu H. In Situ implantable, post-trauma microenvironment-responsive, ROS Depletion Hydrogels for the treatment of Traumatic brain injury. Biomaterials 2021; 270:120675. [PMID: 33548799 DOI: 10.1016/j.biomaterials.2021.120675] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/23/2020] [Accepted: 01/10/2021] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) generates excess reactive oxygen species (ROS), which can exacerbate secondary injury and result in disability and death. Secondary injury cascades can trigger the release of uncontrolled ROS into the surrounding normal brain tissue, forming an extended pool of ROS, which leads to massive neuronal death. Here, we developed an injectable, post-trauma microenvironment-responsive, ROS depletion hydrogel embedded curcumin (Cur) (TM/PC) for reducing ROS levels in damaged brain tissue to promote the regeneration and recovery of neurons. Hydrogel was composed of three parts: (1) Hydrophobic poly (propylene sulfide)120 (PPS120) was synthesized, with a ROS quencher and H2O2-responsive abilities, to embed Cur. (2) Matrix metalloproteinase (MMP)-responsive triglycerol monostearate (TM) was used to cover the PPS120 to form a TM/P hydrogel. (3) Cur could further eradicate the ROS, promoting the regeneration and recovery of neurons. In two postoperative TBI models, TM/PC hydrogel effectively responded the TBI surgical environment and released drug. TM/PC hydrogel significantly depleted ROS and reduced brain edema. In addition, reactive astrocytes and activated microglia were decreased, growth-associated protein 43 (GAP43) and doublecortin (DCX) were increased, suggested that TM/PC hydrogel had the strongest anti-inflammatory effect and effectively promoted nerve regeneration after TBI. This study provides new information for the management of TBI to prevent the secondary spread of damage.
Collapse
Affiliation(s)
- Feng Qian
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yuhan Han
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Zhengzhong Han
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Deyun Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Long Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Gang Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Shanshan Li
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, 221002, China
| | - Guoliang Jin
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, China.
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
18
|
Mitochondria-Targeted Antioxidants: A Step towards Disease Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8837893. [PMID: 33354280 PMCID: PMC7735836 DOI: 10.1155/2020/8837893] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 01/06/2023]
Abstract
Mitochondria are the main organelles that produce adenosine 5′-triphosphate (ATP) and reactive oxygen species (ROS) in eukaryotic cells and meanwhile susceptible to oxidative damage. The irreversible oxidative damage in mitochondria has been implicated in various human diseases. Increasing evidence indicates the therapeutic potential of mitochondria-targeted antioxidants (MTAs) for oxidative damage-associated diseases. In this article, we introduce the advantageous properties of MTAs compared with the conventional (nontargeted) ones, review different mitochondria-targeted delivery systems and antioxidants, and summarize their experimental results for various disease treatments in different animal models and clinical trials. The combined evidence demonstrates that mitochondrial redox homeostasis is a potential target for disease treatment. Meanwhile, the limitations and prospects for exploiting MTAs are discussed, which might pave ways for further trial design and drug development.
Collapse
|
19
|
Zinc in the Brain: Friend or Foe? Int J Mol Sci 2020; 21:ijms21238941. [PMID: 33255662 PMCID: PMC7728061 DOI: 10.3390/ijms21238941] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Zinc is a trace metal ion in the central nervous system that plays important biological roles, such as in catalysis, structure, and regulation. It contributes to antioxidant function and the proper functioning of the immune system. In view of these characteristics of zinc, it plays an important role in neurophysiology, which leads to cell growth and cell proliferation. However, after brain disease, excessively released and accumulated zinc ions cause neurotoxic damage to postsynaptic neurons. On the other hand, zinc deficiency induces degeneration and cognitive decline disorders, such as increased neuronal death and decreased learning and memory. Given the importance of balance in this context, zinc is a biological component that plays an important physiological role in the central nervous system, but a pathophysiological role in major neurological disorders. In this review, we focus on the multiple roles of zinc in the brain.
Collapse
|
20
|
Walter J, Schwarting J, Plesnila N, Terpolilli NA. Influence of Organic Solvents on Secondary Brain Damage after Experimental Traumatic Brain Injury. Neurotrauma Rep 2020; 1:148-156. [PMID: 34223539 PMCID: PMC8240898 DOI: 10.1089/neur.2020.0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many compounds tested for a possible neuroprotective effect after traumatic brain injury (TBI) are not readily soluble and therefore organic solvents need to be used as a vehicle. It is, however, unclear whether these organic solvents have intrinsic pharmacological effects on secondary brain damage and may therefore interfere with experimental results. Thus, the aim of the current study was to evaluate the effect of four widely used organic solvents, dimethylsulfoxide (DMSO), Miglyol 812 (Miglyol®), polyethyleneglycol 40 (PEG 40), and N-2-methyl-pyrrolidone (NMP) on outcome after TBI in mice. A total of 143 male C57Bl/6 mice were subjected to controlled cortical impact (CCI). Contusion volume, brain edema formation, and neurological function were assessed 24 h after TBI. Test substances or saline were injected intraperitoneally (i.p.) 10 min before CCI. DMSO, Miglyol, and PEG 40 had no effect on post-traumatic contusion volume after CCI; NMP, however, significantly reduced contusion volume and brain edema formation at different concentrations. The use of DMSO, Miglyol, and PEG 40 is unproblematic for studies investigating neuroprotective treatment strategies as they do not influence post-traumatic brain damage. NMP seems to have an intrinsic neuroprotective effect that should be considered when using this agent in pharmacological experiments; further, a putative therapeutic effect of NMP needs to be elucidated in future studies.
Collapse
Affiliation(s)
- Johannes Walter
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
| | - Julian Schwarting
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
21
|
Barlow KM, Brooks BL, Esser MJ, Kirton A, Mikrogianakis A, Zemek RL, MacMaster FP, Nettel-Aguirre A, Yeates KO, Kirk V, Hutchison JS, Crawford S, Turley B, Cameron C, Hill MD, Samuel T, Buchhalter J, Richer L, Platt R, Boyd R, Dewey D. Efficacy of Melatonin in Children With Postconcussive Symptoms: A Randomized Clinical Trial. Pediatrics 2020; 145:peds.2019-2812. [PMID: 32217739 DOI: 10.1542/peds.2019-2812] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Approximately 25% of children with concussion have persistent postconcussive symptoms (PPCS) with resultant significant impacts on quality of life. Melatonin has significant neuroprotective properties, and promising preclinical data suggest its potential to improve outcomes after traumatic brain injury. We hypothesized that treatment with melatonin would result in a greater decrease in PPCS symptoms when compared with a placebo. METHODS We conducted a randomized, double-blind trial of 3 or 10 mg of melatonin compared with a placebo (NCT01874847). We included youth (ages 8-18 years) with PPCS at 4 to 6 weeks after mild traumatic brain injury. Those with significant medical or psychiatric histories or a previous concussion within the last 3 months were excluded. The primary outcome was change in the total youth self-reported Post-Concussion Symptom Inventory score measured after 28 days of treatment. Secondary outcomes included change in health-related quality of life, cognition, and sleep. RESULTS Ninety-nine children (mean age: 13.8 years; SD = 2.6 years; 58% girls) were randomly assigned. Symptoms improved over time with a median Post-Concussion Symptom Inventory change score of -21 (95% confidence interval [CI]: -16 to -27). There was no significant effect of melatonin when compared with a placebo in the intention-to-treat analysis (3 mg melatonin, -2 [95% CI: -13 to 6]; 10 mg melatonin, 4 [95% CI: -7 to 14]). No significant group differences in secondary outcomes were observed. Side effects were mild and similar to the placebo. CONCLUSIONS Children with PPCS had significant impairment in their quality of life. Seventy-eight percent demonstrated significant recovery between 1 and 3 months postinjury. This clinical trial does not support the use of melatonin for the treatment of pediatric PPCS.
