1
|
Van TTH, Pham MQ, Huong TTT, Long BNT, Long PQ, Huong LTT, Lenon GB, Uyen NTT, Ngo ST. Searching potential GSK-3β inhibitors from marine sources using atomistic simulations. Mol Divers 2025:10.1007/s11030-025-11174-x. [PMID: 40172822 DOI: 10.1007/s11030-025-11174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Abstract
Glycogen synthase kinase-3 beta, GSK-3β, is one of the most common targets for cancer treatment. Inhibiting the biological activity of the enzyme can lead to the prevention of cancer development. Especially, estimating a new inhibitor for preventing GSK-3β by using natural compounds is of great interest. In this context, the marine compounds were investigated for their ligand-binding affinity to GSK-3β via atomistic simulations. The compounds, including xanalteric acid I, chaunolidone A, macrolactin V, and aspergiolide A, were suggested that can inhibit GSK-3β via molecular docking and steered-MD simulations. Moreover, the potency of these compounds was also confirmed via the perturbation simulations. Furthermore, the toxicity prediction also indicates that these compounds would adopt less toxicity. Therefore, it may be argued that four compounds can play as potential inhibitors preventing GSK-3β. In addition, the residues including Ile62, Val135, Pro136, Arg141, Lys183, Gln185, Asn186, and Asp200 play a crucial role in the GSK-3β binding process.
Collapse
Affiliation(s)
- Tran Thi Hoai Van
- Vietnam University of Traditional Medicine, Ministry of Health, Hanoi, Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, Vietnam
| | | | - Bui Nguyen Thanh Long
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Pham Quoc Long
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Le Thi Thuy Huong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, Vietnam
| | - George Binh Lenon
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | - Son Tung Ngo
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
2
|
Yang J, He H, Chen L, Wei Y, Liu Y, Li X, Yuan C. LncRNA HAGLROS: A Vital Oncogenic Propellant in Various Human Cancers. Curr Drug Targets 2025; 26:267-281. [PMID: 39484770 DOI: 10.2174/0113894501345632241022055444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024]
Abstract
HAGLR Opposite Strand lncRNA (HAGLROS) is a long non-coding RNA (lncRNA) located on the long arm of human chromosome 2 at locus 2q31.1. Emerging evidence highlights HAGLROS as a pivotal player in human cancers, characterized by its significant upregulation across multiple malignancies where it functions as an oncogenic driver. Its aberrant expression is closely linked to the initiation and progression of 13 distinct cancer types, notably correlating with adverse clinical outcomes and reduced overall survival rates in 9 of these cancer types. Mechanistically, HAGLROS is under the regulatory influence of the transcription factor STAT3, exerts competitive binding to 9 miRNAs, activates 5 signaling pathways pivotal for cancer cell proliferation and metastasis, as well as intricately modulates gene expression profiles. Given its multifaceted roles, HAGLROS emerges as a promising candidate for cancer diagnostics and prognostics. Moreover, its potential as a therapeutic target holds considerable promise for novel treatment strategies in oncology. This review synthesizes current research on HAGLROS, covering its expression patterns, biological roles, and clinical significance in cancer. By shedding light on these aspects, this review aims to contribute new perspectives that advance our understanding of cancer biology, enhance diagnostic accuracy, refine prognostic assessments, and pave the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Jingjie Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Haodong He
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Lihan Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yuzhang Wei
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yulong Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xiaolan Li
- The Second People's Hospital of China Three Gorges University, Yichang, 443002, China
- Department of Obstetrics and Gynecology, The Second People's Hospital of Yichang, Hubei, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
3
|
Li X, Shi L, Long Y, Wang C, Qian C, Li W, Tian Y, Duan Y. Volatile organic compounds in exhaled breath: a promising approach for accurate differentiation of lung adenocarcinoma and squamous cell carcinoma. J Breath Res 2024; 18:046007. [PMID: 39019071 DOI: 10.1088/1752-7163/ad6474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Lung cancer subtyping, particularly differentiating adenocarcinoma (ADC) from squamous cell carcinoma (SCC), is paramount for clinicians to develop effective treatment strategies. In this study, we aimed: (i) to discover volatile organic compound (VOC) biomarkers for precise diagnosis of ADC and SCC, (ii) to investigated the impact of risk factors on ADC and SCC prediction, and (iii) to explore the metabolic pathways of VOC biomarkers. Exhaled breath samples from patients with ADC (n= 149) and SCC (n= 94) were analyzed by gas chromatography-mass spectrometry. Both multivariate and univariate statistical analysis method were employed to identify VOC biomarkers. Support vector machine (SVM) prediction models were developed and validated based on these VOC biomarkers. The impact of risk factors on ADC and SCC prediction was investigated. A panel of 13 VOCs was found to differ significantly between ADC and SCC. Utilizing the SVM algorithm, the VOC biomarkers achieved a specificity of 90.48%, a sensitivity of 83.50%, and an area under the curve (AUC) value of 0.958 on the training set. On the validation set, these VOC biomarkers attained a predictive power of 85.71% for sensitivity and 73.08% for specificity, along with an AUC value of 0.875. Clinical risk factors exhibit certain predictive power on ADC and SCC prediction. Integrating these risk factors into the prediction model based on VOC biomarkers can enhance its predictive accuracy. This work indicates that exhaled breath holds the potential to precisely detect ADCs and SCCs. Considering clinical risk factors is essential when differentiating between these two subtypes.
Collapse
Affiliation(s)
- Xian Li
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo 726000, People's Republic of China
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Lin Shi
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yijing Long
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-source and Eco-environment, College of Life Sciences, Sichuan University, Chengdu 610065, People's Republic of China
| | - Chunyan Wang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-source and Eco-environment, College of Life Sciences, Sichuan University, Chengdu 610065, People's Republic of China
| | - Cheng Qian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Wenwen Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-source and Eco-environment, College of Life Sciences, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
4
|
Zhang D, Jin J, Dou J, Huang Y, Zhang H. Impact on hospitalization and infection patterns of advanced lung cancer with lower respiratory tract infections: Targeted therapy vs. chemoradiotherapy. Oncol Lett 2024; 27:154. [PMID: 38406598 PMCID: PMC10884997 DOI: 10.3892/ol.2024.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
Lung cancer is a prevalent and highly lethal disease often complicated by lower respiratory tract infections. Microbial patterns in these infections vary based on treatment modalities. The present study explored the impact of lung cancer treatments on pathogens and clinical characteristics in the presence of lower respiratory tract infections to inform antimicrobial drug selection. A retrospective analysis was performed that included data from 93 patients diagnosed with advanced lung cancer and lower respiratory tract infections between January 2019 and December 2021. Patients were divided into the targeted therapy and chemoradiotherapy groups. Clinical, nutritional, biochemical, infection and pathogenetic indicators were compared. Of the 93 cases, 24 were in the targeted therapy group and 69 were in the chemoradiotherapy group. Pathological type and hospitalization duration differed significantly (P<0.05), but age, sex, smoking history, alcohol consumption and underlying diseases did not (P>0.05). Lymphocyte counts differed (P<0.05), while body mass index, albumin, hemoglobin, alanine aminotransferase and creatinine levels, erythrocyte sedimentation rate, hypersensitive C-reactive protein and procalcitonin levels, and the percentage of neutrophils did not (P>0.05). Pathogenetic testing was negative in 15 patients and positive in 78 patients, with Gram-negative bacteria (61.77%), fungi (17.65%) and viruses (11.76%) predominant in the targeted therapy group. In the chemoradiotherapy group, Gram-negative bacteria (47.46%), fungi (28.81%) and viruses (16.95%) were also more prevalent. Candida albicans was the most frequent fungal infection in both groups, and mixed infections were common (50% in targeted therapy and 73.92% in chemoradiotherapy). The chemoradiotherapy group had significantly more mixed infections (P<0.05). Overall, common pathogens in both groups included Gram-negative bacteria, fungi and viruses. Chemoradiotherapy patients experienced longer hospital stays and a higher incidence of mixed infections, predominantly involving Gram-negative bacteria and fungi. The results provide valuable insights into the rational selection of empirical antibiotics and antifungals for critically ill patients with lung cancer and lower respiratory tract infections in targeted therapy or chemoradiotherapy.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Respiratory Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Jingjing Jin
- Department of Respiratory Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Jianying Dou
- Department of Respiratory Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yan Huang
- Department of Respiratory Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON M5B1T8, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON M5B1T8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5B1T8, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5B1T8, Canada
| |
Collapse
|
5
|
Zhang P, Zhang L, Xu K, Lin Y, Ma R, Zhang M, Li X. Evaluating the impact of PD-1 inhibitor treatment on key health outcomes for cancer patients in China. Int J Clin Pharm 2024; 46:429-438. [PMID: 38165516 DOI: 10.1007/s11096-023-01675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/19/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND There is a lack of studies examining the influence of programmed cell death protein 1 (PD-1) inhibitors on the health outcomes of cancer patients in China. AIM This study aimed to evaluate prospective health outcomes associated with introducing PD-1 inhibitor treatment in China over five years. METHOD We constructed a partitioned survival model to assess disparities in health outcomes over a 5-year time frame between two scenarios: one involving the availability of PD-1 inhibitor class with standard of care and the other involving standard of care alone. The impact on various health outcomes were assessed, including life years (LYs) gained, quality-adjusted life years (QALYs) gained, progression-free survival (PFS) years gained, the reduction in the number of grade 3-5 adverse events (AEs), and the improvement in objective remission rates (ORR). A sensitivity analysis was conducted to assess the robustness and reliability of the model. RESULTS From 2023 to 2027, the incorporation of PD-1 inhibitor class treatments was anticipated to yield substantial improvements in health outcomes, with an estimated increase of 1,336,332 LYs (+ 24.7%), 1,065,359 QALYs (+ 30.3%), and 1,177,564 PFS years (+ 57.4%) compared to standard of care alone. Simultaneously, the number of grade 3-5 AEs decreased by 334,976 (- 13.0%), and the ORR saw a 19.1% increase (+ 105.6%) relative to standard of care treatment alone. CONCLUSION This study provides a analysis of the potential beneficial effects on health outcomes in the Chinese population after introducing PD-1 inhibitor class treatment. The findings suggest the PD-1 inhibitor class will significantly improve patient survival.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Lingli Zhang
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Kai Xu
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yingtao Lin
- Department of Drug Clinical Trial Institution, Fujian Cancer Hospital, Fuzhou, 350014, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Rui Ma
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Mengdie Zhang
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Li
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
6
|
Lu T, Zhou L, Chu Z, Song Y, Wang Q, Zhao M, Dai C, Chen L, Cheng G, Wang J, Guo Q. Cordyceps sinensis relieves non-small cell lung cancer by inhibiting the MAPK pathway. Chin Med 2024; 19:54. [PMID: 38528546 PMCID: PMC10962170 DOI: 10.1186/s13020-024-00895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/23/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVE To determine the pharmacodynamic mechanism underlying Cordyceps sinensis relief in a murine model of non-small cell lung cancer (NSCLC). METHODS We created a murine model of NSCLC and studied the potential molecular mechanism by which C. sinensis relieved NSCLC using a combination of transcriptomics, proteomics, and experimental validation. RESULTS C. sinensis markedly suppressed the fluorescence values in mice with NSCLC, improved the pathologic morphology of lung tissue, ameliorated inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6, interleukin-10, and the oxidative stress indicators superoxide dismutase, malondialdehyde, and glutathione peroxidase). Transcriptomics results showed that the therapeutic effect of C. sinensis was primarily involved in the differentiation and activation of T cells. Based on the proteomic results, C. sinensis likely exerted a protective effect by recruiting immune cells and suppressing tumor cell proliferation via the MAPK pathway. Finally, the experimental validation results indicated that C. sinensis significantly decreased the VEGF and Ki67 expression, downregulated RhoA, Raf-1, and c-fos expression, which are related to cell migration and invasion, increased the serum concentration of hematopoietic factors (EPO and GM-CSF), and improved the percentage of immune cells (natural killer cells, dendritic cells, and CD4+ and CD8+ lymphocytes), which enhanced immune function. CONCLUSIONS Based on our preclinical study, C. sinensis was shown to exert a protective effect on NSCLC, primarily by inhibiting the MAPK pathway.
