1
|
Oh J, Arnold DL, Cree BAC, Ionete C, Kim HJ, Sormani MP, Syed S, Chen Y, Maxwell CR, Benoit P, Turner TJ, Wallstroem E, Wiendl H. Tolebrutinib versus Teriflunomide in Relapsing Multiple Sclerosis. N Engl J Med 2025. [PMID: 40202623 DOI: 10.1056/nejmoa2415985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
BACKGROUND Tolebrutinib is an oral, brain-penetrant, and bioactive Bruton's tyrosine kinase inhibitor that modulates peripheral inflammation and persistent immune activation within the central nervous system, including disease-associated microglia and B cells. More data are needed on its efficacy and safety in treating relapsing multiple sclerosis. METHODS In two phase 3, double-blind, double-dummy, event-driven trials (GEMINI 1 and GEMINI 2), participants with relapsing multiple sclerosis were randomly assigned in a 1:1 ratio to receive tolebrutinib (60 mg once daily) or teriflunomide (14 mg once daily), each with matching placebo. The primary end point was the annualized relapse rate. The key secondary end point was confirmed worsening of disability that was sustained for at least 6 months, which was assessed in a time-to-event analysis that was pooled across trials. RESULTS A total of 974 participants were enrolled in GEMINI 1, and 899 were enrolled in GEMINI 2. The median follow-up was 139 weeks. The annualized relapse rate in the tolebrutinib and teriflunomide groups was 0.13 and 0.12, respectively, in GEMINI 1 (rate ratio, 1.06; 95% confidence interval [CI], 0.81 to 1.39; P = 0.67) and 0.11 and 0.11, respectively, in GEMINI 2 (rate ratio, 1.00; 95% CI, 0.75 to 1.32; P = 0.98). The pooled percentage of participants with confirmed disability worsening sustained for at least 6 months was 8.3% with tolebrutinib and 11.3% with teriflunomide (hazard ratio, 0.71; 95% CI, 0.53 to 0.95; no formal hypothesis testing was conducted owing to the prespecified hierarchical testing plan, and the width of the confidence interval is not adjusted for multiple testing). The percentage of participants who had adverse events was similar in the two treatment groups, although the percentage with minor bleeding was higher in the tolebrutinib group than in the teriflunomide group (petechiae occurred in 4.5% vs. 0.3%, and heavy menses in 2.6% vs. 1.0%). CONCLUSIONS Tolebrutinib was not superior to teriflunomide in decreasing annualized relapse rates among participants with relapsing multiple sclerosis. (Funded by Sanofi; GEMINI 1 and GEMINI 2 ClinicalTrials.gov numbers, NCT04410978 and NCT04410991, respectively.).
Collapse
Affiliation(s)
- Jiwon Oh
- St. Michael's Hospital, University of Toronto, Toronto
| | | | - Bruce A C Cree
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco
| | - Carolina Ionete
- Department of Neurology, UMass Chan Medical School, Worcester, MA
| | - Ho Jin Kim
- Department of Neurology, National Cancer Center, Goyang, South Korea
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | | | | | | | | | | | - Heinz Wiendl
- Department of Neurology and Neurophysiology, University of Freiburg, Freiburg, Germany
- Brain and Mind Center, University of Sydney, Sydney
| |
Collapse
|
2
|
Zhai S, Chen Y, Jiang T, Wu F, Cheng X, Wang Q, Wang M. Traditional Chinese medicine provides candidates for mutiple seclorsis: A review based on the progress of MS and potent treatment medicine. Mult Scler Relat Disord 2025; 95:106319. [PMID: 39951915 DOI: 10.1016/j.msard.2025.106319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/18/2024] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Multiple Sclerosis(MS) is a chronic inflammatory and degenerative autoimmune neurological disease, characterized by immune cells infiltration, demyelination, axonal loss and neuron degeneration. At present, the precise mechanism of the disease is still not very clear. Latest studies clarified that immune imbalance, microglia polarization, oxidative stress, the destruction of blood-brain barrier(BBB) and blood-spinal cord barrier(BSCB), and intestinal flora imbalance may participate in the pathogenesis and promote the progress of the disease. Traditional Chinese medicine(TCM) and their bioeffective components were found to have capacity to regulate these mechanisms, and have the advantages of multi-target activity, low toxicity and side effects, making TCM promising therapy candidates. In this review, we summarized the progress of TCM in treating MS or its animal model in recent five years, in order to further demonstrate the mechanism of MS and provide more potential effective drug choice.
Collapse
Affiliation(s)
- Shaopeng Zhai
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yan Chen
- Department of Rehabilitation, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Taotao Jiang
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Fengjuan Wu
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xiaorong Cheng
- Department of Rehabilitation, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qi Wang
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Manxia Wang
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
3
|
Cheng S, Cooper C, Chao CY. Persistent Diarrhea: What Else Could It Be? Gastroenterology 2025:S0016-5085(25)00414-7. [PMID: 40010578 DOI: 10.1053/j.gastro.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Affiliation(s)
- Sonia Cheng
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.
| | - Caroline Cooper
- Anatomical Pathology, Pathology Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia; The University of Queensland, St Lucia, Queensland, Australia
| | - Che-Yung Chao
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| |
Collapse
|
4
|
Walsh R, Chitnis T. Therapeutic Advances in Pediatric Multiple Sclerosis. CHILDREN (BASEL, SWITZERLAND) 2025; 12:259. [PMID: 40150542 PMCID: PMC11941142 DOI: 10.3390/children12030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025]
Abstract
Pediatric-onset multiple sclerosis (POMS) is a chronic, immune-mediated disorder that affects the central nervous system in children and adolescents. Approximately 3-10% of MS patients have an onset that occurs before the age of 18. The vast majority of pediatric MS cases are characterized by a relapsing-remitting course with a high burden of disease activity. Pediatric MS patients were historically treated off-label with varying degrees of success. With the approval of many new therapies for adult-onset MS, alternative treatments in pediatric MS have rapidly started to emerge. In this narrative review, we will discuss therapeutic advancements in pediatric multiple sclerosis, including the seminal trials of PARADIGMS, which evaluated fingolimod use in pediatric MS patients, CONNECT (dimethyl fumarate), TERIKIDS (teriflunomide), OPERETTA I (ocrelizumab), and LEMKIDS (alemtuzumab). We will also review the safety and efficacy of different monoclonal antibodies that are commonly prescribed for multiple sclerosis. We will then examine induction versus escalation treatment strategies and conclude with discussions on treatment considerations in POMS patients.
Collapse
Affiliation(s)
- Rachel Walsh
- Division of Child Neurology, Mass General Brigham Pediatric MS Center, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Tanuja Chitnis
- Division of Child Neurology, Mass General Brigham Pediatric MS Center, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
5
|
Otálora-Alcaraz A, Reilly T, Oró-Nolla M, Sun MC, Costelloe L, Kearney H, Patra PH, Downer EJ. The NLRP3 inflammasome: A central player in multiple sclerosis. Biochem Pharmacol 2025; 232:116667. [PMID: 39647604 DOI: 10.1016/j.bcp.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
Multiple sclerosis (MS) is a neurological autoimmune condition associated with many symptoms including spasticity, pain, limb numbness and weakness. It is characterised by inflammatory demyelination and axonal degeneration of the brain and spinal cord. A range of disease-modifying therapies (DMTs) are available to suppress inflammatory disease activity in MS, however, there is a pressing need for new therapeutic avenues as DMTs have a limited ability to suppress confirmed disability progression. A body of literature indicates that innate immune inflammation is linked to MS progression. The nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome has a well-established function in innate immunity which is closely associated with the pathogenesis of neuroinflammatory conditions. Evidence suggests that the inflammasome may be a therapeutic target in disorders such as MS and at present, inhibitors of the NLRP3 inflammasome are in pre-clinical development. Therefore, this review systematically highlights the pathogenic role of inflammasomes in MS, presenting an overview of research evidence linking inflammasome-related polymorphisms to MS susceptibility, and gathering evidence investigating NLRP3 biomarkers in MS. The role of the NLRP3 inflammasome in murine models of MS is furthermore discussed. Finally, a significant component of this review focuses on evidence that NLRP3 signalling components are novel drug targets in MS. Overall this review defines the role of the inflammasome in MS pathogenesis and identifies inflammasome inhibitor targets that warrant full investigation in MS and related disorders.
Collapse
Affiliation(s)
- Almudena Otálora-Alcaraz
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Thomas Reilly
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Martí Oró-Nolla
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Melody Cui Sun
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Lisa Costelloe
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Hugh Kearney
- MS Unit, Department of Neurology, St. James's Hospital, Dublin, Ireland; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Pabitra H Patra
- Transpharmation Ltd., London Biosciences Innovation Centre, London, United Kingdom
| | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
6
|
Salas JR, Ryan KM, Trias AO, Chen BY, Guemes M, Galic Z, Schultz KA, Clark PM. Blocking Deoxycytidine Kinase in Activated Lymphocytes Depletes Deoxycytidine Triphosphate Pools and Alters Cell Cycle Kinetics to Yield Less Disease in a Mouse Multiple Sclerosis Model. Immunology 2025; 174:247-263. [PMID: 39710854 DOI: 10.1111/imm.13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 11/29/2024] [Indexed: 12/24/2024] Open
Abstract
Autoreactive, aberrantly activated lymphocytes that target myelin antigens in the central nervous system (CNS) are primary drivers of the autoimmune disease multiple sclerosis (MS). Proliferating cells including activated lymphocytes require deoxyribonucleoside triphosphates (dNTPs) for DNA replication. dNTPs can be synthesised via the de novo pathway from precursors such as glucose and amino acids or the deoxyribonucleoside salvage pathway from extracellular deoxyribonucleosides. Deoxycytidine kinase (dCK) is the rate-limiting enzyme in the salvage pathway. In prior work, we showed that targeting dCK with the small molecule inhibitor TRE-515 limits clinical symptoms in two myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) mouse models of MS and decreases the levels of activated CD4 T and B lymphocytes in vivo. However, whether targeting dCK limits disease in additional EAE models and how targeting dCK directly impacts activated and proliferating CD4 T and B cells has yet to be determined. Here, we show that dCK is activated in the lymph nodes and spleen in an EAE model induced by amino acids 139-151 of the proteolipid protein (PLP139-151) that is driven by CD4 T and B cells and is characterised by acute disease followed by disease remission. Treating this model with TRE-515 limits clinical symptoms and decreases the levels of activated CD4 T and B cells. In culture, CD4 T and B cells induce deoxyribonucleoside salvage following activation, and TRE-515 directly blocks CD4 T and B cell activation-induced proliferation and activation marker expression. TRE-515 decreases deoxycytidine triphosphate (dCTP) and deoxythymidine triphosphate (dTTP) pools and increases the length of time cells spend in S phase of the cell cycle without inducing a replication stress response in B cells. Our results suggest that dCK activity is required to supply needed dNTPs and to enable rapid cell division following lymphocyte activation against autoantigens in EAE mouse models.
Collapse
Affiliation(s)
- Jessica R Salas
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California, USA
| | - K M Ryan
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California, USA
| | - Alyssa O Trias
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California, USA
| | - Bao Ying Chen
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California, USA
| | - Miriam Guemes
- Department of Medicine, UCLA, Los Angeles, California, USA
| | - Zoran Galic
- Department of Medicine, UCLA, Los Angeles, California, USA
| | | | - Peter M Clark
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California, USA
| |
Collapse
|
7
|
Szewczak L, Machcińska M, Kierasińska M, Zawadzka-Więch U, Maruszewska-Cheruiyot M, Majewski P, Karlińska A, Rola R, Donskow-Łysoniewska K. Expression of STAT- and T-cell-related genes in women with first-line treatment of relapsing-remitting multiple sclerosis. Scand J Immunol 2025; 101:e13424. [PMID: 39545481 DOI: 10.1111/sji.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Relapsing-remitting multiple sclerosis is associated with changes in Jak/STAT pathways in immune cells, but the influence of disease-modifying drugs on these pathways is poorly understood. The aim of this study was to evaluate the impact of first-line disease-modifying drugs used in treatment of RRMS on expression of the STAT pathway and T-cell-related genes in the blood and on serum concentrations of sgp130 and TGF-β1 in women, as well as on the level of phosphorylated STAT3 and STAT5 proteins in T cells of untreated patients and heathy controls. Expression of STAT1, STAT3, STAT5A, STAT5B, SOCS1, SOCS3, FOXP3, IKZF2, RORC and ICOS genes in the blood of untreated RRMS patients, in the blood of patients treated with interferon-β, glatiramer acetate, dimethyl fumarate or teriflunomide and in the blood of healthy controls was evaluated using droplet digital PCR. Serum concentrations of sgp130 and TGF-β1 were evaluated by ELISA. Phosphorylated STAT3 and STAT5 protein levels in T cells were evaluated by flow cytometry. STAT3 gene expression was significantly higher in untreated patients than in healthy control, but the level of phosphorylated STAT3 in T cells was significantly lower. Patients treated with interferon-β or dimethyl fumarate had significantly lower STAT3 gene expression. Patients treated with teriflunomide had higher STAT1 gene expression, than untreated patients. Patients treated with dimethyl fumarate also had significantly lower RORC gene expression than untreated patients. The study shows the impact of drugs used in first-line treatment of relapsing-remitting multiple sclerosis on expression of STAT and T-cell-related genes.
