1
|
Scheen AJ. Weight loss therapy and addiction: Increased risk after bariatric surgery but reduced risk with GLP-1 receptor agonists. DIABETES & METABOLISM 2025; 51:101612. [PMID: 39818408 DOI: 10.1016/j.diabet.2025.101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Obesity is an increasing public health problem because of its high prevalence and associated morbidity and mortality. Two weight-loss strategies are currently used, either bariatric surgery or pharmacological therapy with glucagon-like peptide-1 receptor agonists (GLP-1RAs). Preclinical studies in rodents suggested an increased risk of additive disorders after bariatric surgery contrasting with a reduced risk with GLP-1RAs. METHODS An extensive literature search to detect clinical studies that investigated the prevalence of addictive disorders (food addiction, alcohol abuse, smoking, cannabis, cocaine, opioid use) following bariatric surgery or GLP-1RA therapy in obese patients. RESULTS In observational cohort studies, the prevalence of alcohol use disorder was twofold higher after > 2 years following surgery (eleven studies, mainly with gastric bypass) whereas it was reduced roughly by half with GLP-1RA therapy (five studies, mainly with semaglutide). Similar findings were reported with other addictive disorders. An addiction transfer from food addiction to other addictive disorders is hypothesized to explain the increased risk after bariatric surgery. Several mechanisms are proposed to explain the favorable findings reported with GLP-1RAs, i.e. effects on the dopamine reward pathway, central GABA (gamma-aminobutyric acid) release, negative emotional stress associated with food/drug restriction and/or neuronal inflammation. CONCLUSION Available data from observational cohort studies confirm an increased risk of addictive disorders following bariatric surgery, contrasting with a reduced risk with GLP-1RA therapy. Both physicians and patients should be informed of the higher risk post-surgery whereas available promising results with GLP-1RAs should be confirmed in ongoing dedicated randomized controlled trials before any official indication.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, CHU Liège, Liège, Belgium; Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), Liège University, Liège, Belgium.
| |
Collapse
|
2
|
Qeadan F, McCunn A, Tingey B. The association between glucose-dependent insulinotropic polypeptide and/or glucagon-like peptide-1 receptor agonist prescriptions and substance-related outcomes in patients with opioid and alcohol use disorders: A real-world data analysis. Addiction 2025; 120:236-250. [PMID: 39415416 PMCID: PMC11707322 DOI: 10.1111/add.16679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/29/2024] [Indexed: 10/18/2024]
Abstract
AIMS This study aimed to estimate the strength of association between prescriptions of glucose-dependent insulinotropic polypeptide (GIP) and/or glucagon-like peptide-1 receptor agonists (GLP-1 RA) and the incidence of opioid overdose and alcohol intoxication in patients with opioid use disorder (OUD) and alcohol use disorder (AUD), respectively. This study also aimed to compare the strength of the GIP/GLP-1 RA and substance use-outcome association among patients with comorbid type 2 diabetes and obesity. DESIGN A retrospective cohort study analyzing de-identified electronic health record data from the Oracle Cerner Real-World Data. SETTING About 136 United States of America health systems, covering over 100 million patients, spanning January 2014 to September 2022. PARTICIPANTS The study included 503 747 patients with a history of OUD and 817 309 patients with a history of AUD, aged 18 years or older. MEASUREMENTS The exposure indicated the presence (one or more) or absence of GIP/GLP-1 RA prescriptions. The outcomes were the incidence rates of opioid overdose in the OUD cohort and alcohol intoxication in the AUD cohort. Potential confounders included comorbidities and demographic factors. FINDINGS Patients with GIP/GLP-1 RA prescriptions demonstrated statistically significantly lower rates of opioid overdose [adjusted incidence rate ratio (aIRR) in OUD patients: 0.60; 95% confidence interval (CI) = 0.43-0.83] and alcohol intoxication (aIRR in AUD patients: 0.50; 95% CI = 0.40-0.63) compared to those without such prescriptions. When stratified by comorbid conditions, the rate of incident opioid overdose and alcohol intoxication remained similarly protective for those prescribed GIP/GLP-1 RA among patients with OUD and AUD. CONCLUSIONS Prescriptions of glucose-dependent insulinotropic polypeptide and/or glucagon-like peptide-1 receptor agonists appear to be associated with lower rates of opioid overdose and alcohol intoxication in patients with opioid use disorder and alcohol use disorder. The protective effects are consistent across various subgroups, including patients with comorbid type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Fares Qeadan
- Parkinson School of Health Sciences and Public HealthLoyola University ChicagoMaywoodILUSA
| | - Ashlie McCunn
- Parkinson School of Health Sciences and Public HealthLoyola University ChicagoMaywoodILUSA
| | - Benjamin Tingey
- Parkinson School of Health Sciences and Public HealthLoyola University ChicagoMaywoodILUSA
| |
Collapse
|
3
|
Li Y, Liu Y, Gou M. Peptide with Dual Roles in Immune and Metabolic Regulation: Liver-Expressed Antimicrobial Peptide-2 (LEAP-2). Molecules 2025; 30:429. [PMID: 39860298 PMCID: PMC11767564 DOI: 10.3390/molecules30020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP-2) was originally discovered as an antimicrobial peptide that plays a vital role in the host innate immune system of various vertebrates. Recent research discovered LEAP-2 as an endogenous antagonist and inverse agonist of the GHSR1a receptor. By acting as a competitive antagonist to ghrelin, LEAP-2 influences energy balance and metabolic processes via the ghrelin-GHSR1a signaling pathway. LEAP-2 alone or the LEAP-2/ghrelin molar ratio showed potential as therapeutic targets for obesity, diabetes, and metabolic disorders. This review explores the recent advances of LEAP-2 in immune modulation and energy regulation, highlighting its potential in treating the above diseases.
Collapse
Affiliation(s)
- Yitong Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China;
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Ying Liu
- Haixia Institute of Science and Technology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China;
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian 116081, China;
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
4
|
Barakat GM, Ramadan W, Assi G, Khoury NBE. Satiety: a gut-brain-relationship. J Physiol Sci 2024; 74:11. [PMID: 38368346 PMCID: PMC10874559 DOI: 10.1186/s12576-024-00904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/30/2024] [Indexed: 02/19/2024]
Abstract
Many hormones act on the hypothalamus to control hunger and satiety through various pathways closely associated with several factors. When food is present in the gastro intestinal (GI) tract, enteroendocrine cells (EECs) emit satiety signals such as cholecystokinin (CCK), glucagon like peptide-1 (GLP-1) and peptide YY (PYY), which can then communicate with the vagus nerve to control food intake. More specifically, satiety has been shown to be particularly affected by the GLP-1 hormone and its receptor agonists that have lately been acknowledged as a promising way to reduce weight. In addition, there is increasing evidence that normal flora is also involved in the peripheral, central, and reward system that impact satiety. Moreover, neurologic pathways control satiety through neurotransmitters. In this review, we discuss the different roles of each of the GLP-1 hormone and its agonist, gut microbiomes, as well as neurotransmitters and their interconnected relation in the regulation of body's satiety homeostasis.
Collapse
Affiliation(s)
- Ghinwa M Barakat
- Biological and Chemical Sciences Department, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon.
| | - Wiam Ramadan
- Biological and Chemical Sciences Department, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
- Nutrition and Food Sciences Department, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Ghaith Assi
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Noura B El Khoury
- Psychology department, Faculty of Arts and Sciences, University of Balamand, Balamand, Lebanon
| |
Collapse
|
5
|
Lüthi H, Lengsfeld S, Burkard T, Meienberg A, Jeanloz N, Vukajlovic T, Bologna K, Steinmetz M, Bathelt C, Sailer CO, Laager M, Vogt DR, Hemkens LG, Speich B, Urwyler SA, Kühne J, Baur F, Lutz LN, Erlanger TE, Christ-Crain M, Winzeler B. Effect of dulaglutide in promoting abstinence during smoking cessation: 12-month follow-up of a single-centre, randomised, double-blind, placebo-controlled, parallel group trial. EClinicalMedicine 2024; 68:102429. [PMID: 38371479 PMCID: PMC10873660 DOI: 10.1016/j.eclinm.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/20/2024] Open
Abstract
Background Smoking cessation is challenging, despite making use of established smoking cessation therapies. Preclinical studies and one clinical pilot study suggest the antidiabetic drug glucagon-like peptide-1 (GLP-1) analogue to modulate addictive behaviours and nicotine craving. Previously, we reported the short-term results of a randomised, double-blind, placebo-controlled trial. Herein we report long-term abstinence rates and weight developments after 24 and 52 weeks. Methods This single-centre, randomised, double-blind, placebo-controlled, parallel group trial was done at the University Hospital Basel in Switzerland. We randomly assigned (1:1) individuals with at least a moderate nicotine dependence willing to quit smoking to either a 12-week treatment with dulaglutide 1.5 mg or placebo subcutaneously once weekly in addition to standard of care smoking cessation therapy (varenicline 2 mg/day and behavioural counselling). After 12 weeks, dulaglutide or placebo injections were discontinued and the participants were followed up at week 24 and 52. The primary outcome of self-reported and biochemically confirmed point prevalence abstinence rate, and secondary outcome of secondary outcome of weight change were assessed at weeks 24 and 52. All participants who received one dose of the study drug were included in the intention to treat set and participants who received at least 10/12 doses of the study drug formed the per protocol set. The trial was registered at ClinicalTrials.gov, NCT03204396. Findings Of the 255 participants who were randomly assigned between June 22, 2017 and December 3, 2020, 63% (80/127) (dulaglutide group) and 65% (83/128) (placebo group) were abstinent after 12 weeks. These abstinence rates declined to 43% (54/127) and 41% (52/128), respectively, after 24 weeks and to 32% (41/127) and 32% (41/128), respectively, after 52 weeks. Post-cessation weight gain was prevented in the dulaglutide group (-1.0 kg, standard deviation [SD] 2.7) as opposed to the placebo group (+1.9 kg, SD 2.4) after 12 weeks. However, at week 24, increases in weight from baseline were observed in both groups (median, interquartile range [IQR]: dulaglutide: +1.5 kg, [-0.4, 4.1], placebo: +3.0 kg, [0.6, 4.6], baseline-adjusted difference in weight change -1.0 kg (97.5% CI [-2.16, 0.16])), and at week 52 the groups showed similar weight gain (median, IQR: dulaglutide: +2.8 kg [-0.4, 4.7], placebo: +3.1 kg [-0.4, 6.0], baseline-adjusted difference in weight change: -0.35 kg (95% CI [-1.72, 1.01])). In the follow-up period (week 12 to week 52) 51 (51%) and 48 (48%) treatment-unrelated adverse events were recorded in the dulaglutide and the placebo group, respectively. No treatment-related serious adverse events or deaths occurred. Interpretation Dulaglutide does not improve long-term smoking abstinence, but has potential to counteract weight gain after quitting. However, 3 months of treatment did not have a sustained beneficial effect on weight at 1 year. As post-cessation weight gain is highest in the first year after quitting smoking, future studies should consider a longer treatment duration with a GLP-1 analogue in abstinent individuals. Funding Swiss National Science Foundation, the Gottfried and Julia Bangerter-Rhyner Foundation, the Goldschmidt-Jacobson Foundation, the Hemmi-Foundation, the University of Basel, the Swiss Academy of Medical Sciences.
Collapse
Affiliation(s)
- Hualin Lüthi
- Department of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sophia Lengsfeld
- Department of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Thilo Burkard
- Medical Outpatient Department, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Department of Cardiology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Andrea Meienberg
- Medical Outpatient Department, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Faculty of Medicine University of Basel, Basel, Switzerland
| | - Nica Jeanloz
- Department of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tanja Vukajlovic
- Department of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katja Bologna
- Department of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michelle Steinmetz
- Department of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Cemile Bathelt
- Department of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Clara O. Sailer
- Department of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Mirjam Laager
- Department of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Deborah R. Vogt
- Department of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Lars G. Hemkens
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA
- Meta-Research Innovation Center Berlin (METRIC-B), Berlin Institute of Health, Berlin, Germany
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Benjamin Speich
- CLEAR Methods Center, Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sandrine A. Urwyler
- Department of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jill Kühne
- Department of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Fabienne Baur
- Department of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Linda N. Lutz
- Department of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tobias E. Erlanger
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Mirjam Christ-Crain
- Department of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Bettina Winzeler
- Department of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Baenas I, Mora-Maltas B, Etxandi M, Lucas I, Granero R, Fernández-Aranda F, Tovar S, Solé-Morata N, Gómez-Peña M, Moragas L, Del Pino-Gutiérrez A, Tapia J, Diéguez C, Goudriaan AE, Jiménez-Murcia S. Cluster analysis in gambling disorder based on sociodemographic, neuropsychological, and neuroendocrine features regulating energy homeostasis. Compr Psychiatry 2024; 128:152435. [PMID: 37976998 DOI: 10.1016/j.comppsych.2023.152435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The heterogeneity of gambling disorder (GD) has led to the identification of different subtypes, mostly including phenotypic features, with distinctive implications on the GD severity and treatment outcome. However, clustering analyses based on potential endophenotypic features, such as neuropsychological and neuroendocrine factors, are scarce so far. AIMS This study firstly aimed to identify empirical clusters in individuals with GD based on sociodemographic (i.e., age and sex), neuropsychological (i.e., cognitive flexibility, inhibitory control, decision making, working memory, attention, and set-shifting), and neuroendocrine factors regulating energy homeostasis (i.e., leptin, ghrelin, adiponectin, and liver-expressed antimicrobial peptide 2, LEAP-2). The second objective was to compare the profiles between clusters, considering the variables used for the clustering procedure and other different sociodemographic, clinical, and psychological features. METHODS 297 seeking-treatment adult outpatients with GD (93.6% males, mean age of 39.58 years old) were evaluated through a semi-structured clinical interview, self-reported psychometric assessments, and a protocolized neuropsychological battery. Plasma concentrations of neuroendocrine factors were assessed in peripheral blood after an overnight fast. Agglomerative hierarchical clustering was applied using sociodemographic, neuropsychological, and neuroendocrine variables as indicators for the grouping procedure. Comparisons between the empirical groups were performed using Chi-square tests (χ2) for categorical variables, and analysis of variance (ANOVA) for quantitative measures. RESULTS Three-mutually-exclusive groups were obtained, being neuropsychological features those with the greatest weight in differentiating groups. The largest cluster (Cluster 1, 65.3%) was composed by younger males with strategic and online gambling preferences, scoring higher on self-reported impulsivity traits, but with a lower cognitive impairment. Cluster 2 (18.2%) and 3 (16.5%) were characterized by a significantly higher proportion of females and older patients with non-strategic gambling preferences and a worse neuropsychological performance. Particularly, Cluster 3 had the poorest neuropsychological performance, especially in cognitive flexibility, while Cluster 2 reported the poorest inhibitory control. This latter cluster was also distinguished by a poorer self-reported emotion regulation, the highest prevalence of food addiction, as well as a metabolic profile characterized by the highest mean concentrations of leptin, adiponectin, and LEAP-2. CONCLUSIONS To the best of our knowledge, this is the first study to identify well-differentiated GD clusters using neuropsychological and neuroendocrine features. Our findings reinforce the heterogeneous nature of the disorder and emphasize a role of potential endophenotypic features in GD subtyping. This more comprehensive characterization of GD profiles could contribute to optimize therapeutic interventions based on a medicine of precision.