Collapse
Affiliation(s)
- Karen M Barlow
- Department of Pediatrics, Alberta Children's Hospital Research Institute and .,Clinical Neurosciences, Cumming School of Medicine and.,Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Brian L Brooks
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Clinical Neurosciences, Cumming School of Medicine and.,Psychology, University of Calgary, Calgary, Alberta, Canada.,Neuroscience Program, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Michael J Esser
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Clinical Neurosciences, Cumming School of Medicine and
| | - Adam Kirton
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Radiology.,Clinical Neurosciences, Cumming School of Medicine and
| | - Angelo Mikrogianakis
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Emergency Medicine, and
| | - Roger L Zemek
- Departments of Pediatrics and Emergency Medicine and Research Institute, Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada
| | - Frank P MacMaster
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Departments of Psychiatry, Paediatrics, and
| | - Alberto Nettel-Aguirre
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Departments of Community Health Sciences
| | - Keith Owen Yeates
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Clinical Neurosciences, Cumming School of Medicine and.,Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Valerie Kirk
- Department of Pediatrics, Alberta Children's Hospital Research Institute and
| | - James S Hutchison
- Neurosciences and Mental Health Research Program, Department of Critical Care Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Susan Crawford
- Neuroscience Program, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Brenda Turley
- Neuroscience Program, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Candice Cameron
- Research Pharmacy, Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada
| | | | - Tina Samuel
- Neuroscience Program, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Jeffrey Buchhalter
- Department of Pediatrics, Alberta Children's Hospital Research Institute and
| | - Lawrence Richer
- Department of Pediatrics and Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Platt
- McGill University, Montreal, Québec, Canada; and
| | - Roslyn Boyd
- Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Deborah Dewey
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Departments of Community Health Sciences
| |
Collapse
|
22
|
Mocayar Marón FJ, Camargo AB, Manucha W. Allicin pharmacology: Common molecular mechanisms against neuroinflammation and cardiovascular diseases. Life Sci 2020; 249:117513. [PMID: 32145307 DOI: 10.1016/j.lfs.2020.117513] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022]
Abstract
According to investigations in phytomedicine and ethnopharmacology, the therapeutic properties of garlic (Allium sativum) have been described by ancestral cultures. Notwithstanding, it is of particular concern to elucidate the molecular mechanisms underlying this millenary empirical knowledge. Allicin (S-allyl prop-2-ene-1-sulfinothioate), a thioester of sulfenic acid, is one of the main bioactive compounds present in garlic, and it is responsible for the particular aroma of the spice. The pharmacological attributes of allicin integrate a broad spectrum of properties (e.g., anti-inflammatory, immunomodulatory, antibiotic, antifungal, antiparasitic, antioxidant, nephroprotective, neuroprotective, cardioprotective, and anti-tumoral activities, among others). The primary goal of the present article is to review and clarify the common molecular mechanisms by which allicin and its derivates molecules may perform its therapeutic effects on cardiovascular diseases and neuroinflammatory processes. The intricate interface connecting the cardiovascular and nervous systems suggests that the impairment of one organ could contribute to the dysfunction of the other. Allicin might target the cornerstone of the pathological processes underlying cardiovascular and neuroinflammatory disorders, like inflammation, renin-angiotensin-aldosterone system (RAAS) hyperactivation, oxidative stress, and mitochondrial dysfunction. Indeed, the current evidence suggests that allicin improves mitochondrial function by enhancing the expression of HSP70 and NRF2, decreasing RAAS activation, and promoting mitochondrial fusion processes. Finally, allicin represents an attractive therapeutic alternative targeting the complex interaction between cardiovascular and neuroinflammatory disorders.
Collapse
Affiliation(s)
- Feres José Mocayar Marón
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU-UNCuyo), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina
| | - Alejandra Beatriz Camargo
- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Instituto de Biología Agrícola de Mendoza (IBAM), CONICET, Mendoza, Argentina
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU-UNCuyo), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina.
| |
Collapse
|
23
|
Qu Z, Liu A, Li P, Liu C, Xiao W, Huang J, Liu Z, Zhang S. Advances in physiological functions and mechanisms of (-)-epicatechin. Crit Rev Food Sci Nutr 2020; 61:211-233. [PMID: 32090598 DOI: 10.1080/10408398.2020.1723057] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
(-)-Epicatechin (EC) is a flavanol easily obtained through the diet and is present in tea, cocoa, vegetables, fruits, and cereals. Recent studies have shown that EC protects human health and exhibits prominent anti-oxidant and anti-inflammatory activities, enhances muscle performance, improves symptoms of cardiovascular and cerebrovascular diseases, prevents diabetes, and protects the nervous system. With the development of modern medical and biotechnology research, the mechanisms of action associated with EC toward various chronic diseases are becoming more apparent, and the pharmacological development and utilization of EC has been increasingly clarified. Currently, there is no comprehensive systematic introduction to the effects of EC and its mechanisms of action. This review presents the latest research progress and the role of EC in the prevention and treatment of various chronic diseases and its protective health effects and provides a theoretical basis for future research on EC.
Collapse
Affiliation(s)
- Zhihao Qu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Penghui Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
24
|
Mitochondria-Targeted Antioxidants as Potential Therapy for the Treatment of Traumatic Brain Injury. Antioxidants (Basel) 2019; 8:antiox8050124. [PMID: 31071926 PMCID: PMC6562849 DOI: 10.3390/antiox8050124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of this article is to review the publications describing the use of mitochondria-targeted antioxidant therapy after traumatic brain injury (TBI). Recent works demonstrated that mitochondria-targeted antioxidants are very effective in reducing the negative effects associated with the development of secondary damage caused by TBI. Using various animal models of TBI, mitochondria-targeted antioxidants were shown to prevent cardiolipin oxidation in the brain and neuronal death, as well as to markedly reduce behavioral deficits and cortical lesion volume, brain water content, and DNA damage. In the future, not only a more detailed study of the mechanisms of action of various types of such antioxidants needs to be conducted, but also their therapeutic values and toxicological properties are to be determined. Moreover, the optimal therapeutic effect needs to be achieved in the shortest time possible from the onset of damage to the nervous tissue, since secondary brain damage in humans can develop for a long time, days and even months, depending on the severity of the damage.
Collapse
|
25
|
Genrikhs EE, Stelmashook EV, Alexandrova OP, Novikova SV, Voronkov DN, Glibka YA, Skulachev VP, Isaev NK. The single intravenous administration of mitochondria-targeted antioxidant SkQR1 after traumatic brain injury attenuates neurological deficit in rats. Brain Res Bull 2019; 148:100-108. [DOI: 10.1016/j.brainresbull.2019.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/31/2022]
|
26
|
TiO 2-Nanowired Delivery of DL-3-n-butylphthalide (DL-NBP) Attenuates Blood-Brain Barrier Disruption, Brain Edema Formation, and Neuronal Damages Following Concussive Head Injury. Mol Neurobiol 2019; 55:350-358. [PMID: 28856586 DOI: 10.1007/s12035-017-0746-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DL-3-n-butylphthalide (DL-NBP) is one of the constituents of Chinese celery extract that is used to treat stroke, dementia, and ischemic diseases. However, its role in traumatic brain injury is less well known. In this investigation, neuroprotective effects of DL-NBP in concussive head injury (CHI) on brain pathology were explored in a rat model. CHI was inflicted in anesthetized rats by dropping a weight of 114.6 g from a height of 20 cm through a guide tube on the exposed right parietal bone inducing an impact of 0.224 N and allowed them to survive 4 to 24 h after the primary insult. DL-NBP was administered (40 or 60 mg/kg, i.p.) 2 and 4 h after injury in 8-h survival group and 8 and 12 h after trauma in 24-h survival group. In addition, TiO2-nanowired delivery of DL-NBP (20 or 40 mg/kg, i.p.) in 8 and 24 h CHI rats was also examined. Untreated CHI showed a progressive increase in blood-brain barrier (BBB) breakdown to Evans blue albumin (EBA) and radioiodine ([131]-I), edema formation, and neuronal injuries. The magnitude and intensity of these pathological changes were most marked in the left hemisphere. Treatment with DL-NBP significantly reduced brain pathology in CHI following 8 to 12 h at 40-mg dose. However, 60-mg dose is needed to thwart brain pathology at 24 h following CHI. On the other hand, TiO2-DL-NBP was effective in reducing brain damage up to 8 or 12 h using a 20-mg dose and only 40-mg dose was needed for neuroprotection in CHI at 24 h. These observations are the first to suggest that (i) DL-NBP is quite effective in reducing brain pathology and (ii) nanodelivery of DL-NBP has far more superior effects in CHI, not reported earlier.