Collapse
Affiliation(s)
- Ludmiła Szewczak
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Maja Machcińska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Magdalena Kierasińska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Zawadzka-Więch
- Department of Animal Physiology, Institute of Experimental Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Paweł Majewski
- Department of Animal Physiology, Institute of Experimental Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Karlińska
- Department of Neurology, Military Institute of Aviation Medicine, Warsaw, Poland
| | - Rafał Rola
- Department of Neurology, Military Institute of Aviation Medicine, Warsaw, Poland
| | | |
Collapse
|
8
|
Mohammed EMA. Understanding Multiple Sclerosis Pathophysiology and Current Disease-Modifying Therapies: A Review of Unaddressed Aspects. FRONT BIOSCI-LANDMRK 2024; 29:386. [PMID: 39614433 DOI: 10.31083/j.fbl2911386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 12/01/2024]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder of the central nervous system (CNS) with an unknown etiology and pathophysiology that is not completely understood. Although great strides have been made in developing disease-modifying therapies (DMTs) that have significantly improved the quality of life for MS patients, these treatments do not entirely prevent disease progression or relapse. Identifying the unaddressed pathophysiological aspects of MS and developing targeted therapies to fill in these gaps are essential in providing long-term relief for patients. Recent research has uncovered some aspects of MS that remain outside the scope of available DMTs, and as such, yield only limited benefits. Despite most MS pathophysiology being targeted by DMTs, many patients still experience disease progression or relapse, indicating that a more detailed understanding is necessary. Thus, this literature review seeks to explore the known aspects of MS pathophysiology, identify the gaps in present DMTs, and explain why current treatments cannot entirely arrest MS progression.
Collapse
Affiliation(s)
- Eiman M A Mohammed
- Kuwait Cancer Control Centre, Department of Medical Laboratory, Molecular Genetics Laboratory, Ministry of Health, 13001 Shuwaikh, Kuwait
| |
Collapse
|
9
|
Abolfazli R, Nabavi SM, Azimi A, Nahayati M, Gharagozli K, Torabi H, Ghazaeian M, Rezagholi Z, Samadzadeh S. The patient-reported outcomes for the new brand-generic teriflunomide in relapsing-remitting multiple sclerosis. Clin Neurol Neurosurg 2024; 246:108552. [PMID: 39270462 DOI: 10.1016/j.clineuro.2024.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Patient-reported outcomes (PROs) provide valuable insights into the impact of disease-modifying therapies (DMTs) on patients' daily lives and disease progression. This study evaluates treatment satisfaction and tolerability among patients using a brand-generic Teriflunomide (Tebazio®, 14 mg tablet) manufactured by Zistdaru Danesh Biopharmaceuticals. MATERIALS AND METHODS A Phase IV observational study was conducted on patients with Relapsing-Remitting Multiple Sclerosis (RRMS) who were either initiated on or switched to Teriflunomide 14 mg. The primary focus was on the medication's safety. Patient satisfaction was measured using the Treatment Satisfaction Questionnaire for Medication [Version 1.4] (TSQM-14). Additionally, medication adherence and discontinuation rates were monitored. RESULTS Of the 235 RRMS patients enrolled, participated in this study, all received the Teriflunomide treatment orally on a daily basis. Over the 18-month follow-up period, 25.96 % of patients discontinued the treatment. Discontinuation was mainly due to adverse events (11 %), lack of patient willingness to continue (12.7 %), and disease progression (4.2 %). The most commonly reported adverse events included dermatologic disorders, elevated liver enzymes, and gastrointestinal issues. TSQM-14 scores demonstrated significant improvements over the 18-month period. A high medication adherence rate of 98.1 % was also recorded. CONCLUSION Patients reported notable satisfaction with Teriflunomide, as reflected in their TSQM scores, which suggests a likelihood of improved patient adherence. The 14 mg brand-generic Teriflunomide was well-accepted by Iranian RRMS patients, with no significant concerns arising during the study. These findings also highlight the significance of patient-reported outcomes in DMTs, with potential benefits for adherence and clinical practice.
Collapse
Affiliation(s)
- Roya Abolfazli
- Department of Neurology, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran,.
| | - Seyed Massood Nabavi
- Regenerative medicine department, Neurology and MS group, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Amirreza Azimi
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kurosh Gharagozli
- Loghman Hakim Education Hospital, Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Monireh Ghazaeian
- Pharmaceutical Research Center, Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Rezagholi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Samadzadeh
- Department of Neurology, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran,; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Unverstät zu Berlin, Experimental and Clinical Research Center, Berlin, Germany; Department of Regional Health Research and Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
10
|
Kusnierova P, Revendova KZ, Karasova K, Zeman D, Bunganic R, Hradilek P, Volny O, Ganesh A, Kovacova I, Stejskal D. Neurofilament heavy chain and chitinase 3-like 1 as markers for monitoring therapeutic response in multiple sclerosis. Mult Scler Relat Disord 2024; 91:105915. [PMID: 39383686 DOI: 10.1016/j.msard.2024.105915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
AIMS The aim of this study was to evaluate the association of serum neurofilament heavy chain (sNfH) and chitinase 3-like 1 (sCHI3L1) with treatment response and disease activity in multiple sclerosis (MS). METHODS This single-center, prospective, observational cohort study was conducted at the MS Centre, University Hospital Ostrava, Czech Republic, from May 2020 to August 2023. sNfH and sCHI3L1 were determined using ELISA. A mixed-effects linear model with a log-transformed outcome variable was applied. RESULTS We analyzed 459 samples from 57 people with MS. Patients were sampled an average of 8.05 times during 21.9 months of follow-up. Those experiencing a relapse at sampling had a sNfH concentration 50 % higher than those in remission (exp(β) 1.5, 95 % CI 1.15-1.96). A longer duration of treatment was associated with lower sNfH (exp(β) 0.95, 95 % CI 0.94-0.96). Patients switched from low- to high-efficacy disease-modifying therapies (DMTs) had higher sNfH than patients treated with low-efficacy DMTs only (exp(β) 1.95, 95 % CI 1.35-2.81). Higher sCHI3L1 was associated with older age (exp(β) 1.01, 95 % CI 1.00-1.02) and longer DMT use (exp(β) 1.01, 95 % CI 1.00-1.02). sCHI3L1 values were not associated with relapse at the time of sampling, renal function, sex, or type of DMT. CONCLUSION In contrast to sCHI3L1, sNfH may be a potential biomarker for monitoring treatment response and confirming clinical relapse in MS. Further research is needed to determine the long-term dynamics of sNfH and develop related treatment strategies.
Collapse
Affiliation(s)
- P Kusnierova
- University Hospital Ostrava, Institute of Laboratory Medicine, Department of Clinical Biochemistry, Ostrava, Czech Republic; University of Ostrava, Institute of Laboratory Medicine, Ostrava, Czech Republic
| | - K Zondra Revendova
- University Hospital Ostrava, Department of Neurology, Ostrava, Czech Republic; University of Ostrava, Department of Clinical Neurosciences, Ostrava, Czech Republic.
| | - K Karasova
- University of Ostrava, Department of Clinical Neurosciences, Ostrava, Czech Republic
| | - D Zeman
- University Hospital Ostrava, Institute of Laboratory Medicine, Department of Clinical Biochemistry, Ostrava, Czech Republic; University of Ostrava, Institute of Laboratory Medicine, Ostrava, Czech Republic
| | - R Bunganic
- University Hospital Ostrava, Department of Neurology, Ostrava, Czech Republic; University of Ostrava, Department of Clinical Neurosciences, Ostrava, Czech Republic
| | - P Hradilek
- University Hospital Ostrava, Department of Neurology, Ostrava, Czech Republic; University of Ostrava, Department of Clinical Neurosciences, Ostrava, Czech Republic
| | - O Volny
- University Hospital Ostrava, Department of Neurology, Ostrava, Czech Republic; University of Ostrava, Department of Clinical Neurosciences, Ostrava, Czech Republic
| | - A Ganesh
- University of Calgary Cumming School of Medicine, the Hotchkiss Brain Institute and the O'Brien Institute for Public Health, Departments of Clinical Neurosciences and Community Health Sciences, Calgary, Canada
| | - I Kovacova
- University Hospital Ostrava, Department of Hematooncology, Ostrava, Czech Republic
| | - D Stejskal
- University Hospital Ostrava, Institute of Laboratory Medicine, Department of Clinical Biochemistry, Ostrava, Czech Republic; University of Ostrava, Institute of Laboratory Medicine, Ostrava, Czech Republic
| |
Collapse
|
11
|
Moles L, Otaegui-Chivite A, Gorostidi-Aicua M, Romarate L, Mendiburu I, Crespillo-Velasco H, Álvarez de Arcaya A, Ferreira E, Arruti M, Castillo-Triviño T, Otaegui D. Microbiota modulation by teriflunomide therapy in people with multiple sclerosis: An observational case-control study. Neurotherapeutics 2024; 21:e00457. [PMID: 39406600 PMCID: PMC11585876 DOI: 10.1016/j.neurot.2024.e00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated and heterogeneous disease characterized by demyelination, axonal damage, and physical and cognitive impairment. Recent studies have highlighted alterations in the microbiota of people with MS (pwMS). However, the intricate nature of the disease and the wide range of treatments available make it challenging to identify specific microbial populations or functions associated with MS symptoms and disease progression. This study aimed to characterize the microbiota of pwMS treated with the oral drug teriflunomide (TF) and compare it with that of pwMS treated with beta interferons (IFNβ), pwMS treated with no previous disease modifying therapies (naïve), and healthy controls. Our findings demonstrate significant alterations in both the composition and function of the gut microbiota in pwMS that are further influenced by disease-modifying therapies. Specifically, oral treatment with TF had a notable impact on the gut microbiota of pwMS. Importantly, the dysregulated microbial environment within the gut was associated with symptoms commonly experienced by pwMS, including fatigue, anxiety, and depression.
Collapse
Affiliation(s)
- Laura Moles
- Biogipuzkoa Health Research Institute, Group of Neuroimmunilogy, San Sebastián, Spain; Center for Biomedical Research Network in Neurodegenerative Diseases (CIBER-CIBERNED-ISCIII), Madrid, Spain
| | - Ane Otaegui-Chivite
- Biogipuzkoa Health Research Institute, Group of Neuroimmunilogy, San Sebastián, Spain; Center for Biomedical Research Network in Neurodegenerative Diseases (CIBER-CIBERNED-ISCIII), Madrid, Spain
| | - Miriam Gorostidi-Aicua
- Biogipuzkoa Health Research Institute, Group of Neuroimmunilogy, San Sebastián, Spain; Center for Biomedical Research Network in Neurodegenerative Diseases (CIBER-CIBERNED-ISCIII), Madrid, Spain
| | - Leire Romarate
- Biogipuzkoa Health Research Institute, Group of Neuroimmunilogy, San Sebastián, Spain
| | - Idoia Mendiburu
- Biogipuzkoa Health Research Institute, Group of Neuroimmunilogy, San Sebastián, Spain; Neurology Department, Hospital Universitario Donostia, Osakidetza Basque Health Service, San Sebastián, Spain
| | | | - Amaya Álvarez de Arcaya
- Neurology Department, Hospital Universitario Araba, Osakidetza Basque Health Service, Vitoria-Gasteiz, Spain
| | - Eva Ferreira
- Neurology Department, Hospital Universitario Araba, Osakidetza Basque Health Service, Vitoria-Gasteiz, Spain
| | - Maialen Arruti
- Biogipuzkoa Health Research Institute, Group of Neuroimmunilogy, San Sebastián, Spain; Neurology Department, Hospital Universitario Donostia, Osakidetza Basque Health Service, San Sebastián, Spain
| | - Tamara Castillo-Triviño
- Biogipuzkoa Health Research Institute, Group of Neuroimmunilogy, San Sebastián, Spain; Center for Biomedical Research Network in Neurodegenerative Diseases (CIBER-CIBERNED-ISCIII), Madrid, Spain; Neurology Department, Hospital Universitario Donostia, Osakidetza Basque Health Service, San Sebastián, Spain
| | - David Otaegui
- Biogipuzkoa Health Research Institute, Group of Neuroimmunilogy, San Sebastián, Spain; Center for Biomedical Research Network in Neurodegenerative Diseases (CIBER-CIBERNED-ISCIII), Madrid, Spain.
| |
Collapse
|
12
|
Woodfin S, Hall S, Ramerth A, Chapple B, Fausnacht D, Moore W, Alkhalidy H, Liu D. Potential Application of Plant-Derived Compounds in Multiple Sclerosis Management. Nutrients 2024; 16:2996. [PMID: 39275311 PMCID: PMC11397714 DOI: 10.3390/nu16172996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammation, demyelination, and neurodegeneration, resulting in significant disability and reduced quality of life. Current therapeutic strategies primarily target immune dysregulation, but limitations in efficacy and tolerability highlight the need for alternative treatments. Plant-derived compounds, including alkaloids, phenylpropanoids, and terpenoids, have demonstrated anti-inflammatory effects in both preclinical and clinical studies. By modulating immune responses and promoting neuroregeneration, these compounds offer potential as novel adjunctive therapies for MS. This review provides insights into the molecular and cellular basis of MS pathogenesis, emphasizing the role of inflammation in disease progression. It critically evaluates emerging evidence supporting the use of plant-derived compounds to attenuate inflammation and MS symptomology. In addition, we provide a comprehensive source of information detailing the known mechanisms of action and assessing the clinical potential of plant-derived compounds in the context of MS pathogenesis, with a focus on their anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Seth Woodfin
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Sierra Hall
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Alexis Ramerth
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Brooke Chapple
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA 24088, USA
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
13
|
Mazziotti V, Crescenzo F, Turano E, Guandalini M, Bertolazzo M, Ziccardi S, Virla F, Camera V, Marastoni D, Tamanti A, Calabrese M. The contribution of tumor necrosis factor to multiple sclerosis: a possible role in progression independent of relapse? J Neuroinflammation 2024; 21:209. [PMID: 39169320 PMCID: PMC11340196 DOI: 10.1186/s12974-024-03193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine regulating many physiological and pathological immune-mediated processes. Specifically, it has been recognized as an essential pro-inflammatory cytokine implicated in multiple sclerosis (MS) pathogenesis and progression. MS is a chronic immune-mediated disease of the central nervous system, characterized by multifocal acute and chronic inflammatory demyelination in white and grey matter, along with neuroaxonal loss. A recent concept in the field of MS research is disability resulting from Progression Independent of Relapse Activity (PIRA). PIRA recognizes that disability accumulation since the early phase of the disease can occur independently of relapse activity overcoming the traditional dualistic view of MS as either a relapsing-inflammatory or a progressive-neurodegenerative disease. Several studies have demonstrated an upregulation in TNF expression in both acute and chronic active MS brain lesions. Additionally, elevated TNF levels have been observed in the serum and cerebrospinal fluid of MS patients. TNF appears to play a significant role in maintaining chronic intrathecal inflammation, promoting axonal damage neurodegeneration, and consequently contributing to disease progression and disability accumulation. In summary, this review highlights the current understanding of TNF and its receptors in MS progression, specifically focusing on the relatively unexplored PIRA condition. Further research in this area holds promise for potential therapeutic interventions targeting TNF to mitigate disability in MS patients.