Collapse
Affiliation(s)
- Isabel Baenas
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Doctoral Program in Medicine and Translational Research, University of Barcelona (UB), Barcelona, Spain
| | - Bernat Mora-Maltas
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Doctoral Program in Medicine and Translational Research, University of Barcelona (UB), Barcelona, Spain
| | - Mikel Etxandi
- Doctoral Program in Medicine and Translational Research, University of Barcelona (UB), Barcelona, Spain; Department of Psychiatry, Hospital Universitari Germans Trias i Pujol, IGTP Campus Can Ruti, Badalona, Spain
| | - Ignacio Lucas
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Roser Granero
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Psychobiology and Methodology, Autonomous University of Barcelona, Barcelona, Spain
| | - Fernando Fernández-Aranda
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Sulay Tovar
- Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Neus Solé-Morata
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Mónica Gómez-Peña
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Laura Moragas
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Amparo Del Pino-Gutiérrez
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Public Health, Mental Health and Perinatal Nursing, School of Nursing, University of Barcelona, Barcelona, Spain
| | - Javier Tapia
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Doctoral Program in Medicine and Translational Research, University of Barcelona (UB), Barcelona, Spain; Medical Direction of Ambulatory Processes, South Metropolitan Territorial Management, Bellvitge University Hospital, Barcelona, Spain
| | - Carlos Diéguez
- Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Anna E Goudriaan
- Arkin Mental Health Care, Jellinek, Amsterdam Institute for Addiction Research, Amsterdam, The Netherlands; Amsterdam UMC, Department of Psychiatry, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Susana Jiménez-Murcia
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
White B, Sirohi S. A Complex Interplay between Nutrition and Alcohol use Disorder: Implications for Breaking the Vicious Cycle. Curr Pharm Des 2024; 30:1822-1837. [PMID: 38797900 PMCID: PMC12085226 DOI: 10.2174/0113816128292367240510111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Approximately 16.5% of the United States population met the diagnostic criteria for substance use disorder (SUD) in 2021, including 29.5 million individuals with alcohol use disorder (AUD). Individuals with AUD are at increased risk for malnutrition, and impairments in nutritional status in chronic alcohol users can be detrimental to physical and emotional well-being. Furthermore, these nutritional deficiencies could contribute to the never-ending cycle of alcoholism and related pathologies, thereby jeopardizing the prospects of recovery and treatment outcomes. Improving nutritional status in AUD patients may not only compensate for general malnutrition but could also reduce adverse symptoms during recovery, thereby promoting abstinence and successful treatment of AUD. In this review, we briefly summarize alterations in the nutritional status of people with addictive disorders, in addition to the underlying neurobiological mechanisms and clinical implications regarding the role of nutritional intervention in recovery from alcohol use disorder.
Collapse
Affiliation(s)
- Brooke White
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana. New Orleans, LA 70125, USA
| | - Sunil Sirohi
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana. New Orleans, LA 70125, USA
| |
Collapse
|
8
|
Richardson RS, Sulima A, Rice KC, Kucharczk JA, Janda KD, Nisbett KE, Koob GF, Vendruscolo LF, Leggio L. Pharmacological GHSR (ghrelin receptor) blockade reduces alcohol binge-like drinking in male and female mice. Neuropharmacology 2023; 238:109643. [PMID: 37369277 PMCID: PMC10513123 DOI: 10.1016/j.neuropharm.2023.109643] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Ghrelin is a peptide that is produced by endocrine cells that are primarily localized in the stomach. Ghrelin receptors (GHSR) are expressed in the brain and periphery. Preclinical and clinical studies support a role for ghrelin in alcohol drinking and seeking. The GHSR has been suggested to be a potential pharmacotherapeutic target for alcohol use disorder (AUD). However, the role of the ghrelin system and its potential modulation by biological sex on binge-like drinking has not been comprehensively investigated. The present study tested six GHSR antagonists in an alcohol binge-like drinking procedure in male and female mice. Systemic administration of the GHSR antagonists JMV2959, PF-5190457, PF-6870961, and HM-04 reduced alcohol intake in both male and female mice. YIL-781 decreased intake in males, and LEAP2 (likely peripherally restricted) did not reduce intake in mice of either sex. We also administered LEAP2 and JMV2959 intracerebroventricularly to investigate whether the effects of GHSR blockade on alcohol intake are mediated by central receptors. The central administration of LEAP2 and JMV2959 decreased alcohol intake, particularly in high-drinking animals. Finally, in a preliminary experiment, an anti-ghrelin vaccine was examined for its potential effect on binge-like drinking and had no effect. In all experiments, there was a lack of meaningful sex differences. These findings suggest that central GHSR mediates binge-like alcohol intake. These data reveal novel pharmacological compounds with translational potential in the treatment of AUD and provide further evidence of the GHSR as a potential treatment target for AUD.
Collapse
Affiliation(s)
- Rani S Richardson
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; University of North Carolina School of Medicine MD/PhD Program, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Agnieszka Sulima
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Kenner C Rice
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Jed A Kucharczk
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, WIRM Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Khalin E Nisbett
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Graduate Program in Neuroscience, Graduate College, University of Illinois Chicago, Chicago, IL, USA
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA; Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA; Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
9
|
Merritt CR, Garcia EJ, Brehm VD, Fox RG, Moeller FG, Anastasio NC, Cunningham KA. Ghrelin receptor antagonist JMV2959 blunts cocaine and oxycodone drug-seeking, but not self-administration, in male rats. Front Pharmacol 2023; 14:1268366. [PMID: 37795028 PMCID: PMC10545966 DOI: 10.3389/fphar.2023.1268366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
The drug overdose crisis has spawned serious health consequences, including the increased incidence of substance use disorders (SUDs), conditions manifested by escalating medical and psychological impairments. While medication management is a key adjunct in SUD treatment, this crisis has crystallized the need to develop additional therapeutics to facilitate extended recovery from SUDs. The "hunger hormone" ghrelin acts by binding to the growth hormone secretagogue receptor 1α (GHS1αR) to control homeostatic and hedonic aspects of food intake and has been implicated in the mechanisms underlying SUDs. Preclinical studies indicate that GHS1αR antagonists and inverse agonists suppress reward-related signaling associated with cocaine and opioids. In the present study, we found that the GHS1αR antagonist JMV2959 was efficacious to suppress both cue-reinforced cocaine and oxycodone drug-seeking, but not cocaine or oxycodone self-administration in male Sprague-Dawley rats. These data suggest a role of the ghrelin-GHS1αR axis in mediating overlapping reward-related aspects of cocaine and oxycodone and premises the possibility that a GHS1αR antagonist may be a valuable therapeutic strategy for relapse vulnerability in SUDs.
Collapse
Affiliation(s)
- Christina R. Merritt
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Erik J. Garcia
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Victoria D. Brehm
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Robert G. Fox
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - F. Gerard Moeller
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Departments of Psychiatry and Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Noelle C. Anastasio
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Kathryn A. Cunningham
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
10
|
Passeri A, Municchi D, Cavalieri G, Babicola L, Ventura R, Di Segni M. Linking drug and food addiction: an overview of the shared neural circuits and behavioral phenotype. Front Behav Neurosci 2023; 17:1240748. [PMID: 37767338 PMCID: PMC10520727 DOI: 10.3389/fnbeh.2023.1240748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Despite a lack of agreement on its definition and inclusion as a specific diagnosable disturbance, the food addiction construct is supported by several neurobiological and behavioral clinical and preclinical findings. Recognizing food addiction is critical to understanding how and why it manifests. In this overview, we focused on those as follows: 1. the hyperpalatable food effects in food addiction development; 2. specific brain regions involved in both food and drug addiction; and 3. animal models highlighting commonalities between substance use disorders and food addiction. Although results collected through animal studies emerged from protocols differing in several ways, they clearly highlight commonalities in behavioral manifestations and neurobiological alterations between substance use disorders and food addiction characteristics. To develop improved food addiction models, this heterogeneity should be acknowledged and embraced so that research can systematically investigate the role of specific variables in the development of the different behavioral features of addiction-like behavior in preclinical models.
Collapse
Affiliation(s)
- Alice Passeri
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Diana Municchi
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Giulia Cavalieri
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | | | - Rossella Ventura
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| |
Collapse
|
11
|
Lakosa A, Rahimian A, Tomasi F, Marti F, Reynolds LM, Tochon L, David V, Danckaert A, Canonne C, Tahraoui S, de Chaumont F, Forget B, Maskos U, Besson M. Impact of the gut microbiome on nicotine's motivational effects and glial cells in the ventral tegmental area in male mice. Neuropsychopharmacology 2023; 48:963-974. [PMID: 36932179 PMCID: PMC10156728 DOI: 10.1038/s41386-023-01563-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/19/2023]
Abstract
A link between gut dysbiosis and the pathogenesis of brain disorders has been identified. A role for gut bacteria in drug reward and addiction has been suggested but very few studies have investigated their impact on brain and behavioral responses to addictive drugs so far. In particular, their influence on nicotine's addiction-like processes remains unknown. In addition, evidence shows that glial cells shape the neuronal activity of the mesolimbic system but their regulation, within this system, by the gut microbiome is not established. We demonstrate that a lack of gut microbiota in male mice potentiates the nicotine-induced activation of sub-regions of the mesolimbic system. We further show that gut microbiota depletion enhances the response to nicotine of dopaminergic neurons of the posterior ventral tegmental area (pVTA), and alters nicotine's rewarding and aversive effects in an intra-VTA self-administration procedure. These effects were not associated with gross behavioral alterations and the nicotine withdrawal syndrome was not impacted. We further show that depletion of the gut microbiome modulates the glial cells of the mesolimbic system. Notably, it increases the number of astrocytes selectively in the pVTA, and the expression of postsynaptic density protein 95 in both VTA sub-regions, without altering the density of the astrocytic glutamatergic transporter GLT1. Finally, we identify several sub-populations of microglia in the VTA that differ between its anterior and posterior sub-parts, and show that they are re-organized in conditions of gut microbiota depletion. The present study paves the way for refining our understanding of the pathophysiology of nicotine addiction.