Collapse
Affiliation(s)
- Tianming Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lirun Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zheng Chu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yang Song
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qixin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Minghong Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chuanhao Dai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
7
|
Jachowski A, Marcinkowski M, Szydłowski J, Grabarczyk O, Nogaj Z, Marcin Ł, Pławski A, Jagodziński PP, Słowikowski BK. Modern therapies of nonsmall cell lung cancer. J Appl Genet 2023; 64:695-711. [PMID: 37698765 PMCID: PMC10632224 DOI: 10.1007/s13353-023-00786-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Lung cancer (LC), particularly nonsmall cell lung cancer (NSCLC), is one of the most prevalent types of neoplasia worldwide, regardless of gender, with the highest mortality rates in oncology. Over the years, treatment for NSCLC has evolved from conventional surgery, chemotherapy, and radiotherapy to more tailored and minimally invasive approaches. The use of personalised therapies has increased the expected efficacy of treatment while simultaneously reducing the frequency of severe adverse effects (AEs). In this review, we discuss established modern approaches, including immunotherapy and targeted therapy, as well as experimental molecular methods like clustered regularly interspaced short palindromic repeat (CRISPR) and nanoparticles. These emerging methods offer promising outcomes and shorten the recovery time for various patients. Recent advances in the diagnostic field, including imaging and genetic profiling, have enabled the implementation of these methods. The versatility of these modern therapies allows for multiple treatment options, such as single-agent use, combination with existing conventional treatments, or incorporation into new regimens. As a result, patients can survive even in the advanced stages of NSCLC, leading to increased survival indicators such as overall survival (OS) and progression-free survival (PFS).
Collapse
Affiliation(s)
- Andrzej Jachowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Mikołaj Marcinkowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Jakub Szydłowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Oskar Grabarczyk
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Zuzanna Nogaj
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Łaz Marcin
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 Street, 60-479, Poznań, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Bartosz Kazimierz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland.
| |
Collapse
|
8
|
Deng Y, Liu L, Xiao X, Zhao Y. A four-gene-based methylation signature associated with lymph node metastasis predicts overall survival in lung squamous cell carcinoma. Genes Genet Syst 2023; 98:209-219. [PMID: 37839873 DOI: 10.1266/ggs.22-00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
We aimed to identify prognostic methylation genes associated with lymph node metastasis (LNM) in lung squamous cell carcinoma (LUSC). Bioinformatics methods were used to obtain optimal prognostic genes for risk model construction using data from the Cancer Genome Atlas database. ROC curves were adopted to predict the prognostic value of the risk model. Multivariate regression was carried out to identify independent prognostic factors and construct a prognostic nomogram. The differences in overall survival, gene mutation and pathways between high- and low-risk groups were analyzed. Finally, the expression and methylation level of the optimal prognostic genes among different LNM stages were analyzed. FGA, GPR39, RRAD and TINAGL1 were identified as the optimal prognostic genes and were applied to establish a prognostic risk model. Significant differences were found among the different LNM stages. The risk model could predict overall survival, showing a moderate performance with AUC of 0.64-0.68. The model possessed independent prognostic value, and could accurately predict 1-, 3- and 5-year survival. Patients with a high risk score showed poorer survival. Lower gene mutation frequencies and enrichment of leukocyte transendothelial migration and the VEGF signaling pathway in the high-risk group may lead to the poor prognosis. This study identified several specific methylation markers associated with LNM in LUSC and generated a prognostic model to predict overall survival for LUSC patients.
Collapse
Affiliation(s)
- Yufei Deng
- Department of Pharmacy, Wuxi No.2 People's Hospital
| | - Lifeng Liu
- Department of Pharmacy, Wuxi No.2 People's Hospital
| | - Xia Xiao
- Department of Oncology, Wuxi No.2 People's Hospital
| | - Yin Zhao
- Department of Pharmacy, Wuxi No.2 People's Hospital
| |
Collapse
|
9
|
Gao M, Li Y, Cao P, Liu H, Chen J, Kang S. Exploring the therapeutic potential of targeting polycomb repressive complex 2 in lung cancer. Front Oncol 2023; 13:1216289. [PMID: 37909018 PMCID: PMC10613995 DOI: 10.3389/fonc.2023.1216289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
The pathogenesis of lung cancer (LC) is a multifaceted process that is influenced by a variety of factors. Alongside genetic mutations and environmental influences, there is increasing evidence that epigenetic mechanisms play a significant role in the development and progression of LC. The Polycomb repressive complex 2 (PRC2), composed of EZH1/2, SUZ12, and EED, is an epigenetic silencer that controls the expression of target genes and is crucial for cell identity in multicellular organisms. Abnormal expression of PRC2 has been shown to contribute to the progression of LC through several pathways. Although targeted inhibition of EZH2 has demonstrated potential in delaying the progression of LC and improving chemotherapy sensitivity, the effectiveness of enzymatic inhibitors of PRC2 in LC is limited, and a more comprehensive understanding of PRC2's role is necessary. This paper reviews the core subunits of PRC2 and their interactions, and outlines the mechanisms of aberrant PRC2 expression in cancer and its role in tumor immunity. We also summarize the important role of PRC2 in regulating biological behaviors such as epithelial mesenchymal transition, invasive metastasis, apoptosis, cell cycle regulation, autophagy, and PRC2-mediated resistance to LC chemotherapeutic agents in LC cells. Lastly, we explored the latest breakthroughs in the research and evaluation of medications that target PRC2, as well as the latest findings from clinical studies investigating the efficacy of these drugs in the treatment of various human cancers.
Collapse
Affiliation(s)
- Min Gao
- Department of Thoracic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Medical University, First Clinical Medical College, Hohhot, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Peijun Cao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shirong Kang
- Department of Thoracic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
10
|
Yang B, Teng M, You H, Dong Y, Chen S. A Nomogram for Predicting Survival in Advanced Non-Small-Cell Lung Carcinoma Patients: A Population-Based Study. Cancer Invest 2023; 41:672-685. [PMID: 37490629 DOI: 10.1080/07357907.2023.2241547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/17/2022] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Non-small-cell lung cancer (NSCLC) remains the most common malignant cancer. We identified 43140 advanced NSCLC patients from the SEER database to develop and validate a new prognostic model. The prognostic performance was evaluated by P value, concordance index, net reclassification index, integrated discrimination improvement, and decision curve analysis. The following variables were contained in the final prognostic model: age, sex, race, TNM stage, and grade and treatment options. Compared to the AJCC staging system, this prognostic model is conducive to the implementation of individualized clinical treatment schemes and can be an important part of the precise medical care of NSCLC tumors.
Collapse
Affiliation(s)
- Bo Yang
- Department of Pharmacy, First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, China
| | - Mengmeng Teng
- Department of Pharmacy, First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, China
| | - Haisheng You
- Department of Pharmacy, First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, China
| | - Yalin Dong
- Department of Pharmacy, First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, China
| | - Siying Chen
- Department of Pharmacy, First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, China
| |
Collapse
|
11
|
Guo Z, Hu L, Chen Q, Hu J, Liu J, Hu W. Synchronous pulmonary MALT lymphoma and squamous cell lung cancer: a case report. World J Surg Oncol 2023; 21:182. [PMID: 37337168 DOI: 10.1186/s12957-023-03069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/11/2023] [Indexed: 06/21/2023] Open
Abstract
Pulmonary B-cell lymphoma in the extranodal marginal zone of mucosa-associated lymphoid tissue (MALT), a rare tumor originating from bronchial mucosa-associated lymphoid tissue, is the major histologic type of primary pulmonary lymphoma. Combined lung squamous cell carcinoma with pulmonary MALT lymphoma is rare. A 63-year-old male patient presented to the hospital because of a dry cough, and chest CT showed soft tissue density nodules in the upper lobe of the right lung, the boundary was visible lobulation and spiculation, and the middle lobe of the right lung showed patchy shadow, moderate enhancement, associated with bronchial traction. After a multidisciplinary diagnosis and treatment (MDT) discussion, surgical resection was done for the patient, and postoperative pathological results showed pulmonary MALT lymphoma combined with lung squamous carcinoma. For complex pulmonary multiple lesions, judgment needs to be made after MDT discussion, and timely intervention is required for lesions suspicious of malignancy. There are no uniform recommendations for the management of mixed tumors of the lung, and an individualized treatment plan needs to be developed based on the patient's actual condition.
Collapse
Affiliation(s)
- Zixin Guo
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, People's Republic of China
| | - Liwen Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, People's Republic of China
| | - Qiongrong Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Junwei Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, People's Republic of China
| | - Jun Liu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, People's Republic of China
| | - Weidong Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
- Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
12
|
Zhai W, Chen S, Duan F, Wang J, Zhao Z, Lin Y, Rao B, Wang Y, Zheng L, Long H. Risk stratification and prognosis prediction based on inflammation-related gene signature in lung squamous carcinoma. Cancer Med 2023; 12:4968-4980. [PMID: 36056909 PMCID: PMC9972108 DOI: 10.1002/cam4.5190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/21/2022] [Accepted: 08/15/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Inflammation is known to have an intricate relationship with tumorigenesis and tumor progression while it is also closely related to tumor immune microenvironment. Whereas the role of inflammation-related genes (IRGs) in lung squamous carcinoma (LUSC) is barely understood. Herein, we recognized IRGs associated with overall survival (OS), built an IRGs signature for risk stratification and explored the impact of IRGs on immune infiltration landscape of LUSC patients. METHODS The RNA-sequencing and clinicopathological data of LUSC patients were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, which were defined as training and validation cohorts. Cox regression and least absolute shrinkage and selection operator analyses were performed to build an IRG signature. CIBERSORT, microenvironment cell populations-counter and tumor immune dysfunction and rejection (TIDE) algorithm were used to perform immune infiltration analysis. RESULTS A two-IRG signature consisting of KLF6 and SGMS2 was identified according to the training set, which could categorize patients into two different risk groups with distinct OS. Patients in the low-risk group had more anti-tumor immune cells infiltrated while patient with high-risk had lower TIDE score and higher levels of immune checkpoint molecules expressed. The IRG signature was further identified as an independent prognostic factor of OS. Subsequently, a prognostic nomogram including IRG signature, age, and cancer stage was constructed for predicting individualized OS, whose concordance index values were 0.610 (95% CI: 0.568-0.651) in the training set and 0.652 (95% CI: 0.580-0.724) in validation set. Time-dependent receiver operator characteristic curves revealed that the nomogram had higher prediction accuracy compared with the traditional tumor stage alone. CONCLUSION The IRG signature was a predictor for patients with LUSC and might serve as a potential indicator of the efficacy of immunotherapy. The nomogram based on the IRG signature showed a relatively good predictive performance in survival.
Collapse
Affiliation(s)
- Wenyu Zhai
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Si Chen
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Fangfang Duan
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in Southern China, Guangzhou, China
| | - Junye Wang
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in Southern China, Guangzhou, China
| | - Zerui Zhao
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Yaobin Lin
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Bingyu Rao
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Yizhi Wang
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Lie Zheng
- Medical Imaging Division, Department of Medical Imaging and Interventional Radiology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in Southern China, Guangzhou, China
| | - Hao Long
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
13
|
Wang L, Yao S, Huang F, Lv H, Liu D, Gao T, Wang B, Zhou Z, Cao C, Zhu Q, Weng Q, Zhao G, Hu Y. The UCMSC-bFGF/Scaffold System Accelerates the Healing of the Uterine Full-Thickness Injury. Tissue Eng Part A 2023; 29:112-125. [PMID: 36305369 DOI: 10.1089/ten.tea.2022.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Severe uterine injury is a major cause of endometrial scar formation and female infertility. At present, the methods for accelerating injured uterine healing are still lacking. Genetic engineering modification of mesenchymal stem cells (MSCs) has been shown great promise in preclinical studies on regeneration. Here, we constructed a type of umbilical cord MSCs (UC-MSCs) with overexpressed basic fibroblast growth factor (UCMSC-bFGF) and investigated the effects of the UCMSC-bFGF/scaffold on functional regeneration of the full-thickness defect uterus of the rat model. At days 7, 14, and 30 after treatments, the rats were killed and the injured uterus was observed. The structural and functional change of uterine was assessed by hematoxylin and eosin staining, immunohistochemical staining, and fertility experiment. The UCMSC-bFGF/scaffold group exhibited anti-inflammatory effect, and the number of CD45+ cell in the UCMSC-bFGF/scaffold group was significantly less than that in UC-MSCs/scaffold group and scaffold group, but higher than sham-operated group at day 7 postmending. At day 14, the UCMSC-bFGF/scaffold group exhibited dramatically proangiogenesis efficacy compared with UC-MSCs/scaffold group and scaffold group. At day 30, the endometrial thickness, structure of myometrium, and blood vessels in the UCMSC-bFGF/scaffold were better than those of the UC-MSCs/scaffold group and scaffold group, even close to sham-operated group. Implantation rate at injury region postoperation 30 days in the UCMSC-bFGF/scaffold group (8/16) was significantly higher than that in UC-MSCs/scaffold group (1/16) and scaffold group (0/16). Taken together, the UCMSC-bFGF/scaffold system suppressed local inflammation, promoted angiogenesis, and accelerated regeneration of the defected uterine wall, and thereby greatly shortened the healing time of the injured uterus. Impact statement In this study, we used umbilical cord mesenchymal stem cells (UC-MSCs) with stably overexpressed basic fibroblast growth factor (UCMSC-bFGF) to repair the full-thickness defect uterine wall of the rat model and found that the UCMSC-bFGF/scaffold system suppressed early acute inflammation after uterus injury, promoted angiogenesis, and accelerated regeneration of the injured uterine wall.