Collapse
Affiliation(s)
- Valentina Mazziotti
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Francesco Crescenzo
- Neurology Unit - Multiple Sclerosis Center, Scaligera Local Unit of Health and Social Services 9, Mater Salutis Hospital, 37045, Legnago, Verona, Italy
| | - Ermanna Turano
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Maddalena Guandalini
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Maddalena Bertolazzo
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Stefano Ziccardi
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Federica Virla
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Valentina Camera
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Damiano Marastoni
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Agnese Tamanti
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Massimiliano Calabrese
- Neurology B Unit - Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy.
| |
Collapse
|
14
|
Mirzapoiazova T, Tseng L, Mambetsariev B, Li H, Lou CH, Pozhitkov A, Ramisetty SK, Nam S, Mambetsariev I, Armstrong B, Malhotra J, Arvanitis L, Nasser MW, Batra SK, Rosen ST, Wheeler DL, Singhal SS, Kulkarni P, Salgia R. Teriflunomide/leflunomide synergize with chemotherapeutics by decreasing mitochondrial fragmentation via DRP1 in SCLC. iScience 2024; 27:110132. [PMID: 38993482 PMCID: PMC11237869 DOI: 10.1016/j.isci.2024.110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 07/13/2024] Open
Abstract
Although up to 80% small cell lung cancer (SCLC) patients' response is good for first-line chemotherapy regimen, most patients develop recurrence of the disease within weeks to months. Here, we report cytostatic effect of leflunomide (Leflu) and teriflunomide (Teri) on SCLC cell proliferation through inhibition of DRP1 phosphorylation at Ser616 and decreased mitochondrial fragmentation. When administered together, Teri and carboplatin (Carbo) act synergistically to significantly inhibit cell proliferation and DRP1 phosphorylation, reduce abundance of intermediates in pyrimidine de novo pathway, and increase apoptosis and DNA damage. Combination of Leflu&Carbo has anti-tumorigenic effect in vivo. Additionally, lurbinectedin (Lur) and Teri potently and synergistically inhibited spheroid growth and depleted uridine and DRP1 phosphorylation in mouse tumors. Our results suggest combinations of Carbo and Lur with Teri or Leflu are efficacious and underscore how the relationship between DRP1/DHODH and mitochondrial plasticity serves as a potential therapeutic target to validate these treatment strategies in SCLC clinical trials.
Collapse
Affiliation(s)
- Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Liz Tseng
- Department of Shared Resources, Light Microscopy Digital Imaging Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Bolot Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Haiqing Li
- Integrative Genomics Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Chih-Hong Lou
- Genome Editing Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Alex Pozhitkov
- Division of Research Informatics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Sravani Keerthi Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sangkil Nam
- Department of Shared Resources, Molecular Pathology Core, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Brian Armstrong
- Department of Shared Resources, Light Microscopy Digital Imaging Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jyoti Malhotra
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steven T. Rosen
- Hematology Malignancies and Stem Cell Transplantation Institute, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI, USA
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
15
|
Alberti M, Poli G, Broggini L, Sainas S, Rizzi M, Boschi D, Ferraris DM, Martino E, Ricagno S, Tuccinardi T, Lolli ML, Miggiano R. An alternative conformation of the N-terminal loop of human dihydroorotate dehydrogenase drives binding to a potent antiproliferative agent. Acta Crystallogr D Struct Biol 2024; 80:386-396. [PMID: 38805244 DOI: 10.1107/s2059798324004066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Over the years, human dihydroorotate dehydrogenase (hDHODH), which is a key player in the de novo pyrimidine-biosynthesis pathway, has been targeted in the treatment of several conditions, including autoimmune disorders and acute myelogenous leukaemia, as well as in host-targeted antiviral therapy. A molecular exploration of its inhibitor-binding behaviours yielded promising candidates for innovative drug design. A detailed description of the enzymatic pharmacophore drove the decoration of well-established inhibitory scaffolds, thus gaining further in vitro and in vivo efficacy. In the present work, using X-ray crystallography, an atypical rearrangement was identified in the binding pose of a potent inhibitor characterized by a polar pyridine-based moiety (compound 18). The crystal structure shows that upon binding compound 18 the dynamics of a protein loop involved in a gating mechanism at the cofactor-binding site is modulated by the presence of three water molecules, thus fine-tuning the polarity/hydrophobicity of the binding pocket. These solvent molecules are engaged in the formation of a hydrogen-bond mesh in which one of them establishes a direct contact with the pyridine moiety of compound 18, thus paving the way for a reappraisal of the inhibition of hDHODH. Using an integrated approach, the thermodynamics of such a modulation is described by means of isothermal titration calorimetry coupled with molecular modelling. These structural insights will guide future drug design to obtain a finer Kd/logD7.4 balance and identify membrane-permeable molecules with a drug-like profile in terms of water solubility.
Collapse
Affiliation(s)
- Marta Alberti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via G. Bovio 6, 28100 Novara, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Luca Broggini
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan, 20097 San Donato Milanese, Italy
| | - Stefano Sainas
- Department of Sciences and Drug Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via G. Bovio 6, 28100 Novara, Italy
| | - Donatella Boschi
- Department of Sciences and Drug Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Davide M Ferraris
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via G. Bovio 6, 28100 Novara, Italy
| | - Elena Martino
- Department of Sciences and Drug Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan, 20097 San Donato Milanese, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marco L Lolli
- Department of Sciences and Drug Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Riccardo Miggiano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via G. Bovio 6, 28100 Novara, Italy
| |
Collapse
|
16
|
Pawełczyk A, Donskow-Łysoniewska K, Szewczak L, Kierasińska M, Machcińska M, Rola R, Welc-Falęciak R. Seroprevalence of Toxoplasma gondii and Borrelia burgdorferi infections in patients with multiple sclerosis in Poland. Sci Rep 2024; 14:11015. [PMID: 38744898 PMCID: PMC11094124 DOI: 10.1038/s41598-024-61714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic, demyelinating disease of the central nervous system that affects mainly young people. It is believed that the autoimmune process observed in the pathogenesis of MS is influenced by a complex interaction between genetic and environmental factors, including infectious agents. The results of this study suggest the protective role of Toxoplasma gondii infections in MS. Interestingly, high Toxoplasma IgM seropositivity in MS patients receiving immunomodulatory drugs (IMDs) was identified. On the other hand, Borrelia infections seem to be positively associated with MS. Although the interpretation of our results is limited by the retrospective nature of the studies, the results strongly indicate that further experimental and clinical studies are needed to explain the role of infectious agents in the development and pathophysiological mechanisms of MS.
Collapse
Affiliation(s)
- Agnieszka Pawełczyk
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawińskiego Street, 02-106, Warsaw, Poland
| | - Katarzyna Donskow-Łysoniewska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4 Street, 01-163, Warsaw, Poland
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, 43 Świeradowska Street, 02-662, Warsaw, Poland
| | - Ludmiła Szewczak
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4 Street, 01-163, Warsaw, Poland
- Department of Parasitology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Magdalena Kierasińska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4 Street, 01-163, Warsaw, Poland
| | - Maja Machcińska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4 Street, 01-163, Warsaw, Poland
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, 43 Świeradowska Street, 02-662, Warsaw, Poland
| | - Rafał Rola
- Department of Neurology, Military Institute of Aviation Medicine, Krasińskiego 54/56 Street, 01-755, Warsaw, Poland
| | - Renata Welc-Falęciak
- Department of Parasitology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland.
| |
Collapse
|
17
|
Kanika, Singh L. Mitigating cognitive deficits with teriflunomide: unraveling PI3K-modulated behavioral outcomes in mice. Mol Biol Rep 2024; 51:572. [PMID: 38722394 DOI: 10.1007/s11033-024-09502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/01/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Alzheimer's disease is a leading neurological disorder that gradually impairs memory and cognitive abilities, ultimately leading to the inability to perform even basic daily tasks. Teriflunomide is known to preserve neuronal activity and protect mitochondria in the brain slices exposed to oxidative stress. The current research was undertaken to investigate the teriflunomide's cognitive rescuing abilities against scopolamine-induced comorbid cognitive impairment and its influence on phosphatidylinositol-3-kinase (PI3K) inhibition-mediated behavior alteration in mice. METHODS Swiss albino mice were divided into 7 groups; vehicle control, scopolamine, donepezil + scopolamine, teriflunomide (10 mg/kg) + scopolamine; teriflunomide (20 mg/kg) + scopolamine, LY294002 and LY294002 + teriflunomide (20 mg/kg). Mice underwent a nine-day protocol, receiving scopolamine injections (2 mg/kg) for the final three days to induce cognitive impairment. Donepezil, teriflunomide, and LY294002 treatments were given continuously for 9 days. MWM, Y-maze, OFT and rota-rod tests were conducted on days 7 and 9. On the last day, blood samples were collected for serum TNF-α analysis, after which the mice were sacrificed, and brain samples were harvested for oxidative stress analysis. RESULTS Scopolamine administration for three consecutive days increased the time required to reach the platform in the MWM test, whereas, reduced the percentage of spontaneous alternations in the Y-maze, number of square crossing in OFT and retention time in the rota-rod test. In biochemical analysis, scopolamine downregulated the brain GSH level, whereas it upregulated the brain TBARS and serum TNF-α levels. Teriflunomide treatment effectively mitigated all the behavioral and biochemical alterations induced by scopolamine. Furthermore, LY294002 administration reduced the memory function and GSH level, whereas, uplifted the serum TNF-α levels. Teriflunomide abrogated the memory-impairing, GSH-lowering, and TNF-α-increasing effects of LY294002. CONCLUSION Our results delineate that the improvement in memory, locomotion, and motor coordination might be attributed to the oxidative and inflammatory stress inhibitory potential of teriflunomide. Moreover, PI3K inhibition-induced memory impairment might be attributed to reduced GSH levels and increased TNF-α levels.
Collapse
Affiliation(s)
- Kanika
- University Institute of Pharma Sciences, Chandigarh University, Mohali, 140413, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
18
|
Yoon JH, Lee D, Lee C, Cho E, Lee S, Cazenave-Gassiot A, Kim K, Chae S, Dennis EA, Suh PG. Paradigm shift required for translational research on the brain. Exp Mol Med 2024; 56:1043-1054. [PMID: 38689090 PMCID: PMC11148129 DOI: 10.1038/s12276-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Biomedical research on the brain has led to many discoveries and developments, such as understanding human consciousness and the mind and overcoming brain diseases. However, historical biomedical research on the brain has unique characteristics that differ from those of conventional biomedical research. For example, there are different scientific interpretations due to the high complexity of the brain and insufficient intercommunication between researchers of different disciplines owing to the limited conceptual and technical overlap of distinct backgrounds. Therefore, the development of biomedical research on the brain has been slower than that in other areas. Brain biomedical research has recently undergone a paradigm shift, and conducting patient-centered, large-scale brain biomedical research has become possible using emerging high-throughput analysis tools. Neuroimaging, multiomics, and artificial intelligence technology are the main drivers of this new approach, foreshadowing dramatic advances in translational research. In addition, emerging interdisciplinary cooperative studies provide insights into how unresolved questions in biomedicine can be addressed. This review presents the in-depth aspects of conventional biomedical research and discusses the future of biomedical research on the brain.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Chany Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Seulah Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Kipom Kim
- Research Strategy Office, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Sehyun Chae
- Neurovascular Unit Research Group, Korean Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Edward A Dennis
- Department of Pharmacology and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0601, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| |
Collapse
|
19
|
Canto-Gomes J, Boleixa D, Teixeira C, Martins da Silva A, González-Suárez I, Cerqueira J, Correia-Neves M, Nobrega C. Distinct disease-modifying therapies are associated with different blood immune cell profiles in people with relapsing-remitting multiple sclerosis. Int Immunopharmacol 2024; 131:111826. [PMID: 38461632 DOI: 10.1016/j.intimp.2024.111826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Disease modifying therapies (DMTs) used for treating people with relapsing-remitting multiple sclerosis (pwRRMS) target the immune system by different mechanisms of action. However, there is a lack of a comprehensive assessment of their effects on the immune system in comparison to treatment-naïve pwRRMS. Herein, we evaluated the numbers of circulating B cells, CD4+ and CD8+ T cells, regulatory T cells (Tregs), natural killer (NK) cells and NKT cells, and their subsets, in pwRRMS who were treatment-naïve or treated with different DMTs. Compared to treatment-naïve pwRRMS, common and divergent effects on immune system cells were observed on pwRRMS treated with different DMTs, with no consistent pattern across all therapies in any of the cell populations analysed. PwRRMS treated with fingolimod, dimethyl fumarate (DMF), or alemtuzumab have reduced numbers of CD4+ and CD8+ T cells, as well as Treg subsets, with fingolimod causing the most pronounced decrease in T cell subsets. In contrast, teriflunomide and interferon (IFN) β have minimal impact on T cells, and natalizumab marginally increases the number of memory T cells in the blood. The effect of DMTs on the B cell, NKT and NK cell subsets is highly variable with alemtuzumab inducing a strong increase in the number of the most immature NK cells and its subsets. This study comprehensively evaluates the magnitude of the effect of different DMTs on blood immune cells providing a better understanding of therapy outcome. Furthermore, the lack of a discernible pattern in the effects of DMTs on blood immune cells suggests that multiple immune cells can independently modulate the disease.