Collapse
Affiliation(s)
- Alina Lakosa
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
| | - Anaïs Rahimian
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
| | - Flavio Tomasi
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
- Neuroscience Paris Seine, Sorbonne Université, INSERM, CNRS, 75005 Paris, France
| | - Fabio Marti
- Plasticité du Cerveau, CNRS UMR 8249, ESPCI Paris, Université PSL, Paris, France
- Neuroscience Paris Seine, Sorbonne Université, INSERM, CNRS, 75005, Paris, France
| | - Lauren M Reynolds
- Plasticité du Cerveau, CNRS UMR 8249, ESPCI Paris, Université PSL, Paris, France
| | - Léa Tochon
- Université de Bordeaux, Bordeaux, France
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Bordeaux, France
| | - Vincent David
- Université de Bordeaux, Bordeaux, France
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Bordeaux, France
| | - Anne Danckaert
- UTechS Photonics Bioimaging/C2RT, Institut Pasteur, Université Paris Cité, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Candice Canonne
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
| | - Sylvana Tahraoui
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
| | - Fabrice de Chaumont
- Génétique humaine et fonctions cognitives, CNRS UMR 3571, Institut Pasteur, Université Paris Cité, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Benoît Forget
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
- Génétique humaine et fonctions cognitives, CNRS UMR 3571, Institut Pasteur, Université Paris Cité, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Uwe Maskos
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France
| | - Morgane Besson
- Institut Pasteur, Université Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Paris, France.
| |
Collapse
|
12
|
Lengsfeld S, Burkard T, Meienberg A, Jeanloz N, Coynel D, Vogt DR, Hemkens LG, Speich B, Zanchi D, Erlanger TE, Christ-Crain M, Winzeler B. Glucagon-like peptide-1 analogues: a new way to quit smoking? (SKIP)-a structured summary of a study protocol for a randomized controlled study. Trials 2023; 24:284. [PMID: 37081574 PMCID: PMC10120253 DOI: 10.1186/s13063-023-07164-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/09/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Cigarette smoking is the leading preventable cause of premature death. Despite dedicated programmes, quit rates remain low due to barriers such as nicotine withdrawal syndrome or post-cessation weight gain. Glucagon-like peptide-1 (GLP-1) analogues reduce energy intake and body weight and seem to modulate addictive behaviour. These GLP-1 properties are of major interest in the context of smoking cessation. The aim of this study is to evaluate the GLP-1 analogue dulaglutide as a new therapy for smoking cessation. METHODS This is a placebo-controlled, double-blind, parallel group, superiority, single-centre randomized study including 255 patients. The intervention consists of a 12-week dulaglutide treatment phase with 1.5 mg once weekly or placebo subcutaneously, in addition to standard of care (behavioural counselling and pharmacotherapy with varenicline). A 40-week non-treatment phase follows. The primary outcome is the point prevalence abstinence rate at week 12. Smoking status is self-reported and biochemically confirmed by end-expiratory exhaled carbon monoxide measurement. Further endpoints include post-cessational weight gain, nicotine craving analysis, glucose homeostasis and long-term nicotine abstinence. Two separate substudies assess behavioural, functional and structural changes by functional magnetic resonance imaging and measures of energy metabolism (i.e. resting energy expenditure, body composition). DISCUSSION Combining behavioural counselling and medical therapy, e.g. with varenicline, improves abstinence rates and is considered the standard of care. We expect a further increase in quit rates by adding a second component of medical therapy and assume a dual effect of dulaglutide treatment (blunting nicotine withdrawal symptoms and reducing post-cessational weight gain). This project is of high relevance as it explores novel treatment options aimed at preventing the disastrous consequences of nicotine consumption and obesity. TRIAL REGISTRATION ClinicalTrials.gov NCT03204396 . Registered on June 26, 2017.
Collapse
Affiliation(s)
- Sophia Lengsfeld
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Thilo Burkard
- Medical Outpatient Department, University Hospital Basel, Petersgraben 4, Basel, 4031, Switzerland
- Department of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Andrea Meienberg
- Medical Outpatient Department, University Hospital Basel, Petersgraben 4, Basel, 4031, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Nica Jeanloz
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - David Coynel
- Division of Cognitive Neuroscience, Department of Psychology and Transfaculty Research Platform, University of Basel, Basel, Switzerland
| | - Deborah R Vogt
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Department of Clinical Research, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Lars G Hemkens
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University of Basel and University Hospital of Basel, Basel, Switzerland
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA
- Meta-Research Innovation Center Berlin (METRIC-B), Berlin Institute of Health, Berlin, Germany
| | - Benjamin Speich
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Davide Zanchi
- Roche Innovation Centre Basel, F. Hoffmann- La Roche, Basel, Switzerland
- Stanford University Graduate School of Business, Stanford, CA, USA
| | - Tobias E Erlanger
- Department of Clinical Research, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Mirjam Christ-Crain
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Bettina Winzeler
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
| |
Collapse
|
13
|
Ghrelin/GHS-R1A antagonism in memory test and its effects on central molecular signaling involved in addiction in rats. Pharmacol Biochem Behav 2023; 224:173528. [PMID: 36870422 DOI: 10.1016/j.pbb.2023.173528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/23/2022] [Accepted: 02/12/2023] [Indexed: 03/06/2023]
Abstract
Central ghrelin signaling seems to play important role in addiction as well as memory processing. Antagonism of the growth hormone secretagogue receptor (GHS-R1A) has been recently proposed as a promising tool for the unsatisfactory drug addiction therapy. However, molecular aspects of GHS-R1A involvement in specific brain regions remain unclear. The present study demonstrated for the first time that acute as well as subchronic (4 days) administration of the experimental GHS-R1A antagonist JMV2959 in usual intraperitoneal doses including 3 mg/kg, had no influence on memory functions tested in the Morris Water Maze in rats as well as no significant effects on the molecular markers linked with memory processing in selected brain areas in rats, specifically on the β-actin, c-Fos, two forms of the calcium/calmodulin-dependent protein kinase II (CaMKII, p-CaMKII) and the cAMP-response element binding protein (CREB, p-CREB), within the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), dorsal striatum, and hippocampus (HIPP). Furthermore, following the methamphetamine intravenous self-administration in rats, the 3 mg/kg JMV2959 pretreatment significantly reduced or prevented the methamphetamine-induced significant decrease of hippocampal β-actin and c-Fos as well as it prevented the significant decrease of CREB in the NAC and mPFC. These results imply, that the GHS-R1A antagonist/JMV2959 might reduce/prevent some of the memory-linked molecular changes elicited by methamphetamine addiction within brain structures associated with memory (HIPP), reward (NAc), and motivation (mPFC), which may contribute to the previously observed significant JMV2959-induced reduction of the methamphetamine self-administration and drug-seeking behavior in the same animals. Further research is necessary to corroborate these results.
Collapse
|
14
|
Lengsfeld S, Burkard T, Meienberg A, Jeanloz N, Vukajlovic T, Bologna K, Steinmetz M, Bathelt C, Sailer CO, Vogt DR, Hemkens LG, Speich B, Urwyler SA, Kühne J, Baur F, Lutz LN, Erlanger TE, Christ-Crain M, Winzeler B. Effect of dulaglutide in promoting abstinence during smoking cessation: a single-centre, randomized, double-blind, placebo-controlled, parallel group trial. EClinicalMedicine 2023; 57:101865. [PMID: 36874396 PMCID: PMC9981899 DOI: 10.1016/j.eclinm.2023.101865] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Quitting smoking is difficult due to barriers such as craving for cigarettes and post-cessation weight gain. Recent experimental data suggest a role of glucagon-like peptide-1 (GLP-1) in the pathophysiology of addiction in addition to appetite regulation and weight control. We hypothesized that a pharmacological intervention with the GLP-1 analogue dulaglutide during smoking cessation may improve abstinence rates and reduce post-cessation weight gain. METHODS This is a single-centre, randomized, double-blind, placebo-controlled, parallel group, superiority study conducted in the University Hospital Basel in Switzerland. We included adult smokers with at least moderate cigarette dependence who wanted to quit. Participants were randomly assigned to a 12-week treatment with dulaglutide 1.5 mg once weekly or placebo subcutaneously in addition to standard of care including behavioural counselling and oral varenicline pharmacotherapy of 2 mg/day. The primary outcome was self-reported and biochemically confirmed point prevalence abstinence rate at week 12. Secondary outcomes included post-cessation weight, glucose metabolism, and craving for smoking. All participants who received one dose of study drug were included in the primary and safety analyses. The trial was registered on ClinicalTrials.gov (NCT03204396). FINDINGS Between June 22, 2017, and December 3, 2020, 255 participants were enrolled and randomly assigned to each group (127 in the dulaglutide group and 128 in the placebo group). After 12 weeks, 63% (80/127) participants on dulaglutide and 65% (83/128) on placebo treatment were abstinent (difference in proportions -1.9% [95% Confidence interval (CI) -10.7, 14.4], p-value (p) = 0.859). Dulaglutide decreased post-cessation weight (-1 kg [standard deviation (SD) 2.7]), while weight increased on placebo (+1.9 kg [SD 2.4]). The baseline-adjusted difference in weight change between groups was -2.9 kg (95% CI -3.59, -2.3, p < 0.001). Haemoglobin A1c (HbA1c) level declined on dulaglutide treatment (baseline-adjusted median difference in HbA1c between groups -0.25% [interquartile range (IQR) -0.36, -0.14], p < 0.001). Craving for smoking declined during treatment without any difference between the groups. Treatment-emergent gastrointestinal symptoms were very common in both groups: 90% (114/127) of participants on dulaglutide and 81% (81/128) on placebo). INTERPRETATION Dulaglutide had no effect on abstinence rates but prevented post-cessation weight gain and decreased HbA1c levels. GLP-1 analogues may play a role in future cessation therapy targeting metabolic parameters such as weight and glucose metabolism. FUNDING Swiss National Science Foundation, the Gottfried Julia Bangerter-Rhyner Foundation, the Goldschmidt-Jacobson Foundation, the Hemmi-Foundation, the University of Basel, the Swiss Academy of Medical Sciences.
Collapse
Affiliation(s)
- Sophia Lengsfeld
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Thilo Burkard
- Medical Outpatient Department, University Hospital Basel, Basel, Switzerland
- Department of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Andrea Meienberg
- Medical Outpatient Department, University Hospital Basel, Basel, Switzerland
- Faculty of Medicine University of Basel, Basel, Switzerland
| | - Nica Jeanloz
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tanja Vukajlovic
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katja Bologna
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michelle Steinmetz
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Cemile Bathelt
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Clara O. Sailer
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Deborah R. Vogt
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Lars G. Hemkens
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA
- Meta-Research Innovation Center Berlin (METRIC-B), Berlin Institute of Health, Berlin, Germany
| | - Benjamin Speich
- CLEAR Methods Center, Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sandrine A. Urwyler
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jill Kühne
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Fabienne Baur
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Linda N. Lutz
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tobias E. Erlanger
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Mirjam Christ-Crain
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Bettina Winzeler
- Endocrinology, Diabetology and Metabolism, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Corresponding author. University Hospital Basel, Deptartment of Endocrinology, Diabetology und Metabolism, Petersgraben 4, 4031, Basel, Switzerland.
| |
Collapse
|
15
|
Brigande AM, Darwich JG, Currie PJ. Mesolimbic exendin-4 attenuates reward salience evoked by neuropeptide Y and ghrelin. Behav Brain Res 2023; 440:114249. [PMID: 36496077 DOI: 10.1016/j.bbr.2022.114249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
In the present study, we investigated the effects of the glucagon-like peptide-1 (GLP-1) agonist exendin-4 (Ex-4) on the stimulatory action of neuropeptide Y (NPY) and ghrelin. These effects were examined in relation to operant responding for palatable food or voluntary ethanol intake in a two-bottle limited access paradigm. Male Sprague Dawley rats, each with ventral tegmental area (VTA) unilateral guide cannulae, were used. Ex-4 was paired with either NPY, ghrelin, or combined NPY and ghrelin treatment. Our results indicated that while NPY and ghrelin reliably stimulated operant responding for sucrose pellets and increased ethanol intake, Ex-4 suppressed intake and, most importantly, significantly reduced the effects of NPY and ghrelin. Overall, this work provides compelling evidence that VTA GLP-1, NPY, and ghrelin systems interact within the brain to modulate reward salience.
Collapse
Affiliation(s)
- Alev M Brigande
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Janet Guss Darwich
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Paul J Currie
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA.
| |
Collapse
|
16
|
Suplotova LA, Fedorova AI, Kulmametova DS, Dushina TS, Makarova OB. Prospects for the use of drugs from the group of agonists of glucagon-like peptide-1 receptors in the treatment of non-alcoholic fatty liver disease. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2023:148-155. [DOI: 10.21518/2079-701x-2022-16-23-148-155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases. To a large extent, the development of this disease is associated with metabolic syndrome. There is a pathogenetic association of NAFLD with obesity, type 2 diabetes mellitus (DM2), cardiovascular diseases and chronic kidney disease. Numerous studies demonstrate that an increase in the incidence of NAFLD occurs in parallel with an increase in the prevalence of obesity and DM 2. A number of scientific studies in the field of medicine have made it possible to identify the main pathogenetic mechanisms of the development of the disease, as well as the possibility of using various pharmacological drugs to correct these conditions. Currently, the possibility of using in the future a group of drugs that have a single mechanism for controlling the development of hepatic steatosis, and further progression with the formation of inflammation, cirrhosis and, in some cases, hepatocellular carcinoma, is being considered. Of particular interest is a class of drugs intended for the treatment of type 2 diabetes and obesity – glucagon-like peptide-1 receptor agonists (arGLP-1). A search was made of clinical studies, meta-analyses, literature reviews in databases and registries of medical publications over a period of 10 years. Changes in anthropometric indications, changes in non-invasive markers of liver steatosis, inflammation and fibrosis, as well as histological data on the background of the use of drugs of the arGLP-1 class were studied. It has been demonstrated that the study drug class may have a significant potential for impact on NAFLD. However, further studies with sufficient duration and histological evaluation are needed to fully evaluate the effectiveness of arGLP-1 in the treatment of NAFLD.