Collapse
|
27
|
Magtanong L, Dixon SJ. Ferroptosis and Brain Injury. Dev Neurosci 2019; 40:382-395. [PMID: 30820017 PMCID: PMC6658337 DOI: 10.1159/000496922] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by the iron-dependent accumulation of toxic lipid reactive oxygen species. Small-molecule screening and subsequent optimization have yielded potent and specific activators and inhibitors of this process. These compounds have been employed to dissect the lethal mechanism and implicate this process in pathological cell death events observed in many tissues, including the brain. Indeed, ferroptosis is emerging as an important mechanism of cell death during stroke, intracerebral hemorrhage, and other acute brain injuries, and may also play a role in certain degenerative brain disorders. Outstanding issues include the practical need to identify molecular markers of ferroptosis that can be used to detect and study this process in vivo, and the more basic problem of understanding the relationship between ferroptosis and other forms of cell death that can be triggered in the brain during injury.
Collapse
Affiliation(s)
- Leslie Magtanong
- Department of Biology, Stanford University, Stanford, California, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, California, USA,
| |
Collapse
|
28
|
Wang J, Jiang C, Zhang K, Lan X, Chen X, Zang W, Wang Z, Guan F, Zhu C, Yang X, Lu H, Wang J. Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway. Free Radic Biol Med 2019; 131:345-355. [PMID: 30553970 DOI: 10.1016/j.freeradbiomed.2018.12.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 01/20/2023]
Abstract
Traumatic brain injury (TBI) is a principal cause of death and disability worldwide. Melatonin, a hormone made by the pineal gland, is known to have anti-inflammatory and antioxidant properties. In this study, using a weight-drop model of TBI, we investigated the protective effects of ramelteon, a melatonin MT1/MT2 receptor agonist, and its underlying mechanisms of action. Administration of ramelteon (10 mg/kg) daily at 10:00 a.m. alleviated TBI-induced early brain damage on day 3 and long-term neurobehavioral deficits on day 28 in C57BL/6 mice. Ramelteon also increased the protein levels of interleukin (IL)-10, IL-4, superoxide dismutase (SOD), glutathione, and glutathione peroxidase and reduced the protein levels of IL-1β, tumor necrosis factor, and malondialdehyde in brain tissue and serum on days 1, 3, and 7 post-TBI. Similarly, ramelteon attenuated microglial and astrocyte activation in the perilesional cortex on day 3. Furthermore, ramelteon decreased Keap 1 expression, promoted nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear accumulation, and increased levels of downstream proteins, including SOD-1, heme oxygenase-1, and NQO1 on day 3 post-TBI. However, in Nrf2 knockout mice with TBI, ramelteon did not decrease the lesion volume, neuronal degeneration, or myelin loss on day 3; nor did it mitigate depression-like behavior or most motor behavior deficits on day 28. Thus, timed ramelteon treatment appears to prevent inflammation and oxidative stress via the Nrf2-antioxidant response element pathway and might represent a potential chronotherapeutic strategy for treating TBI.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antioxidants/pharmacology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Astrocytes/pathology
- Brain Edema/drug therapy
- Brain Edema/genetics
- Brain Edema/metabolism
- Brain Edema/pathology
- Brain Injuries, Traumatic/drug therapy
- Brain Injuries, Traumatic/genetics
- Brain Injuries, Traumatic/metabolism
- Brain Injuries, Traumatic/pathology
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Cerebral Cortex/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Glutathione Peroxidase/genetics
- Glutathione Peroxidase/metabolism
- Indenes/pharmacology
- Inflammation
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Interleukin-4/genetics
- Interleukin-4/metabolism
- Kelch-Like ECH-Associated Protein 1/genetics
- Kelch-Like ECH-Associated Protein 1/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/drug effects
- Microglia/metabolism
- Microglia/pathology
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Oxidative Stress/drug effects
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Signal Transduction
- Superoxide Dismutase/genetics
- Superoxide Dismutase/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Junmin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Weidong Zang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zhongyu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Fangxia Guan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; School of Life Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Changlian Zhu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Göteborg 40530, Sweden
| | - Xiuli Yang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
29
|
Li Q, Wang P, Huang C, Chen B, Liu J, Zhao M, Zhao J. N-Acetyl Serotonin Protects Neural Progenitor Cells Against Oxidative Stress-Induced Apoptosis and Improves Neurogenesis in Adult Mouse Hippocampus Following Traumatic Brain Injury. J Mol Neurosci 2019; 67:574-588. [PMID: 30684239 DOI: 10.1007/s12031-019-01263-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/17/2019] [Indexed: 01/01/2023]
Abstract
In this study, with primary mouse neural progenitor cells (NPCs), we investigated the neuroprotective effect of a tropomyosin-related kinase receptor B (TrkB) agonist, N-acetyl serotonin (NAS), against hydrogen peroxide (H2O2)-induced toxicity. We found that pre-incubation with NAS not only ameliorates H2O2-induced cell viability loss, lactate dehydrogenase (LDH) release, and proliferative and migratory capacity impairments, but counteracts H2O2-triggered production of nitric oxide (NO), reactive oxygen species (ROS), malondialdehyde (MDA), and 8-hydroxy-deoxyguanosine (8-OHdG) in a dose-dependent manner. Additionally, pre-treatment with NAS was able to attenuate H2O2-induced apoptosis in NPCs, evidenced by the decreased percentage of apoptotic cells and altered expression of apoptosis-related factors. Furthermore, in differentiated NPCs, NAS improves H2O2-induced reduction in neurite growth. Mechanistic studies revealed that the protective effects of NAS in NPCs may be mediated by the TrkB/PI3K/Akt/ cAMP response element binding protein (CREB) signaling cascades. In a mouse traumatic brain injury (TBI) model, we found that systemic administration of 30 mg/kg NAS could improve hippocampal neurogenesis, manifested by the increased number of SOX-2-positive cells and increased expression of phosphorylated CREB in the dentate gyrus (DG) area. Treatment with NAS also ameliorates cognitive impairments caused by TBI, as assessed by Y-maze and contextual and cued fear conditioning tests. Taken together, these results provide valuable insights into the neuroprotective and neuroregenerative effects of NAS, suggesting it may have therapeutic potential for the treatment of TBI.