Collapse
Affiliation(s)
- João Canto-Gomes
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Daniela Boleixa
- Porto University Hospital Center, Porto, Portugal; Multidisciplinary Unit for Biomedical Research (UMIB) - ICBAS, University of Porto, Porto, Portugal
| | - Catarina Teixeira
- Porto University Hospital Center, Porto, Portugal; Multidisciplinary Unit for Biomedical Research (UMIB) - ICBAS, University of Porto, Porto, Portugal
| | - Ana Martins da Silva
- Porto University Hospital Center, Porto, Portugal; Multidisciplinary Unit for Biomedical Research (UMIB) - ICBAS, University of Porto, Porto, Portugal
| | - Inés González-Suárez
- Álvaro Cunqueiro Hospital, Vigo, Spain; University Hospital Complex of Vigo, Vigo, Spain
| | - João Cerqueira
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal; Hospital of Braga, Braga, Portugal; Clinical Academic Centre, Hospital of Braga, Braga, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal; Division of Infectious Diseases and Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Claudia Nobrega
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
20
|
Kaye AD, Lacey J, Le V, Fazal A, Boggio NA, Askins DH, Anderson L, Robinson CL, Paladini A, Mosieri CN, Kaye AM, Ahmadzadeh S, Shekoohi S, Varrassi G. The Evolving Role of Monomethyl Fumarate Treatment as Pharmacotherapy for Relapsing-Remitting Multiple Sclerosis. Cureus 2024; 16:e57714. [PMID: 38711693 PMCID: PMC11070887 DOI: 10.7759/cureus.57714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/05/2024] [Indexed: 05/08/2024] Open
Abstract
Multiple sclerosis is the most common autoimmune disease affecting the central nervous system (CNS) worldwide. Multiple sclerosis involves inflammatory demyelination of nerve fibers in the CNS, often presenting with recurrent episodes of focal sensory or motor deficits associated with the region of the CNS affected. The prevalence of this disease has increased rapidly over the last decade. Despite the approval of many new pharmaceutical therapies in the past 20 years, there remains a growing need for alternative therapies to manage the course of this disease. Treatments are separated into two main categories: management of acute flare versus long-term prevention of flares via disease-modifying therapy. Primary drug therapies for acute flare include corticosteroids to limit inflammation and symptomatic management, depending on symptoms. Several different drugs have been recently approved for use in modifying the course of the disease, including a group of medications known as fumarates (e.g., dimethyl fumarate, diroximel fumarate, monomethyl fumarate) that have been shown to be efficacious and relatively safe. In the present investigation, we review available evidence focused on monomethyl fumarate, also known as Bafiertam®, along with bioequivalent fumarates for the long-term treatment of relapsing-remitting multiple sclerosis.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - John Lacey
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Viet Le
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Ahmed Fazal
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | | | - Dorothy H Askins
- Department of Anesthesiology, Tulane University, New Orleans, USA
| | - Lillian Anderson
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Christopher L Robinson
- Department of Anesthesiology, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Antonella Paladini
- Department of Life, Health, and Environmental Sciences (MESVA), University of L'Aquila, L'Aquila, ITA
| | - Chizoba N Mosieri
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
21
|
Tan H, Li X, Li Y, He F, ZhangBao J, Zhou L, Yang L, Zhao C, Lu C, Dong Q, Li H, Quan C. Real-world experience of teriflunomide in relapsing multiple sclerosis: paramagnetic rim lesions may play a role. Front Immunol 2024; 15:1343531. [PMID: 38558796 PMCID: PMC10979358 DOI: 10.3389/fimmu.2024.1343531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Objectives The aims of this study were to report the effectiveness and safety of teriflunomide in Chinese patients with relapsing-remitting multiple sclerosis (RRMS) and to explore the association of paramagnetic rim lesion (PRL) burden with patient outcome in the context of teriflunomide treatment and the impact of teriflunomide on PRL burden. Methods This is a prospective observational study. A total of 100 RRMS patients treated with teriflunomide ≥3 months were included in analyzing drug persistence and safety. Among them, 96 patients treated ≥6 months were included in assessing drug effectiveness in aspects of no evidence of disease activity (NEDA) 3. The number and total volume of PRL were calculated in 76 patients with baseline susceptibility-weighted imaging (SWI), and their association with NEDA3 failure during teriflunomide treatment was investigated. Results Over a treatment period of 19.7 (3.1-51.7) months, teriflunomide reduced annualized relapse rate (ARR) from 1.1 ± 0.8 to 0.3 ± 0.5, and Expanded Disability Status Scale (EDSS) scores remained stable. At month 24, the NEDA3% and drug persistence rate were 43.8% and 65.1%, respectively. In patients with a baseline SWI, 81.6% had at least 1 PRL, and 42.1% had ≥4 PRLs. The total volume of PRL per patient was 0.3 (0.0-11.5) mL, accounting for 2.3% (0.0%-49.0%) of the total T2 lesion volume. Baseline PRL number ≥ 4 (OR = 4.24, p = 0.009), younger onset age (OR = 0.94, p = 0.039), and frequent relapses in initial 2 years of disease (OR = 13.40, p = 0.026) were associated with NEDA3 failure. The PRL number and volume were not reduced (p = 0.343 and 0.051) after teriflunomide treatment for more than 24 months. No new safety concerns were identified in this study. Conclusion Teriflunomide is effective in reducing ARR in Chinese patients with RRMS. Patients with less PRL burden, less frequent relapses, and relatively older age are likely to benefit more from teriflunomide, indicating that PRL might be a valuable measurement to inform clinical treatment decision.
Collapse
Affiliation(s)
- Hongmei Tan
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Xiang Li
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Yuxin Li
- National Center for Neurological Disorders, Shanghai, China
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Fanru He
- National Center for Neurological Disorders, Shanghai, China
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingzi ZhangBao
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Lei Zhou
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Liqin Yang
- National Center for Neurological Disorders, Shanghai, China
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Chuanzhen Lu
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Haiqing Li
- National Center for Neurological Disorders, Shanghai, China
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Chao Quan
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
22
|
Soudais C, Schaus R, Bachelet C, Minet N, Mouasni S, Garcin C, Souza CL, David P, Cousu C, Asnagli H, Parker A, Palmquist-Gomes P, Sepulveda FE, Storck S, Meilhac SM, Fischer A, Martin E, Latour S. Inactivation of cytidine triphosphate synthase 1 prevents fatal auto-immunity in mice. Nat Commun 2024; 15:1982. [PMID: 38438357 PMCID: PMC10912214 DOI: 10.1038/s41467-024-45805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
De novo synthesis of the pyrimidine, cytidine triphosphate (CTP), is crucial for DNA/RNA metabolism and depends on the CTP synthetases, CTPS1 and -2. Partial CTPS1 deficiency in humans has previously been shown to lead to immunodeficiency, with impaired expansion of T and B cells. Here, we examine the effects of conditional and inducible inactivation of Ctps1 and/or Ctps2 on mouse embryonic development and immunity. We report that deletion of Ctps1, but not Ctps2, is embryonic-lethal. Tissue and cells with high proliferation and renewal rates, such as intestinal epithelium, erythroid and thymic lineages, activated B and T lymphocytes, and memory T cells strongly rely on CTPS1 for their maintenance and growth. However, both CTPS1 and CTPS2 are required for T cell proliferation following TCR stimulation. Deletion of Ctps1 in T cells or treatment with a CTPS1 inhibitor rescued Foxp3-deficient mice from fatal systemic autoimmunity and reduced the severity of experimental autoimmune encephalomyelitis. These findings support that CTPS1 may represent a target for immune suppression.
Collapse
Affiliation(s)
- Claire Soudais
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France.
- Université de Paris Cité, Paris, France.
| | - Romane Schaus
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
| | - Camille Bachelet
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
- Université de Paris Cité, Paris, France
| | - Norbert Minet
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
- Université de Paris Cité, Paris, France
| | - Sara Mouasni
- Laboratory of Molecular Basis of Altered Immune Homeostasis Inserm UMR 1163, Institut Imagine, Paris, France
| | - Cécile Garcin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
- Université de Paris Cité, Paris, France
| | - Caique Lopes Souza
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
- Université de Paris Cité, Paris, France
| | - Pierre David
- Transgenesis Platform, Laboratoire d'Expérimentation Animale et Transgenèse (LEAT), Institut Imagine-Structure Fédérative de Recherche Necker INSERM US24/CNRS, UMS3633, Paris, France
| | - Clara Cousu
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Hélène Asnagli
- Step-Pharma, Technoparc du Pays-de-Gex, Saint-Genis-Pouilly, France
| | - Andrew Parker
- Step-Pharma, Technoparc du Pays-de-Gex, Saint-Genis-Pouilly, France
| | - Paul Palmquist-Gomes
- Université de Paris Cité, Paris, France
- Imagine - Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, F-75015, Paris, France
| | - Fernando E Sepulveda
- Laboratory of Molecular Basis of Altered Immune Homeostasis Inserm UMR 1163, Institut Imagine, Paris, France
| | - Sébastien Storck
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Sigolène M Meilhac
- Université de Paris Cité, Paris, France
- Imagine - Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, F-75015, Paris, France
| | - Alain Fischer
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
- Collège de France, Paris, France
| | - Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France.
- Université de Paris Cité, Paris, France.
| |
Collapse
|
23
|
Bou Rjeily N, Mowry EM, Ontaneda D, Carlson AK. Highly Effective Therapy Versus Escalation Approaches in Early Multiple Sclerosis: What Is the Future of Multiple Sclerosis Treatment? Neurol Clin 2024; 42:185-201. [PMID: 37980115 DOI: 10.1016/j.ncl.2023.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Treatment options for patients newly diagnosed with multiple sclerosis (MS) are expanding with the continuous development and approval of new disease-modifying therapies (DMTs). The optimal initial treatment strategy, however, remains unclear. The 2 main treatment paradigms currently employed are the escalation (ESC) approach and the early highly effective treatment (EHT) approach. The ESC approach consists of starting a lower- or moderate-efficacy DMT, which offers a potentially safer approach, while the EHT approach favors higher-efficacy treatment early in the disease course, despite a potential increase in risk. Randomized clinical trials aiming to directly compare these approaches in newly diagnosed MS patients are currently underway.
Collapse
Affiliation(s)
- Nicole Bou Rjeily
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Pathology 627, Baltimore, MD 21287, USA
| | - Ellen M Mowry
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Pathology 627, Baltimore, MD 21287, USA; Department of Epidemiology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Pathology 627, Baltimore, MD 21287, USA
| | - Daniel Ontaneda
- Cleveland Clinic Mellen Center, 9500 Euclid Avenue U10, Cleveland, OH 44195, USA
| | - Alise K Carlson
- Cleveland Clinic Mellen Center, 9500 Euclid Avenue U10, Cleveland, OH 44195, USA.
| |
Collapse
|
24
|
Ketabforoush AHME, Tajik A, Habibi MA, Khoshsirat NA. Acute Ischemic Stroke in a Patient with Multiple Sclerosis after Initiating Teriflunomide Treatment: A Challenging Case. CURRENT THERAPEUTIC RESEARCH 2024; 100:100732. [PMID: 38404915 PMCID: PMC10884338 DOI: 10.1016/j.curtheres.2024.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Multiple sclerosis is an autoimmune disease of the central nervous system, during which vascular events, including atherosclerosis, are more common and progress faster. Teriflunomide (TFN) is an oral drug that studies have indicated has low side effects alongside high efficiency. In this article, a middle-aged woman with multiple sclerosis was introduced, whose medication was changed to TFN. Thirty-five days later, she presented with focal neurologic symptoms, and investigations reported a lacunar infarction. Having excluded potential causes of acute ischemic stroke, such as vascular and rheumatologic factors, the only identifiable factor was the introduction of a new medication. The process of conclusively attributing TFN as the causative agent requires further clarification in future studies.