Collapse
|
17
|
Etxandi M, Baenas I, Mora-Maltas B, Granero R, Fernández-Aranda F, Tovar S, Solé-Morata N, Lucas I, Casado S, Gómez-Peña M, Moragas L, del Pino-Gutiérrez A, Codina E, Valenciano-Mendoza E, Potenza MN, Diéguez C, Jiménez-Murcia S. Are Signals Regulating Energy Homeostasis Related to Neuropsychological and Clinical Features of Gambling Disorder? A Case-Control Study. Nutrients 2022; 14:nu14235084. [PMID: 36501114 PMCID: PMC9736671 DOI: 10.3390/nu14235084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Gambling disorder (GD) is a modestly prevalent and severe condition for which neurobiology is not yet fully understood. Although alterations in signals involved in energy homeostasis have been studied in substance use disorders, they have yet to be examined in detail in GD. The aims of the present study were to compare different endocrine and neuropsychological factors between individuals with GD and healthy controls (HC) and to explore endocrine interactions with neuropsychological and clinical variables. A case−control design was performed in 297 individuals with GD and 41 individuals without (healthy controls; HCs), assessed through a semi-structured clinical interview and a psychometric battery. For the evaluation of endocrine and anthropometric variables, 38 HCs were added to the 41 HCs initially evaluated. Individuals with GD presented higher fasting plasma ghrelin (p < 0.001) and lower LEAP2 and adiponectin concentrations (p < 0.001) than HCs, after adjusting for body mass index (BMI). The GD group reported higher cognitive impairment regarding cognitive flexibility and decision-making strategies, a worse psychological state, higher impulsivity levels, and a more dysfunctional personality profile. Despite failing to find significant associations between endocrine factors and either neuropsychological or clinical aspects in the GD group, some impaired cognitive dimensions (i.e., WAIS Vocabulary test and WCST Perseverative errors) and lower LEAP2 concentrations statistically predicted GD presence. The findings from the present study suggest that distinctive neuropsychological and endocrine dysfunctions may operate in individuals with GD and predict GD presence. Further exploration of endophenotypic vulnerability pathways in GD appear warranted, especially with respect to etiological and therapeutic potentials.
Collapse
Affiliation(s)
- Mikel Etxandi
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Germans Trias i Pujol, IGTP Campus Can Ruti, 08916 Badalona, Spain
| | - Isabel Baenas
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Bernat Mora-Maltas
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Roser Granero
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
- Department of Psychobiology and Methodology, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Fernando Fernández-Aranda
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
| | - Sulay Tovar
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Neus Solé-Morata
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Ignacio Lucas
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Sabela Casado
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mónica Gómez-Peña
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Laura Moragas
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Amparo del Pino-Gutiérrez
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
- Department of Public Health, Mental Health and Perinatal Nursing, School of Nursing, University of Barcelona, 08907 Barcelona, Spain
| | - Ester Codina
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
| | - Eduardo Valenciano-Mendoza
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT 06510, USA
- Connecticut Mental Health Center, New Haven, CT 06519, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT 06106, USA
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | - Carlos Diéguez
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
- Correspondence:
| |
Collapse
|
18
|
Kurt Tunagur EM, Yazici AB, Guzel D, Tunagur MT, Ermis C, Suda MA, Yazici E. Investigating associations between appetite-regulating hormones, aggression and craving in males with cannabis use disorder. Drug Alcohol Depend 2022; 238:109577. [PMID: 35905593 DOI: 10.1016/j.drugalcdep.2022.109577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Aggression and craving are common and important withdrawal symptoms in cannabis use disorder. The present study investigated the association between appetite-regulating hormones, aggression, and craving during cannabis withdrawal syndrome (CWS). METHODS Fifty-six male subjects diagnosed with cannabis withdrawal and 45 healthy males were included in the study. The Substance Craving Scale, the Buss-Perry Aggression Questionnaire, and the State-Trait Anxiety Inventory were implemented at baseline. Blood samples were drawn to measure ghrelin, leptin, adiponectin, and resistin levels in the serum. Then, the Point Subtraction Aggression Paradigm (PSAP) was applied. Bloodwork and psychometric assessment procedures were re-implemented after the PSAP. At the 7-day follow-up, psychometric assessments and hormone measurements were repeated in the CWS group. RESULTS Baseline serum ghrelin and adiponectin levels were lower in the CWS group than controls at baseline. After PSAP, there was a significant increase in ghrelin levels of patients with CWS compared to controls. Patients yielded higher aggression scores, while there was no significant correlation between hormonal changes and PSAP findings. At 7-day follow, ghrelin and resistin levels significantly increased, while serum leptin decreased in patients with CWS. Finally, there was a positive association between craving and resistin levels. CONCLUSIONS Our results present the changes in appetite-regulating hormones. Long-term follow-up studies are needed to shed light on neuroendocrinological aspects of cannabis withdrawal.
Collapse
Affiliation(s)
| | | | - Derya Guzel
- Department of Physiology, Sakarya University, 54290 Sakarya, Turkey
| | | | - Cagatay Ermis
- Diyarbakır Children's Hospital, 21000 Diyarbakır, Turkey
| | - Mehmet Akif Suda
- Department of Psychiatry, Sakarya University, 54290 Sakarya, Turkey
| | - Esra Yazici
- Department of Psychiatry, Sakarya University, 54290 Sakarya, Turkey
| |
Collapse
|
19
|
Morales I. Brain regulation of hunger and motivation: The case for integrating homeostatic and hedonic concepts and its implications for obesity and addiction. Appetite 2022; 177:106146. [PMID: 35753443 DOI: 10.1016/j.appet.2022.106146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Obesity and other eating disorders are marked by dysregulations to brain metabolic, hedonic, motivational, and sensory systems that control food intake. Classic approaches in hunger research have distinguished between hedonic and homeostatic processes, and have mostly treated these systems as independent. Hindbrain structures and a complex network of interconnected hypothalamic nuclei control metabolic processes, energy expenditure, and food intake while mesocorticolimbic structures are though to control hedonic and motivational processes associated with food reward. However, it is becoming increasingly clear that hedonic and homeostatic brain systems do not function in isolation, but rather interact as part of a larger network that regulates food intake. Incentive theories of motivation provide a useful route to explore these interactions. Adapting incentive theories of motivation can enable researchers to better how motivational systems dysfunction during disease. Obesity and addiction are associated with profound alterations to both hedonic and homeostatic brain systems that result in maladaptive patterns of consumption. A subset of individuals with obesity may experience pathological cravings for food due to incentive sensitization of brain systems that generate excessive 'wanting' to eat. Further progress in understanding how the brain regulates hunger and appetite may depend on merging traditional hedonic and homeostatic concepts of food reward and motivation.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109-1043, USA.
| |
Collapse
|
20
|
Zhu C, Li H, Kong X, Wang Y, Sun T, Wang F. Possible Mechanisms Underlying the Effects of Glucagon-Like Peptide-1 Receptor Agonist on Cocaine Use Disorder. Front Pharmacol 2022; 13:819470. [PMID: 35300299 PMCID: PMC8921771 DOI: 10.3389/fphar.2022.819470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Cocaine use disorder (CUD) is a major public health challenge with a high relapse rate and lack of effective pharmacotherapies; therefore, there is a substantial need to identify novel medications to treat this epidemic. Since the advent of glucagon-like peptide-1 (GLP-1) receptors (GLP-1Rs) agonists (GLP-1RAs), their potential has been extensively explored and expanded. In this review, we first summarized the biological effects of GLP-1, GLP-1Rs, and GLP-1RAs. Subsequently, the recent literature examining the behavioral effects and the possible pharmacological mechanisms of GLP-1RAs on CUD was reviewed. Increasing preclinical evidence suggests that GLP-1RAs are promising in regulating dopamine release, dopamine transporter (DAT) surface expression and function, mesolimbic reward system and GABAergic neurons, and maladaptive behaviors in animal models of self-administration and conditioned place preference. In addition, the emerging role of GLP-1RAs in inhibiting inflammatory cytokines was reported. These findings indicate that GLP-1RAs perform essential functions in the modulation of cocaine-seeking and cocaine-taking behaviors likely through multifaceted mechanisms. Although the current preclinical evidence provides convincing evidence to support GLP-1RA as a promising pharmacotherapy for CUD, other questions concerning clinical availability, impact and specific mechanisms remain to be addressed in further studies.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Hailiang Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xuerui Kong
- Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yezhong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Yinchuan, China.,Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Herrington JA, Guss Darwich J, Harshaw C, Brigande AM, Leif EB, Currie PJ. Elevated ghrelin alters the behavioral effects of perinatal acetaminophen exposure in rats. Dev Psychobiol 2022; 64:e22252. [DOI: 10.1002/dev.22252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Joshua A. Herrington
- Department of Psychology Reed College 3203 SE Woodstock Blvd, Portland OR 97202, USA Portland Oregon USA
| | - Janet Guss Darwich
- Department of Psychology Reed College 3203 SE Woodstock Blvd, Portland OR 97202, USA Portland Oregon USA
| | - Christopher Harshaw
- Department of Psychology University of New Orleans New Orleans Louisiana USA
| | - Alev M. Brigande
- Department of Psychology Reed College 3203 SE Woodstock Blvd, Portland OR 97202, USA Portland Oregon USA
| | - Erica B. Leif
- Department of Psychology Reed College 3203 SE Woodstock Blvd, Portland OR 97202, USA Portland Oregon USA
| | - Paul J. Currie
- Department of Psychology Reed College 3203 SE Woodstock Blvd, Portland OR 97202, USA Portland Oregon USA
| |
Collapse
|
22
|
Gupta S, Mukhopadhyay S, Mitra A. Therapeutic potential of GHSR-1A antagonism in alcohol dependence, a review. Life Sci 2022; 291:120316. [PMID: 35016882 DOI: 10.1016/j.lfs.2022.120316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Growth hormone secretagogue receptor type 1A (GHSR-1A) is a functional receptor of orexigenic peptide ghrelin and is highly expressed in mesolimbic dopaminergic systems that regulate incentive value of artificial reward in substance abuse. Interestingly, GHSR-1A has also shown ligand-independent constitutive activity. Alcohol use disorder (AUD) is one of the growing concerns worldwide as it involves complex neuro-psycho-endocrinological interactions. Positive correlation of acylated ghrelin and alcohol-induced human brain response in the right and left ventral striatum are evident. In the last decade, the beneficial effects of ghrelin receptor (GHSR-1A) antagonism to suppress artificial reward circuitries and induce self-control for alcohol consumption have drawn significant attention from researchers. In this updated review, we summarize the available recent preclinical, clinical, and experimental data to discuss functional, molecular actions of central ghrelin-GHSR-1A signaling in different craving levels for alcohol as well as to promote "GHSR-1A antagonism" as one of the potential therapies in early abstinence.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman 713 347, West Bengal, India
| | - Sanchari Mukhopadhyay
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Hombegowda Nagar, Bengaluru 560029, India
| | - Arkadeep Mitra
- Department of Zoology, City College, 102/1, Raja Rammohan Sarani, Kolkata 700 009, West Bengal, India.
| |
Collapse
|
23
|
Colon-Perez L, Montesinos J, Monsivais M. The Future of Neuroimaging and Gut-Brain Axis Research for Substance Use Disorders. Brain Res 2022; 1781:147835. [DOI: 10.1016/j.brainres.2022.147835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
|
24
|
Zhu C, Hong T, Li H, Jiang S, Guo B, Wang L, Ding J, Gao C, Sun Y, Sun T, Wang F, Wang Y, Wan D. Glucagon-Like Peptide-1 Agonist Exendin-4 Facilitates the Extinction of Cocaine-Induced Condition Place Preference. Front Syst Neurosci 2022; 15:711750. [PMID: 35024034 PMCID: PMC8744468 DOI: 10.3389/fnsys.2021.711750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Accumulating studies suggest that the glucagon-like peptide-1 receptor agonist exendin-4 (Ex4) and toll-like receptor 4 (TLR4) play a pivotal role in the maladaptive behavior of cocaine. However, few studies have assessed whether Ex4 can facilitate the extinction of drug-associated behavior and attenuate the reinstatement of cocaine-induced condition place preference (CPP) in mice. The main objective of the present study was to evaluate Ex4's ability to regulate the extinction and reinstatement of cocaine-induced CPP. C57BL/6 mice were conditioned to either cocaine (20 mg/kg) or an equivalent volume of saline to establish a cocaine-mediated CPP paradigm. To investigate the potential effects of Ex4 on extinction, animals received an intraperitoneal injection of Ex4 either immediately or 6 h after each extinction or only on the test day. The persistence of extinction was measured using the reinstatement paradigm evoked by 10 mg/kg of cocaine. To explore the possible impacts of Ex4 and neuroinflammation on cocaine, the expression levels of TLR4 within the hippocampus was detected using western blotting. As a result, we found that systemic administration of Ex4 immediately after each extinction training, instead of 6 h after each extinction and on the day of extinction test, was capable of facilitating extinction in the confined or non-confined CPP extinction paradigms and blocking the cocaine-primed reinstatement of cocaine-induced CPP. Additionally, we also observed that Ex4 was competent to alleviate TLR4 signaling that has been up-regulated by cocaine. Altogether, our findings indicated that the combination of Ex4 with daily extinction training was sufficient to facilitate extinction of the conditioned behavior, attenuate reinstatement of cocaine-induced CPP and inhibit TLR4 signaling. Thus, Ex4 deserves further investigation as a potential intervention for the treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hailiang Li
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shucai Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Baorui Guo
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Caibin Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yu Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Din Wan
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
25
|
Sustkova-Fiserova M, Charalambous C, Khryakova A, Certilina A, Lapka M, Šlamberová R. The Role of Ghrelin/GHS-R1A Signaling in Nonalcohol Drug Addictions. Int J Mol Sci 2022; 23:761. [PMID: 35054944 PMCID: PMC8776007 DOI: 10.3390/ijms23020761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Drug addiction causes constant serious health, social, and economic burden within the human society. The current drug dependence pharmacotherapies, particularly relapse prevention, remain limited, unsatisfactory, unreliable for opioids and tobacco, and even symptomatic for stimulants and cannabinoids, thus, new more effective treatment strategies are researched. The antagonism of the growth hormone secretagogue receptor type A (GHS-R1A) has been recently proposed as a novel alcohol addiction treatment strategy, and it has been intensively studied in experimental models of other addictive drugs, such as nicotine, stimulants, opioids and cannabinoids. The role of ghrelin signaling in these drugs effects has also been investigated. The present review aims to provide a comprehensive overview of preclinical and clinical studies focused on ghrelin's/GHS-R1A possible involvement in these nonalcohol addictive drugs reinforcing effects and addiction. Although the investigation is still in its early stage, majority of the existing reviewed experimental results from rodents with the addition of few human studies, that searched correlations between the genetic variations of the ghrelin signaling or the ghrelin blood content with the addictive drugs effects, have indicated the importance of the ghrelin's/GHS-R1As involvement in the nonalcohol abused drugs pro-addictive effects. Further research is necessary to elucidate the exact involved mechanisms and to verify the future potential utilization and safety of the GHS-R1A antagonism use for these drug addiction therapies, particularly for reducing the risk of relapse.