Collapse
Affiliation(s)
- Qingzhi Li
- Department of Neurosurgery, Hainan General Hospital, 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Pengcheng Wang
- Department of Neurosurgery, Hainan General Hospital, 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Chuixue Huang
- Department of Neurosurgery, Hainan General Hospital, 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Baozhi Chen
- Department of Neurosurgery, Hainan General Hospital, 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Jiabin Liu
- Department of Radiotherapy, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Mingmei Zhao
- Department of Neurosurgery, the Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Jiannong Zhao
- Department of Neurosurgery, Hainan General Hospital, 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
30
|
Barlow KM, Esser MJ, Veidt M, Boyd R. Melatonin as a Treatment after Traumatic Brain Injury: A Systematic Review and Meta-Analysis of the Pre-Clinical and Clinical Literature. J Neurotrauma 2018; 36:523-537. [PMID: 29901413 DOI: 10.1089/neu.2018.5752] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) is common; however, effective treatments of the secondary brain injury are scarce. Melatonin is a potent, nonselective neuroprotective and anti-inflammatory agent that is showing promising results in neonatal brain injury. The aim of this study was to systematically evaluate the pre-clinical and clinical literature on the effectiveness of melatonin in improving outcome after TBI. Using the systematic review protocol for animal intervention studies (SYRCLE) and Cochrane methodology for clinical studies, a search of English-language articles was performed. Eligible studies were identified and data were extracted. Quality assessment was performed using the SYRCLE risk of bias tool. Meta-analyses were performed using standardized mean differences (SMD). Seventeen studies (15 pre-clinical, 2 clinical) met inclusion criteria. There was heterogeneity in the studies, and all had moderate-to-low risk of bias. Meta-analysis of pre-clinical data revealed an overall positive effect on neurobehavioural outcome with SMD of 1.51 (95% CI: 1.06-1.96). Melatonin treatment had a favorable effect on neurological status, by an SMD of 1.35 (95% CI: 0.83-1.88), and on cognition by an SMD of 1.16 (95% CI: 0.4-1.92). Melatonin decreased the size of the contusion by an SMD of 2.22 (95% CI: 0.8--3.59) and of cerebral edema by an SMD of 1.91 (95% CI: 1.08-2.74). Only two clinical studies were identified. They were of low quality, were used for symptom management, and were of uncertain significance. In conclusion, there is evidence that melatonin treatment after TBI significantly improves both behavioral outcomes and pathological outcomes; however, significant research gaps exist, especially in clinical populations.
Collapse
Affiliation(s)
- Karen M Barlow
- 1 Department of Paediatric Neurology, Queensland Cerebral Palsy and Rehabilitation Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland , Queensland, Australia
| | - Michael J Esser
- 2 Department of Paediatric Neurology, Neurocritical Care Program, Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta, Canada
| | - Myra Veidt
- 2 Department of Paediatric Neurology, Neurocritical Care Program, Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta, Canada
| | - Roslyn Boyd
- 3 Department of Cerebral Palsy and Rehabilitation Research, Queensland Cerebral Palsy and Rehabilitation Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland , Queensland, Australia
| |
Collapse
|
31
|
Sharma B, Lawrence DW, Hutchison MG. Branched Chain Amino Acids (BCAAs) and Traumatic Brain Injury: A Systematic Review. J Head Trauma Rehabil 2018; 33:33-45. [DOI: 10.1097/htr.0000000000000280] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Jiang X, Chen J, Song Q, Wang W, Zhang G, Li Y. Correlation between TSC1 gene polymorphism and epilepsy. Exp Ther Med 2017; 14:6238-6242. [PMID: 29285181 PMCID: PMC5740816 DOI: 10.3892/etm.2017.5345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022] Open
Abstract
The correlation between tuberous sclerosis complex 1 (TSC1) gene polymorphism and epilepsy was studied. In total, 38 patients with epilepsy treated in People's Hospital of Rizhao from May 2015 to June 2016 were selected as study subjects, as the observation group, 38 healthy people in the same period were selected as the control group. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to study the polymorphism of TSC1 gene in the above study subjects. The mRNA expression of TSC1 gene in the observation group and the control group was measured by fluorescence quantitative PCR, the expression of TSC1 protein in the control and observation group was measured by western blotting and ELISA. The polymorphisms of TSC1 gene in control group and observation group were analyzed by PCR-RFLP. There were three genotypes of TCS1 gene locus 142 in healthy population: CC (79.3%), CA (13.9%) and AA (6.8%), there were also three genotypes at locus 142 in the observation group: CC (21.3%), CA (26.4%) and AA (52.3%), there was significant difference in the genotypes at locus 142 between healthy population and the patients with epilepsy (P<0.05). It was observed by fluorescence quantitative PCR that there was no significant difference in the mRNA expression of TSC1 gene between the control group and the observation group (P>0.05). The expression of TSC1 gene was detected by western blot method. Western blotting showed no significant difference in TSC1 protein expression between the two groups (P>0.05). However, by determining the activity of TSC1 protein in the observation group and the control group by ELISA, it was found that TSC1 activity in healthy human body (8.95±2.41 U/ml) was much lower than that in the patients with epilepsy (29.27±4.06 U/ml), the difference was statistically significant (P<0.05). It was found that locus 142 may be located at the active center of TSC1 enzyme by homology modeling of SWISS-MODEL, the mutation of locus 142 could lead to the change of TSC1 activity. The polymorphism of locus 142 in TSC1 gene is correlated with epilepsy, that is, the increase of CA and AA content in locus 142 leads to the occurrence of epilepsy.
Collapse
Affiliation(s)
- Xiuli Jiang
- Department of Neurology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Jiajia Chen
- Department of Clinical Laboratory, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Quanjiang Song
- Department of Internal Medicine, Women and Chindren's Health Care Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Weiling Wang
- Department of Ultrasonography, People's Hospital of Zhangqiu, Jinan, Shandong 250000, P.R. China
| | - Guangyan Zhang
- Department of Clinical Laboratory, People's Hospital of Zhangqiu, Jinan, Shandong 250000, P.R. China
| | - Ye Li
- Department of Neurology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| |
Collapse
|
33
|
Ge L, Yang M, Yang NN, Yin XX, Song WG. Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget 2017; 8:102653-102673. [PMID: 29254278 PMCID: PMC5731988 DOI: 10.18632/oncotarget.21130] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/26/2017] [Indexed: 12/14/2022] Open
Abstract
Since the 2007 discovery that molecular hydrogen (H2) has selective antioxidant properties, multiple studies have shown that H2 has beneficial effects in diverse animal models and human disease. This review discusses H2 biological effects and potential mechanisms of action in various diseases, including metabolic syndrome, organ injury, and cancer; describes effective H2 delivery approaches; and summarizes recent progress toward H2 applications in human medicine. We also discuss remaining questions in H2 therapy, and conclude with an appeal for a greater role for H2 in the prevention and treatment of human ailments that are currently major global health burdens. This review makes a case for supporting hydrogen medicine in human disease prevention and therapy.
Collapse
Affiliation(s)
- Li Ge
- Department of Histology and Embryology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Ming Yang
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Na-Na Yang
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Institute of Atherosclerosis, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Xin-Xin Yin
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Wen-Gang Song
- Department of medical immunology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| |
Collapse
|
34
|
Lorente L. Biomarkers Associated with the Outcome of Traumatic Brain Injury Patients. Brain Sci 2017; 7:brainsci7110142. [PMID: 29076989 PMCID: PMC5704149 DOI: 10.3390/brainsci7110142] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/24/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022] Open
Abstract
This review focuses on biomarkers associated with the outcome of traumatic brain injury (TBI) patients, such as caspase-3; total antioxidant capacity; melatonin; S100B protein; glial fibrillary acidic protein (GFAP); glutamate; lactate; brain-derived neurotrophic factor (BDNF); substance P; neuron-specific enolase (NSE); ubiquitin carboxy-terminal hydrolase L-1 (UCH-L1); tau; decanoic acid; and octanoic acid.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife 38320, Spain.
| |
Collapse
|
35
|
Feng D, Xia Z, Zhou J, Lu H, Zhang C, Fan R, Xiong X, Cui H, Gan P, Huang W, Peng W, He F, Wang Z, Wang Y, Tang T. Metabolomics reveals the effect of Xuefu Zhuyu Decoction on plasma metabolism in rats with acute traumatic brain injury. Oncotarget 2017; 8:94692-94710. [PMID: 29212259 PMCID: PMC5706905 DOI: 10.18632/oncotarget.21876] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/03/2017] [Indexed: 12/13/2022] Open
Abstract
Xuefu Zhuyu Decoction (XFZY), an important traditional Chinese herbal formula, has been reported effective on traumatic brain injury (TBI) in rats. However, its cerebral protection mechanism has not been clarified at the metabolic level. This work aims to explore the global metabolic characteristics of XFZY in rats during the acute phase of TBI on days 1 and 3. A plasma metabolomics method based on gas chromatography-mass spectrometry coupled with univariate analysis and multivariate statistical analysis was performed in three groups (Sham, Vehicle, XFZY). Then, a pathway analysis using MetaboAnalyst 3.0 was performed to illustrate the pathways of therapeutic action of XFZY in TBI. XFZY treatment attenuates neurological dysfunction and cortical lesion volume post-injury on day 3, and reverses the plasma metabolite abnormalities (glutamic acid, lactic acid, 3-hydroxybutyric acid, and ribitol, etc.). These differential metabolites are mainly involved in D-glutamine and D-glutamate metabolism, alanine, aspartate and glutamate metabolism, and inositol phosphate metabolism. Our study reveals potential biomarkers and metabolic networks of acute TBI and neuroprotection effects of XFZY, and shows this metabolomics approach with MetaboAnalyst would be a feasible way to systematically study therapeutic effects of XFZY on TBI.