Collapse
Affiliation(s)
| | - Armin Tajik
- Research Students Committee, Alborz University of Medical Sciences, Alborz, Iran
| | - Mohammad Amin Habibi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Nahid Abbasi Khoshsirat
- Department of Neurology, Clinical Research Development Unit of Shahid Rajaei Hospital, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
25
|
Lee CY, Chan KH. Personalized Use of Disease-Modifying Therapies in Multiple Sclerosis. Pharmaceutics 2024; 16:120. [PMID: 38258130 PMCID: PMC10820407 DOI: 10.3390/pharmaceutics16010120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Multiple sclerosis is an important neurological disease affecting millions of young patients globally. It is encouraging that more than ten disease-modifying drugs became available for use in the past two decades. These disease-modifying therapies (DMTs) have different levels of efficacy, routes of administration, adverse effect profiles and concerns for pregnancy. Much knowledge and caution are needed for their appropriate use in MS patients who are heterogeneous in clinical features and severity, lesion load on magnetic resonance imaging and response to DMT. We aim for an updated review of the concept of personalization in the use of DMT for relapsing MS patients. Shared decision making with consideration for the preference and expectation of patients who understand the potential efficacy/benefits and risks of DMT is advocated.
Collapse
Affiliation(s)
- Chi-Yan Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 405B, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Koon-Ho Chan
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 405B, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
26
|
Edinger A, Habibi M. The evolution of multiple sclerosis disease-modifying therapies: An update for pharmacists. Am J Health Syst Pharm 2024; 81:37-55. [PMID: 37777869 DOI: 10.1093/ajhp/zxad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Indexed: 10/02/2023] Open
Abstract
PURPOSE Multiple sclerosis (MS) and the evolution of disease-modifying therapies (DMTs) and their indications, mechanisms of action, efficacy, pregnancy class, and cost are discussed. SUMMARY MS is an immune-mediated, demyelinating, and progressive neurological disorder that can cause both motor and cognitive deficits. Onset of MS typically occurs between the ages of 20 and 40 years, and the disease can result in significant disability over time. Since the introduction of the first DMT for the treatment of MS in 1993, significant progress has been made in the development of new classes of DMTs with different mechanisms of action, higher efficacy, and simpler administration schedules, offering patients better alternatives. However, drawbacks with the use of DMTs include their increasing cost and formulary restrictions. CONCLUSION The treatment landscape of MS has significantly changed over the past 2 decades, and the introduction of newer classes of DMTs provides an opportunity for pharmacists to play an important role in the management of this patient population.
Collapse
Affiliation(s)
| | - Mitra Habibi
- Department of Pharmacy Practice and Department of Neurology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
London F, Stanciu-Pop C, Mulquin N. Chronic cavitary pulmonary aspergillosis in a teriflunomide-treated multiple sclerosis patient. Clin Neurol Neurosurg 2024; 236:108125. [PMID: 38246031 DOI: 10.1016/j.clineuro.2024.108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 07/12/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Affiliation(s)
- Frédéric London
- Department of Neurology, Université catholique de Louvain (UCLouvain), CHU UCL Namur, Yvoir, Belgium.
| | - Claudia Stanciu-Pop
- Department of Pathology, Université catholique de Louvain (UCLouvain), CHU UCL Namur, Yvoir, Belgium
| | - Nicolas Mulquin
- Department of Radiology, Université catholique de Louvain (UCLouvain), CHU UCL Namur, Yvoir, Belgium
| |
Collapse
|
28
|
Del Negro I, Pez S, Versace S, Marziali A, Gigli GL, Tereshko Y, Valente M. Impact of Disease-Modifying Therapies on Gut-Brain Axis in Multiple Sclerosis. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:6. [PMID: 38276041 PMCID: PMC10818907 DOI: 10.3390/medicina60010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Multiple sclerosis is a chronic, autoimmune-mediated, demyelinating disease whose pathogenesis remains to be defined. In past years, in consideration of a constantly growing number of patients diagnosed with multiple sclerosis, the impacts of different environmental factors in the pathogenesis of the disease have been largely studied. Alterations in gut microbiome composition and intestinal barrier permeability have been suggested to play an essential role in the regulation of autoimmunity. Thus, increased efforts are being conducted to demonstrate the complex interplay between gut homeostasis and disease pathogenesis. Numerous results confirm that disease-modifying therapies (DMTs) used for the treatment of MS, in addition to their immunomodulatory effect, could exert an impact on the intestinal microbiota, contributing to the modulation of the immune response itself. However, to date, the direct influence of these treatments on the microbiota is still unclear. This review intends to underline the impact of DMTs on the complex system of the microbiota-gut-brain axis in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Ilaria Del Negro
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Sara Pez
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Salvatore Versace
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Alessandro Marziali
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Gian Luigi Gigli
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Yan Tereshko
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| |
Collapse
|
29
|
Meca-Lallana V, Esparcia-Pinedo L, Aguirre C, Díaz-Pérez C, Gutierrez-Cobos A, Sobrado M, Carabajal E, Río BD, Ropero N, Villagrasa R, Vivancos J, Sanchez-Madrid F, Alfranca A. Analysis of humoral and cellular immunity after SARS-CoV-2 vaccination in patients with multiple sclerosis treated with immunomodulatory drugs. CLINICAL IMMUNOLOGY COMMUNICATIONS 2023; 3:6-13. [PMID: 38014396 PMCID: PMC9898989 DOI: 10.1016/j.clicom.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 09/29/2023]
Abstract
We analyzed immune response to SARS-CoV-2 vaccination by measuring specific IgG titers and T-cell reactivity to different SARS-CoV-2 peptides in multiple sclerosis patients taking different disease-modifying treatments. Of the 88 patients included, 72 developed any kind of immune response after vaccination. Although DMTs such as fingolimod and anti-CD20+ treatments prevented patients from developing a robust humoral response to the vaccine, most of them were still able to develop a cellular response, which could be crucial for long-term immunity. It is probably advisable that all MS patients take additional/booster doses to increase their humoral and/or cellular immune response to SARS-CoV-2.
Collapse
Affiliation(s)
- Virginia Meca-Lallana
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Laura Esparcia-Pinedo
- Immunology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Clara Aguirre
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Carolina Díaz-Pérez
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Ainhoa Gutierrez-Cobos
- Microbiology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Mónica Sobrado
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Estefanía Carabajal
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Beatriz Del Río
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Noelia Ropero
- Immunology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Ramón Villagrasa
- Preventive Medicine Unit. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - José Vivancos
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Francisco Sanchez-Madrid
- Immunology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| |
Collapse
|
30
|
Sexauer AN, Alexe G, Gustafsson K, Zanetakos E, Milosevic J, Ayres M, Gandhi V, Pikman Y, Stegmaier K, Sykes DB. DHODH: a promising target in the treatment of T-cell acute lymphoblastic leukemia. Blood Adv 2023; 7:6685-6701. [PMID: 37648673 PMCID: PMC10641474 DOI: 10.1182/bloodadvances.2023010337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL) have a poor prognosis with few therapeutic options. With the goal of identifying novel therapeutic targets, we used data from the Dependency Map project to identify dihydroorotate dehydrogenase (DHODH) as one of the top metabolic dependencies in T-ALL. DHODH catalyzes the fourth step of de novo pyrimidine nucleotide synthesis. Small molecule inhibition of DHODH rapidly leads to the depletion of intracellular pyrimidine pools and forces cells to rely on extracellular salvage. In the absence of sufficient salvage, this intracellular nucleotide starvation results in the inhibition of DNA and RNA synthesis, cell cycle arrest, and, ultimately, death. T lymphoblasts appear to be specifically and exquisitely sensitive to nucleotide starvation after DHODH inhibition. We have confirmed this sensitivity in vitro and in vivo in 3 murine models of T-ALL. We identified that certain subsets of T-ALL seem to have an increased reliance on oxidative phosphorylation when treated with DHODH inhibitors. Through a series of metabolic assays, we show that leukemia cells, in the setting of nucleotide starvation, undergo changes in their mitochondrial membrane potential and may be more highly dependent on alternative fuel sources. The effect on normal T-cell development in young mice was also examined to show that DHODH inhibition does not permanently damage the developing thymus. These changes suggest a new metabolic vulnerability that may distinguish these cells from normal T cells and other normal hematopoietic cells and offer an exploitable therapeutic opportunity. The availability of clinical-grade DHODH inhibitors currently in human clinical trials suggests a potential for rapidly advancing this work into the clinic.
Collapse
Affiliation(s)
- Amy N. Sexauer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - Karin Gustafsson
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Elizabeth Zanetakos
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Jelena Milosevic
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Mary Ayres
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX
| | - Varsha Gandhi
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Massachusetts General Hospital Cancer Center, Boston, MA
| |
Collapse
|
31
|
Kim E, Fortoul MC, Weimer D, Meggyesy M, Demory Beckler M. Co-occurrence of glioma and multiple sclerosis: Prevailing theories and emerging therapies. Mult Scler Relat Disord 2023; 79:105027. [PMID: 37801959 DOI: 10.1016/j.msard.2023.105027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/01/2023] [Accepted: 09/23/2023] [Indexed: 10/08/2023]
Abstract
Though the concurrence of primary brain tumors and multiple sclerosis (MS) is exceedingly rare, instances have been noted in the literature as early as 1949. Given these observations, researchers have proposed various ideas as to how these malignancies may be linked to MS. Due to insufficient data, none have gained traction or been widely accepted amongst neurologists or neuro-oncologists. What is abundantly clear, however, is the mounting uncertainty faced by clinicians when caring for these individuals. Concerns persist about the potential for disease modifying therapies (DMTs) to initiate or promote tumor growth and progression, and to date, there are no approved treatments capable of mitigating both MS disease activity and tumor growth, let alone established guidelines that clinicians may refer to. Collectively, these gaps in the literature impose limitations to optimizing the care and management of this population. As such, our hope is to stimulate further discussion of this topic and prompt future investigations to explore novel treatment options and advance our understanding of these concurrent disease processes. To this end, the chief objective of this article is to evaluate proposed ideas of how the diseases may be linked, outline emerging therapies for both MS and brain tumors, and describe evidence-based approaches to diagnosing and treating this patient population.
Collapse
Affiliation(s)
- Enoch Kim
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States
| | - Marla C Fortoul
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States
| | - Derek Weimer
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States
| | - Michael Meggyesy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michelle Demory Beckler
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States.
| |
Collapse
|
32
|
Geng H, Ye Q, Lin X, Simpson-Yap S, Zhou Y, Tang D. Impact of multiple sclerosis on male sexual and reproductive health. Mult Scler Relat Disord 2023; 79:105059. [PMID: 37832256 DOI: 10.1016/j.msard.2023.105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and autoimmune neurodegenerative disease characterized by the destruction of myelin in the central nervous system, leading to significant health and quality of life burdens for patients. MS is most prevalent in younger individuals aged 20-40, a critical period when many patients hope to establish relationships and start families. While neurological disability, such as fatigue, sensory dysfunction, spasticity, and cognitive dysfunction, have been greatly improved with the advances in managing MS, physicians are frequently confronted with sexual and reproductive problems among younger male people with MS (PwMS). These issues mainly include erectile dysfunction, ejaculatory disorders, reduced libido, decreased sperm quality, and impaired male fertility. Despite recent studies indicating that MS negatively impacts the sexuality and fertility of male PwMS, these issues have not received sufficient attention. Genetic factors, autoimmunity, chronic inflammation, psychological factors, and the use of drugs may contribute to sexual/reproductive dysfunction in PwMS. However, like the overall understanding of MS pathophysiology, the complete mechanisms of its development remain unclear. In this study, we review the existing literature to summarize the range of sexual and reproductive issues unique to males with MS, explore potential underlying mechanisms, and aim to improve these issues in male PwMS. By shedding light on this overlooked aspect of MS, we hope to enhance the care and well-being of male PwMS facing these challenges.
Collapse
Affiliation(s)
- Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qinglin Ye
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Steve Simpson-Yap
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia; Neuroepidemiology Unit, Melbourne School of Population & Global Health, The University of Melbourne, Melbourne, Australia; CORe, School of Medicine, The University of Melbourne, Melbourne, Australia
| | - Yuan Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
33
|
Režić Mužinić N, Markotić A, Pavelin S, Polančec D, Buljubašić Šoda M, Bralić A, Šoda J, Mastelić A, Mikac U, Jerković A, Rogić Vidaković M. Expression of CD40 and CD192 in Classical Monocytes in Multiple Sclerosis Patients Assessed with Transcranial Magnetic Stimulation. Biomedicines 2023; 11:2870. [PMID: 37893243 PMCID: PMC10603866 DOI: 10.3390/biomedicines11102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Expression of CD40 and CD192 markers in different monocyte subpopulations has been reported to be altered in people with MS (pwMS). Also, functional connectivity of the corticospinal motor system pathway alterations has been proved by transcranial magnetic stimulation (TMS). The study objective was to investigate the expression of CD40 and CD192 in classical (CD14++CD16-), intermediate CD14++CD16+ and non-classical (CD14+CD16++) blood monocyte subpopulations in pwMS, undergoing neurophysiological TMS assessment of the corticospinal tract integrity by recording motor-evoked potentials (MEPs). Radiological examination on lesion detection with MRI was performed for 23 patients with relapsing-remitting MS treated with teriflunomide. Then, immunological analysis was conducted on peripheral blood samples collected from the patients and 10 healthy controls (HC). The blood samples were incubated with anti-human CD14, CD16, CD40 and CD192 antibodies. Next, pwMS underwent neurological testing of functional disability (EDSS) and TMS assessment with recording MEPs from upper and lower extremity muscles. The results show that in comparison to HC subjects, both pwMS with normal and altered MEP findings (prolonged MEP latency or absent MEP response) had significantly decreased surface receptor expression measured (MFIs) of CD192 and increased CD40 MFI in classical monocytes, and significantly increased percentages of classical and total monocytes positive for CD40. Knowing CD40's pro-inflammatory action, and CD192 as a molecule that enables the passing of monocytes into the brain, decreased CD192 in classical monocytes could represent a beneficial anti-inflammatory parameter.