Collapse
Affiliation(s)
- Magdalena Sustkova-Fiserova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Chrysostomos Charalambous
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Anna Khryakova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Alina Certilina
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic;
| |
Collapse
|
26
|
Zhu C, Wang L, Ding J, Li H, Wan D, Sun Y, Guo B, He Z, Ren X, Jiang S, Gao C, Guo H, Sun T, Wang F. Effects of Glucagon-Like Peptide-1 Receptor Agonist Exendin-4 on the Reinstatement of Cocaine-Mediated Conditioned Place Preference in Mice. Front Behav Neurosci 2022; 15:769664. [PMID: 35069139 PMCID: PMC8766416 DOI: 10.3389/fnbeh.2021.769664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
A high percentage of relapse to compulsive cocaine-taking and cocaine-seeking behaviors following abstinence constitutes a major obstacle to the clinical treatment of cocaine addiction. Thus, there is a substantial need to develop effective pharmacotherapies for the prevention of cocaine relapse. The reinstatement paradigm is known as the most commonly used animal model to study relapse in abstinent human addicts. The primary aim of this study is to investigate the potential effects of systemic administration of glucagon-like peptide-1 receptor agonist (GLP-1RA) exendin-4 (Ex4) on the cocaine- and stress-triggered reinstatement of cocaine-induced conditioned place preference (CPP) in male C57BL/6J mice. The biased CPP paradigm was induced by alternating administration of saline and cocaine (20 mg/kg), followed by extinction training and then reinstatement by either a cocaine prime (10 mg/kg) or exposure to swimming on the reinstatement test day. To examine the effects of Ex4 on the reinstatement, Ex4 was systemically administered 1 h after the daily extinction session. Additionally, we also explored the associated molecular basis of the behavioral effects of Ex4. The expression of nuclear factor κβ (NF-κβ) in the nucleus accumbens (NAc) was detected using Western blotting. As a result, all animals that were treated with cocaine during the conditioning period successfully acquired CPP, and their CPP response was extinguished after 8 extinction sessions. Furthermore, the animals that were exposed to cocaine or swimming on the reinstatement day showed a significant reinstatement of CPP. Interestingly, systemic pretreatment with Ex4 was sufficient to attenuate cocaine- and stress-primed reinstatement of cocaine-induced CPP. Additionally, the expression of NF-κβ, which was upregulated by cocaine, was normalized by Ex4 in the cocaine-experienced mice. Altogether, our study reveals the novel effect of Ex4 on the reinstatement of cocaine-induced CPP and suggests that GLP-1R agonists appear to be highly promising drugs in the treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Hailiang Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Din Wan
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yangyang Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Baorui Guo
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Zhenquan He
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xiaofan Ren
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shucai Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Caibing Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Hua Guo,
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Tao Sun,
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Feng Wang,
| |
Collapse
|
27
|
Deschaine SL, Farokhnia M, Gregory-Flores A, Zallar LJ, You ZB, Sun H, Harvey DM, Marchette RCN, Tunstall BJ, Mani BK, Moose JE, Lee MR, Gardner E, Akhlaghi F, Roberto M, Hougland JL, Zigman JM, Koob GF, Vendruscolo LF, Leggio L. A closer look at alcohol-induced changes in the ghrelin system: novel insights from preclinical and clinical data. Addict Biol 2022; 27:e13033. [PMID: 33908131 PMCID: PMC8548413 DOI: 10.1111/adb.13033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/16/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
Ghrelin is a gastric-derived peptide hormone with demonstrated impact on alcohol intake and craving, but the reverse side of this bidirectional link, that is, the effects of alcohol on the ghrelin system, remains to be fully established. To further characterize this relationship, we examined (1) ghrelin levels via secondary analysis of human laboratory alcohol administration experiments with heavy-drinking participants; (2) expression of ghrelin, ghrelin receptor, and ghrelin-O-acyltransferase (GOAT) genes (GHRL, GHSR, and MBOAT4, respectively) in post-mortem brain tissue from individuals with alcohol use disorder (AUD) versus controls; (3) ghrelin levels in Ghsr knockout and wild-type rats following intraperitoneal (i.p.) alcohol administration; (4) effect of alcohol on ghrelin secretion from gastric mucosa cells ex vivo and GOAT enzymatic activity in vitro; and (5) ghrelin levels in rats following i.p. alcohol administration versus a calorically equivalent non-alcoholic sucrose solution. Acyl- and total-ghrelin levels decreased following acute alcohol administration in humans, but AUD was not associated with changes in central expression of ghrelin system genes in post-mortem tissue. In rats, alcohol decreased acyl-ghrelin, but not des-acyl-ghrelin, in both Ghsr knockout and wild-type rats. No dose-dependent effects of alcohol were observed on acyl-ghrelin secretion from gastric mucosa cells or on GOAT acylation activity. Lastly, alcohol and sucrose produced distinct effects on ghrelin in rats despite equivalent caloric value. Our findings suggest that alcohol acutely decreases peripheral ghrelin concentrations in vivo, but not in proportion to alcohol's caloric value or through direct interaction with ghrelin-secreting gastric mucosal cells, the ghrelin receptor, or the GOAT enzyme.
Collapse
Affiliation(s)
- Sara L. Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adriana Gregory-Flores
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA,Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Lia J. Zallar
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA,Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Zhi-Bing You
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Hui Sun
- Clinical Core Laboratory, Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Deon M. Harvey
- Office of the Scientific Director, National Institute on Drug Abuse, Baltimore, Maryland, USA
| | - Renata C. N. Marchette
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Brendan J. Tunstall
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Bharath K. Mani
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jacob E. Moose
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, USA,Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | - Mary R. Lee
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA
| | - Eliot Gardner
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - James L. Hougland
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, USA,Department of Chemistry, Syracuse University, Syracuse, New York, USA,BioInspired Syracuse, Syracuse University, Syracuse, New York, USA
| | - Jeffrey M. Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA,Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA,Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - George F. Koob
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Leandro F. Vendruscolo
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National, Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Maryland, USA,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island, USA,Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA,Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
28
|
Shevchouk OT, Tufvesson-Alm M, Jerlhag E. An Overview of Appetite-Regulatory Peptides in Addiction Processes; From Bench to Bed Side. Front Neurosci 2021; 15:774050. [PMID: 34955726 PMCID: PMC8695496 DOI: 10.3389/fnins.2021.774050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
There is a substantial need for new pharmacological treatments of addiction, and appetite-regulatory peptides are implied as possible candidates. Appetite regulation is complex and involves anorexigenic hormones such as glucagon-like peptide-1 (GLP-1) and amylin, and orexigenic peptides like ghrelin and all are well-known for their effects on feeding behaviors. This overview will summarize more recent physiological aspects of these peptides, demonstrating that they modulate various aspects of addiction processes. Findings from preclinical, genetic, and experimental clinical studies exploring the association between appetite-regulatory peptides and the acute or chronic effects of addictive drugs will be introduced. Short or long-acting GLP-1 receptor agonists independently attenuate the acute rewarding properties of addictive drugs or reduce the chronic aspects of drugs. Genetic variation of the GLP-1 system is associated with alcohol use disorder. Also, the amylin pathway modulates the acute and chronic behavioral responses to addictive drugs. Ghrelin has been shown to activate reward-related behaviors. Moreover, ghrelin enhances, whereas pharmacological or genetic suppression of the ghrelin receptor attenuates the responses to various addictive drugs. Genetic studies and experimental clinical studies further support the associations between ghrelin and addiction processes. Further studies should explore the mechanisms modulating the ability of appetite-regulatory peptides to reduce addiction, and the effects of combination therapies or different diets on substance use are warranted. In summary, these studies provide evidence that appetite-regulatory peptides modulate reward and addiction processes, and deserve to be investigated as potential treatment target for addiction.
Collapse
Affiliation(s)
- Olesya T Shevchouk
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Differential Influence of Pueraria lobata Root Extract and Its Main Isoflavones on Ghrelin Levels in Alcohol-Treated Rats. Pharmaceuticals (Basel) 2021; 15:ph15010025. [PMID: 35056082 PMCID: PMC8777655 DOI: 10.3390/ph15010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022] Open
Abstract
The study was carried out on alcohol-preferring male Wistar rats. The following drugs were repeatedly (28×) administered: acamprosate (500 mg/kg, p.o.), naltrexone (0.1 mg/kg, i.p), and Pueraria lobata (kudzu) root extract (KU) (500 mg/kg, p.o.) and its isoflavones: daidzin (40 mg/kg, p.o.) and puerarin (150 mg/kg, p.o.). Their effects on a voluntary alcohol intake were assessed. KU and alcohol were also given for 9 days in an experiment on alcohol tolerance development. Finally, total and active ghrelin levels in peripheral blood serum were measured by ELISA method. Acamprosate, naltrexone, daidzin, and puerarin, reducing the alcohol intake, caused an increase in both forms of ghrelin levels. On the contrary, though KU inhibited the alcohol intake and alcohol tolerance development, it reduced ghrelin levels in alcohol-preferring rats. The changes of ghrelin concentration could play a role as an indicator of the currently used drugs. The other effect on the KU-induced shift in ghrelin levels in the presence of alcohol requires further detailed study.
Collapse
|
30
|
Winzeler B, Sailer CO, Coynel D, Zanchi D, Vogt DR, Urwyler SA, Refardt J, Christ-Crain M. A randomized controlled trial of the GLP-1 receptor agonist dulaglutide in primary polydipsia. J Clin Invest 2021; 131:e151800. [PMID: 34473645 DOI: 10.1172/jci151800] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/31/2021] [Indexed: 01/24/2023] Open
Abstract
BackgroundPrimary polydipsia, characterized by excessive fluid intake, carries the risk of water intoxication and hyponatremia, but treatment options are scarce. Glucagon-like peptide 1 (GLP-1) reduces appetite and food intake. In experimental models, GLP-1 has also been shown to play a role in thirst and drinking behavior. The aim of this trial was to investigate whether GLP-1 receptor agonists reduce fluid intake in patients with primary polydipsia.MethodsIn this randomized, double-blind, placebo-controlled, 3-week crossover trial, 34 patients with primary polydipsia received weekly dulaglutide (1.5 mg, Trulicity) in one treatment segment and placebo (0.9% sodium chloride) in the other. During the last treatment week, patients attended an 8-hour evaluation visit with free access to water. The primary endpoint was total fluid intake during the evaluation visits. Treatment effects were estimated using linear mixed-effects models. In a subset of 15 patients and an additional 15 matched controls, thirst perception and neuronal activity in response to beverage pictures were assessed by functional MRI.RESULTsPatients on dulaglutide reduced their fluid intake by 490 mL (95% CI: -780, -199; P = 0.002), from 2950 mL (95% CI: 2435, 3465) on placebo to 2460 mL (95% CI: 1946, 2475) on dulaglutide (model estimates), corresponding to a relative reduction of 17%. Twenty-four-hour urinary output was reduced by -943 mL (95% CI: -1473, -413; P = 0.001). Thirst perception in response to beverage pictures was higher for patients with primary polydipsia than for controls, and lower for patients on dulaglutide versus placebo, but functional activity was similar among groups and treatments.CONCLUSIONSGLP-1 receptor agonists reduce fluid intake and thirst perception in patients with primary polydipsia and could therefore be a treatment option for these patients.Trial registrationClinicaltrials.gov NCT02770885.FundingSwiss National Science Foundation (grant 32473B_162608); University Hospital and University of Basel; Young Talents in Clinical Research grant from the Swiss Academy of Medical Sciences and the Gottfried & Julia Bangerter-Rhyner Foundation; Top-up Grant from the PhD Programme in Health Sciences, University of Basel.