Collapse
Affiliation(s)
- Limin Wang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Graduate School of Peking Union Medical College, Nanjing, China
| | - Simin Yao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Feifei Huang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Haining Lv
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Tianyun Gao
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhenhua Zhou
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Chenrui Cao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qi Zhu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Graduate School of Peking Union Medical College, Nanjing, China
| | - Qiao Weng
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
14
|
Li G, Wu L, Yu J, Zhai S, Deng H, Wang Q. Identification and Validation of Three-Gene Signature in Lung Squamous Cell Carcinoma by Integrated Transcriptome and Methylation Analysis. JOURNAL OF ONCOLOGY 2022; 2022:9688040. [PMID: 36193204 PMCID: PMC9525794 DOI: 10.1155/2022/9688040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022]
Abstract
Since DNA methylation (DNAm) is associated with the carcinogenesis of various cancers, this study aimed to explore potential DNAm prognostic signatures of lung squamous cell carcinoma (LUSC). First, transcriptomic and methylation profiles of LUSC were obtained from The Cancer Genome Atlas database (TCGA). DNAm-related genes were screened by integrating DNAm and transcriptome profiles via MethylMix package. Subsequently, a prognostic signature was conducted with the least absolute shrinkage and selector operation (LASSO) Cox analysis. This signature combined with the clinicopathological parameters was then utilized to construct a prognostic nomogram via the rms package. A signature based on three DNAm-related genes claudin 1 (CLDN1), ATP-binding cassette subfamily C member 5 (ABCC5), and cystatin A (CSTA) that were hypomethylated and upregulated in LUSC was constructed. Univariate and multivariate Cox regression analysis suggested that this signature, combined with age and TNM.N stage, was significantly correlated with survival rate. Time-dependent receiver operating characteristics and calibration curves suggested the nomogram constructed with age and TNM.N stage variables could accurately evaluate the 3- and 5-year outcome of LUSC. Finally, the average mRNA and protein expression levels of CLDN1, ABCC5, and CSTA in LUSC were verified to be significantly higher than those in paracancerous tissues. Moreover, silencing CLDN1, ABCC5, and CSTA expressions could significantly reduce the carcinogenesis of the A549 cell line. The DNAm-driven prognostic signature consists of CLDN1, ABCC5, and CSTA incorporated with age and TNM. N stage could facilitate the prediction outcome of LUSC.
Collapse
Affiliation(s)
- Guanghua Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Libo Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Hainan Medical College, Haikou 570100, China
| | - Jiaxing Yu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Siyang Zhai
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Hailong Deng
- Department of Thoracic Surgery, Hailun People's Hospital, Hailun 152300, China
| | - Qiushi Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| |
Collapse
|
15
|
Liao Y, Wu X, Wu M, Fang Y, Li J, Tang W. Non-coding RNAs in lung cancer: emerging regulators of angiogenesis. J Transl Med 2022; 20:349. [PMID: 35918758 PMCID: PMC9344752 DOI: 10.1186/s12967-022-03553-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/23/2022] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the second cancer and the leading cause of tumor-related mortality worldwide. Angiogenesis is a crucial hallmark of cancer development and a promising target in lung cancer. However, the anti-angiogenic drugs currently used in the clinic do not achieve long-term efficacy and are accompanied by severe adverse reactions. Therefore, the development of novel anti-angiogenic therapeutic approaches for lung cancer is urgently needed. Non-coding RNAs (ncRNAs) participate in multiple biological processes in cancers, including tumor angiogenesis. Many studies have demonstrated that ncRNAs play crucial roles in tumor angiogenesis. This review discusses the regulatory functions of different ncRNAs in lung cancer angiogenesis, focusing on the downstream targets and signaling pathways regulated by these ncRNAs. Additionally, given the recent trend towards utilizing ncRNAs as cancer therapeutics, we also discuss the tremendous potential applications of ncRNAs as biomarkers or novel anti-angiogenic tools in lung cancer.
Collapse
Affiliation(s)
- Yajie Liao
- Institute of Pharmacy and Pharmacology, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, Hunan, People's Republic of China
| | - Xudong Wu
- Department of Thoracic Surgery, The Third Hospital of Changsha, Changsha, 410035, People's Republic of China
| | - Mengyu Wu
- School of Medicine, Jianghan University, Wuhan, 430056, People's Republic of China
| | - Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, Yunnan, People's Republic of China
| | - Jie Li
- Institute of Pharmacy and Pharmacology, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, 423000, Hunan, People's Republic of China.
| | - Weiqiang Tang
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
16
|
Fu J, Zeng W, Chen M, Huang L, Li S, Li Z, Pan Q, Lv S, Yang X, Wang Y, Yi M, Zhang J, Lei X. Apigenin suppresses tumor angiogenesis and growth via inhibiting HIF-1α expression in non-small cell lung carcinoma. Chem Biol Interact 2022; 361:109966. [PMID: 35513012 DOI: 10.1016/j.cbi.2022.109966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022]
Abstract
Tumor angiogenesis inhibitors such as Bevacizumab, Ramucirumab and Endostar have been applied to the therapy of non-small cell lung carcinoma (NSCLC) patients, especially for lung adenocarcinoma (LUAD). However, several safe concerns such as neutropenia, febrile neutropenia and hypertension pulmonary hemorrhage limit their further development. And they often showed poor efficacy and serious side effect for lung squamous cell carcinoma (LUSC) patient. Thus, identification of effective and safe tumor angiogenesis inhibitor for NSCLC therapy is warranted. Apigenin is a bioflavonoid with potential anti-tumor effect and perfect safety, but its effect on tumor angiogenesis and underlying mechanism are still unclear. Herein, we found that apigenin not merely suppressed endothelial cells related motilities but also reduced pericyte coverage. Further research showed that apigenin had strong suppressive activity against HIF-1α expression and its downstream VEGF-A/VEGFR2 and PDGF-BB/PDGFβR signaling pathway. Apigenin also reduced microvessel density and pericyte coverage on the xengraft model of NCI-H1299 cells, leading to suppression of tumor growth. Moreover, apigenein showed perfect anti-angiogenic effect in xengraft model of LUSC cell NCI-H1703 cells, indicating it may be developed into a potential angiogenesis inhibitor for LUSC patient. Collectively, our study provides new insights into the anti-tumor mechanism of apigenin and suggests that apigenin is a safe and effective angiogenesis inhibitor for NSCLC therapy.
Collapse
Affiliation(s)
- Jijun Fu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wenjuan Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road, Guangzhou, China
| | - Minshan Chen
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Lijuan Huang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Songpei Li
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Zhan Li
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Qianrong Pan
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Sha Lv
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xiangyu Yang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Ying Wang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Mengmeng Yi
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, China.
| | - Jianye Zhang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Xueping Lei
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
17
|
Zeng Z, Zuo Y, Jin Y, Peng Y, Zhu X. Identification of Extracellular Matrix Signatures as Novel Potential Prognostic Biomarkers in Lung Adenocarcinoma. Front Genet 2022; 13:872380. [PMID: 35711936 PMCID: PMC9197387 DOI: 10.3389/fgene.2022.872380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/03/2022] [Indexed: 02/05/2023] Open
Abstract
The extracellular matrix (ECM) is vital to normal cellular function and has emerged as a key factor in cancer initiation and metastasis. However, the prognostic and oncological values of ECM organization-related genes have not been comprehensively explored in lung adenocarcinoma (LUAD) patients. In this study, we included LUAD samples from The Cancer Genome Atlas (TCGA, training set) and other three validation sets (GSE87340, GSE140343 and GSE115002), then we constructed a three-gene prognostic signature based on ECM organization-related genes. The prognostic signature involving COL4A6, FGA and FSCN1 was powerful and robust in both the training and validation datasets. We further constructed a composite prognostic nomogram to facilitate clinical practice by integrating an ECM organization-related signature with clinical characteristics, including age and TNM stage. Patients with higher risk scores were characterized by proliferation, metastasis and immune hallmarks. It is worth noting that high-risk group showed higher fibroblast infiltration in tumor tissue. Accordingly, factors (IGFBP5, CLCF1 and IL6) reported to be secreted by cancer-associated fibroblasts (CAFs) showed higher expression level in the high-risk group. Our findings highlight the prognostic value of the ECM organization signature in LUAD and provide insights into the specific clinical and molecular features underlying the ECM organization-related signature, which may be important for patient treatment.
Collapse
Affiliation(s)
- Zhen Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanli Zuo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Jin
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofeng Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Osude C, Lin L, Patel M, Eckburg A, Berei J, Kuckovic A, Dube N, Rastogi A, Gautam S, Smith TJ, Sreenivassappa SB, Puri N. Mediating EGFR-TKI Resistance by VEGF/VEGFR Autocrine Pathway in Non-Small Cell Lung Cancer. Cells 2022; 11:1694. [PMID: 35626731 PMCID: PMC9139342 DOI: 10.3390/cells11101694] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/06/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
NSCLC treatment includes targeting of EGFR with tyrosine kinase inhibitors (TKIs) such as Erlotinib; however, resistance to TKIs is commonly acquired through T790M EGFR mutations or overexpression of vascular endothelial growth factor receptor-2 (VEGFR-2). We investigated the mechanisms of EGFR-TKI resistance in NSCLC cell lines with EGFR mutations or acquired resistance to Erlotinib. These studies showed upregulated gene and protein expression of VEGF, VEGFR-2, and a VEGF co-receptor neuropilin-1 (NP-1) in Erlotinib-resistant (1.4-5.3-fold) and EGFR double-mutant (L858R and T790M; 4.1-8.3-fold) NSCLC cells compared to parental and EGFR single-mutant (L858R) NSCLC cell lines, respectively. Immunofluorescence and FACS analysis revealed increased expression of VEGFR-2 and NP-1 in EGFR-TKI-resistant cell lines compared to TKI-sensitive cell lines. Cell proliferation assays showed that treatment with a VEGFR-2 inhibitor combined with Erlotinib lowered cell survival in EGFR double-mutant NSCLC cells to 9% compared to 72% after treatment with Erlotinib alone. Furthermore, Kaplan-Meier analysis revealed shorter median survival in late-stage NSCLC patients with high vs. low VEGFR-2 expression (14 mos vs. 21 mos). The results indicate that VEGFR-2 may play a key role in EGFR-TKI resistance and that combined treatment of Erlotinib with a VEGFR-2 inhibitor may serve as an effective therapy in NSCLC patients with EGFR mutations.
Collapse
Affiliation(s)
- Chike Osude
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Leo Lin
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Meet Patel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Adam Eckburg
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Joseph Berei
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Adijan Kuckovic
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Namrata Dube
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Aayush Rastogi
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Shruti Gautam
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| | - Thomas J. Smith
- College of Education, Northern Illinois University, Dekalb, IL 60115, USA;
| | | | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (C.O.); (L.L.); (M.P.); (A.E.); (J.B.); (A.K.); (N.D.); (A.R.); (S.G.)
| |
Collapse
|
19
|
Wu X, Jia Y, Sun X, Wang J. Acceleration of pelvic tissue generation by overexpression of basic fibroblast growth factor in stem cells. Connect Tissue Res 2022; 63:256-268. [PMID: 33627007 DOI: 10.1080/03008207.2021.1895130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Pelvic organ prolapse (POP) is a common debilitating condition affecting approximately 30-40% of women. The FDA issued a warning about polypropylene mesh used for pelvic floor repair due to erosion, exposure and other complications and banned it in 2019. The application of stem cell therapy and growth factors has strongly promoted the development of pelvic tissue engineering. PURPOSE we intend to address the issues of direct application of growth factors, the side effects of long-term exogenous treatment, and the directional differentiation of stem cells. Methods: we evaluated the paracrine effects and directional differentiation of adipose mesenchymal stem cells through stable overexpression of basic fibroblast growth factor (bFGF). RESULTS we found that the modified stem cells could continuously and stably release bFGF in the initial stage and could spontaneously differentiate into fibroblasts with a high differentiation efficiency in the later stage. CONCLUSION following ADSCs are designed to continuously release controllable levels of growth factors during the control period of repair, taking advantage of the paracrine function of stem cells to accelerate cell growth and extracellular matrix (ECM) reconstruction during the early stage of stem cell implantation, and then stem cells are differentiated into target tissues-fibroblasts to accelerate the reconstruction of pelvic floor tissues, this study demonstrated the strong therapeutic potential of this approach for pelvic tissue engineering. ABBREVIATIONS POP: Pelvic organ prolapse; ADSCs: Adipose-derived stem cells; bFGF: Basic fibroblast growth factor; BMSCs: Bone marrow-derived mesenchymal stem cells; HUVECs: Human umbilical vein endothelial cells; EMSCs: Endometrial mesenchymal stem cells; VEGF: Vascular endothelial growth factor; PDGF: Platelet-derived growth factor ECM: Extracellular matrix; IGF: Insulin-like growth factor; HGF: Hepatocyte growth factor; EGF: Epidermal growth factor; BMP-2: Bone morphogenetic protein 2; FBR: Foreign body reaction.