Collapse
Affiliation(s)
- Dandan Feng
- Institute of Integrative Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Zian Xia
- Institute of Integrative Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Jing Zhou
- Institute of Integrative Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Hongmei Lu
- Research Center of Modernization of Traditional Chinese Medicines, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Chunhu Zhang
- Institute of Integrative Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Rong Fan
- Institute of Integrative Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Xingui Xiong
- Institute of Integrative Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Hanjin Cui
- Institute of Integrative Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Pingping Gan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Wei Huang
- Institute of Integrative Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Weijun Peng
- Department of Integrated Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, P.R. China
| | - Feng He
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Zhiming Wang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Yang Wang
- Institute of Integrative Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| | - Tao Tang
- Institute of Integrative Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
| |
Collapse
|
36
|
Romero-Rivera HR, Cabeza-Morales M, Soto-Zarate E, Satyarthee GD, Padilla-Zambrano H, Joaquim AF, Rubiano AM, Hernandez AP, Agrawal A, Moscote-Salazar LR. Antioxidant therapies in traumatic brain injury: a review. ROMANIAN NEUROSURGERY 2017. [DOI: 10.1515/romneu-2017-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Oxidative stress constitute one of the commonest mechanism of the secondary injury contributing to neuronal death in traumatic brain injury cases. The oxidative stress induced secondary injury blockade may be considered as to be a good alternative to improve the outcome of traumatic brain injury (TBI) treatment. Due to absence of definitive therapy of traumatic brain injury has forced researcher to utilize unconventional therapies and its roles investigated in the improvement of management and outcome in recent year. Antioxidant therapies are proven effective in many preclinical studies and encouraging results and the role of antioxidant mediaction may act as further advancement in the traumatic brain injury management it may represent aonr of newer moadlaity in neurosurgical aramamentorium, this kind of therapy could be a good alternative or adjuct to the previously established neuroprotection agents in TBI.
Collapse
|
37
|
Pierce JD, Shen Q, Peltzer J, Thimmesch A, Hiebert JB. A pilot study exploring the effects of ubiquinol on brain genomics after traumatic brain injury. Nurs Outlook 2017; 65:S44-S52. [DOI: 10.1016/j.outlook.2017.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/14/2022]
|
38
|
Qiu X, Shi L, Zhuang H, Zhang H, Wang J, Wang L, Sun P, Yu L, Liu L. Cerebrovascular Protective Effect of Boldine Against Neural Apoptosis via Inhibition of Mitochondrial Bax Translocation and Cytochrome C Release. Med Sci Monit 2017; 23:4109-4116. [PMID: 28841638 PMCID: PMC5584841 DOI: 10.12659/msm.903040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In the present study, we explored the protective effect and mechanism of action of boldine (BOL) against neural apoptosis, which is a mediator of TBI. MATERIAL AND METHODS The effect of BOL on mitochondrial and cytosol proteins of extracted from cerebral cortical tissue of mice was evaluated. The grip test was used to assess the neurological deficit and brain water content of the subjects after administration of BOL to assess its effect on SOD, GSH, and MDA activity in brain ischemic tissues. To further confirm the effect of the BOL, the histopathological analysis and morphology of neurons were studied by Nissl staining. The effect of BOL against TBI-induced neural apoptosis by immuno-histochemistry and Western blotting assay were also studied. RESULTS BOL showed significant improvement against TBI in a dose-dependent manner. In the BOL-treated group, the apoptotic index was significantly reduced, but the level of caspase-3 was greatly diminished. Additionally, the level of the Bax in mitochondria (mit) and cytosol was elevated in the TBI-treated group as compared to the sham group. Further BOL at the test dose causes significant reduction in the level of mitochondrial MDA together with increase in SOD activity as compared to the TBI alone group. CONCLUSIONS BOL showed a cerebroprotective effect against TBI by attenuating the oxidative stress and the mitochondrial apoptotic pathway. It also inhibited mitochondrial Bax translocation and cytochrome c release.
Collapse
Affiliation(s)
- Xiaozhong Qiu
- Department of Neurosurgery, The Affiliated Hiser Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Ling Shi
- Department of Neurosurgery, The Affiliated Hiser Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Hanting Zhuang
- Department of Neurosurgery, The Affiliated Hiser Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Hongtao Zhang
- Department of Neurosurgery, The Affiliated Hiser Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Juan Wang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Lijun Wang
- Department of Neurosurgery, The Affiliated Hiser Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hiser Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Lili Yu
- Department of Neurosurgery, The Affiliated Hiser Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Longxi Liu
- Department of Neurosurgery, The Affiliated Hiser Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
39
|
Serum melatonin levels in survivor and non-survivor patients with traumatic brain injury. BMC Neurol 2017; 17:138. [PMID: 28724361 PMCID: PMC5518120 DOI: 10.1186/s12883-017-0922-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 07/13/2017] [Indexed: 12/23/2022] Open
Abstract
Background Circulating levels of melatonin in patients with traumatic brain injury (TBI) have been determined in a little number of studies with small sample size (highest sample size of 37 patients) and only were reported the comparison of serum melatonin levels between TBI patients and healthy controls. As to we know, the possible association between circulating levels of melatonin levels and mortality of patients with TBI have not been explored; thus, the objective of our current study was to determine whether this association actually exists. Methods This multicenter study included 118 severe TBI (Glasgow Coma Scale <9) patients. We measured serum levels of melatonin, malondialdehyde (to assess lipid peroxidation) and total antioxidant capacity (TAC) at day 1 of severe TBI. We used mortality at 30 days as endpoint. Results We found that non-survivor (n = 33) compared to survivor (n = 85) TBI patients showed higher circulating levels of melatonin (p < 0.001), TAC (p < 0.001) and MDA (p < 0.001). We found that serum melatonin levels predicted 30-day mortality (Odds ratio = 1.334; 95% confidence interval = 1.094–1.627; p = 0.004), after to control for GCS, CT findings and age. We found a correlation between serum levels of melatonin levels and serum levels of TAC (rho = 0.37; p < 0.001) and serum levels of MDA (rho = 0.24; p = 0.008). Conclusions As to we know, our study is the largest series providing circulating melatonin levels in patients with severe TBI. The main findings were that non-survivors had higher serum melatonin levels than survivors, and the association between serum levels of melatonin levels and mortality, peroxidation state and antioxidant state.