Collapse
Affiliation(s)
- Nikolina Režić Mužinić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia; (A.M.)
| | - Anita Markotić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia; (A.M.)
| | - Sanda Pavelin
- Department of Neurology, University Hospital of Split, 21000 Split, Croatia
| | | | | | - Antonia Bralić
- Department of Interventional and Diagnostic Radiology, University Hospital of Split, 21000 Split, Croatia
| | - Joško Šoda
- Signal Processing, Analysis, Advanced Diagnostics Research and Education Laboratory (SPAADREL), Department for Marine Electrical Engineering and Information Technologies, Faculty of Maritime Studies, University of Split, 21000 Split, Croatia
| | - Angela Mastelić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia; (A.M.)
| | - Una Mikac
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Zagreb, 10000 Zagreb, Croatia
| | - Ana Jerković
- Laboratory for Human and Experimental Neurophysiology, Department of Neuroscience, School of Medicine, University of Split, 21000 Split, Croatia
| | - Maja Rogić Vidaković
- Laboratory for Human and Experimental Neurophysiology, Department of Neuroscience, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
34
|
Amato MP, Bergamaschi R, Centonze D, Mirabella M, Marfia GA, Totaro R, Lus G, Brescia Morra V, Aguglia U, Comi C, Cavalla P, Zaffaroni M, Rovaris M, Grimaldi LM, Leoni S, Malucchi S, Baldi E, Romano M, Falcini M, Perini P, Assetta M, Portaccio E, Sommacal S, Olivieri N, Parodi F, Todaro DS, Grassivaro N, Farina A, Mondino MM, Filippi M, Trojano M. Effectiveness of teriflunomide on No Evidence of Disease Activity and cognition in relapsing remitting multiple sclerosis: results of the NEDA3PLUS study. J Neurol 2023; 270:4687-4696. [PMID: 37405689 PMCID: PMC10511573 DOI: 10.1007/s00415-023-11820-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Cognitive impairment (CI) is a prevalent and debilitating manifestation of multiple sclerosis (MS); however, it is not included in the widely used concept of No Evidence of Disease Activity (NEDA-3). We expanded the NEDA-3 concept to NEDA-3 + by encompassing CI assessed through the Symbol Digit Modality Test (SDMT) and evaluated the effect of teriflunomide on NEDA3 + in patients treated in a real-world setting. The value of NEDA-3 + in predicting disability progression was also assessed. METHODS This 96-weeks observational study enrolled patients already on treatment with teriflunomide for ≥ 24 weeks. The predictiveness of NEDA-3 and NEDA-3 + at 48 weeks on the change in motor disability at 96 weeks was compared through a two-sided McNemar test. RESULTS The full analysis set (n = 128; 38% treatment naïve) featured relatively low level of disability (baseline EDSS = 1.97 ± 1.33). NEDA-3 and NEDA-3 + statuses were achieved by 82.8% and 64.8% of patients, respectively at 48 weeks vs. baseline, and by 57.0% and 49.2% of patients, respectively at 96 weeks vs. baseline. All patients except one were free of disability progression at Week 96, and NEDA-3 and NEDA-3 + were equally predictive. Most patients were free of relapse (87.5%), disability progression (94.5%) and new MRI activity (67.2%) comparing 96 weeks with baseline. SDMT scores were stable in patients with baseline score ˃35 and improved significantly in those with baseline score ≤ 35. Treatment persistence was high (81.0% at Week 96). CONCLUSION Teriflunomide confirmed its real-world efficacy and was found to have a potentially beneficial effect on cognition.
Collapse
Affiliation(s)
- Maria Pia Amato
- Department of NEUROFARBA, Section of Neurosciences, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | | | - Diego Centonze
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Massimiliano Mirabella
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Neurology Unit, Rome, Italy
- Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Rome, Italy
| | - Girolama Alessandra Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Rocco Totaro
- Demyelinating Disease Center, San Salvatore Hospital, L'Aquila, Italy
| | - Giacomo Lus
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Vincenzo Brescia Morra
- Department of Neuroscience, Reproductive Science and Odontostomatology, University Federico II, Multiple Sclerosis Clinical Care and Research Centre, Naples, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Cristoforo Comi
- Department of Translational Medicine and Interdisciplinary Research Center of Autoimmune Diseases, University of Piemonte Orientale, Novara, Italy
| | - Paola Cavalla
- Department of Neuroscience and Mental Health, City of Health and Science University Hospital of Turin, Multiple Sclerosis Center, Turin, Italy
| | - Mauro Zaffaroni
- ASST della Valle Olona, Hospital of Gallarate, Neuroimmunology Unit, Gallarate, Italy
| | - Marco Rovaris
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Multiple Sclerosis Center, Milan, Italy
| | | | | | - Simona Malucchi
- University Hospital San Luigi Gonzaga, SCDO Neurologia-CRESM, Orbassano, Turin, Italy
| | - Eleonora Baldi
- Department of Neuroscience and Rehabilitation, S. Anna Hospital, Multiple Sclerosis Center, Ferrara, Italy
| | - Marcello Romano
- Neurology and Stroke Unit, Villa Sofia Cervello Hospital, Palermo, Italy
| | - Mario Falcini
- Santo Stefano Hospital, Neurology Unit, Prato, Italy
| | - Paola Perini
- University Hospital of Padua, Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Padua, Italy
| | | | - Emilio Portaccio
- Department of NEUROFARBA, Section of Neurosciences, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | - Massimo Filippi
- IRCCS San Raffaele Scientific Institute, Neurology Unit, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Neurorehabilitation Unit, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Neurophysiology Service, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Neuroimaging Research Unit, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Trojano
- School of Medicine, University "Aldo Moro" of Bari, Bari, Italy.
| |
Collapse
|
35
|
Alexander ED, Aldridge JL, Burleson TS, Frasier CR. Teriflunomide treatment exacerbates cardiac ischemia reperfusion injury in isolated rat hearts. Cardiovasc Drugs Ther 2023; 37:1021-1026. [PMID: 35488973 PMCID: PMC9055010 DOI: 10.1007/s10557-022-07341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE Previous work suggests that Dihydroorotate dehydrogenase (DHODH) inhibition via teriflunomide (TERI) may provide protection in multiple disease models. To date, little is known about the effect of TERI on the heart. This study was performed to assess the potential effects of TERI on cardiac ischemia reperfusion injury. METHODS Male and female rat hearts were subjected to global ischemia (25 min) and reperfusion (120 min) on a Langendorff apparatus. Hearts were given either DMSO (VEH) or teriflunomide (TERI) for 5 min prior to induction of ischemia and during the reperfusion period. Left ventricular pressure, ECG, coronary flow, and infarct size were determined using established methods. Mitochondrial respiration was assessed via respirometry. RESULTS Perfusion of hearts with TERI led to no acute effects in any values measured across 500 pM-50 nM doses. However, following ischemia-reperfusion injury, we found that 50 nM TERI-treated hearts had an increase in myocardial infarction (p < 0.001). In 50 nM TERI-treated hearts, we also observed a marked increase in the severity of contracture (p < 0.001) at an earlier time-point (p = 0.004), as well as reductions in coronary flow (p = 0.037), left ventricular pressure development (p = 0.025), and the rate-pressure product (p = 0.008). No differences in mitochondrial respiration were observed with 50 nM TERI treatment (p = 0.24-0.87). CONCLUSION This study suggests that treatment with TERI leads to more negative outcomes following cardiac ischemia reperfusion, and administration of TERI to at-risk populations should receive special considerations.
Collapse
Affiliation(s)
- Emily Davis Alexander
- Quillen College of Medicine, Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Jessa L Aldridge
- Quillen College of Medicine, Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - T Samuel Burleson
- Quillen College of Medicine, Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Chad R Frasier
- Quillen College of Medicine, Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
36
|
Turner JA, Laslett LL, Padgett C, Lim CK, Taylor B, van der Mei I, Honan CA. Disease-modifying therapies do not affect sleep quality or daytime sleepiness in a large Australian MS cohort. Mult Scler Relat Disord 2023; 78:104902. [PMID: 37517312 DOI: 10.1016/j.msard.2023.104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/08/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Poor sleep is common in multiple sclerosis (MS) and may impact daily functioning. The extent to which disease-modifying therapies (DMTs) contribute to sleep outcomes is under-examined. OBJECTIVE To compare the effects of DMTs on sleep outcomes in an Australian cohort of people with MS and investigate associations between DMT use and beliefs about sleep problems and daily functioning (social functioning and activity engagement). METHODS Sleep outcomes were assessed using the Pittsburgh Sleep Quality Index and the Epworth Sleepiness Scale. DMT use and functioning were self-reported. RESULTS Of 1,715 participants, 64% used a DMT. No differences in sleep outcomes were detected between participants who did and did not use DMTs, the type of DMT used (lower vs higher efficacy, interferon-β vs other DMTs), the timing of administration, or adherence to standard administration recommendations. Beliefs that DMT use worsened sleep were associated with poorer sleep quality and perceptions that sleep problems interfered with daily functioning. CONCLUSION The use of a DMT does not appear to affect self-reported sleep outcomes in people with MS. However, beliefs that DMT use makes sleep worse were associated with poorer sleep quality and increased interference in daily functioning, suggesting a need for education to diminish negative perceptions of DMT use.
Collapse
Affiliation(s)
- Jason A Turner
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart and Launceston, Australia
| | - Laura L Laslett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Christine Padgett
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart and Launceston, Australia
| | - Chai K Lim
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Bruce Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Cynthia A Honan
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart and Launceston, Australia; Launceston General Hospital, Launceston, Tasmania, Australia.
| |
Collapse
|
37
|
Wang M, Liu C, Zou M, Niu Z, Zhu J, Jin T. Recent progress in epidemiology, clinical features, and therapy of multiple sclerosis in China. Ther Adv Neurol Disord 2023; 16:17562864231193816. [PMID: 37719665 PMCID: PMC10504852 DOI: 10.1177/17562864231193816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/24/2023] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system characterized by inflammation, demyelination, and neurodegeneration. It mainly affects young adults, imposing a heavy burden on families and society. The epidemiology, clinical features, and management of MS are distinct among different countries. Although MS is a rare disease in China, there are 1.4 billion people in China, so the total number of MS patients is not small. Because of the lack of specific diagnostic biomarkers for MS, there is a high misdiagnosis rate in China, as in other regions. Due to different genetic backgrounds, the clinical manifestations of MS in Chinese are different from those in the West. Herein, this review aims to summarize the disease comprehensively, including clinical profile and the status of disease-modifying therapies in China based on published population-based observation and cohort studies, and also to compare with data from other countries and regions, thus providing help to develop diagnostic guideline and the novel therapeutic drugs. Meanwhile, we also discuss the problems and challenges we face, specifically for the diagnosis and treatment of MS in the middle- and low-income countries.
Collapse
Affiliation(s)
- Meng Wang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Caiyun Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zixuan Niu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, No. 1, Xinmin Street, Changchun 130021, China
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm 171 64, Sweden
| | - Tao Jin
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, No. 1, Xinmin Street, Changchun 130021, China
| |
Collapse
|
38
|
Elrefaey A, Memon AB. Painful Small Fiber Neuropathy Associated With Teriflunomide: A Case Series and Literature Review Related to Teriflunomide and Leflunomide. Cureus 2023; 15:e45079. [PMID: 37705563 PMCID: PMC10496022 DOI: 10.7759/cureus.45079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 09/15/2023] Open
Abstract
Teriflunomide and its prodrug, leflunomide, are disease-modifying medications used to treat relapsing-remitting multiple sclerosis (RRMS) and rheumatoid arthritis (RA), respectively. Peripheral neuropathy is a rare side effect associated with both medications, although the incidence rate and exact pathological mechanism remain unknown. We present a retrospective case series of three patients with RRMS, who developed painful small fiber neuropathy at various timeframes (<6 months, one year, and four years, respectively) while on teriflunomide treatment (14 mg/day); we also engage in a literature review of small and large fiber neuropathy associated with teriflunomide and leflunomide use. All three patients developed small fiber neuropathy following teriflunomide exposure. Laboratory workup was negative for metabolic, infectious, vitamin deficiency-related, and autoimmune etiologies, except for one patient who had chronic metabolic syndromes (impaired glucose, hyperlipidemia) before medication intake. However, the patient developed neuropathy following teriflunomide treatment. Electrophysiological findings were negative for large fiber neuropathy in all three patients with positive skin biopsy, with reduced epidermal nerve fiber density (ENFD) in two of the three patients. Teriflunomide was discontinued in all cases, after which symptoms stabilized. Current literature on leflunomide supports a direct neurotoxic effect or buildup of toxic intermediates from uridine synthesis inhibition. Cessation of teriflunomide use in the described cases resulted in symptom stabilization. Early recognition and treatment may lead to good clinical outcomes in these patients.