Collapse
Affiliation(s)
- Xiaotong Wu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing, China
| | - Yuanyuan Jia
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing, China
| | - Xiuli Sun
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing, China
| |
Collapse
|
20
|
Zhai WY, Duan FF, Chen S, Wang JY, Zhao ZR, Wang YZ, Rao BY, Lin YB, Long H. An Aging-Related Gene Signature-Based Model for Risk Stratification and Prognosis Prediction in Lung Squamous Carcinoma. Front Cell Dev Biol 2022; 10:770550. [PMID: 35300428 PMCID: PMC8921527 DOI: 10.3389/fcell.2022.770550] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/04/2022] [Indexed: 12/29/2022] Open
Abstract
Aging is an inevitable process characterized by a decline in many physiological activities, and has been known as a significant risk factor for many kinds of malignancies, but there are few studies about aging-related genes (ARGs) in lung squamous carcinoma (LUSC). We designed this study to explore the prognostic value of ARGs and establish an ARG-based prognosis signature for LUSC patients. RNA-sequencing and corresponding clinicopathological data of patients with LUSC were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The ARG risk signature was developed on the basis of results of LASSO and multivariate Cox analysis in the TCGA training dataset (n = 492). Furthermore, the GSE73403 dataset (n = 69) validated the prognostic performance of this ARG signature. Immunohistochemistry (IHC) staining was used to verify the expression of the ARGs in the signature. A five ARG-based signature, including A2M, CHEK2, ELN, FOS, and PLAU, was constructed in the TCGA dataset, and stratified patients into low- and high-risk groups with significantly different overall survival (OS) rates. The ARG risk score remained to be considered as an independent indicator of OS in the multivariate Cox regression model for LUSC patients. Then, a prognostic nomogram incorporating the ARG risk score with T-, N-, and M-classification was established. It achieved a good discriminative ability with a C-index of 0.628 (95% confidence interval [CI]: 0.586-0.671) in the TCGA cohort and 0.648 (95% CI: 0.535-0.762) in the GSE73403 dataset. Calibration curves displayed excellent agreement between the actual observations and the nomogram-predicted survival. The IHC staining discovered that these five ARGs were overexpression in LUSC tissues. Besides, the immune infiltration analysis in the TCGA cohort represented a distinctly differentiated infiltration of anti-tumor immune cells between the low- and high-risk groups. We identified a novel ARG-related prognostic signature, which may serve as a potential biomarker for individualized survival predictions and personalized therapeutic recommendation of anti-tumor immunity for patients with LUSC.
Collapse
Affiliation(s)
- Wen-Yu Zhai
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Fang-Fang Duan
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Si Chen
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Jun-Ye Wang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ze-Rui Zhao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Yi-Zhi Wang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Bing-Yu Rao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Yao-Bin Lin
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Hao Long
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
21
|
Mitchell JM, Flight RM, Moseley HNB. Untargeted Lipidomics of Non-Small Cell Lung Carcinoma Demonstrates Differentially Abundant Lipid Classes in Cancer vs. Non-Cancer Tissue. Metabolites 2021; 11:740. [PMID: 34822397 PMCID: PMC8622625 DOI: 10.3390/metabo11110740] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 01/25/2023] Open
Abstract
Lung cancer remains the leading cause of cancer death worldwide and non-small cell lung carcinoma (NSCLC) represents 85% of newly diagnosed lung cancers. In this study, we utilized our untargeted assignment tool Small Molecule Isotope Resolved Formula Enumerator (SMIRFE) and ultra-high-resolution Fourier transform mass spectrometry to examine lipid profile differences between paired cancerous and non-cancerous lung tissue samples from 86 patients with suspected stage I or IIA primary NSCLC. Correlation and co-occurrence analysis revealed significant lipid profile differences between cancer and non-cancer samples. Further analysis of machine-learned lipid categories for the differentially abundant molecular formulas identified a high abundance sterol, high abundance and high m/z sphingolipid, and low abundance glycerophospholipid metabolic phenotype across the NSCLC samples. At the class level, higher abundances of sterol esters and lower abundances of cardiolipins were observed suggesting altered stearoyl-CoA desaturase 1 (SCD1) or acetyl-CoA acetyltransferase (ACAT1) activity and altered human cardiolipin synthase 1 or lysocardiolipin acyltransferase activity respectively, the latter of which is known to confer apoptotic resistance. The presence of a shared metabolic phenotype across a variety of genetically distinct NSCLC subtypes suggests that this phenotype is necessary for NSCLC development and may result from multiple distinct genetic lesions. Thus, targeting the shared affected pathways may be beneficial for a variety of genetically distinct NSCLC subtypes.
Collapse
Affiliation(s)
- Joshua M. Mitchell
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Resource Center for Stable Isotope Resolved Metabolomics, University of Kentucky, Lexington, KY 40536, USA
| | - Robert M. Flight
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Resource Center for Stable Isotope Resolved Metabolomics, University of Kentucky, Lexington, KY 40536, USA
| | - Hunter N. B. Moseley
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Resource Center for Stable Isotope Resolved Metabolomics, University of Kentucky, Lexington, KY 40536, USA
- Institute for Biomedical Informatics, University of Kentucky, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
22
|
Diao X, Guo C, Liu L, Wang G, Li S. Identification and validation of an individualized prognostic signature of lung squamous cell carcinoma based on ferroptosis-related genes. Thorac Cancer 2021; 12:3236-3247. [PMID: 34672420 PMCID: PMC8636213 DOI: 10.1111/1759-7714.14195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC), one of the main pathological types of lung cancer, has led to consequential socioeconomic burden. Ferroptosis is an iron-dependent form of cell death process with potentials for therapeutic target in various kinds of tumors. However, whether ferroptosis-related genes (FRGs) are associated with the prognosis of LUSC patients is still unclear. The aim of this study was to establish a FRGs-based signature which could stratify patients with LUSC. METHODS The RNA sequencing profiles and corresponding clinical data of LUSC patients were retrieved from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) dataset. A FRG-based signature was developed using the TCGA-LUSC cohort and validated in the GEO cohort. Gene set enrichment analysis (GSEA) and analysis of immune cell characteristics were conducted to assess the relationship between FRGs and biological function or immune status. A nomogram based on selected clinical factors and the risk scores which were generated from the FRG-based signature was developed using the TCGA cohort and validated in the GEO cohort. RESULTS A set of 16 FRGs, significantly associated with overall survival (OS) in the TCGA cohort, was identified and could classify LUSC patients into two risk groups. Kaplan-Meier analysis illustrated that the survival rate of the high-risk group was significantly lower than the low-risk group. Assessment and external validation of the signature showed that the survival predictive performance of this signature was adequate. Additionally, multiple pathways and functions were enriched through GSEA and the analysis of immune cell characteristics showed significantly different abundances of immune cells among the two risk groups. Finally, a nomogram integrating the FRG-based signature and selected clinical factors was also developed and assessed in both the TCGA and GEO cohort. CONCLUSION This study indicated the association between the FRGs and prognosis of patients with LUSC. Targeting ferroptosis may serve as a novel potential therapeutic alternative for LUSC.
Collapse
Affiliation(s)
- Xiayao Diao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guige Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Chen B, Xie X, Lan F, Liu W. Identification of prognostic markers by weighted gene co-expression network analysis in non-small cell lung cancer. Bioengineered 2021; 12:4924-4935. [PMID: 34369264 PMCID: PMC8806742 DOI: 10.1080/21655979.2021.1960764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the fatal tumors and is associated with a poor prognosis. Cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was used to quantify the proportions of 22 types of immune cells. Weighted gene co-expression network analysis (WGCNA) was established from the GSE37745 data, and key modules correlating most with CD8+ T cell infiltration were determined. Genes that manifested a high module connectivity in the key module were identified as hub genes. Three bioinformatics online databases were used to evaluate hub gene expression levels in tumor and normal tissues. Finally, survival analysis was conducted for these hub genes. In this study, we chose four hub genes (AURKB, CDC20, TPX2 and KIF2C) based on the comprehensive bioinformatics analyses. All hub genes were overexpressed in tumor tissue, and high expression of AURKB, CDC20, TPX2, and KIF2C correlated with the poor prognosis of these patients. In vitro experiments confirmed that CDC20 knockdown inhibited cell proliferation and growth. The above results indicated that AURKB, CDC20, TPX2, and KIF2C are potential CD8+ T cell infiltration-related biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Binglin Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaowei Xie
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Feifeng Lan
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenqi Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
24
|
Xiong Q, Qin B, Xin L, Yang B, Song Q, Wang Y, Zhang S, Hu Y. Real-World Efficacy and Safety of Anlotinib With and Without Immunotherapy in Advanced Non-Small Cell Lung Cancer. Front Oncol 2021; 11:659380. [PMID: 34395243 PMCID: PMC8358741 DOI: 10.3389/fonc.2021.659380] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
Aims Combination of anti-angiogenesis therapy and immunotherapy has showed synergistic effects in non-small cell lung cancer (NSCLC). The aim of this retrospective study was to investigate the efficacy and safety of anlotinib with and without immunotherapy in NSCLC. Methods Pathologically confirmed NSCLC patients (stage IIIB-IV) receiving anlotinib between November 2018 and February 2020 were enrolled for retrospective analysis. The outcomes and safety of overall patients were evaluated, and the efficacies of anlotinib plus immunotherapy and anlotinib alone was compared. The primary endpoint was progression-free survival (PFS). Results A total of 80 patients (median age: 62 years, range: 29-86 years) were included. Overall median PFS was 4.3 months (95% confidence interval (CI): 2.7-5.9 months). In univariate analysis, patients without EGFR mutation, previous EGFR target therapy, and brain metastasis had significantly longer PFS. Cox regression analysis showed that only brain metastasis was an independent predictor of PFS. The median PFS of patients receiving anlotinib plus immunotherapy was slightly longer than that of patients receiving anlotinib alone (4.2 vs 3.1 months); however, the difference was not statistically significant. A tendency of longer median PFS was observed in patients with adenocarcinoma, EGFR wild type, stage IV, no liver metastasis, former smoker, ≥2 previous treatment lines, no previous VEGF or EGFR target therapies in anlotinib plus immunotherapy group. Treatments with anlotinib alone or anlotinib plus immunotherapy were well tolerable. The most common adverse events were fatigue, decreased hemoglobin count, hypertension, hand-foot syndrome, oral mucositis and hoarseness. Conclusion Anlotinib is well tolerable and effective in advanced NSCLC patients. Brain metastasis is an independent predictor of PFS in NSCLC patients receiving anlotinib. Future prospective studies with larger sample size and extended follow-up are needed to confirm the clinical benefit in NSCLC patients treated with anlotinib combined with immunotherapy.
Collapse
Affiliation(s)
- Qi Xiong
- Department of Oncology, General Hospital of Chinese PLA, Beijing, China
| | - Boyu Qin
- Department of Oncology, General Hospital of Chinese PLA, Beijing, China
| | - Lingli Xin
- Department of Gynaecology and Obstetrics, People's Liberation Army (PLA) Rocket Force Characteristic Medical Center, Beijing, China
| | - Bo Yang
- Department of Oncology, General Hospital of Chinese PLA, Beijing, China
| | - Qi Song
- Department of Oncology, General Hospital of Chinese PLA, Beijing, China
| | - Yu Wang
- Department of Oncology, General Hospital of Chinese PLA, Beijing, China
| | - Sujie Zhang
- Department of Oncology, General Hospital of Chinese PLA, Beijing, China
| | - Yi Hu
- Department of Oncology, General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
25
|
Liao L, Cen B, Li G, Wei Y, Wang Z, Huang W, He S, Yuan Y, Ji A. A bivalent cyclic RGD-siRNA conjugate enhances the antitumor effect of apatinib via co-inhibiting VEGFR2 in non-small cell lung cancer xenografts. Drug Deliv 2021; 28:1432-1442. [PMID: 34236267 PMCID: PMC8274511 DOI: 10.1080/10717544.2021.1937381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The vascular endothelial growth factor receptor 2 (VEGFR2) is considered to be a pivotal target for anti-tumor therapy against angiogenesis of non-small cell lung cancer (NSCLC). However, effective and low-toxicity targeted therapies to inhibit VEGFR2 are still lacking. Here, biRGD–siVEGFR2 conjugate comprising murine VEGFR2 siRNA and [cyclo(Arg-Gly-Asp-D-Phe-Lys)-Ahx]2-Glu-PEG-MAL (biRGD) peptide which selectively binds to integrin αvβ3 receptors expressing on neovascularization endothelial cell was synthesized. The anti-tumor activity and renal toxicity of biRGD–siVEGFR2 or its combination therapy with low-dose apatinib were investigated on NSCLC xenografts. The immunogenicity of biRGD–siVEGFR2 was also evaluated in C57BL/6J mice. In vivo, intravenously injected biRGD–siVEGFR2 substantially inhibited NSCLC growth with a marked reduction of vessels and a down-regulation of VEGFR2 in tumor tissue. Furthermore, biRGD–siVEGFR2 in combination with low-dose apatinib achieved powerful anti-tumor effect with less nephrotoxicity compared with the regular dose of apatinib. Besides, no obvious immunogenicity of biRGD–siVEGFR2 was found. These findings demonstrate that biRGD–siVEGFR2 conjugate can be used as a new candidate for the treatment of NSCLC and its combination therapy with apatinib may also provide a novel strategy for cancer treatment in clinic.