Collapse
|
40
|
Leaw B, Nair S, Lim R, Thornton C, Mallard C, Hagberg H. Mitochondria, Bioenergetics and Excitotoxicity: New Therapeutic Targets in Perinatal Brain Injury. Front Cell Neurosci 2017; 11:199. [PMID: 28747873 PMCID: PMC5506196 DOI: 10.3389/fncel.2017.00199] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/26/2017] [Indexed: 12/30/2022] Open
Abstract
Injury to the fragile immature brain is implicated in the manifestation of long-term neurological disorders, including childhood disability such as cerebral palsy, learning disability and behavioral disorders. Advancements in perinatal practice and improved care mean the majority of infants suffering from perinatal brain injury will survive, with many subtle clinical symptoms going undiagnosed until later in life. Hypoxic-ischemia is the dominant cause of perinatal brain injury, and constitutes a significant socioeconomic burden to both developed and developing countries. Therapeutic hypothermia is the sole validated clinical intervention to perinatal asphyxia; however it is not always neuroprotective and its utility is limited to developed countries. There is an urgent need to better understand the molecular pathways underlying hypoxic-ischemic injury to identify new therapeutic targets in such a small but critical therapeutic window. Mitochondria are highly implicated following ischemic injury due to their roles as the powerhouse and main energy generators of the cell, as well as cell death processes. While the link between impaired mitochondrial bioenergetics and secondary energy failure following loss of high-energy phosphates is well established after hypoxia-ischemia (HI), there is emerging evidence that the roles of mitochondria in disease extend far beyond this. Indeed, mitochondrial turnover, including processes such as mitochondrial biogenesis, fusion, fission and mitophagy, affect recovery of neurons after injury and mitochondria are involved in the regulation of the innate immune response to inflammation. This review article will explore these mitochondrial pathways, and finally will summarize past and current efforts in targeting these pathways after hypoxic-ischemic injury, as a means of identifying new avenues for clinical intervention.
Collapse
Affiliation(s)
- Bryan Leaw
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia
| | - Syam Nair
- Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University ClaytonClayton, VIC, Australia
| | - Claire Thornton
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom
| | - Carina Mallard
- Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Henrik Hagberg
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom.,Perinatal Center, Department of Clinical Sciences, Sahlgrenska Academy, Gothenburg UniversityGothenburg, Sweden
| |
Collapse
|
41
|
Venegoni W, Shen Q, Thimmesch AR, Bell M, Hiebert JB, Pierce JD. The use of antioxidants in the treatment of traumatic brain injury. J Adv Nurs 2017; 73:1331-1338. [PMID: 28103389 DOI: 10.1111/jan.13259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2017] [Indexed: 11/26/2022]
Abstract
AIMS The aim of this study was to discuss secondary traumatic brain injury, the mitochondria and the use of antioxidants as a treatment. BACKGROUND One of the leading causes of death globally is traumatic brain injury, affecting individuals in all demographics. Traumatic brain injury is produced by an external blunt force or penetration resulting in alterations in brain function or pathology. Often, with a traumatic brain injury, secondary injury causes additional damage to the brain tissue that can have further impact on recovery and the quality of life. Secondary injury occurs when metabolic and physiologic processes alter after initial injury and includes increased release of toxic free radicals that cause damage to adjacent tissues and can eventually lead to neuronal necrosis. Although antioxidants in the tissues can reduce free radical damage, the magnitude of increased free radicals overwhelms the body's reduced defence mechanisms. Supplementing the body's natural supply of antioxidants, such as coenzyme Q10, can attenuate oxidative damage caused by reactive oxygen species. DESIGN Discussion paper. DATA SOURCES Research literature published from 2011-2016 in PubMed, CINAHL and Cochrane. IMPLICATIONS FOR NURSING Prompt and accurate assessment of patients with traumatic brain injury by nurses is important to ensure optimal recovery and reduced lasting disability. Thus, it is imperative that nurses be knowledgeable about the secondary injury that occurs after a traumatic brain injury and aware of possible antioxidant treatments. CONCLUSION The use of antioxidants has potential to reduce the magnitude of secondary injury in patients who experience a traumatic brain injury.
Collapse
Affiliation(s)
| | - Qiuhua Shen
- School of Nursing, University of Kansas, Kansas, USA
| | | | - Meredith Bell
- School of Nursing, University of Kansas, Kansas, USA
| | | | | |
Collapse
|
42
|
Abstract
Sulforaphane (SFN) is a kind of isothiocyanate derived from broccoli and other cruciferous vegetables. Because of its roles of antioxidant, anti-inflammatory, and anti-tumor through multiple targets and various mechanisms, SFN has drawn broad attention of the researchers. One of the most important target of SFN is nuclear factor erythroid 2 related factor 2 (Nrf2), wildly known for its ability to regulate the expression of a series of cytoprotective enzymes with antioxidative, prosurvival, and detoxification effects. Multiple researches have shown that SFN protects against central nervous system diseases through Nrf2pathway. In this article, we list SFN contents in common cruciferous vegetables, and summarize recent advances in the protective effects of SFN against acute brain injuries and neurodegenerative diseases through activating Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Y Sun
- Department of Neurology, University of Pittsburgh School of Medicine, USA
| | - T Yang
- Department of Neurology, University of Pittsburgh School of Medicine, USA
| | - L Mao
- Key Lab of Cerebral Microcirculation, Taishan Medical University, China
| | - F Zhang
- Department of Neurology, University of Pittsburgh School of Medicine, USA.,Key Lab of Cerebral Microcirculation, Taishan Medical University, China
| |
Collapse
|
43
|
Ji X, Peng D, Zhang Y, Zhang J, Wang Y, Gao Y, Lu N, Tang P. Astaxanthin improves cognitive performance in mice following mild traumatic brain injury. Brain Res 2016; 1659:88-95. [PMID: 28048972 DOI: 10.1016/j.brainres.2016.12.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/30/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) produces lasting neurological deficits that plague patients and physicians. To date, there is no effective method to combat the source of this problem. Here, we utilized a mild, closed head TBI model to determine the modulatory effects of a natural dietary compound, astaxanthin (AST). AST is centrally active following oral administration and is neuroprotective in experimental brain ischemia/stroke and subarachnoid hemorrhage (SAH) models. We examined the effects of oral AST on the long-term neurological functional recovery and histological outcomes following moderate TBI in a mice model. METHODS Male adult ICR mice were divided into 3 groups: (1) Sham+olive oil vehicle treated, (2) TBI+olive oil vehicle treated, and (3) TBI+AST. The olive oil vehicle or AST were administered via oral gavage at scheduled time points. Closed head brain injury was applied using M.A. Flierl weight-drop method. NSS, Rotarod, ORT, and Y-maze were performed to test the behavioral or neurological outcome. The brain sections from the mice were stained with H&E and cresyl-violet to test the injured lesion volume and neuronal loss. Western blot analysis was performed to investigate the mechanisms of neuronal cell survival and neurological function improvement. RESULTS AST administration improved the sensorimotor performance on the Neurological Severity Score (NSS) and rotarod test and enhanced cognitive function recovery in the object recognition test (ORT) and Y-maze test. Moreover, AST treatment reduced the lesion size and neuronal loss in the cortex compared with the vehicle-treated TBI group. AST also restored the levels of brain-derived neurotropic factor (BDNF), growth-associated protein-43 (GAP-43), synapsin, and synaptophysin (SYP) in the cerebral cortex, which indicates the promotion of neuronal survival and plasticity. CONCLUSION To the best of our knowledge, this is the first study to demonstrate the protective role and the underlining mechanism of AST in TBI. Based on these neuroprotective actions and considering its longstanding clinical use, AST should be considered for the clinical treatment of TBI.
Collapse
Affiliation(s)
- Xinran Ji
- The Department of Orthopaedic Surgery, Chinese People's Liberation Army General Hospital (301 Hospital), 28 Fuxing Road, Wukesong, Beijing 100000, China
| | - Dayong Peng
- Department of Orthopedics, Shandong Qianfoshan Hospital, Shandong University, Jing Shi Road, Jinan, Shandong 250014, China
| | - Yiling Zhang
- The Department of Orthopaedic Surgery, Chinese People's Liberation Army General Hospital (301 Hospital), 28 Fuxing Road, Wukesong, Beijing 100000, China
| | - Jun Zhang
- The Department of Orthopaedic Surgery, Chinese People's Liberation Army General Hospital (301 Hospital), 28 Fuxing Road, Wukesong, Beijing 100000, China
| | - Yuning Wang
- The Department of Orthopaedic Surgery, Chinese People's Liberation Army General Hospital (301 Hospital), 28 Fuxing Road, Wukesong, Beijing 100000, China
| | - Yuan Gao
- The Department of Orthopaedic Surgery, Chinese People's Liberation Army General Hospital (301 Hospital), 28 Fuxing Road, Wukesong, Beijing 100000, China
| | - Ning Lu
- The Department of Orthopaedic Surgery, Chinese People's Liberation Army General Hospital (301 Hospital), 28 Fuxing Road, Wukesong, Beijing 100000, China.