Collapse
Affiliation(s)
- Ahmed Elrefaey
- Neurology, Faculty of Medicine, Ain Shams University, Cairo, EGY
| | - Anza B Memon
- Neurology, John D. Dingell VA Medical Center, Detroit, USA
- Neurology, Wayne State University School of Medicine, Detroit, USA
- Neurology, Henry Ford Health, Detroit, USA
| |
Collapse
|
39
|
Kilic AK, Suzan AA, Bulut A, Sahbaz G. Neuropathy in multiple sclerosis patients treated with teriflunomide. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e20221514. [PMID: 37585981 PMCID: PMC10427169 DOI: 10.1590/1806-9282.20221514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE Teriflunomide is an oral medication approved for the treatment of patients with multiple sclerosis. The primary effect of teriflunomide is to reduce de novo pyrimidine synthesis by inhibiting mitochondrial dihydroorotate dehydrogenase, thereby causing cell-cycle arrest. We aimed to investigate the occurrence of peripheral neuropathy, a rare side effect of teriflunomide, in patients receiving teriflunomide. METHODS Multiple sclerosis patients receiving teriflunomide (n=42) or other disease modifying therapies (n=18) and healthy controls (n=25) were enrolled in this cross-sectional study between January 2020 and 2021. The mean duration of teriflunomide treatment was 26 months (ranging from 6 to 54 months). All participants underwent neurological examination and nerve conduction studies of tibial, peroneal, sural, superficial peroneal, median, and ulnar nerves by using surface recording bar and bipolar stimulating electrodes. RESULTS The mean superficial peroneal nerve distal latency and conduction velocity were significantly slower, and the mean superficial peroneal nerve action potential amplitude was lower in patients using teriflunomide (2.50 ms, p<0.001; 47.35 m/s, p=0.030; and 11.05 μV, p<0.001, respectively). The mean peroneal motor nerve distal latency was significantly longer and amplitude was lower in teriflunomide patients (3.68 ms, p<0.001, and 5.25 mV, p=0.009, respectively). During the study period, treatment switching to another disease-modifying therapy was planned in 10 patients, and all neuropathic complaints were reversed after switching. CONCLUSION Teriflunomide has the potential to cause peripheral neuropathy. The awareness of peripheral neuropathy, questioning the symptoms, and if suspected, evaluation with electromyography and switching the therapy in patients under teriflunomide treatment are crucial.
Collapse
Affiliation(s)
- Ahmet Kasim Kilic
- University of Health Sciences, Kartal Dr. Lutfi Kirdar City Hospital, Department of Neurology – Istanbul, Turkey
| | - Aysegul Akkan Suzan
- University of Health Sciences, Kartal Dr. Lutfi Kirdar City Hospital, Department of Neurology – Istanbul, Turkey
| | - Anil Bulut
- University of Health Sciences, Kartal Dr. Lutfi Kirdar City Hospital, Department of Neurology – Istanbul, Turkey
| | - Gulhan Sahbaz
- University of Health Sciences, Kartal Dr. Lutfi Kirdar City Hospital, Department of Neurology – Istanbul, Turkey
| |
Collapse
|
40
|
Demirel Ozbek E, Akdogan N, Ates Ozdemir D, Acar Ozen NP, Tuncer A. Teriflunomide-Induced Palmoplantar Pustular Psoriasis: Case Report and Review of the Literature. Cureus 2023; 15:e42845. [PMID: 37664364 PMCID: PMC10472710 DOI: 10.7759/cureus.42845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Teriflunomide is a once-daily oral immunomodulatory disease-modifying treatment for multiple sclerosis (MS). Skin reactions are an infrequent side effect of teriflunomide. Here, we present the case of a 52-year-old female patient with ankylosing spondylitis who was consulted for demyelinating lesions and limb weakness. She was diagnosed with multiple sclerosis and started treatment with teriflunomide. Palmoplantar pustular psoriasis developed after three weeks of treatment initiation. It is a rare side effect related to teriflunomide.
Collapse
Affiliation(s)
| | | | | | | | - Aslı Tuncer
- Department of Neurology, Hacettepe University, Ankara, TUR
| |
Collapse
|
41
|
Koseoglu E, Sungur N, Muhtaroglu S, Zararsiz G, Eken A. The Beneficial Clinical Effects of Teriflunomide in Experimental Autoimmune Myasthenia Gravis and the Investigation of the Possible Immunological Mechanisms. Cell Mol Neurobiol 2023; 43:2071-2087. [PMID: 36219379 PMCID: PMC11412195 DOI: 10.1007/s10571-022-01286-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disease characterized by skeletal muscle weakness exacerbated with exercise. There is a need for novel drugs effective in refractory MG. We aimed to test the potential of teriflunomide, an immunomodulatory drug currently used in rheumatoid arthritis and multiple sclerosis treatment, in a murine experimental autoimmune myasthenia gravis (EAMG) model. EAMG was induced by immunizations with recombinant acetylcholine receptor (AChR). Teriflunomide treatment (10 mg/kg/day, intraperitoneal) was initiated to one group of mice (n = 21) following the third immunization and continued for 5 weeks. The disease control group (n = 19) did not receive medication. Naïve mice (n = 10) received only mock immunization. In addition to the clinical scorings, the numbers of B cells and T cells, and cytokine profiles of T cells were examined by flow cytometry. Anti-AChR-specific antibodies in the peripheral blood serum were quantified by ELISA. Teriflunomide significantly reduced clinical disease scores and the absolute numbers of CD4+ T cells and some of their cytokine-producing subgroups (IFN-γ, IL 2, IL22, IL-17A, GM-CSF) in the spleen and the lymph nodes. The thymic CD4+ T cells were also significantly reduced. Teriflunomide mostly spared CD8+ T cells' numbers and cytokine production, while reducing CD138+CD19+lambda+ plasma B cells' absolute numbers and CD138 mean fluorescent intensities, probably decreasing the number of IgG secreting more mature plasma cells. It also led to some selective changes in the measurements of anti-AChR-specific antibodies in the serum. Our results showed that teriflunomide may be beneficial in the treatment of MG in humans.
Collapse
Affiliation(s)
- Emel Koseoglu
- Department of Biochemistry, Erciyes University School of Medicine, Kayseri, Turkey.
- Department of Neurology, Erciyes University School of Medicine, Kayseri, Turkey.
| | - Neslihan Sungur
- Department of Biochemistry, Erciyes University School of Medicine, Kayseri, Turkey
| | | | - Gokmen Zararsiz
- Department of Biostatistics, Erciyes University School of Medicine, Kayseri, Turkey
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Ahmet Eken
- Department of Medical Biology, Erciyes University School of Medicine, Kayseri, Turkey
- Betul Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| |
Collapse
|
42
|
Hong KU, Tagnedji AH, Doll MA, Walls KM, Hein DW. Upregulation of cytidine deaminase in NAT1 knockout breast cancer cells. J Cancer Res Clin Oncol 2023; 149:5047-5060. [PMID: 36329350 PMCID: PMC10193532 DOI: 10.1007/s00432-022-04436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Arylamine N-acetyltransferase 1 (NAT1), a phase II metabolic enzyme, is frequently upregulated in breast cancer. Inhibition or depletion of NAT1 leads to growth retardation in breast cancer cells in vitro and in vivo. A previous metabolomics study of MDA-MB-231 breast cancer cells suggests that NAT1 deletion leads to a defect in de novo pyrimidine biosynthesis. In the present study, we observed that NAT1 deletion results in upregulation of cytidine deaminase (CDA), which is involved in the pyrimidine salvage pathway, in multiple breast cancer cell lines (MDA-MB-231, MCF-7 and ZR-75-1). We hypothesized that NAT1 KO MDA-MB-231 cells show differential sensitivity to drugs that either inhibit cellular pyrimidine homeostasis or are metabolized by CDA. METHODS The cells were treated with (1) inhibitors of dihydroorotate dehydrogenase or CDA (e.g., teriflunomide and tetrahydrouridine); (2) pyrimidine/nucleoside analogs (e.g., gemcitabine and 5-azacytidine); and (3) naturally occurring, modified cytidines (e.g., 5-formyl-2'-deoxycytidine; 5fdC). RESULTS Although NAT1 KO cells failed to show differential sensitivity to nucleoside analogs that are metabolized by CDA, they were markedly more sensitive to 5fdC which induces DNA damage in the presence of high CDA activity. Co-treatment with 5fdC and a CDA inhibitor, tetrahydrouridine, abrogated the increase in 5fdC cytotoxicity in NAT1 KO cells, suggesting that the increased sensitivity of NAT1 KO cells to 5fdC is dependent on their increased CDA activity. CONCLUSIONS The present findings suggest a novel therapeutic strategy to treat breast cancer with elevated NAT1 expression. For instance, NAT1 inhibition may be combined with cytotoxic nucleosides (e.g., 5fdC) for breast cancer treatment.
Collapse
Affiliation(s)
- Kyung U Hong
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Afi H Tagnedji
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mark A Doll
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kennedy M Walls
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - David W Hein
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
43
|
Herman S, Arvidsson McShane S, Zjukovskaja C, Khoonsari PE, Svenningsson A, Burman J, Spjuth O, Kultima K. Disease phenotype prediction in multiple sclerosis. iScience 2023; 26:106906. [PMID: 37332601 PMCID: PMC10275960 DOI: 10.1016/j.isci.2023.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/09/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Progressive multiple sclerosis (PMS) is currently diagnosed retrospectively. Here, we work toward a set of biomarkers that could assist in early diagnosis of PMS. A selection of cerebrospinal fluid metabolites (n = 15) was shown to differentiate between PMS and its preceding phenotype in an independent cohort (AUC = 0.93). Complementing the classifier with conformal prediction showed that highly confident predictions could be made, and that three out of eight patients developing PMS within three years of sample collection were predicted as PMS at that time point. Finally, this methodology was applied to PMS patients as part of a clinical trial for intrathecal treatment with rituximab. The methodology showed that 68% of the patients decreased their similarity to the PMS phenotype one year after treatment. In conclusion, the inclusion of confidence predictors contributes with more information compared to traditional machine learning, and this information is relevant for disease monitoring.
Collapse
Affiliation(s)
- Stephanie Herman
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | | | - Payam Emami Khoonsari
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, 17121 Solna, Sweden
| | - Anders Svenningsson
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Joachim Burman
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Barmpagiannos K, Theotokis P, Petratos S, Pagnin M, Einstein O, Kesidou E, Boziki M, Artemiadis A, Bakirtzis C, Grigoriadis N. The Diversity of Astrocyte Activation during Multiple Sclerosis: Potential Cellular Targets for Novel Disease Modifying Therapeutics. Healthcare (Basel) 2023; 11:healthcare11111585. [PMID: 37297725 DOI: 10.3390/healthcare11111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Neuroglial cells, and especially astrocytes, constitute the most varied group of central nervous system (CNS) cells, displaying substantial diversity and plasticity during development and in disease states. The morphological changes exhibited by astrocytes during the acute and chronic stages following CNS injury can be characterized more precisely as a dynamic continuum of astrocytic reactivity. Different subpopulations of reactive astrocytes may be ascribed to stages of degenerative progression through their direct pathogenic influence upon neurons, neuroglia, the blood-brain barrier, and infiltrating immune cells. Multiple sclerosis (MS) constitutes an autoimmune demyelinating disease of the CNS. Despite the previously held notion that reactive astrocytes purely form the structured glial scar in MS plaques, their continued multifaceted participation in neuroinflammatory outcomes and oligodendrocyte and neuronal function during chronicity, suggest that they may be an integral cell type that can govern the pathophysiology of MS. From a therapeutic-oriented perspective, astrocytes could serve as key players to limit MS progression, once the integral astrocyte-MS relationship is accurately identified. This review aims toward delineating the current knowledge, which is mainly focused on immunomodulatory therapies of the relapsing-remitting form, while shedding light on uncharted approaches of astrocyte-specific therapies that could constitute novel, innovative applications once the role of specific subgroups in disease pathogenesis is clarified.
Collapse
Affiliation(s)
- Konstantinos Barmpagiannos
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | | | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| |
Collapse
|
45
|
Liu PJ, Yang TT, Fan ZX, Yuan GB, Ma L, Wang ZY, Lu JF, Yuan BY, Zou WL, Zhang XH, Liu GZ. Characterization of antigen-specific CD8+ memory T cell subsets in peripheral blood of patients with multiple sclerosis. Front Immunol 2023; 14:1110672. [PMID: 37215118 PMCID: PMC10192904 DOI: 10.3389/fimmu.2023.1110672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Background Increasing evidence indicates the importance of CD8+ T cells in autoimmune attack against CNS myelin and axon in multiple sclerosis (MS). Previous research has also discovered that myelin-reactive T cells have memory phenotype functions in MS patients. However, limited evidence is available regarding the role of CD8+ memory T cell subsets in MS. This study aimed to explore potential antigen-specific memory T cell-related biomarkers and their association with disease activity. Methods The myelin oligodendrocyte glycoprotein (MOG)-specific CD8+ memory T cell subsets and their related cytokines (perforin, granzyme B, interferon (IFN)-γ) and negative co-stimulatory molecules (programmed cell death protein 1 (PD-1), T- cell Ig and mucin domain 3 (Tim-3)) were analyzed by flow cytometry and real-time PCR in peripheral blood of patients with relapsing-remitting MS. Results We found that MS patients had elevated frequency of MOG-specific CD8+ T cells, MOG-specific central memory T cells (TCM), MOG-specific CD8+ effector memory T cells (TEM), and MOG-specific CD8+ terminally differentiated cells (TEMRA); elevated granzyme B expression on MOG-specific CD8+ TCM; and, on MOG-specific CD8+ TEM, elevated granzyme B and reduced PD-1 expression. The Expanded Disability Status Scale score (EDSS) in MS patients was correlated with the frequency of MOG-specific CD8+ TCM, granzyme B expression in CD8+ TCM, and granzyme B and perforin expression on CD8+ TEM, but with reduced PD-1 expression on CD8+ TEM. Conclusion The dysregulation of antigen-specific CD8+ memory T cell subsets, along with the abnormal expression of their related cytokines and negative co-stimulatory molecules, may reflect an excessive or persistent inflammatory response induced during early stages of the illness. Our findings strongly suggest positive regulatory roles for memory T cell populations in MS pathogenesis, probably via molecular mimicry to trigger or promote abnormal peripheral immune responses. Furthermore, downregulated PD-1 expression may stimulate a positive feedback effect, promoting MS-related inflammatory responses via the interaction of PD-1 ligands. Therefore, these parameters are potential serological biomarkers for predicting disease development in MS.