Collapse
Affiliation(s)
- Bettina Winzeler
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Clara O Sailer
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| | - David Coynel
- Division of Cognitive Neuroscience, Department of Psychology and.,Transfaculty Research Platform, University of Basel, Basel, Switzerland
| | - Davide Zanchi
- F. Hoffmann-La Roche, Roche Innovation Centre Basel, Basel, Switzerland.,Stanford University Graduate School of Business, Stanford, California, USA
| | - Deborah R Vogt
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland.,Clinical Trial Unit, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Sandrine A Urwyler
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Julie Refardt
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| |
Collapse
|
31
|
Zhu C, Tao H, Rong S, Xiao L, Li X, Jiang S, Guo B, Wang L, Ding J, Gao C, Chang H, Sun T, Wang F. Glucagon-Like Peptide-1 Analog Exendin-4 Ameliorates Cocaine-Mediated Behavior by Inhibiting Toll-Like Receptor 4 Signaling in Mice. Front Pharmacol 2021; 12:694476. [PMID: 34349653 PMCID: PMC8327264 DOI: 10.3389/fphar.2021.694476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Exendin-4 (Ex4), a long-lasting glucagon-like peptide-1 analog, was reported to exert favourable actions on inhibiting cocaine-associated rewarding and reinforcing effects of drug in animal models of addiction. However, the therapeutic potential of different dose of GLP-1 receptor agonist Ex4 in different behavioral paradigms and the underlying pharmacological mechanisms of action are incompletely understood. Herein, we firstly investigated the effects of Ex4 on cocaine-induced condition place preference (CPP) as well as extinction and reinstatement in male C57BL/6J mice. Additionally, we sought to elucidate the underlying pharmacological mechanism of these actions of Ex4. The paradigm of cocaine-induced CPP was established using 20 mg/kg cocaine or saline alternately during conditioning, while the reinstatement paradigm was modeled using 10 mg/kg cocaine on the reinstatement day. Different dose of Ex4 was administrated intraperitoneally either during conditioning or during extinction state or only on the test day. To elucidate the molecular mechanism underlying the potential effects of Ex4 on maladaptive behaviors of cocaine, the TLR4-related inflammation within the hippocampus was observed by immunofluorescence staining, and the expression levels of toll-like receptor 4 (TLR4), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β were detected by Western blotting. As a consequence, systemic administration of different dose of Ex4 was sufficient to inhibit the acquisition and expression of cocaine-induced CPP, facilitate the extinction of cocaine-associated reward and attenuate reinstatement of cocaine-induced behavior. Furthermore, Ex4 treatment diminished expression levels of TLR4, TNF-α, and IL-1β, which were up-regulated by cocaine exposure. Altogether, our results indicated that Ex4 effectively ameliorated cocaine-induced behaviors likely through neurobiological mechanisms partly attributable to the inhibition of TLR4, TNF-α and IL-1β in mice. Consequently, our findings improved our understanding of the efficacy of Ex4 for the amelioration of cocaine-induced behavior and suggested that Ex4 may be applied as a drug candidate for cocaine addiction.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Hong Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shikuo Rong
- Department of General Surgery, Chengdu Second Hospital, Chendu, China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shucai Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Baorui Guo
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Caibing Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Haigang Chang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Douton JE, Augusto C, Stoltzfus B, Carkaci-Salli N, Vrana KE, Grigson PS. Glucagon-like peptide-1 receptor agonist, exendin-4, reduces reinstatement of heroin-seeking behavior in rats. Behav Pharmacol 2021; 32:265-277. [PMID: 33229892 PMCID: PMC8119287 DOI: 10.1097/fbp.0000000000000609] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Opioid use disorder (OUD) causes the death of nearly 130 Americans daily. It is evident that new avenues for treatment are needed. To this end, studies have reported that 'satiety' agents such as the glucagon-like peptide-1 receptor (GLP-1R) agonist, exendin-4 (Ex-4), decreases responding for addictive drugs such as cocaine, nicotine, alcohol, and oxycodone, but no work has been done with heroin. In this study, we used a reward devaluation model in which rats avoid ingesting a saccharin solution that predicts drug availability to test the effects of 2.4 μg/kg Ex-4 on responding for a natural reward cue (i.e., saccharin) and on cue- and drug-induced heroin seeking. The results showed that treatment with Ex-4 during the 16-day abstinence period and on the test day decreased cue-induced heroin seeking. Drug-induced heroin seeking also was reduced by Ex-4, but only when using a 1 h, but not a 6 h, pretreatment time. Treatment with Ex-4 did not alter intake of the saccharin cue when the drug was on board, but a history of treatment with Ex-4 increased acceptance of the saccharin cue in later extinction trials. Finally, treatment with Ex-4 did not alter body weight, but was associated with increased Orexin 1 receptor (OX1) mRNA expression in the nucleus accumbens shell. Taken together, these findings are the first to show that treatment with a GLP-1R agonist can reduce both cue-induced seeking and drug-induced reinstatement of heroin seeking. As such, a GLP-1R agonist may serve as an effective treatment for OUD in humans.
Collapse
|
33
|
Cannabinoid-Induced Conditioned Place Preference, Intravenous Self-Administration, and Behavioral Stimulation Influenced by Ghrelin Receptor Antagonism in Rats. Int J Mol Sci 2021; 22:ijms22052397. [PMID: 33673659 PMCID: PMC7957642 DOI: 10.3390/ijms22052397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/13/2021] [Accepted: 02/21/2021] [Indexed: 11/24/2022] Open
Abstract
Cannabis/cannabinoids are widely used for recreational and therapy purposes, but their risks are largely disregarded. However, cannabinoid-associated use disorders and dependence are alarmingly increasing and an effective treatment is lacking. Recently, the growth hormone secretagogue receptor (GHSR1A) antagonism was proposed as a promising mechanism for drug addiction therapy. However, the role of GHS-R1A and its endogenous ligand ghrelin in cannabinoid abuse remains unclear. Therefore, the aim of our study was to investigate whether the GHS-R1A antagonist JMV2959 could reduce the tetrahydrocannabinol (THC)-induced conditioned place preference (CPP) and behavioral stimulation, the WIN55,212-2 intravenous self-administration (IVSA), and the tendency to relapse. Following an ongoing WIN55,212-2 self-administration, JMV2959 3 mg/kg was administered intraperitoneally 20 min before three consequent daily 120-min IVSA sessions under a fixed ratio FR1, which significantly reduced the number of the active lever-pressing, the number of infusions, and the cannabinoid intake. Pretreatment with JMV2959 suggested reduction of the WIN55,212-2-seeking/relapse-like behavior tested in rats on the twelfth day of the forced abstinence period. On the contrary, pretreatment with ghrelin significantly increased the cannabinoid IVSA as well as enhanced the relapse-like behavior. Co-administration of ghrelin with JMV2959 abolished/reduced the significant efficacy of the GHS-R1A antagonist in the cannabinoid IVSA. Pretreatment with JMV2959 significantly and dose-dependently reduced the manifestation of THC-induced CPP. The THC-CPP development was reduced after the simultaneous administration of JMV2959 with THC during conditioning. JMV2959 also significantly reduced the THC-induced behavioral stimulation in the LABORAS cage. Our findings suggest that GHS-R1A importantly participates in the rewarding/reinforcing effects of cannabinoids.
Collapse
|
34
|
Farokhnia M, Abshire KM, Hammer A, Deschaine SL, Saravanakumar A, Cobbina E, You ZB, Haass-Koffler CL, Lee MR, Akhlaghi F, Leggio L. Neuroendocrine Response to Exogenous Ghrelin Administration, Combined With Alcohol, in Heavy-Drinking Individuals: Findings From a Randomized, Double-Blind, Placebo-Controlled Human Laboratory Study. Int J Neuropsychopharmacol 2021; 24:464-476. [PMID: 33560411 PMCID: PMC8278796 DOI: 10.1093/ijnp/pyab004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Accumulating evidence has established a role for the orexigenic hormone ghrelin in alcohol-seeking behaviors. Accordingly, the ghrelin system may represent a potential pharmacotherapeutic target for alcohol use disorder. Ghrelin modulates several neuroendocrine pathways, such as appetitive, metabolic, and stress-related hormones, which are particularly relevant in the context of alcohol use. The goal of the present study was to provide a comprehensive assessment of neuroendocrine response to exogenous ghrelin administration, combined with alcohol, in heavy-drinking individuals. METHODS This was a randomized, crossover, double-blind, placebo-controlled human laboratory study, which included 2 experimental alcohol administration paradigms: i.v. alcohol self-administration and i.v. alcohol clamp. Each paradigm consisted of 2 counterbalanced sessions of i.v. ghrelin or placebo administration. Repeated blood samples were collected during each session, and peripheral concentrations of the following hormones were measured: leptin, glucagon-like peptide-1, pancreatic polypeptide, gastric inhibitory peptide, insulin, insulin-like growth factor-1, cortisol, prolactin, and aldosterone. RESULTS Despite some statistical differences, findings were consistent across the 2 alcohol administration paradigms: i.v. ghrelin, compared to placebo, increased blood concentrations of glucagon-like peptide-1, pancreatic polypeptide, cortisol, and prolactin, both acutely and during the whole session. Lower levels of leptin and higher levels of aldosterone were also found during the ghrelin vs placebo session. CONCLUSION These findings, gathered from a clinically relevant sample of heavy-drinking individuals with alcohol use disorder, provide a deeper insight into the complex interplay between ghrelin and appetitive, metabolic, and stress-related neuroendocrine pathways in the context of alcohol use.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kelly M Abshire
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Aaron Hammer
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Sara L Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Anitha Saravanakumar
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | | | - Zhi-Bing You
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Carolina L Haass-Koffler
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA,Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, Rhode Island,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island
| | - Mary R Lee
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland, USA,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA,Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA,Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA,Correspondence: Lorenzo Leggio, MD, PhD, NIDA and NIAAA, NIH, Biomedical Research Center, 251 Bayview Boulevard, Suite 200, Room 01A844, Baltimore, MD 21224 ()
| |
Collapse
|
35
|
Mahajan VR, Elvig SK, Vendruscolo LF, Koob GF, Darcey VL, King MT, Kranzler HR, Volkow ND, Wiers CE. Nutritional Ketosis as a Potential Treatment for Alcohol Use Disorder. Front Psychiatry 2021; 12:781668. [PMID: 34916977 PMCID: PMC8670944 DOI: 10.3389/fpsyt.2021.781668] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing brain disorder, characterized by compulsive alcohol seeking and disrupted brain function. In individuals with AUD, abstinence from alcohol often precipitates withdrawal symptoms than can be life threatening. Here, we review evidence for nutritional ketosis as a potential means to reduce withdrawal and alcohol craving. We also review the underlying mechanisms of action of ketosis. Several findings suggest that during alcohol intoxication there is a shift from glucose to acetate metabolism that is enhanced in individuals with AUD. During withdrawal, there is a decline in acetate levels that can result in an energy deficit and could contribute to neurotoxicity. A ketogenic diet or ingestion of a ketone ester elevates ketone bodies (acetoacetate, β-hydroxybutyrate and acetone) in plasma and brain, resulting in nutritional ketosis. These effects have been shown to reduce alcohol withdrawal symptoms, alcohol craving, and alcohol consumption in both preclinical and clinical studies. Thus, nutritional ketosis may represent a unique treatment option for AUD: namely, a nutritional intervention that could be used alone or to augment the effects of medications.
Collapse
Affiliation(s)
- Vikrant R Mahajan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Sophie K Elvig
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Valerie L Darcey
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - M Todd King
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Henry R Kranzler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Corinde E Wiers
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
36
|
Xiao X, Qin M, Zhang F, Su Y, Zhou B, Zhou Z. Understanding the Mechanism of Activation/Deactivation of GLP-1R via Accelerated Molecular Dynamics Simulation. Aust J Chem 2021. [DOI: 10.1071/ch20127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R), as a member of the class B G protein-coupled receptors (GPCRs), plays a crucial role in regulating blood glucose level signal recognition through its activation. The conformation changes during the activation pathway are of particular importance for its function. To investigate the activation mechanism of GLP-1R, the crystal structures of active and inactive forms are chosen to perform a total of 2 μs of accelerated molecular dynamics (aMD) simulations and 400ns of conventional molecular dynamics (cMD) simulations. With the aid of structural analysis and potential of mean force (PMF) calculations, we reveal the role of different helices in the activation and deactivation process and obtain the intermediate states during activation and deactivation that are difficult to capture in experiments. Protein structure network (PSN) was utilised to clarify the allosteric communication pathways of activation and deactivation and reveal the mechanisms of its activation and deactivation. The results could advance our understanding of the activation mechanism of GLP-1R and the related drug design.
Collapse
|
37
|
Verdejo-Garcia A, Crossin R. Nutritional and metabolic alterations arising from stimulant use: A targeted review of an emerging field. Neurosci Biobehav Rev 2020; 120:303-306. [PMID: 33188822 DOI: 10.1016/j.neubiorev.2020.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
People with stimulant use disorders are usually underweight. Current accepted knowledge is that they are skinny because stimulants suppress appetite - they eat less. But is it that simple? Here we review the relationship between stimulant use, food intake, metabolism and body weight, and highlight key points that may challenge current knowledge: 1) Stimulants interact with the hormonal signals that regulate appetite including ghrelin and leptin, and can produce long-term alterations in the ability to monitor and compensate energy deficits. 2) The diet of people with stimulant use disorders might be characterised by altered nutritional geometry, rather than overall reduction of food intake. 3) Long-term changes in homeostatic signals and nutrient intake can produce metabolic deficits that contribute to unhealthy low weight. Based on this knowledge we advocate for increasing awareness about the nuances of stimulant-related nutritional and metabolic deficits among addiction clinicians, and increased research on the interaction between stimulant use, appetite signaling, and metabolic deficits.