Collapse
Affiliation(s)
- Lumin Liao
- Department of Pharmacy, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Bohong Cen
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guoxian Li
- Department of Pharmacy, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Yuanyi Wei
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhen Wang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen Huang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuai He
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Aimin Ji
- Department of Pharmacy, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, China
| |
Collapse
|
26
|
Wang F, Zhou L, Chen N, Li X. The effect of pretreatment BMI on the prognosis and serum immune cells in advanced LSCC patients who received ICI therapy. Medicine (Baltimore) 2021; 100:e24664. [PMID: 33663076 PMCID: PMC7909129 DOI: 10.1097/md.0000000000024664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023] Open
Abstract
This study aims to evaluate the prognosis and serum immune cells of patients with different pretreatment body mass index (BMI) values. The data of 61 newly diagnosed patients with advanced lung squamous cell carcinoma (LSCC) who received immune checkpoint inhibitors (ICIs) combined with chemotherapy were obtained from the database of Rizhao People's Hospital (Rizhao, Shandong). According to the cutoff value of BMI (23.2 kg/m2), 32 patients had a high BMI and the remaining 29 patients had a low BMI. The effects of different BMIs on the prognosis and serum immune cells of patients were analyzed. The median progression-free survival (PFS) times were 7.72 months in the high BMI group and 4.83 months in the low BMI group [adjusted hazard ratio (HR), 0.23; 95% confidence interval (CI), 0.11-0.48; P < .001]. In terms of the overall survival (OS), the median times of the high BMI group and low BMI group were 18.10 and 13.90 months, respectively (adjusted HR, 0.15; 95% CI, 0.07-0.32; P < .001). After 4 cycles of ICI therapy combined with chemotherapy, the objective response rate was 59.4% for the high BMI group and 20.7% for the low BMI group (P = .002). In addition, the number of serum immune cells in patients with high BMI was significantly higher than that in patients with low BMI (all P < .001). There was a linear relationship between BMI value and the number of serum immune cells (all R2 > 0.7). The current results showed that high BMI is associated with better prognosis in LSCC patients who received ICIs, which may be related to higher levels of serum immune cells.
Collapse
|
27
|
Cholesterol-lowering drug pitavastatin targets lung cancer and angiogenesis via suppressing prenylation-dependent Ras/Raf/MEK and PI3K/Akt/mTOR signaling. Anticancer Drugs 2021; 31:377-384. [PMID: 32011362 DOI: 10.1097/cad.0000000000000885] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Therapeutic agents that target both tumor cell and vascular endothelial cell may achieve additional anti-tumor efficacy, particularly in lung cancer due to the critical roles of angiogenesis during lung cancer progression and metastasis. In this work, we showed that pitavastatin, a novel cholesterol-lowering drug, potently inhibited lung cancer cells and angiogenesis. This was achieved by the induction of apoptosis and inhibition of proliferation of lung cancer cells and human lung tumor-associated endothelial cell. Pitavastatin was not only effective to chemo-sensitive but also chemo-resistant lung cancer cells. This was also consistent with the finding that pitavastatin significantly enhanced cisplatin's efficacy in lung cancer xenograft model without causing toxicity in mice. We further showed that pitavastatin inhibited lung tumor angiogenesis in vitro and in vivo through suppressing human lung tumor-associated endothelial cell migration and morphogenesis without affecting adhesion. Mechanistically, we showed that pitavastatin acted on lung cancer cells and human lung tumor-associated endothelial cell through suppressing prenylation-dependent Ras/Raf/MEK and PI3K/Akt/mTOR signaling. Our work is the first to demonstrate the inhibitory effects of pitavastatin on Ras-mediated signaling. Our findings provide pre-clinical evidence to repurpose pitavastatin for the treatment of lung cancer.
Collapse
|
28
|
Qiu MJ, Zhang L, Fang XF, Li QT, Zhu LS, Zhang B, Yang SL, Xiong ZF. Research on the circadian clock gene HNF4a in different malignant tumors. Int J Med Sci 2021; 18:1339-1347. [PMID: 33628089 PMCID: PMC7893568 DOI: 10.7150/ijms.49997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022] Open
Abstract
Background: The circadian rhythm is produced by multiple feedback loops formed by the core clock genes after transcription and translation, thus regulating various metabolic and physiological functions of the human body. We have shown previously that the abnormal expression of 14 clock genes is related closely to the occurrence and development of different malignant tumors, and these genes may play an anti-cancer or pro-cancer role in different tumors. HNF4a has many typical properties of clock proteins involved in the clock gene negative feedback loop regulation process. We need to explore the function of HNF4a as a circadian clock gene in malignant tumors further. Methods: We used The Cancer Genome Atlas (TCGA) database to download the clinicopathological information of twenty malignant tumors and the corresponding RNA-seq data. The HNF4a RNA-seq data standardized by R language and clinical information were integrated to reveal the relationship between HNF4a and prognosis of patients. Results: Analysis of TCGA data showed that the prognosis of HNF4a was significantly different in BLCA, KIRC, LUSC, and READ. High HNF4a expression is correlated with good prognosis in BLCA, KIRC, and READ but poor prognosis in LUSC. However, HNF4a was associated with the stages, T stages, and lymph node status only in BLCA. Conclusions: HNF4a plays different roles in different malignancies, and the abnormal expression of HNF4a has a great correlation with the biological characteristics of BLCA. The low expression of HNF4a could be a reference index for the metastasis, recurrence, and prognosis of BLCA.
Collapse
Affiliation(s)
- Meng-Jun Qiu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Li Zhang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Xie-Fan Fang
- Charles River Laboratories, Inc., 6995 Longley Lane, Reno NV 89511
| | - Qiu-Ting Li
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Li-Sheng Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sheng-Li Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi-Fan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| |
Collapse
|
29
|
Zhang X, Zhu J, Yan J, Xiao Y, Yang R, Huang R, Zhou J, Wang Z, Xiao W, Zheng C, Wang Y. Systems pharmacology unravels the synergic target space and therapeutic potential of Rhodiola rosea L. for non-small cell lung cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153326. [PMID: 32992083 DOI: 10.1016/j.phymed.2020.153326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/13/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Lung cancer is the most common and mortal cancer worldwide. Rhodiola rosea L. (RR), a well-known traditional Chinese medicine (TCM), has been turned out to be effective in anti-lung cancer therapy, but its molecular mechanism of action has not been clearly understood. PURPOSE In this study, we aimed to elucidate the possible molecular mechanism underlying the effect of RR against non-small cell lung cancer (NSCLC) by systems pharmacology. METHODS The effects of RR on NSCLC were examined in Lewis lung carcinoma (LLC) tumor-bearing mice models. The possible molecular mechanism was unraveled by systems pharmacology, which includes pharmacokinetics evaluation, active compounds screening, target prediction and network analysis. Cell proliferation was examined by cell counting kit-8 (CCK-8) assay; cell apoptosis was detected by flow cytometry; protein and proinflammatory cytokines expression were evaluated by Western blot and qRT-PCR. RESULTS In vivo, RR significantly inhibited the tumor growth and prolonged the survival of the tumor bearing mice. In silico, we identified 19 potential active molecules (e.g., salidroside and rhodiosin), 112 targets (e.g., COX-2 and AKT) and 27 pathways (e.g., PI3K/AKT signaling pathway and NF-κB signaling pathway) for RR. Additionally, targets analysis and networks construction further revealed that RR exerted anti-cancer effects by regulating apoptosis, angiogenesis and inflammation. In vitro, salidroside could significantly decrease expression of pro-angiogenic factors (e.g., VEGF and eNOS) and proinflammatory cytokines (e.g., COX-2, iNOS and TNF-α). Also, Bcl-2, an anti-apoptotic protein was decreased whereas Bax, a pro-apoptotic protein, was increased. Further flow cytometry analysis showed that salidroside could induce apoptosis in H1975 cells. CONCLUSIONS Mechanistically, the antitumor effect of RR on NSCLC was responsible for the synergy among anti-inflammatory, anti-angiogenic and pro-apoptotic.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacokinetics
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Biological Availability
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor/methods
- Flavonoids/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Glucosides/pharmacology
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Mice
- Mice, Inbred C57BL
- Monosaccharides/pharmacology
- Phenols/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RAW 264.7 Cells
- Rhodiola/chemistry
- Signal Transduction/drug effects
- Transcription Factor RelA
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Jinglin Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Jiangna Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Yue Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Ruijie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Ruifei Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Jun Zhou
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, China
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, China.
| | - Chunli Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| | - Yonghua Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
30
|
Vanza JD, Patel RB, Patel MR. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Chen S, Gao C, Du Q, Tang L, You H, Dong Y. A prognostic model for elderly patients with squamous non-small cell lung cancer: a population-based study. J Transl Med 2020; 18:436. [PMID: 33198777 PMCID: PMC7670679 DOI: 10.1186/s12967-020-02606-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022] Open
Abstract
Background Squamous cell carcinoma (SCC) is a main pathological type of non-small cell lung cancer. It is common among elderly patients with poor prognosis. We aimed to establish an accurate nomogram to predict survival for elderly patients (≥ 60 years old) with SCC based on the Surveillance, Epidemiology, and End Results (SEER) database. Methods The gerontal patients diagnosed with SCC from 2010 to 2015 were collected from the Surveillance, Epidemiology, and End Results (SEER) database. The independent prognostic factors were identified using multivariate Cox proportional hazards regression analysis, which were utilized to conduct a nomogram for predicting survival. The novel nomogram was evaluated by Concordance index (C-index), calibration curves, net reclassification improvement (NRI), integrated discrimination improvement (IDI), and decision curve analysis (DCA). Results 32,474 elderly SCC patients were included in the analysis, who were randomly assigned to training cohort (n = 22,732) and validation cohort (n = 9742). The following factors were contained in the final prognostic model: age, sex, race, marital status, tumor site, AJCC stage, surgery, radiation and chemotherapy. Compared to AJCC stage, the novel nomogram exhibited better performance: C-index (training group: 0.789 vs. 0.730, validation group: 0.791 vs. 0.733), the areas under the receiver operating characteristic curve of the training set (1-year AUC: 0.846 vs. 0.791, 3-year AUC: 0.860 vs. 0.801, 5-year AUC: 0.859 vs. 0.794) and the validation set (1-year AUC: 0.846 vs. 0.793, 3-year AUC: 0.863 vs. 0.806, 5-year AUC: 0.866 vs. 0.801), and the 1-, 3- and 5-year calibration plots. Additionally, the NRI and IDI and 1-, 3- and 5-year DCA curves all confirmed that the nomogram was a great prognosis tool. Conclusions We constructed a novel nomogram that could be practical and helpful for precise evaluation of elderly SCC patient prognosis, thus helping clinicians in determining the appropriate therapy strategies for individual SCC patients.
Collapse
Affiliation(s)
- Siying Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Chunxia Gao
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Lina Tang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Haisheng You
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta West Road, Xi'an, 710061, Shaanxi, China.
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
32
|
Sun X, Wang G, Ding P, Li S. LINC00355 promoted the progression of lung squamous cell carcinoma through regulating the miR-466/LYAR axis. ACTA ACUST UNITED AC 2020; 53:e9317. [PMID: 33111744 PMCID: PMC7584152 DOI: 10.1590/1414-431x20209317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 08/19/2020] [Indexed: 12/03/2022]
Abstract
LINC00355 has been reported aberrantly over-expressed and associated with poor prognosis in various types of cancer. However, reports regarding the effect of LINC00355 on lung squamous cell carcinoma (SCC) are rare. This study aimed to explore the function of LINC00355 in the development and progression of lung SCC and reveal the underlying mechanism. The expression and subcellular location of LINC00355 were determined by qRT-PCR and RNA-FISH, respectively. The lung SCC cell growth was analyzed by CCK-8 assay, transwell invasion, wound healing, colony formation, and flow cytometry assays. Reactive oxygen species level was evaluated by DCFH-DA probes. Bioinformatics online websites, luciferase reporter assay, RNA binding protein immunoprecipitation (RIP), and RNA pull-down assays were utilized to investigate the interaction among LINC00355, miR-466, and Ly-1 antibody reactive clone (LYAR). The results showed that LINC00355 was upregulated in lung SCC and was positively associated with poor overall survival in lung SCC patients. LINC00355 was mainly located in the cytoplasm of SCC cells. Additionally, LINC0035 functioned as a competing endogenous RNA (ceRNA) to target miR-466, and LYAR was identified as a direct target of miR-466. LINC00355 expression negatively correlated with miR-466 level, and positively correlated with LYAR level. Mechanistically, knockdown of LINC00355 inhibited cell proliferation, migration and invasion, promoted cell apoptosis in vitro, and suppressed tumor growth in vivo through targeting miR-466, and thus down-regulated LYAR expression. These findings provide a new sight for understanding the molecular mechanism of lung SCC and indicate that LINC00355 may serve as a potential biomarker for the diagnosis and treatment of lung SCC.