Collapse
Affiliation(s)
- Pen-Ju Liu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ting-Ting Yang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ze-Xin Fan
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Guo-Bin Yuan
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lin Ma
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ze-Yi Wang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jian-Feng Lu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Bo-Yi Yuan
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wen-Long Zou
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xing-Hu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guang-Zhi Liu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Reder AT, Stuve O, Tankou SK, Leist TP. T cell responses to COVID-19 infection and vaccination in patients with multiple sclerosis receiving disease-modifying therapy. Mult Scler 2023; 29:648-656. [PMID: 36440826 PMCID: PMC9708532 DOI: 10.1177/13524585221134216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/07/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a neurological disorder marked by accumulating immune-mediated damage to the central nervous system. The dysregulated immune system in MS combined with immune effects of disease-modifying therapies (DMTs) used in MS treatment could alter responses to infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19). Most of the literature on immune response to SARS-CoV-2 infection and COVID-19 vaccination, in both the general population and patients with MS on DMTs, has focused on humoral immunity. However, immune response to COVID-19 involves multiple lines of defense, including T cells. OBJECTIVE AND METHODS We review innate and adaptive immunity to COVID-19 and expand on the role of T cells in mediating protective immunity against SARS-CoV-2 infection and in responses to COVID-19 vaccination in MS. RESULTS Innate, humoral, and T cell immune responses combat COVID-19 and generate protective immunity. Assays detecting cytokine expression by T cells show an association between SARS-CoV-2-specific T cell responses and milder/asymptomatic COVID-19 and protective immune memory. CONCLUSION Studies of COVID-19 immunity in people with MS on DMTs should ideally include comprehensive assessment of innate, humoral, and T cell responses.
Collapse
Affiliation(s)
- Anthony T Reder
- Department of Neurology, University of Chicago Medicine,
Chicago, IL, USA
| | - Olaf Stuve
- Peter O’Donnell Jr. Brain Institute, UT Southwestern
Medical Center, Dallas, TX, USA; VA North Texas Health Care System, Dallas VA Medical
Center, Dallas, TX, USA
| | | | - Thomas P Leist
- Department of Neurology, Thomas Jefferson University,
Philadelphia, PA, USA
| |
Collapse
|
47
|
Loonstra FC, Falize KF, de Ruiter LRJ, Schoonheim MM, Strijbis EMM, Killestein J, de Vries HE, Uitdehaag BMJ, Rijnsburger M. Adipokines in multiple sclerosis patients are related to clinical and radiological measures. J Neurol 2023; 270:2018-2030. [PMID: 36562851 PMCID: PMC10025234 DOI: 10.1007/s00415-022-11519-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND An imbalance of adipokines, hormones secreted by white adipose tissue, is suggested to play a role in the immunopathology of multiple sclerosis (MS). In people with MS (PwMS) of the same age, we aimed to determine whether the adipokines adiponectin, leptin, and resistin are associated with MS disease severity. Furthermore, we aimed to investigate whether these adipokines mediate the association between body mass index (BMI) and MS disease severity. METHODS Adiponectin, resistin, and leptin were determined in serum using ELISA. 288 PwMS and 125 healthy controls (HC) were included from the Project Y cohort, a population-based cross-sectional study of people with MS born in the Netherlands in 1966, and age and sex-matched HC. Adipokine levels and BMI were related to demographic, clinical and disability measures, and MRI-based brain volumes. RESULTS Adiponectin levels were 1.2 fold higher in PwMS vs. HC, especially in secondary progressive MS. Furthermore, we found a sex-specific increase in adiponectin levels in primary progressive (PP) male patients compared to male controls. Leptin and resistin levels did not differ between PwMS and HC, however, leptin levels were associated with higher disability (EDSS) and resistin strongly related to brain volumes in progressive patients, especially in several grey matter regions in PPMS. Importantly, correction for BMI did not significantly change the results. CONCLUSION In PwMS of the same age, we found associations between adipokines (adiponectin, leptin, and resistin) and a range of clinical and radiological metrics. These associations were independent of BMI, indicating distinct mechanisms.
Collapse
Affiliation(s)
- Floor C Loonstra
- MS Center Amsterdam, Neurology Department, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers (Amsterdam UMC), Location VUmc, De boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Kim F Falize
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Lodewijk R J de Ruiter
- MS Center Amsterdam, Neurology Department, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers (Amsterdam UMC), Location VUmc, De boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Eva M M Strijbis
- MS Center Amsterdam, Neurology Department, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers (Amsterdam UMC), Location VUmc, De boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Joep Killestein
- MS Center Amsterdam, Neurology Department, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers (Amsterdam UMC), Location VUmc, De boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Helga E de Vries
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Bernard M J Uitdehaag
- MS Center Amsterdam, Neurology Department, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers (Amsterdam UMC), Location VUmc, De boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Merel Rijnsburger
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Calvillo-Robledo A, Ramírez-Farías C, Valdez-Urias F, Huerta-Carreón EP, Quintanar-Stephano A. Arginine vasopressin hormone receptor antagonists in experimental autoimmune encephalomyelitis rodent models: A new approach for human multiple sclerosis treatment. Front Neurosci 2023; 17:1138627. [PMID: 36998727 PMCID: PMC10043225 DOI: 10.3389/fnins.2023.1138627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating and neurodegenerative disease that affects the central nervous system. MS is a heterogeneous disorder of multiple factors that are mainly associated with the immune system including the breakdown of the blood-brain and spinal cord barriers induced by T cells, B cells, antigen presenting cells, and immune components such as chemokines and pro-inflammatory cytokines. The incidence of MS has been increasing worldwide recently, and most therapies related to its treatment are associated with the development of several secondary effects, such as headaches, hepatotoxicity, leukopenia, and some types of cancer; therefore, the search for an effective treatment is ongoing. The use of animal models of MS continues to be an important option for extrapolating new treatments. Experimental autoimmune encephalomyelitis (EAE) replicates the several pathophysiological features of MS development and clinical signs, to obtain a potential treatment for MS in humans and improve the disease prognosis. Currently, the exploration of neuro-immune-endocrine interactions represents a highlight of interest in the treatment of immune disorders. The arginine vasopressin hormone (AVP) is involved in the increase in blood−brain barrier permeability, inducing the development and aggressiveness of the disease in the EAE model, whereas its deficiency improves the clinical signs of the disease. Therefore, this present review discussed on the use of conivaptan a blocker of AVP receptors type 1a and type 2 (V1a and V2 AVP) in the modulation of immune response without completely depleting its activity, minimizing the adverse effects associated with the conventional therapies becoming a potential therapeutic target in the treatment of patients with multiple sclerosis.
Collapse
|
49
|
In-depth characterization of long-term humoral and cellular immune responses to COVID-19m-RNA vaccination in multiple sclerosis patients treated with teriflunomide or alemtuzumab. Mult Scler Relat Disord 2023; 72:104616. [PMID: 36933299 PMCID: PMC10008178 DOI: 10.1016/j.msard.2023.104616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND The impact of disease-modifying therapies on the efficacy to mount appropriate immune responses to COVID-19 vaccination in patients with multiple sclerosis (MS) is currently under investigation. OBJECTIVE To characterize long-term humoral and cellular immunity in mRNA-COVID-19 MS vaccinees treated with teriflunomide or alemtuzumab. METHODS We prospectively measured SARS-COV-2 IgG, memory B-cells specific for SARS-CoV-2 RBD, and memory T-cells secreting IFN-γ and/or IL-2, in MS patients vaccinated with BNT162b2-COVID-19 vaccine before, 1, 3 and 6 months after the second vaccine dose, and 3-6 months following vaccine booster. RESULTS Patients were either untreated (N = 31, 21 females), under treatment with teriflunomide (N = 30, 23 females, median treatment duration 3.7 years, range 1.5-7.0 years), or under treatment with alemtuzumab (N = 12, 9 females, median time from last dosing 15.9 months, range 1.8-28.7 months). None of the patients had clinical SARS-CoV-2 or immune evidence for prior infection. Spike IgG titers were similar between untreated, teriflunomide and alemtuzumab treated MS patients both at 1 month (median 1320.7, 25-75 IQR 850.9-3152.8 vs. median 901.7, 25-75 IQR 618.5-1495.8, vs. median 1291.9, 25-75 IQR 590.8-2950.9, BAU/ml, respectively), at 3 months (median 1388.8, 25-75 1064.6-2347.6 vs. median 1164.3 25-75 IQR 726.4-1399.6, vs. median 837.2, 25-75 IQR 739.4-1868.5 BAU/ml, respectively), and at 6 months (median 437.0, 25-75 206.1-1161.3 vs. median 494.3, 25-75 IQR 214.6-716.5, vs. median 176.3, 25-75 IQR 72.3-328.8 BAU/ml, respectively) after the second vaccine dose. Specific SARS-CoV-2 memory B cells were detected in 41.9%, 40.0% and 41.7% of subjects at 1 month, in 32.3%, 43.3% and 25% at 3 months, and in 32.3%, 40.0%, 33.3% at 6 months following vaccination in untreated, teriflunomide treated and alemtuzumab treated MS patients, respectively. Specific SARS-CoV-2 memory T cells were found in 48.4%, 46.7% and 41.7 at 1 month, in 41.9%, 56.7% and 41.7% at 3 months, and in 38.7%, 50.0%, and 41.7% at 6 months, of untreated, teriflunomide-treated and alemtuzumab -treated MS patients, respectively. Administration of a third vaccine booster significantly increased both humoral and cellular responses in all patients. CONCLUSIONS MS patients treated with teriflunomide or alemtuzumab achieved effective humoral and cellular immune responses up to 6 months following second COVID-19 vaccination. Immune responses were reinforced following the third vaccine booster.
Collapse
|
50
|
Kuhle J, Chitnis T, Banwell B, Tardieu M, Arnold DL, Rawlings AM, Geertsen SS, Lublin AL, Saubadu S, Truffinet P, Kappos L. Plasma neurofilament light chain in children with relapsing MS receiving teriflunomide or placebo: A post hoc analysis of the randomized TERIKIDS trial. Mult Scler 2023; 29:385-394. [PMID: 36632983 PMCID: PMC9972233 DOI: 10.1177/13524585221144742] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The phase 3 TERIKIDS study demonstrated efficacy and manageable safety for teriflunomide versus placebo in children with relapsing multiple sclerosis (RMS). OBJECTIVE Evaluate plasma neurofilament light chain (pNfL) concentrations in TERIKIDS. METHODS Patients received placebo or teriflunomide (14 mg adult equivalent) for up to 96 weeks in the double-blind (DB) period. In the open-label extension (OLE), all patients received teriflunomide until up to 192 weeks after randomization. pNfL was measured using single-molecule array assay (Simoa® NF-light™). RESULTS Baseline mean age was 14.5 years; 69.4% were female. Baseline geometric least square mean pNfL levels were similar for teriflunomide (n = 78) and placebo (n = 33) patients (19.83 vs 18.30 pg/mL). Over the combined DB and OLE periods, pNfL values were lower for teriflunomide versus placebo (analysis of variance p < 0.01; Week 192: 10.61 vs 17.32 pg/mL). Observed between-group pNfL differences were attenuated upon adjustment for gadolinium (Gd)-enhancing or new/enlarged T2 lesion counts at DB Week 24. Higher baseline pNfL levels were associated with shorter time since first MS symptom onset, higher baseline Gd-enhancing lesion counts and T2 lesion volume, and increased hazard of high magnetic resonance imaging activity or clinical relapse during the DB period. CONCLUSION Teriflunomide treatment was associated with significantly reduced pNfL levels in children with RMS. CLINICALTRIALS.GOV IDENTIFIER NCT02201108.
Collapse
Affiliation(s)
- Jens Kuhle
- J Kuhle MS Center, Neurology and Research
Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments
of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University
Hospital Basel and University Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - Tanuja Chitnis
- Massachusetts General Hospital for Children,
Boston, MA, USA
| | - Brenda Banwell
- Children’s Hospital of Philadelphia, University
of Pennsylvania, Philadelphia, PA, USA
| | - Marc Tardieu
- Hôpitaux Universitaires Paris-Sud, Paris,
France
| | - Douglas L Arnold
- McGill University, Montréal, QC, Canada NeuroRx
Research, Montréal, QC, Canada
| | | | | | | | | | | | - Ludwig Kappos
- MS Center, Neurology and Research Center for
Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of
Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University
Hospital Basel and University Basel, Basel, Switzerland
| |
Collapse
|