Collapse
Affiliation(s)
| | - Rose Crossin
- Department of Population Health, University of Otago, New Zealand; Florey Institute of Neuroscience and Mental Health, Australia
| |
Collapse
|
38
|
Winzeler B, da Conceição I, Refardt J, Sailer CO, Dutilh G, Christ-Crain M. Effects of glucagon-like peptide-1 receptor agonists on fluid intake in healthy volunteers. Endocrine 2020; 70:292-298. [PMID: 32623637 DOI: 10.1007/s12020-020-02394-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/18/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Glucagon-like peptide-1 (GLP-1) receptor agonists (RA) reduce appetite and energy intake. Recent findings from animal studies suggest a role of GLP-1 in drinking and water homeostasis. We aimed to elucidate whether GLP-1 RA reduce fluid intake in healthy volunteers. METHODS Double-blind, randomized, placebo-controlled, crossover study. 20 healthy volunteers received dulaglutide 1.5 mg and placebo (0,9% sodium chloride) subcutaneously once weekly for 3 weeks. At the end of each treatment period, participants attended an 8-h evaluation visit, during which they were requested to eat two standardized meals and to drink water ad libitum. The primary outcome was the total fluid intake (ml) during the evaluation visit. RESULTS Mean [SD] age of participants (60% female) was 27 [9.2] years. All but four participants drank less on dulaglutide versus placebo treatment despite identical food intake. The median [IQR] difference of fluid intake on dulaglutide compared to placebo treatment was -100 ml [-400-0]. Median [IQR] total fluid intake was 1300 ml [888-1600] versus 1600 ml [1000-1720], on dulaglutide and placebo treatment, p = 0.06. Median [IQR] 24-h urine output was reduced in dulaglutide versus placebo-treated participants: 1250 ml [975-2080] versus 1680 ml [1400-2040], p = 0.04. Median serum sodium levels were 140 mmol/L on both visits and no difference in thirst perception was noted. CONCLUSIONS GLP-1 RA such as dulaglutide seem to modulate fluid balance in humans. This leads us to speculate that GLP-1 RA may be an interesting therapeutic options for patients with excessive drinking behavior e.g., primary polydipsia.
Collapse
Affiliation(s)
- Bettina Winzeler
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Clinical Research, University Hospital Basel, Basel, Switzerland.
| | - Ismael da Conceição
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Julie Refardt
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Clara O Sailer
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Gilles Dutilh
- Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
39
|
Sustkova‐Fiserova M, Puskina N, Havlickova T, Lapka M, Syslova K, Pohorala V, Charalambous C. Ghrelin receptor antagonism of fentanyl-induced conditioned place preference, intravenous self-administration, and dopamine release in the nucleus accumbens in rats. Addict Biol 2020; 25:e12845. [PMID: 31696597 DOI: 10.1111/adb.12845] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022]
Abstract
The extended occurrence of fentanils abuse associated with the dramatic increase in opioid fatal overdoses and dependence strongly emphasizes insufficiencies in opioid addiction treatment. Recently, the growth hormone secretagogue receptor (GHS-R1A) antagonism was proposed as a promising mechanism for drug addiction therapy. However, the role of GHS-R1A and its endogenous ligand ghrelin in opioid abuse is still unclear. Therefore, the aim of our study was to clarify whether the GHS-R1A antagonist JMV2959 could reduce the fentanyl-induced conditioned place preference (CPP), the fentanyl intravenous self-administration (IVSA), and the tendency to relapse, but also whether JMV2959 could significantly influence the fentanyl-induced dopamine efflux in the nucleus accumbens (NAC) in rats, that importantly participates in opioids' reinforcing effects. Following an ongoing fentanyl self-administration, JMV2959 3 mg/kg was administered intraperitoneally 20 minutes before three consequent daily 360-minute IVSA sessions under a fixed ratio FR1, which significantly reduced the number of active lever-pressing, the number of infusions, and the fentanyl intake. Pretreatment with JMV2959 also reduced the fentanyl-seeking/relapse-like behaviour tested in rats on the 12th day of the forced abstinence period. Pretreatment with JMV2959 significantly and dose-dependently reduced the manifestation of fentanyl-CPP. The fentanyl-CPP development was reduced after the simultaneous administration of JMV2959 with fentanyl during conditioning. The JMV2959 significantly reduced the accumbens dopamine release induced by subcutaneous and intravenous fentanyl. Simultaneously, it affected the concentration of byproducts associated with dopamine metabolism in the NAC. Our findings suggest that GHS-R1A importantly participates in the rewarding/reinforcing effects of fentanyl.
Collapse
Affiliation(s)
| | - Nina Puskina
- Department of Addictology First Faculty of Medicine Charles University Czech Republic
| | - Tereza Havlickova
- Department of Pharmacology, Third Faculty of Medicine Charles University Czech Republic
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine Charles University Czech Republic
| | - Kamila Syslova
- Laboratory of Medicinal Diagnostics Department of Organic Technology ICT Czech Republic
| | - Veronika Pohorala
- Department of Pharmacology, Third Faculty of Medicine Charles University Czech Republic
| | | |
Collapse
|
40
|
Abstract
Addiction is commonly identified with habitual nonmedical self-administration of drugs. It is usually defined by characteristics of intoxication or by characteristics of withdrawal symptoms. Such addictions can also be defined in terms of the brain mechanisms they activate; most addictive drugs cause elevations in extracellular levels of the neurotransmitter dopamine. Animals unable to synthesize or use dopamine lack the conditioned reflexes discussed by Pavlov or the appetitive behavior discussed by Craig; they have only unconditioned consummatory reflexes. Burst discharges (phasic firing) of dopamine-containing neurons are necessary to establish long-term memories associating predictive stimuli with rewards and punishers. Independent discharges of dopamine neurons (tonic or pacemaker firing) determine the motivation to respond to such cues. As a result of habitual intake of addictive drugs, dopamine receptors expressed in the brain are decreased, thereby reducing interest in activities not already stamped in by habitual rewards.
Collapse
Affiliation(s)
- Roy A Wise
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA; .,Behavioral Genetics Laboratory, McLean Hospital, Belmont, Massachusetts 02478, USA;
| | - Mykel A Robble
- Behavioral Genetics Laboratory, McLean Hospital, Belmont, Massachusetts 02478, USA;
| |
Collapse
|
41
|
Sethi S, Sinha A, Gearhardt AN. Low carbohydrate ketogenic therapy as a metabolic treatment for binge eating and ultraprocessed food addiction. Curr Opin Endocrinol Diabetes Obes 2020; 27:275-282. [PMID: 32773576 DOI: 10.1097/med.0000000000000571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW The aim of this study was to highlight the recent advancements and future directions for potential use of a low carbohydrate ketogenic dietary approach to treat binge eating and ultraprocessed food addiction. Herein, we explore proposed mechanisms of why a diet low in refined carbohydrates, processed sugar and higher fat content may be helpful in alleviating symptoms. RECENT FINDINGS Emerging evidence suggests there may be a metabolic role in development of maladaptive eating. These findings broaden our understanding of eating psychopathology causes. Ultraprocessed, refined or high glycemic index carbohydrates are a possible trigger mediating neurochemical responses similar to addiction. The carbohydrate-insulin model of obesity supports observations of these foods triggering abnormal blood sugar and insulin spikes subsequently leading to changes in metabolic and neurobiological signaling. This results in overeating symptoms and hunger exacerbation, which differs from observed effects of healthy fat consumption and lack of similar insulin spikes. As supported in recent case series, significantly reducing or abstaining from these addictive-like ultraprocessed foods and highly refined carbohydrates could be considered a treatment approach. SUMMARY The current review highlights recent and pertinent evidence with respect to theoretical and practical application of low carbohydrate ketogenic therapeutic approaches for ultraprocessed food addiction and binge eating symptoms. VIDEO ABSTRACT:.
Collapse
Affiliation(s)
- Shebani Sethi
- Metabolic Psychiatry Clinic, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| | - Anika Sinha
- Department of Human Biology, Stanford University, Stanford, California
| | - Ashley N Gearhardt
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
42
|
Jensen ME, Galli A, Thomsen M, Jensen KL, Thomsen GK, Klausen MK, Vilsbøll T, Christensen MB, Holst JJ, Owens A, Robertson S, Daws L, Zanella D, Gether U, Knudsen GM, Fink-Jensen A. Glucagon-like peptide-1 receptor regulation of basal dopamine transporter activity is species-dependent. Neurochem Int 2020; 138:104772. [PMID: 32464226 DOI: 10.1016/j.neuint.2020.104772] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 12/27/2022]
Abstract
INTRODUCTION A solid body of preclinical evidence shows that glucagon-like peptide-1 receptor (GLP-1R) agonists attenuate the effects of substance use disorder related behaviors. The mechanisms underlying these effects remain elusive. In the present study, we hypothesized that GLP-1R activation modulates dopaminetransporter (DAT) and thus dopamine (DA) homeostasis in striatum. This was evaluated in three different experiments: two preclinical and one clinical. METHODS Rat striatal DA uptake, DA clearance and DAT cell surface expression was assessed following GLP-1 (7-36)-amide exposure in vitro. DA uptake in mice was assesed ex vivo following systemic treatment with the GLP-1R agonist exenatide. In addition, DA uptake was measured in GLP-1R knockout mice and compared with DA-uptake in wild type mice. In healthy humans, changes in DAT availability was assessed during infusion of exenatide measured by single-photon emission computed tomography imaging. RESULTS In rats, GLP-1 (7-36)-amide increased DA uptake, DA clearance and DAT cell surface expression in striatum. In mice, exenatide did not change striatal DA uptake. In GLP-1R knockout mice, DA uptake was similar to what was measured in wildtype mice. In humans, systemic infusion of exenatide did not result in acute changes in striatal DAT availability. CONCLUSIONS The GLP-1R agonist-induced modulation of striatal DAT activity in vitro in rats could not be replicated ex vivo in mice and in vivo in humans. Therefore, the underlying mechanisms of action for the GLP-1R agonists-induced efficacy in varios addiction-like behavioural models still remain.
Collapse
Affiliation(s)
- Mathias E Jensen
- Psychiatric Centre Copenhagen, University Hospital of Copenhagen, Denmark.
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Morgane Thomsen
- Psychiatric Centre Copenhagen, University Hospital of Copenhagen, Denmark
| | - Kathrine L Jensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gerda K Thomsen
- Neurobiology Research Unit, Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Mette K Klausen
- Psychiatric Centre Copenhagen, University Hospital of Copenhagen, Denmark
| | - Tina Vilsbøll
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte Hospital, Denmark
| | - Mikkel B Christensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research Endocrinology and Metabolism, Copenhagen, Denmark
| | - Anthony Owens
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, USA
| | - Sabrina Robertson
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, USA
| | - Lynette Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, USA
| | - Daniele Zanella
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Fink-Jensen
- Psychiatric Centre Copenhagen, University Hospital of Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Fasting may increase incentive signaling for nonfood rewards. Nutr Res 2020; 77:43-53. [PMID: 32315894 DOI: 10.1016/j.nutres.2020.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 11/22/2022]
Abstract
During acute energy deprivation, hunger signaling mechanisms support homeostasis by enhancing incentive for food. There is some evidence (primarily based on nonhuman experiments) that fasting heightens incentive signaling for nonfood reward as well. We hypothesized that, consistent with results from research in rodent and nonhuman primates, human participants would evidence increased incentive-related brain activity for nonfood rewards during fast (relative to satiety) and that this increase would be heightened when available rewards were immediate. To assess these possibilities, healthy participants with body mass index between 18 and 29 kg/m2 completed a task which engaged participants in opportunities to win immediate and delayed money (Monetary Incentive Delay Task) during 2 neuroimaging sessions (1 postprandial, 1 fasted). Analyses of participants (N = 18 included, body mass index 22.12± 2.72, age 21.39± 3.52) focused on brain activity during the incentive window of the task. Region of interest, as well as whole-brain analyses, supported the hypothesized increase in incentive signaling during fasting in regions that included caudate and putamen. No evidence of interaction was observed between fasting and the effect of reward immediacy or reward magnitude. Although provisional given the modest sample size, these results suggest that acute fasting can heighten incentive signaling for nonfood rewards.
Collapse
|
44
|
Abstract
Although the gut and brain are separate organs, they communicate with each other via trillions of intestinal bacteria that collectively make up one's gut microbiome. Findings from both humans and animals support a critical role of gut microbes in regulating brain function, mood, and behavior. Gut bacteria influence neural circuits that are notably affected in addiction-related behaviors. These include circuits involved in stress, reward, and motivation, with substance use influencing gut microbial abnormalities, suggesting significant gut-brain interactions in drug addiction. Given the overwhelming rates of opioid overdose deaths driven by abuse and addiction, it is essential to characterize mechanisms mediating the abuse potential of opioids. We discuss in this review the role of gut microbiota in factors that influence opioid addiction, including incentive salience, reward, tolerance, withdrawal, stress, and compromised executive function. We present clinical and preclinical evidence supporting a bidirectional relationship between gut microbiota and opioid-related behaviors by highlighting the effects of opioid use on gut bacteria, and the effects of gut bacteria on behavioral responses to opioids. Further, we discuss possible mechanisms of this gut-brain communication influencing opioid use. By clarifying the relationship between the gut microbiome and opioid-related behaviors, we improve understanding on mechanisms mediating reward-, motivation-, and stress-related behaviors and disorders, which may contribute to the development of effective, targeted therapeutic interventions in opioid dependence and addiction.