Collapse
Affiliation(s)
- XueFeng Sun
- Department of Thoracic Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - GuangSuo Wang
- Department of Thoracic Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - PeiKun Ding
- Department of Thoracic Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - ShiXuan Li
- Department of Thoracic Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| |
Collapse
|
33
|
Hua P, Zhang Y, Jin C, Zhang G, Wang B. Integration of gene profile to explore the hub genes of lung adenocarcinoma: A quasi-experimental study. Medicine (Baltimore) 2020; 99:e22727. [PMID: 33120770 PMCID: PMC7581154 DOI: 10.1097/md.0000000000022727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Lung cancer is a leading cause of morbidity diseases worldwide, but the key mechanisms of lung cancer remain elusive. This study aims to integrate of GSE 118370 and GSE 32863 profile and identify the key genes and pathway involved in human lung adenocarcinoma. METHODS R software (RStudio, Version info: R 3.2.3, Forrester, USA) were utilized to find the differentially expressed genes. All the differentially expressed genes were analyzed by gene ontology, kyoto encyclopedia of genes and genomes. Protein-protein interaction networks were constructed by STRING database and analyzed by Cytohubber and Module. The cancer genome atlas database was used to verification the expression of hub genes. Quantitative reverse transcription-PCR was used to verify the bio-information results. RESULTS Sixty-four lung adenocarcinoma and 64 adjacent normal tissues were used for integration analysis. Five hundred ninety-nine co-expression genes were locked. Biological processes mainly enriched in angiogenesis. Cellular component focused on extracellular exosome and molecular function aimed on protein disulfide isomerase activity. Cytohubber analysis showed that GNG11, FPR2, P4HB, PIK3R1, CDC20, ADCY4, TIMP1, IL6, CXC chemokine ligand (CXCL)12, and GAS6 acted as the hub genes during lung adenocarcinoma. Module analysis presented Chemokine signaling pathway was a key pathway. Quantitative reverse transcription-PCR showed that the expression level of GNG11, FPR2, PIK3R1, ADCY4, IL6, CXCL12, and GAS6 were significantly decreased and P4HB, CDC20 and TIMP1 were increased in human adenocarcinoma tissues (P < .05). The cancer genome atlas online analysis showed GNG11 was not associated with survival. CONCLUSIONS This study firstly reported GNG11 acting as a hub gene in adenocarcinoma. GNG11 could be used as a biomarker for human adenocarcinoma. Chemokine signaling pathway might play important roles in lung adenocarcinoma.
Collapse
|
34
|
Inhibition of eIF4E signaling by ribavirin selectively targets lung cancer and angiogenesis. Biochem Biophys Res Commun 2020; 529:519-525. [PMID: 32736668 DOI: 10.1016/j.bbrc.2020.05.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/22/2022]
Abstract
Although the introduction of immune- and targeted-therapy has improved the clinical response and outcomes, lung cancer remains a therapeutic challenge. Developing new therapeutics is necessary to improve the treatment of lung cancer. Here, we show that ribavirin, a clinically available anti-viral drug, is an attractive candidate for lung cancer treatment. We show that ribavirin is active against a panel of lung cancer cell lines regardless of molecular and cellular heterogeneity. Notably, the effective concentrations of ribavirin are clinically achievable, display minimal toxicity to normal cells and synergistic effect with paclitaxel. Its potent efficacy and synergism with chemotherapy on cancer cell, and minimal toxicity on normal cells are observed in lung xenograft mouse model. Ribavirin is also an angiogenesis inhibitor as it inhibits capillary network formation, growth and survival of human lung tumor-associated endothelial cell (HLT-EC). The mechanism studies demonstrate that ribavirin acts on lung cancer cells via suppressing eIF4E and mTOR signaling, leading to the subsequent inhibition of eIF4E-mediated protein translation. Our work suggests that ribavirin has advantage than many anti-cancer agents by targeting both tumor cells and angiogenesis. Our work also highlights the therapeutic potential of ribavirin for the treatment of lung cancer.
Collapse
|
35
|
Xue L, Bi G, Zhan C, Zhang Y, Yuan Y, Fan H. Development and Validation of a 12-Gene Immune Relevant Prognostic Signature for Lung Adenocarcinoma Through Machine Learning Strategies. Front Oncol 2020; 10:835. [PMID: 32537435 PMCID: PMC7267039 DOI: 10.3389/fonc.2020.00835] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Although immunotherapy with checkpoint inhibitors is changing the face of lung adenocarcinoma (LUAD) treatments, only limited patients could benefit from it. Therefore, we aimed to develop an immune-relevant-gene-based signature to predict LUAD patients' prognosis and to characterize their tumor microenvironment thus guiding therapeutic strategy. Methods and Materials: Gene expression data of LUAD patients from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were systematically analyzed. We performed Cox regression and random survival forest algorithm to identify immune-relevant genes with potential prognostic value. A risk score formula was then established by integrating these selected genes and patients were classified into high- and low-risk score group. Differentially expressed genes, infiltration level of immune cells, and several immune-associated molecules were further compared across the two groups. Results: Nine hundred and fifty-four LUAD patients were enrolled in this study. After implementing the 2-steps machine learning screening methods, 12 immune-relevant genes were finally selected into the risk-score formula and the patients in high-risk group had significantly worse overall survival (HR = 10.6, 95%CI = 3.21–34.95, P < 0.001). We also found the distinct immune infiltration patterns in the two groups that several immune cells like cytotoxic cells and immune checkpoint molecules were significantly enriched and upregulated in patients from the high-risk group. These findings were further validated in two independent LUAD cohorts. Conclusion: Our risk score formula could serve as a powerful and accurate tool for predicting survival of LUAD patients and may facilitate clinicians to choose the optimal therapeutic regimen more precisely.
Collapse
Affiliation(s)
- Liang Xue
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunfeng Yuan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Fan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Zhao Z, Xiang S, Qi J, Wei Y, Zhang M, Yao J, Zhang T, Meng M, Wang X, Zhou Q. Correction of the tumor suppressor Salvador homolog-1 deficiency in tumors by lycorine as a new strategy in lung cancer therapy. Cell Death Dis 2020; 11:387. [PMID: 32439835 PMCID: PMC7242319 DOI: 10.1038/s41419-020-2591-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
Salvador homolog-1 (SAV1) is a tumor suppressor required for activation of the tumor-suppressive Hippo pathway and inhibition of tumorigenesis. SAV1 is defective in several cancer types. SAV1 deficiency in cells promotes tumorigenesis and cancer metastasis, and is closely associated with poor prognosis for cancer patients. However, investigation of therapeutic strategies to target SAV1 deficiency in cancer is lacking. Here we found that the small molecule lycorine notably increased SAV1 levels in lung cancer cells by inhibiting SAV1 degradation via a ubiquitin-lysosome system, and inducing phosphorylation and activation of the SAV1-interacting protein mammalian Ste20-like 1 (MST1). MST1 activation then caused phosphorylation, ubiquitination, and degradation of the oncogenic Yes-associated protein (YAP), therefore inhibiting YAP-activated transcription of oncogenic genes and tumorigenic AKT and NF-κB signal pathways. Strikingly, treating tumor-bearing xenograft mice with lycorine increased SAV1 levels, and strongly inhibited tumor growth, vasculogenic mimicry, and metastasis. This work indicates that correcting SAV1 deficiency in lung cancer cells is a new strategy for cancer therapy. Our findings provide a new platform for developing novel cancer therapeutics.
Collapse
Affiliation(s)
- Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shufen Xiang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jindan Qi
- School of Nursing, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Yijun Wei
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jun Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Tong Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaohua Wang
- School of Nursing, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China. .,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, P. R. China. .,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and the Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
37
|
Chen C, Huang Z, Mo X, Song Y, Li X, Li X, Zhang M. The circular RNA 001971/miR-29c-3p axis modulates colorectal cancer growth, metastasis, and angiogenesis through VEGFA. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:91. [PMID: 32430042 PMCID: PMC7236474 DOI: 10.1186/s13046-020-01594-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant tumors globally. Angiogenesis is a key event maintaining tumor cell survival and aggressiveness. The expression of vascular endothelial growth factor A (VEGFA), one of the most significant tumor cell-secreted proangiogenic factors, is frequently upregulated in CRC. Methods The MTT assay was used to detect the viability of CRC cells. Transwell assays were performed to detect the invasion capacity of target cells. Relative protein levels were determined by immunoblotting. Pathological characteristics of tissues were detected by H&E staining and immunohistochemical (IHC) staining. A RIP assay was conducted to validate the predicted binding between genes. Results We observed that circ-001971 expression was dramatically increased in CRC tissue samples and cells. Circ-001971 knockdown suppressed the capacity of CRC cells to proliferate and invade and HUVEC tube formation in vitro, as well as tumor growth in mice bearing SW620 cell-derived tumors in vivo. The expression of circ-001971 and VEGFA was dramatically increased whereas the expression of miR-29c-3p was reduced in tumor tissue samples. Circ-001971 relieved miR-29c-3p-induced inhibition of VEGFA by acting as a ceRNA, thereby aggravating the proliferation, invasion and angiogenesis of CRC. Consistent with the above findings, the expression of VEGFA was increased, whereas the expression of miR-29c-3p was decreased in tumor tissue samples. miR-29c-3p had a negative correlation with both circ-001971 and VEGFA, while circ-001971 was positively correlated with VEGFA. Conclusions In conclusion, the circ-001971/miR-29c-3p axis modulated CRC cell proliferation, invasion, and angiogenesis by targeting VEGFA.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhiguo Huang
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaoye Mo
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yanmin Song
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiangmin Li
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaogang Li
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Mu Zhang
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
38
|
Zhang K, Ma X, Gao H, Wang H, Qin H, Yang S, Liu X. Efficacy and Safety of Anlotinib in Advanced Non-Small Cell Lung Cancer: A Real-World Study. Cancer Manag Res 2020; 12:3409-3417. [PMID: 32494205 PMCID: PMC7231784 DOI: 10.2147/cmar.s246000] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose The ALTER0303 trial showed that anlotinib, a novel antiangiogenic tyrosine kinase inhibitor, administered as third-line or further treatment prolonged progression-free survival (PFS) and overall survival (OS) in patients with advanced non-small cell lung cancer (NSCLC). This retrospective study investigated the efficacy and safety of anlotinib in real-world settings. Patients and Methods Medical records of patients with advanced NSCLC receiving anlotinib as third-line or further treatment were collected, and survival curves were derived using the Kaplan–Meier method. Univariate analysis was performed by log-rank testing. Cox regression analysis was used to evaluate the significance of factors obtained from the univariate analysis. Results Fifty-two patients with advanced NSCLC were included. The objective response rate was 16%, and the disease control rate was 80%. The median PFS was 4.5 months (95% confidence interval [CI]: 3.6–5.4), and the median OS was 9 months (95% CI: 6.5–11.5). Univariate analysis revealed that the group of patients with longer PFS and OS included Eastern Cooperative Oncology Group performance status (ECOG PS) ≤1, ≤2 distant metastases, no liver metastases, ≤3 previous treatment lines, and ≤2 previous chemotherapy lines. Cox regression analysis demonstrated that only patients with ECOG PS ≤1 or no liver metastases had longer PFS and OS. Grade 3 treatment-related adverse events were reported in 14% of the patients, but no life-threatening adverse events were reported. Conclusion Anlotinib was well tolerated and effective in patients with advanced NSCLC in real-world conditions. Patients with ECOG PS ≤1 or no liver metastases have longer PFS and OS.