| | - Peifu Tang
- The Department of Orthopaedic Surgery, Chinese People's Liberation Army General Hospital (301 Hospital), 28 Fuxing Road, Wukesong, Beijing 100000, China.
| |
Collapse
|
44
|
Isaev NK, Stelmashook EV, Genrikhs EE, Korshunova GA, Sumbatyan NV, Kapkaeva MR, Skulachev VP. Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type. Rev Neurosci 2016; 27:849-855. [DOI: 10.1515/revneuro-2016-0036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/13/2016] [Indexed: 12/20/2022]
Abstract
AbstractIn 2008, using a model of compression brain ischemia, we presented the first evidence that mitochondria-targeted antioxidants of the SkQ family, i.e. SkQR1 [10-(6′-plastoquinonyl)decylrhodamine], have a neuroprotective action. It was shown that intraperitoneal injections of SkQR1 (0.5–1 μmol/kg) 1 day before ischemia significantly decreased the damaged brain area. Later, we studied in more detail the anti-ischemic action of this antioxidant in a model of experimental focal ischemia provoked by unilateral intravascular occlusion of the middle cerebral artery. The neuroprotective action of SkQ family compounds (SkQR1, SkQ1, SkQTR1, SkQT1) was manifested through the decrease in trauma-induced neurological deficit in animals and prevention of amyloid-β-induced impairment of long-term potentiation in rat hippocampal slices. At present, most neurophysiologists suppose that long-term potentiation underlies cellular mechanisms of memory and learning. They consider inhibition of this process by amyloid-β1-42as anin vitromodel of memory disturbance in Alzheimer’s disease. Further development of the above studies revealed that mitochondria-targeted antioxidants could retard accumulation of hyperphosphorylated τ-protein, as well as amyloid-β1-42, and its precursor APP in the brain, which are involved in developing neurodegenerative processes in Alzheimer’s disease.
Collapse
Affiliation(s)
- Nickolay K. Isaev
- 1Department of Bioenergetics, Belozersky Research Institute of Physico-Chemical Biology Lomonosov Moscow State University, Leninsky Gory, 1, b. 40, 119992 Moscow, Russian Federation
- 2Brain Research Department Research Center of Neurology, 125367 Moscow, Russian Federation
| | - Elena V. Stelmashook
- 2Brain Research Department Research Center of Neurology, 125367 Moscow, Russian Federation
| | - Elisaveta E. Genrikhs
- 2Brain Research Department Research Center of Neurology, 125367 Moscow, Russian Federation
| | - Galina A. Korshunova
- 1Department of Bioenergetics, Belozersky Research Institute of Physico-Chemical Biology Lomonosov Moscow State University, Leninsky Gory, 1, b. 40, 119992 Moscow, Russian Federation
| | - Natalya V. Sumbatyan
- 1Department of Bioenergetics, Belozersky Research Institute of Physico-Chemical Biology Lomonosov Moscow State University, Leninsky Gory, 1, b. 40, 119992 Moscow, Russian Federation
| | - Marina R. Kapkaeva
- 2Brain Research Department Research Center of Neurology, 125367 Moscow, Russian Federation
| | - Vladimir P. Skulachev
- 1Department of Bioenergetics, Belozersky Research Institute of Physico-Chemical Biology Lomonosov Moscow State University, Leninsky Gory, 1, b. 40, 119992 Moscow, Russian Federation
| |
Collapse
|
45
|
Shen Q, Hiebert JB, Hartwell J, Thimmesch AR, Pierce JD. Systematic Review of Traumatic Brain Injury and the Impact of Antioxidant Therapy on Clinical Outcomes. Worldviews Evid Based Nurs 2016; 13:380-389. [PMID: 27243770 DOI: 10.1111/wvn.12167] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is an acquired brain injury that occurs when there is sudden trauma that leads to brain damage. This acute complex event can happen when the head is violently or suddenly struck or an object pierces the skull or brain. The current principal treatment of TBI includes various pharmaceutical agents, hyperbaric oxygen, and hypothermia. There is evidence that secondary injury from a TBI is specifically related to oxidative stress. However, the clinical management of TBI often does not include antioxidants to reduce oxidative stress and prevent secondary injury. AIMS The purpose of this article is to examine current literature regarding the use of antioxidant therapies in treating TBI. This review evaluates the evidence of antioxidant therapy as an adjunctive treatment used to reduce the underlying mechanisms involved in secondary TBI injury. METHODS A systematic review of the literature published between January 2005 and September 2015 was conducted. Five databases were searched including CINAHL, PubMed, the Cochrane Library, PsycINFO, and Web of Science. FINDINGS Critical evaluation of the six studies that met inclusion criteria suggests that antioxidant therapies such as amino acids, vitamins C and E, progesterone, N-acetylcysteine, and enzogenol may be safe and effective adjunctive therapies in adult patients with TBI. Although certain limitations were found, the overall trend of using antioxidant therapies to improve the clinical outcomes of TBI was positive. LINKING EVIDENCE TO ACTION By incorporating antioxidant therapies into practice, clinicians can help attenuate the oxidative posttraumatic brain damage and optimize patients' recovery.
Collapse
Affiliation(s)
- Qiuhua Shen
- Assistant Professor, University of Kansas, School of Nursing, Kansas City, KS, USA.
| | - John B Hiebert
- Cardiologist, University of Kansas, School of Nursing, Kansas City, KS, USA
| | - Julie Hartwell
- Health Sciences Librarian, University of Kansas, Dykes Library, Kansas City, KS, USA
| | - Amanda R Thimmesch
- Research Associate, University of Kansas, School of Nursing, Kansas City, KS, USA
| | - Janet D Pierce
- Christine A. Hartley Professor of Nursing, University of Kansas, School of Nursing, Kansas City, KS, USA
| |
Collapse
|
46
|
Lu XY, Sun H, Li QY, Lu PS. Progesterone for Traumatic Brain Injury: A Meta-Analysis Review of Randomized Controlled Trials. World Neurosurg 2016; 90:199-210. [PMID: 26960278 DOI: 10.1016/j.wneu.2016.02.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To conduct a meta-analysis to determine whether progesterone, compared with placebo or no treatment, influences mortality and neurologic outcome in traumatic brain injury (TBI). METHODS To identify eligible studies, systematic searches for randomized controlled trials of progesterone treatment in TBI were conducted in PubMed, Web of Science, EMBASE, Cochrane Library, and ClinicalTrials.gov databases. The search yielded 8 studies that were included in the meta-analysis. Included data were study characteristics, patient demographics, baseline characteristics, progesterone treatment protocol, main outcome of mortality, and secondary neurologic outcome evaluated using the Glasgow Outcome Scale. RESULTS The 8 studies comprised 2585 patients. The meta-analysis indicated that there was no evidence that progesterone treatment decreased the risk of mortality in patients with TBI; the overall risk ratio was 0.852 (95% confidence interval, 0.632-1.144; P = 0.284). In the secondary outcome analysis, progesterone had no neuroprotective role in improving neurologic outcome; the overall risk ratio was 1.151 (95% confidence interval, 0.0991-1.338; P = 0.06). Subgroup analysis according to the degree of injury assessed by the Glasgow Coma Scale demonstrated similar results. CONCLUSIONS This study is the largest meta-analysis conducted to date to determine whether progesterone is effective in the treatment of TBI. The findings indicate that progesterone treatment does not decrease mortality or improve neurologic outcome in patients with TBI.