Collapse
Affiliation(s)
- Michelle Ren
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA,
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA,
- Department of Emergency Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA,
| |
Collapse
|
45
|
Demirel G, Guzel E, Creighton CJ, Ozturk YE, Kucuk C, Asliyuksek H, Yurdun T. MDMA Abuse in Relation to MicroRNA Variation in Human Brain Ventral Tegmental Area and Nucleus Accumbens. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1989-1999. [PMID: 32184864 PMCID: PMC7059052 DOI: 10.22037/ijpr.2019.15097.12874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
3,4-methylenedioxymethamphetamine (MDMA) is one of the most widespread illegal drugs, that have been used particularly by young people in the 15-34 age group. MicroRNAs (miRNAs) are endogenously synthesized, non-coding, and small RNAs that post-transcriptionally regulate their target genes' expression by inhibiting protein translation or degradation. miRNAs are increasingly implicated in drug-related gene expressions and functions. Notably, there are no reports of miRNA variation in the human brain in MDMA abuse. We here present a miRNA profiling study - the first such study, to the best of our knowledge - into the post-mortem human brains of a sample of people with MDMA abuse, along with non-drug dependent controls. The miRNA profiling of nucleus accumbens (NAc) and ventral tegmental areas (VTA) was performed by microarray analysis. Subsequently, two candidate miRNA putative biomarkers were selected according to significant regional differential expression (miR-1202 and miR-7975), using quantitative reverse-transcription PCR (qRT-PCR). We showed that the expression level of miR-7975 was significantly lower in the VTA regions of the 30 MDMA users, as compared with the 30 control samples. Another significantly deregulated miR-1202 was down-regulated in the NAc regions of 30 MDMA samples in comparison to the control samples. Alteration of these miRNAs can potentially serve as novel biomarkers for MDMA abuse, and warrant further research in independent and larger samples of patients.
Collapse
Affiliation(s)
- Goksun Demirel
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Istanbul, Turkey.,Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Çukurova University, Adana, Turkey.,G D and E G. These authors contributed equally to this work
| | - Esra Guzel
- Department of Molecular Biology and Genetics, Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey.,G D and E G. These authors contributed equally to this work
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Cancer Center Division of Biostatistics, Houston, Texas
| | - Yeter Erol Ozturk
- Chemistry Department, Council of Forensic Medicine, Istanbul, Turkey
| | | | | | - Türkan Yurdun
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| |
Collapse
|
46
|
Farokhnia M, McDiarmid GR, Newmeyer MN, Munjal V, Abulseoud OA, Huestis MA, Leggio L. Effects of oral, smoked, and vaporized cannabis on endocrine pathways related to appetite and metabolism: a randomized, double-blind, placebo-controlled, human laboratory study. Transl Psychiatry 2020; 10:71. [PMID: 32075958 PMCID: PMC7031261 DOI: 10.1038/s41398-020-0756-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
As perspectives on cannabis continue to shift, understanding the physiological and behavioral effects of cannabis use is of paramount importance. Previous data suggest that cannabis use influences food intake, appetite, and metabolism, yet human research in this regard remains scant. The present study investigated the effects of cannabis administration, via different routes, on peripheral concentrations of appetitive and metabolic hormones in a sample of cannabis users. This was a randomized, crossover, double-blind, placebo-controlled study. Twenty participants underwent four experimental sessions during which oral cannabis, smoked cannabis, vaporized cannabis, or placebo was administered. Active compounds contained 6.9 ± 0.95% (~50.6 mg) ∆9-tetrahydrocannabinol (THC). Repeated blood samples were obtained, and the following endocrine markers were measured: total ghrelin, acyl-ghrelin, leptin, glucagon-like peptide-1 (GLP-1), and insulin. Results showed a significant drug main effect (p = 0.001), as well as a significant drug × time-point interaction effect (p = 0.01) on insulin. The spike in blood insulin concentrations observed under the placebo condition (probably due to the intake of brownie) was blunted by cannabis administration. A significant drug main effect (p = 0.001), as well as a trend-level drug × time-point interaction effect (p = 0.08) was also detected for GLP-1, suggesting that GLP-1 concentrations were lower under cannabis, compared to the placebo condition. Finally, a significant drug main effect (p = 0.01) was found for total ghrelin, suggesting that total ghrelin concentrations during the oral cannabis session were higher than the smoked and vaporized cannabis sessions. In conclusion, cannabis administration in this study modulated blood concentrations of some appetitive and metabolic hormones, chiefly insulin, in cannabis users. Understanding the mechanisms underpinning these effects may provide additional information on the cross-talk between cannabinoids and physiological pathways related to appetite and metabolism.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD USA ,grid.21107.350000 0001 2171 9311Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Gray R. McDiarmid
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD USA
| | - Matthew N. Newmeyer
- grid.21107.350000 0001 2171 9311Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA ,grid.94365.3d0000 0001 2297 5165Chemistry and Drug Metabolism Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| | - Vikas Munjal
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD USA
| | - Osama A. Abulseoud
- grid.94365.3d0000 0001 2297 5165Chemistry and Drug Metabolism Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| | - Marilyn A. Huestis
- grid.94365.3d0000 0001 2297 5165Chemistry and Drug Metabolism Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD USA ,grid.265008.90000 0001 2166 5843Lambert Center for the Study of Medicinal Cannabis and Hemp, Thomas Jefferson University, Philadelphia, PA USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA. .,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, USA. .,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA. .,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
47
|
Buyuktuncer Z, Akyol A, Ayaz A, Nergiz-Unal R, Aksoy B, Cosgun E, Ozdemir P, Pekcan G, Besler HT. Turkish version of the Yale Food Addiction Scale: preliminary results of factorial structure, reliability, and construct validity. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2019; 38:42. [PMID: 31822299 PMCID: PMC6905049 DOI: 10.1186/s41043-019-0202-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Yale Food Addiction Scale (YFAS) was established to identify individuals exhibiting signs of addiction towards certain types of food. This study aimed to develop a Turkish version of the Yale Food Addiction Scale and test its psychometric properties. METHODS The backward translation techniques were used to develop Turkish versions of the YFAS, and its reproducibility was assessed. Turkish version of the YFAS was administered to a total of 1033 participants (439 men and 594 women), aged 19-65 years. Exploratory factor analysis and confirmatory factor analysis were used to examine the factorial structure of the tool. Construct validity was assessed by principal component factor analysis with varimax rotation. Reliabilities were estimated with Cronbach's alpha coefficient. The criterion-related validity was tested by the administration of Eating Attitude Test-26 (EAT-26) to all participants. RESULTS The primary factor loadings for seven items were ranged between 0.45 and 0.79, and no items cross-loaded onto other factors. The fit indices showed that eight items of the YFAS were a good representation of the item responses and each item loaded significantly on the specified factor (p < 0.001 for each). YFAS subscales had a high internal consistency and test-retest reliability. The criterion-related validity of the tool showed a positive relationship with scales of the EAT-26. CONCLUSION Current study suggested that the Turkish version of the YFAS is a reliable, valid, and useful tool for assessing the signs of food addiction in a non-clinical sample.
Collapse
Affiliation(s)
- Zehra Buyuktuncer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06230 Ankara, Turkey
| | - Aslı Akyol
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06230 Ankara, Turkey
| | - Aylin Ayaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06230 Ankara, Turkey
| | - Reyhan Nergiz-Unal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06230 Ankara, Turkey
| | - Burcu Aksoy
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06230 Ankara, Turkey
| | - Erdal Cosgun
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Acıbadem University, Atasehir, Istanbul, Turkey
| | - Pınar Ozdemir
- Department of Biostatistics and Medical Informatics, School of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Gulden Pekcan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06230 Ankara, Turkey
| | - Halit Tanju Besler
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06230 Ankara, Turkey
| |
Collapse
|
48
|
Intravenous administration of ghrelin increases serum cortisol and aldosterone concentrations in heavy-drinking alcohol-dependent individuals: Results from a double-blind, placebo-controlled human laboratory study. Neuropharmacology 2019; 158:107711. [PMID: 31310775 DOI: 10.1016/j.neuropharm.2019.107711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/25/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022]
Abstract
Increasing evidence supports the role of appetite-regulating hormones, including ghrelin, in alcohol use disorder (AUD). Effects of ghrelin administration on cortisol and aldosterone, two hormones known to influence the development and maintenance of AUD, have been observed in ghrelin-exposed tissues or cells, as well as rodents and healthy volunteers, however whether these effects replicate in individuals with AUD is unknown. Here, we tested the hypothesis that intravenous administration of ghrelin leads to increase in endogenous serum cortisol and aldosterone concentrations in alcohol-dependent, heavy drinking individuals, and that these changes may predict ghrelin-induced alcohol craving. This was a double-blind, placebo-controlled human laboratory study in non-treatment-seeking, heavy-drinking, alcohol-dependent individuals randomized to receive either placebo, 1 mcg/kg or 3 mcg/kg of intravenous ghrelin. Then, participants underwent a cue-reactivity procedure in a bar-like setting, which included exposure to both neutral (juice) and alcohol cues. Repeated blood samples were collected and used to measure endogenous cortisol and aldosterone serum concentrations, in response to exogenous ghrelin administration. Furthermore, cortisol and aldosterone serum concentrations were used to develop a model to predict the effect of exogenous ghrelin administration on alcohol craving. Intravenous ghrelin administration increased endogenous cortisol and aldosterone serum concentrations. While the effects on cortisol were greater than those on aldosterone, only the ghrelin-induced changes in aldosterone serum concentrations predicted craving. These findings provide initial evidence of ghrelin effects on glucocorticoids and mineralocorticoids in individuals with AUD, thereby providing additional information on the potential mechanisms by which the ghrelin system may play a role in alcohol craving and seeking in AUD.
Collapse
|
49
|
Vestlund J, Winsa-Jörnulf J, Hovey D, Lundström S, Lichtenstein P, Anckarsäter H, Studer E, Suchankova P, Westberg L, Jerlhag E. Ghrelin and aggressive behaviours-Evidence from preclinical and human genetic studies. Psychoneuroendocrinology 2019; 104:80-88. [PMID: 30818255 DOI: 10.1016/j.psyneuen.2019.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/06/2023]
Abstract
Aggressive behaviour is of crucial importance in the defence for limited resources including food and mates and involves central serotonin as well as dopamine signalling. As ghrelin modulates food intake and sexual behaviour we initially investigated the hypothesis that central ghrelin signalling regulates aggressive behaviour in the resident intruder paradigm in male mice. Moreover, interaction between ghrelin signalling and serotonergic, noradrenergic as well as dopaminergic neurotransmission in aggression was investigated. The relevance of ghrelin for human aggression per se as well as for aggression induced by alcohol was evaluated in a human genetic association study comprising young men (n = 784) from the normal population assessed for anti-social behaviours. The present study demonstrates that central ghrelin infusion, but not ghrelin administered systemically, increases aggression. Moreover aggressive behaviour is decreased by pharmacological suppression of the growth hormone secretagogue receptor-1 A (GHSR-1A) by JMV2959. As indicated by the ex vivo biochemical data serotonin, rather than dopamine or noradrenaline, in amygdala may have central roles for the ability of JMV2959 to reduce aggression. This link between central serotonin, GHSR-1A and aggression is further substantiated by the behavioural data showing that JMV2959 cannot decrease aggression following depletion of central serotonin signalling. The genetic association study demonstrates that males carrying the Leu72Leu genotype of the pre-pro-ghrelin gene and displaying hazardous alcohol use are more aggressive when compared to the group carrying the Met-allele. Collectively, this contributes to the identification of central ghrelin pathway as an important modulator in the onset of aggressive behaviours in male mice.
Collapse
Affiliation(s)
- Jesper Vestlund
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Julia Winsa-Jörnulf
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel Hovey
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Lundström
- Institute of Neuroscience and Physiology, Gillberg Neuropsychiatry Centre, University of Gothenburg, Sweden
| | - Paul Lichtenstein
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Henrik Anckarsäter
- Institute of Neuroscience and Physiology, Centre of Ethics, Law and Mental Health (CELAM), University of Gothenburg, Sweden
| | - Erik Studer
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Petra Suchankova
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
50
|
Abstract
Purpose of review This narrative review provides an overview of the relationships among tobacco smoking, eating behaviors, and body weight. The aims are to (1) examine the concurrent and longitudinal associations between tobacco smoking and body weight, (2) describe potential mechanisms underlying the relationships between smoking and body weight, with a focus on mechanisms related to eating behaviors and appetite, and (3) discuss management of concomitant tobacco smoking and obesity. Recent findings Adolescents who smoke tobacco tend to have body mass indexes (BMI) the same as or higher than nonsmokers. However, adult tobacco smokers tend to have lower BMIs and unhealthier diets relative to nonsmokers. Smoking cessation is associated with a mean body weight gain of 4.67 kg after 12 months of abstinence, though there is substantial variability. An emerging literature suggests that metabolic factors known to regulate food intake (e.g., ghrelin, leptin) may also play an important role in smoking-related behaviors. While the neural mechanisms underlying tobacco smoking-induced weight gain remain unclear, brain imaging studies indicate that smoking and eating cues overlap in several brain regions associated with learning, memory, motivation and reward. Behavioral and pharmacological treatments have shown short-term effects in limiting post-cessation weight gain; however, their longer-term efficacy is limited. Summary Further studies are needed to identify the exact mechanisms underlying smoking, eating behaviors, and body weight. Moreover, effective treatment options are needed to prevent long-term weight gain during smoking abstinence.
Collapse
|