Collapse
Affiliation(s)
- Kun Zhang
- Academy of Military Medical Science, Beijing 100089, People's Republic of China.,Department of Lung Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, People's Republic of China
| | - Xiya Ma
- Department of Lung Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, People's Republic of China
| | - Hongjun Gao
- Department of Lung Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, People's Republic of China
| | - Hong Wang
- Department of Lung Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, People's Republic of China
| | - Haifeng Qin
- Department of Lung Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, People's Republic of China
| | - Shaoxing Yang
- Department of Lung Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, People's Republic of China
| | - Xiaoqing Liu
- Department of Lung Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, People's Republic of China
| |
Collapse
|
39
|
Gao M, Kong W, Huang Z, Xie Z. Identification of Key Genes Related to Lung Squamous Cell Carcinoma Using Bioinformatics Analysis. Int J Mol Sci 2020; 21:ijms21082994. [PMID: 32340320 PMCID: PMC7215920 DOI: 10.3390/ijms21082994] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 01/30/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) is often diagnosed at the advanced stage with poor prognosis. The mechanisms of its pathogenesis and prognosis require urgent elucidation. This study was performed to screen potential biomarkers related to the occurrence, development and prognosis of LUSC to reveal unknown physiological and pathological processes. Using bioinformatics analysis, the lung squamous cell carcinoma microarray datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were analyzed to identify differentially expressed genes (DEGs). Furthermore, PPI and WGCNA network analysis were integrated to identify the key genes closely related to the process of LUSC development. In addition, survival analysis was performed to achieve a prognostic model that accomplished good prediction accuracy. Three hundred and thirty–seven up–regulated and 119 down-regulated genes were identified, in which four genes have been found to play vital roles in LUSC development, namely CCNA2, AURKA, AURKB, and FEN1. The prognostic model contained 5 genes, which were all detrimental to prognosis. The AUC of the established prognostic model for predicting the survival of patients at 1, 3, and 5 years was 0.692, 0.722, and 0.651 in the test data, respectively. In conclusion, this study identified several biomarkers of significant interest for additional investigation of the therapies and methods of prognosis of lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Miaomiao Gao
- Peking University International Cancer Institute and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Weikaixin Kong
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: (Z.H.); (Z.X.)
| | - Zhengwei Xie
- Peking University International Cancer Institute and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Correspondence: (Z.H.); (Z.X.)
| |
Collapse
|
40
|
Qin S, Yi M, Jiao D, Li A, Wu K. Distinct Roles of VEGFA and ANGPT2 in Lung Adenocarcinoma and Squamous Cell Carcinoma. J Cancer 2020; 11:153-167. [PMID: 31892982 PMCID: PMC6930396 DOI: 10.7150/jca.34693] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/26/2019] [Indexed: 01/03/2023] Open
Abstract
Background: Vascular endothelial growth factor A (VEGFA) and angiopoietin 2 (ANGPT2) are key mediators in angiogenesis. The expression and clinical significance of VEGFA and ANGPT2 have been investigated in lung cancer, but the results are controversial. The specific roles of VEGFA and ANGPT2 in adenocarcinoma (ADC) and squamous cell carcinoma (SQC) are still not fully understood. To characterize it, we conducted the current study. Materials and Methods: The relationships between clinic-pathological characteristics and the protein expressions of VEGFA and ANGPT2 were analyzed on tissue microarrays by immunohistochemistry (IHC) staining. Then public databases were used to evaluate the association of VEGFA and ANGPT2 mRNA expressions with clinic-pathological parameters and prognosis. Cobalt chloride (CoCl2) was adopted to mimic a hypoxic microenvironment and western blot was used to detect the expression of hypoxia inducible factor-1α (HIF-1α), VEGFA and ANGPT2 in lung cancer cell lines. Results: IHC staining revealed that the expressions of VEGFA and ANGPT2 were enriched in lung cancer tissues compared with normal tissues. Additionally, both VEGFA and ANGPT2 protein levels were significantly associated with the tumor size and lymph node metastasis only in ADC, not SQC. More importantly, increased VEGFA and ANGPT2 protein levels were negatively correlated with overall survival (OS) of ADC individuals. Meta-analyses of 22 gene expression omnibus (GEO) databases of lung cancer implicated that patients with higher VEGFA and ANGPT2 mRNA expressions tended to have advanced stage in ADC rather than SQC. Kaplan-Meier plot analyses further verified that high levels of VEGFA and ANGPT2 mRNA were associated with poor survival only in ADC. Moreover, the combination of VEGFA and ANGPT2 could more precisely predict prognosis in ADC. In hypoxia-mimicking conditions, induced expression of HIF-1α unregulated VEGFA and ANGPT2 proteins abundance. Conclusion: Our results showed hypoxia upregulated the protein levels of VEGFA and ANGPT2 in lung cancer cell lines, and the roles of VEGFA and ANGPT2 were distinct in ADC and SQC. Combined detections of VEGFA and ANGPT2 may be valuable prognostic biomarkers for ADC and double block of VEGFA and ANGPT2 may improve therapeutic outcome.
Collapse
Affiliation(s)
- Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Anping Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| |
Collapse
|
41
|
Vergnenègre A, Basse V, Le Garff G, Bylicki O, Dubos-Arvis C, Comet B, Marcq M, Le Treut J, Auliac JB, Madroszyk A, Fraboulet G, Crequit J, Thomas P, Paleiron N, Monnet I, On behalf of the French Lung Cancer Group. Potential Antiangiogenic Treatment Eligibility of Patients with Squamous Non-Small-Cell Lung Cancer: EPISQUAMAB Study (GFPC 2015-01). Cancer Manag Res 2019; 11:10821-10826. [PMID: 31920391 PMCID: PMC6938186 DOI: 10.2147/cmar.s219984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/05/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Antiangiogenic agents have improved the prognosis of non-squamous non-small-cell lung cancers (NSCLCs), even though all the patients are not eligible to receive them because of counterindications linked to the tumor's characteristics or comorbidities. Much less information is available about the eligibility of patients with squamous non-small-cell lung cancers (SQ-NSCLCs) to receive antivascular endothelial growth-factor (VEGF) treatments, even though such molecules are being developed for this histology. This study was undertaken to determine the percentage of advanced SQ-NSCLC patients who would be eligible to receive an antiVEGF agent as second-line systemic therapy. METHODS This observational, multicenter, prospective study evaluated advanced SQ-NSCLC patients' criteria for ineligibility to receive an antiVEGF during a multidisciplinary meeting to choose their standard second-line systemic therapy. RESULTS Among the 317 patients included, 53.6% had at least one ineligibility criterion, and ~20% had at least two, with disease extension to large vessels (39.8%), tumor cavitation (20.5%), cardiovascular disease (11%) and/or hemoptysis (7.2%) being the most frequent. Patients with an ECOG performance score of 1/2 had more cardiovascular contraindications that those with scores of 0. CONCLUSION Almost half of the SQ-NSCLC patients included in this study would have been eligible to receive an antiVEGF agent. The development of these molecules for these indications should be encouraged.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marie Marcq
- CH Départemental Vendée, Les Oudairies, La Roche-Sur-Yon, France
| | | | | | | | | | | | - Pascal Thomas
- CH Intercommunal (CHI) Des Alpes-Du-Sud, Gap, France
| | | | | | - On behalf of the French Lung Cancer Group
- Centre Hospitalier Universitaire (CHU) Dupuytren, Limoges, France
- CHU Morvan, Brest, France
- CH Yves-Le-Foll, Saint-Brieuc, France
- Hôpital d’Instruction des Armées Percy, Clamart, France
- Centre François-Baclesse, Caen, France
- Centre Catalan d’Oncologie, Perpignan, France
- CH Départemental Vendée, Les Oudairies, La Roche-Sur-Yon, France
- CH du Pays d’Aix, Aix-En-Provence, France
- Hôpital Quesnay, Mantes-La-Jolie, France
- Institut Paoli-Calmettes, Marseille, France
- CH René-Dubos, Cergy-Pontoise, France
- CH Laennec, Creil, France
- CH Intercommunal (CHI) Des Alpes-Du-Sud, Gap, France
- Hôpital d’Instruction Des Armées Sainte-Anne, Toulon, France
- CHI Créteil, Créteil, France
| |
Collapse
|
42
|
Zhu Y, Zhang X. Investigating the significance of tumor-infiltrating immune cells for the prognosis of lung squamous cell carcinoma. PeerJ 2019; 7:e7918. [PMID: 31667016 PMCID: PMC6816382 DOI: 10.7717/peerj.7918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Objective Increasing evidence has indicated an association between immune cells infiltration in LSCC and clinical outcome. The aim of this research was tantamount to comprehensively investigate the effect of 22 tumor infiltrating immune cells (TIICs) on the prognosis of LSCC patients. Methods In our research, the CIBERSORT algorithm was utilized to calculate the proportion of 22 TIICs in 502 cases from the TCGA cohort. Cases with a CIBERSORT P-value of <0.05 were kept for further study. Using the CIBERSORT algorithm, we first investigated the difference of immune infiltration between normal tissue and LSCC in 22 subpopulations of immune cells. Kaplan-Meier analysis was used to analyze the effect of 22 TIICs on the prognosis of LSCC. An immune risk score model was constructed based on TIICs correlated with LSCC-related recurrence. Multivariate cox regression analysis was used to investigate whether the immune risk score was an independent factor for prognosis prediction of LSCC. Nomogram was under construction to comprehensively predict the survival rate of LSCC. Results The results of the different analysis showed that except of memory B cells, naive CD4+T cells, T cells and activated NK cells, the remaining immune cells all had differential infiltration in normal tissues and LSCC (p < 0.05). Kaplan-Meier analysis revealed two immune cells statistically related to LSCC-related recurrence, including activated mast cells and follicular helper T cells. Immune risk score model was constructed based on three immune cells including resting memory CD4+T cells, activated mast cells and follicular helper T cells retained by forward stepwise regression analysis. The Kaplan-Meier curve indicated that patients in the high-risk group linked to poor outcome (P = 8.277e−03). ROC curve indicated that the immune risk score model was reliable in predicting recurrence risk (AUC = 0.614). Multivariate cox regression analysis showed that the immune risk score model was just an independent factor for prognosis prediction of LSCC (HR = 2.99, 95% CI [1.65–5.40]; P = 0.0002). The nomogram model combined immune risk score and clinicopathologic parameter score to predict 3-year survival in patients with LSCC. Conclusions Collectively, tumor-infiltrating immune cells play a major role in the prognosis of LSCC.
Collapse
Affiliation(s)
- Yueyan Zhu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoqin Zhang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
43
|
Luo L, Ran R, Yao J, Zhang F, Xing M, Jin M, Wang L, Zhang T. Se-Enriched Cordyceps militaris Inhibits Cell Proliferation, Induces Cell Apoptosis, And Causes G2/M Phase Arrest In Human Non-Small Cell Lung Cancer Cells. Onco Targets Ther 2019; 12:8751-8763. [PMID: 31749621 PMCID: PMC6817841 DOI: 10.2147/ott.s217017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/20/2019] [Indexed: 12/28/2022] Open
Abstract
Background The anticancer effects of cordyceps on various tumors have been reported. However, little is known about the role of selenium (Se)-enriched Cordyceps militaris in non-small cell lung cancer (NSCLC). In this study, the effects of Se-enriched Cordyceps militaris on cell proliferation, cell apoptosis and cell cycle in NSCLC cell line NCI-H292 and A549 were investigated. Methods CCK-8 assay was used to determine the appropriate concentrations of Se-enriched Cordyceps militaris in NSCLC (namely NCI-H292 and A549) cells. Colony formation assay, flow cytometric and Hoechst 33342 staining assays, and flow cytometric analysis were separately employed to assess the effect of increased Se-enriched Cordyceps militaris on NSCLC cell viability, cell apoptosis and cell-cycle distribution. Finally, the qPCR and Western blot assays were, respectively, applied to evaluate the effects of Se-enriched Cordyceps militaris on the expression of pro-apoptotic member BAX and the anti-apoptotic member BCL-2, as well as of G2/M cell cycle regulatory proteins CDK1 and cyclin B1. Results The concentration of Se-enriched Cordyceps militaris was 0, 4, 8, 12 mg/mL for NCI-H292 cells, and 0, 12.5, 25, 50 mg/mL for A549 cells. NSCLC cells treated with increased Se-enriched Cordyceps militaris showed the inhibited cell viability. Se-enriched Cordyceps militaris induced NSCLC cell apoptosis in concentration-dependent manner. Consistently, Se-enriched Cordyceps militaris diminished the ratio of anti-apoptotic member BCL-2 and pro-apoptotic member BAX at mRNA and protein levels in NSCLC cells. The percentage in G2/M phase was increased in NSCLC cells treated with increased Se-enriched Cordyceps militaris. Downregulation of G2/M cell cycle regulatory proteins CDK1 and cyclin B1 at mRNA and protein levels in NSCLC cells further confirmed the effects of Se-enriched Cordyceps militaris on cell cycle. Conclusion This study demonstrated the inhibitory role of Se-enriched Cordyceps militaris in cell proliferation and its facilitating role in cell apoptosis and cell cycle in NSCLC cells, suggesting an alternative therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Lihua Luo
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China.,Department of Oncology II, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, People's Republic of China
| | - Ruizhi Ran
- Department of Oncology II, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, People's Republic of China
| | - Jie Yao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Fang Zhang
- Department of Oncology II, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, People's Republic of China
| | - Maohui Xing
- Department of Oncology II, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, People's Republic of China
| | - Min Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Lanqing Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| |
Collapse
|
44
|
Liu C, Li H, Jia J, Ruan X, Liu Y, Zhang X. High Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) Expression Promotes Proliferation, Migration, and Invasion of Non-Small Cell Lung Cancer via ERK/Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway. Med Sci Monit 2019; 25:5143-5149. [PMID: 31293277 PMCID: PMC6640658 DOI: 10.12659/msm.913308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background In present study, we explored the function of the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) gene in the development of non-small cell lung cancer (NSCLC). Material/Methods qRT-PCR was used to detect the MALAT1 mRNA expression level in cancer tissues and adjacent normal tissues of 115 NSCLC patients and in cell lines. MALAT1-mimic, MALAT1-inhibitor, and corresponding negative controls (NC) were utilized to transfect the H460 cells. Proliferation, migration, and invasion of H460 cells were evaluated by MTT method and Transwell assay. Expression levels of proteins in the ERK/MAPK signaling pathway were assessed by Western blot analysis. Results MALAT1 mRNA was upregulated in NSCLC tissues and cell lines compared to that in adjacent tissues and normal human bronchial cell line (BEAS-2B), respectively. Overexpression of MALAT1 significantly strengthened the proliferation, migration, and invasion ability of H460 cells. In comparison with the NC group, expression levels of CXCL5 and p-JNK proteins were elevated, while p-MAPK and p-ERK proteins were decreased in the MALAT1-mimic group. MALAT1 targets the 3′-untranslated region (UTR) fragment of the CXCL5 gene and inhibits its translation. Disturbance of the CXCL5 gene can reduce the protein expression of MAPK, p-MEK1/2, p-ERK1/2, and p-JNK, and inhibit the proliferation, migration, and invasion of MALAT1-mimic cells. Conclusions High MALAT1 expression promotes the proliferation, migration, and invasion of non-small cell lung cancer via the ERK/MAPK signaling pathway.