Collapse
Affiliation(s)
- Xin-Yu Lu
- Department of Neurosurgery, People's Hospital Affiliated of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hui Sun
- Department of Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Qiao-Yu Li
- Department of Neurosurgery, People's Hospital Affiliated of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Pei-Song Lu
- Department of Neurosurgery, People's Hospital Affiliated of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
47
|
Cheng T, Wang W, Li Q, Han X, Xing J, Qi C, Lan X, Wan J, Potts A, Guan F, Wang J. Cerebroprotection of flavanol (-)-epicatechin after traumatic brain injury via Nrf2-dependent and -independent pathways. Free Radic Biol Med 2016; 92:15-28. [PMID: 26724590 PMCID: PMC4769660 DOI: 10.1016/j.freeradbiomed.2015.12.027] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/09/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI), which leads to disability, dysfunction, and even death, is a prominent health problem worldwide with no effective treatment. A brain-permeable flavonoid named (-)-epicatechin (EC) modulates redox/oxidative stress and has been shown to be beneficial for vascular and cognitive function in humans and for ischemic and hemorrhagic stroke in rodents. Here we examined whether EC is able to protect the brain against TBI-induced brain injury in mice and if so, whether it exerts neuroprotection by modulating the NF-E2-related factor (Nrf2) pathway. We used the controlled cortical impact model to mimic TBI. EC was administered orally at 3h after TBI and then every 24h for either 3 or 7 days. We evaluated lesion volume, brain edema, white matter injury, neurologic deficits, cognitive performance and emotion-like behaviors, neutrophil infiltration, reactive oxygen species (ROS), and a variety of injury-related protein markers. Nrf2 knockout mice were used to determine the role of the Nrf2 signaling pathway after EC treatment. In wild-type mice, EC significantly reduced lesion volume, edema, and cell death and improved neurologic function on days 3 and 28; cognitive performance and depression-like behaviors were also improved with EC administration. In addition, EC reduced white matter injury, heme oxygenase-1 expression, and ferric iron deposition after TBI. These changes were accompanied by attenuation of neutrophil infiltration and oxidative insults, reduced activity of matrix metalloproteinase 9, decreased Keap 1 expression, increased Nrf2 nuclear accumulation, and increased expression of superoxide dismutase 1 and quinone 1. However, EC did not significantly reduce lesion volume or improve neurologic deficits in Nrf2 knockout mice after TBI. Our results show that EC protects the TBI brain by activating the Nrf2 pathway, inhibiting heme oxygenase-1 protein expression, and reducing iron deposition. The latter two effects could represent an Nrf2-independent mechanism in this model of TBI.
Collapse
Affiliation(s)
- Tian Cheng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, PR China; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Wenzhu Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Qian Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Jing Xing
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Cunfang Qi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Alexa Potts
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Fangxia Guan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, PR China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450000, PR China.
| | - Jian Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, PR China; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
48
|
Ye J, Yao JP, Wang X, Zheng M, Li P, He C, Wan JB, Yao X, Su H. Neuroprotective effects of ginsenosides on neural progenitor cells against oxidative injury. Mol Med Rep 2016; 13:3083-91. [PMID: 26935530 PMCID: PMC4805061 DOI: 10.3892/mmr.2016.4914] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
Abstract
Ginsenosides exhibit various neuroprotective effects against oxidative stress. However, which ginsenoside provides optimal effects for the treatment of neurological disorders as a potent antioxidant remains to be elucidated. Therefore, the present study investigated and compared the neuroprotective effects of the Rb1, Rd, Rg1 and Re ginsenosides on neural progenitor cells (NPCs) following tert-Butylhydroperoxide (t-BHP)-induced oxidative injury. Primary rat embryonic cortical NPCs were prepared from E14.5 embryos of Sprague-Dawley rats. The oxidative injury model was established with t-BHP. A lactate dehydrogenase assay and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining were used to measure the viability of the NPCs pre-treated with ginsenosides under oxidative stress. Reverse transcription-quantitative polymerase chain reaction analysis was used to determine the activation of intracellular signaling pathways triggered by the pretreatment of ginsenosides. Among the four ginsenosides, only Rb1 attenuated t-BHP toxicity in the NPCs, and the nuclear factor (erythroizd-derived 2)-like 2/heme oxygenase-1 pathway was found to be key in the intracellular defense against oxidative stress. The present study demonstrated the anti-oxidative effects of ginsenoside Rb1 on NPCs, and suggested that Rb1 may offer potential as a potent antioxidant for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Jun Ye
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zheijiang 310016, P.R. China
| | - Jian-Ping Yao
- Department of Cardiac Surgery II, The First Affiliated Hospital Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| | - Minying Zheng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| | - Xiaoli Yao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| |
Collapse
|
49
|
Huang YN, Yang LY, Wang JY, Lai CC, Chiu CT, Wang JY. L-Ascorbate Protects Against Methamphetamine-Induced Neurotoxicity of Cortical Cells via Inhibiting Oxidative Stress, Autophagy, and Apoptosis. Mol Neurobiol 2016; 54:125-136. [PMID: 26732595 DOI: 10.1007/s12035-015-9561-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/29/2015] [Indexed: 12/19/2022]
Abstract
Methamphetamine (METH)-induced cell death contributes to the pathogenesis of neurotoxicity; however, the relative roles of oxidative stress, apoptosis, and autophagy remain unclear. L-Ascorbate, also called vitamin (Vit.) C, confers partial protection against METH neurotoxicity via induction of heme oxygenase-1. We further investigated the role of Vit. C in METH-induced oxidative stress, apoptosis, and autophagy in cortical cells. Exposure to lower concentrations (0.1, 0.5, 1 mM) of METH had insignificant effects on ROS production, whereas cells exposed to 5 mM METH exhibited ROS production in a time-dependent manner. We confirmed METH-induced apoptosis (by nuclear morphology revealed by Hoechst 33258 staining and Western blot showing the protein levels of pro-caspase 3 and cleaved caspase 3) and autophagy (by Western blot showing the protein levels of Belin-1 and conversion of microtubule-associated light chain (LC)3-I to LC3-II and autophagosome staining by monodansylcadaverine). The apoptosis as revealed by cleaved caspase-3 expression marked an increase at 18 h after METH exposure while both autophagic markers, Beclin 1 and LC3-II, marked an increase in cells exposed to METH for 6 and 24 h, respectively. Treating cells with Vit. C 30 min before METH exposure time-dependently attenuated the production of ROS. Vitamin C also attenuated METH-induced Beclin 1 and LC3-II expression and METH toxicity. Treatment of cells with Vit. C before METH exposure attenuated the expression of cleaved caspase-3 and reduced the number of METH-induced apoptotic cells. We suggest that the protective effect of Vit. C against METH toxicity might be through attenuation of ROS production, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Ya-Ni Huang
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Ling-Yu Yang
- Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
| | - Jing-Ya Wang
- Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
| | - Chien-Cheng Lai
- Division of Orthopedics, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chien-Tsai Chiu
- Department of Neurosurgery, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan. .,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
50
|
Demarest TG, McCarthy MM. Sex differences in mitochondrial (dys)function: Implications for neuroprotection. J Bioenerg Biomembr 2014; 47:173-88. [PMID: 25293493 DOI: 10.1007/s10863-014-9583-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/14/2014] [Indexed: 12/12/2022]
Abstract
Decades of research have revealed numerous differences in brain structure size, connectivity and metabolism between males and females. Sex differences in neurobehavioral and cognitive function after various forms of central nervous system (CNS) injury are observed in clinical practice and animal research studies. Sources of sex differences include early life exposure to gonadal hormones, chromosome compliment and adult hormonal modulation. It is becoming increasingly apparent that mitochondrial metabolism and cell death signaling are also sexually dimorphic. Mitochondrial metabolic dysfunction is a common feature of CNS injury. Evidence suggests males predominantly utilize proteins while females predominantly use lipids as a fuel source within mitochondria and that these differences may significantly affect cellular survival following injury. These fundamental biochemical differences have a profound impact on energy production and many cellular processes in health and disease. This review will focus on the accumulated evidence revealing sex differences in mitochondrial function and cellular signaling pathways in the context of CNS injury mechanisms and the potential implications for neuroprotective therapy development.
Collapse
Affiliation(s)
- Tyler G Demarest
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA,
| | | |
Collapse
|