Collapse
Affiliation(s)
- Chang Liu
- Department of Oncology, People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Haifeng Li
- Department of Oncology, People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Jia Jia
- Department of Oncology, People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Xinjian Ruan
- Department of Oncology, People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Yanfang Liu
- Department of Oncology, People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Xia Zhang
- Department of Oncology, People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| |
Collapse
|
45
|
Wu D, Nie J, Dai L, Hu W, Zhang J, Chen X, Ma X, Tian G, Han J, Han S, Long J, Wang Y, Zhang Z, Fang J. Salvage treatment with anlotinib for advanced non-small cell lung cancer. Thorac Cancer 2019; 10:1590-1596. [PMID: 31183998 PMCID: PMC6610258 DOI: 10.1111/1759-7714.13120] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/26/2022] Open
Abstract
Background This real‐world study assessed the efficacy and toxicity of anlotinib as salvage treatment in Chinese patients with advanced non‐small cell lung cancer (NSCLC). Methods The medical records of 81 patients with advanced NSCLC who had failed at least two lines of chemotherapy were retrospectively collected. All patients were administered anlotinib treatment until disease progression or intolerance as a result of adverse events. Survival curves were created using the Kaplan–Meier method. The log‐rank test was used for univariate analysis of progression‐free survival (PFS) between groups. Cox regression was used to estimate the statistically significant factors based on univariate analysis. Results The median PFS was five months (95% confidence interval [CI] 3.5–6.5). The objective response rate (ORR) was 7% and the disease control rate (DCR) was 84%. The following subgroups of patients had longer PFS (P < 0.05): squamous cell carcinoma, no brain or liver metastases, Eastern Cooperative Oncology Group performance status (ECOG PS) of 0–1, and no previous VEGF‐tyrosine kinase inhibitor treatment. The results of Cox regression indicated that an ECOG PS of 0–1 (hazard ratio 0.152, 95% CI 0.057–0.403; P = 0.00) and patients without brain metastases (hazard ratio 0.421, 95% CI 0.195–0.911; P = 0.028) had longer PFS following anlotinib treatment. Conclusion Anlotinib, which is well tolerated, plays a significant role in the salvage treatment of advanced NSCLC. Patients with advanced NSCLC with an ECOG PS of 0–1 and no brain metastases achieved longer PFS following anlotinib salvage treatment.
Collapse
Affiliation(s)
- Di Wu
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Nie
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ling Dai
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Weiheng Hu
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jie Zhang
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaoling Chen
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiangjuan Ma
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Guangming Tian
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jindi Han
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Sen Han
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jieran Long
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yang Wang
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ziran Zhang
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jian Fang
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
46
|
Senchukova MA, Makarova EV, Kalinin EA, Tkachev VV. Modern ideas about the origin, features of morphology, prognostic and predictive significance of tumor vessels. RUSSIAN JOURNAL OF BIOTHERAPY 2019; 18:6-15. [DOI: 10.17650/1726-9784-2019-18-1-6-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The review presents modern ideas about the origin of tumor vessels and the features of their morphology. The various approaches to the classification of tumor vessel types and to the assessment of their clinical and prognostic significance are described. Also, the main problems associated with the use of angiogenesis blockers in the treatment of malignancies and their possible solutions are reflected in the review.
Collapse
Affiliation(s)
- M. A. Senchukova
- Orenburg State Medical University of the Ministry of Health of the Russian Federation; Orenburg Regional Clinical Oncology Dispensary
| | - E. V. Makarova
- Orenburg State Medical University of the Ministry of Health of the Russian Federation; Orenburg Regional Clinical Oncology Dispensary
| | | | | |
Collapse
|
47
|
Li Y, Gu J, Xu F, Zhu Q, Ge D, Lu C. Novel methylation-driven genes identified as prognostic indicators for lung squamous cell carcinoma. Am J Transl Res 2019; 11:1997-2012. [PMID: 31105813 PMCID: PMC6511754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Lung cancer remains the leading cause of cancer death. DNA methylation plays an essential role in carcinogenesis through regulating gene expression and gene alternative splicing. However, the role of methylation in the tumorigenesis of lung squamous cell carcinoma (SCC) and its association with prognosis remains unclear. Here, we used an integrative approach to evaluate the prognostic value of epigenetic processes in lung SCC by examining the data provided by The Cancer Genome Atlas (TCGA). We found that the mean methylation level was significantly decreased in lung SCC. We also identified methylation-driven genes which were associated with cancer-related pathways. The multivariate Cox regression analysis showed four methylation-driven genes, GCSAM, GPR75, NHLRC1, and TRIM58, could be served as prognostic indicators for lung SCC. Validation on two external GEO datasets showed consistent methylation alterations of the four genes. These findings may have important implications in the understanding of the potential therapeutic method for lung SCC.
Collapse
Affiliation(s)
- Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University Shanghai, P. R. China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University Shanghai, P. R. China
| | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University Shanghai, P. R. China
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University Shanghai, P. R. China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University Shanghai, P. R. China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University Shanghai, P. R. China
| |
Collapse
|
48
|
Prognostic effect of VEGF gene variants in metastatic non-small-cell lung cancer patients. Angiogenesis 2019; 22:433-440. [PMID: 30977010 DOI: 10.1007/s10456-019-09668-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Clinical and pathological characteristics are still considered prognostic markers in metastatic non-small-cell lung cancer (NSCLC) patients but they cannot explain all interindividual variability. Tumoral angiogenesis mediated by the vascular endothelial growth factor (VEGF) is critical for the progression and metastasis of the disease. We aimed to investigate the prognostic role of genetic variants within the VEGF pathway in patients with metastatic NSCLC. MATERIALS AND METHODS We prospectively included 170 patients with metastatic NSCLC treated with first-line platinum-based chemotherapy. A comprehensive panel of single-nucleotide polymorphisms (SNPs) in genes belonging to the VEGF pathway (VEGFA, VEGFR1/FLT1, VEGFR2/KDR, GRB2, ITGAV, KISS1, KRAS, PRKCE, HIF1α, MAP2K4, MAP2K6, and MAPK11) were genotyped in blood DNA samples. SNPs were evaluated for association with overall survival (OS) and progression-free survival (PFS). RESULTS In multivariate analyses adjusted for patient characteristics, we found that VEGFA rs2010963 and VEGFR2 rs2071559 were significantly associated with OS [Hazard Ratio (HR) 0.7 (0.5-0.9); p = 0.026 and HR 1.5 (1.1-2.3); p = 0.025, respectively]. Additionally, ITGAV rs35251833 and MAPK11 rs2076139 were significantly associated with PFS [HR 2.5 (1.4-4.3; p = 0.002 and HR 0.6 (0.5-0.9); p = 0.013, respectively]. CONCLUSION Our findings reinforce the potential clinical value of germline variants in VEGFA and VEGFR2 and show for the first time variants in ITGAV and MAPK11 as promising prognostic markers in metastatic NSCLC patients receiving platinum-based chemotherapy.
Collapse
|
49
|
Thin KZ, Tu JC, Raveendran S. Long non-coding SNHG1 in cancer. Clin Chim Acta 2019; 494:38-47. [PMID: 30849309 DOI: 10.1016/j.cca.2019.03.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Long non-coding RNAs (lncRNAs) consist of a cluster of RNAs having >200 nucleotides lacking protein-coding function. Recent studies indicate that lncRNAs are involved in various cellular processes and their aberrant expression may lead to tumour development and progression. They may also serve as oncogenes or tumour suppressor genes in other diseases. In this review, we emphasize current investigations involving clinical management, tumour progression and the molecular mechanism of SNHG1 in human cancer. MATERIALS AND METHODS We investigate and summarize recent studies regarding the biologic functions and mechanisms of lncRNA SNHG1 in tumorigenesis. Related studies were obtained through a systematic search of google scholar, PubMed, Embase and Cochrane Library. RESULTS SNHG1 is a novel oncogenic lncRNA aberrantly expressed in different diseases including colorectal, liver, lung, prostate, gastric and esophageal cancers as well as ischemic stroke, nasopharyngeal carcinoma, laryngeal squamous cell carcinoma, neuroblastoma, renal cell carcinoma and osteosarcoma. Upregulation of SNHG1 was significantly associated with advanced tumour stage, tumour size, TNM stage and decreased overall survival. Furthermore, aberrant expression of SNHG1 contributes to cell proliferation, metastasis, migration and invasion of cancer cells. CONCLUSION SNHG1 likely acts as a useful tumour biomarker for cancer diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Khaing Zar Thin
- Department of Medical Laboratory Technology, University of Medical Technology, Yankin Hill Road, 19(th) Street, Patheingyi Township, Mandalay, Myanmar; Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Jian Cheng Tu
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Sudheesh Raveendran
- Department of Radiology & Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuchang, Hubei province, Wuhan 430071, China.
| |
Collapse
|
50
|
Friedman JR, Richbart SD, Merritt JC, Brown KC, Nolan NA, Akers AT, Lau JK, Robateau ZR, Miles SL, Dasgupta P. Acetylcholine signaling system in progression of lung cancers. Pharmacol Ther 2019; 194:222-254. [PMID: 30291908 PMCID: PMC6348061 DOI: 10.1016/j.pharmthera.2018.10.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neurotransmitter acetylcholine (ACh) acts as an autocrine growth factor for human lung cancer. Several lines of evidence show that lung cancer cells express all of the proteins required for the uptake of choline (choline transporter 1, choline transporter-like proteins) synthesis of ACh (choline acetyltransferase, carnitine acetyltransferase), transport of ACh (vesicular acetylcholine transport, OCTs, OCTNs) and degradation of ACh (acetylcholinesterase, butyrylcholinesterase). The released ACh binds back to nicotinic (nAChRs) and muscarinic receptors on lung cancer cells to accelerate their proliferation, migration and invasion. Out of all components of the cholinergic pathway, the nAChR-signaling has been studied the most intensely. The reason for this trend is due to genome-wide data studies showing that nicotinic receptor subtypes are involved in lung cancer risk, the relationship between cigarette smoke and lung cancer risk as well as the rising popularity of electronic cigarettes considered by many as a "safe" alternative to smoking. There are a small number of articles which review the contribution of the other cholinergic proteins in the pathophysiology of lung cancer. The primary objective of this review article is to discuss the function of the acetylcholine-signaling proteins in the progression of lung cancer. The investigation of the role of cholinergic network in lung cancer will pave the way to novel molecular targets and drugs in this lethal malignancy.
Collapse
Affiliation(s)
- Jamie R Friedman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Nicholas A Nolan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Austin T Akers
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Jamie K Lau
- Biology Department, Center for the Sciences, Box 6931, Radford University, Radford, Virginia 24142
| | - Zachary R Robateau
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755.
| |
Collapse
|