1
|
Moustafa B, Trifan G. The Role of Diabetes and SGLT2 Inhibitors in Cerebrovascular Diseases. Curr Neurol Neurosci Rep 2025; 25:37. [PMID: 40411658 DOI: 10.1007/s11910-025-01425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2025] [Indexed: 05/26/2025]
Abstract
PURPOSE OF REVIEW Diabetes is a well-established risk factor for stroke. Understanding the pathophysiology of this connection is crucial to implementing appropriate prevention strategies. Lately, there has been a paradigm shift in the care of individuals with diabetes toward the use of glucose-lowering medications with potential cardiovascular, cerebrovascular or cardiorenal benefits. The aim of this article is to provide a critical analysis of the role of diabetes in cerebrovascular disease and current evidence and recommendations for the use of glucose-lowering medication with particular focus on the sodium glucose cotransporter-2 inhibitor (SGLT2i) class. RECENT FINDINGS Intensive glycemic control in individuals with diabetes reduces the risk of microvascular complications, but there is less clear evidence for decreasing risk of macrovascular events (e.g., stroke). A multifaceted management of diabetes addressing healthy lifestyle practices, glycemic control, and optimization of other cardiovascular risk factors is highly recommended. SGLT2i are the latest class of antihyperglycemic agents available for diabetes management. Canagliflozin and empagliflozin are associated with reduction in major adverse cardiovascular events (MACE). Dapagliflozin did not reduce the rate of MACE but is associated with reduction in heart-failure related death and hospitalization and has the potential to decrease dementia risk. Ertugliflozin decreases rates of hospitalization related to heart failure however it was non-inferior to placebo in reducing MACE. There is increasing evidence that the use of SGLT2i may reduce the risk of stroke, particularly hemorrhagic stroke, in individuals with type 2 diabetes and a high risk of cardiovascular events, and that SGLT2i may also be beneficial for brain health by decreasing risk of cognitive decline and dementia. Antihyperglycemic therapy should be tailored to patients' circumstances. SGLT2i treatment should be considered in patients with type 2 diabetes and established or high-risk cardiovascular disease, heart failure, or chronic kidney disease, to reduce the overall cerebro-cardiovascular and renal risks.
Collapse
Affiliation(s)
- Bayan Moustafa
- Mayo Clinic College of Medicine and Science, 1221 Whipple St, Eau Claire, WI, 54703, USA.
| | - Gabriela Trifan
- College of Medicine, University of Illinois at Chicago, 912 S Wood St, Chicago, IL, 60612, USA
| |
Collapse
|
2
|
d’Orsi G, Liantonio A, Imbrici P, Gambacorta N, Dinoi G, Altomare CD, DEFEAT-LD Study Group, Carella M. Empagliflozin Repurposing for Lafora Disease: A Pilot Clinical Trial and Preclinical Investigation of Novel Therapeutic Targets. Methods Protoc 2025; 8:48. [PMID: 40407475 PMCID: PMC12101192 DOI: 10.3390/mps8030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/24/2025] [Accepted: 05/04/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND Lafora disease (LD) is an ultra-rare and fatal neurodegenerative disorder with limited therapeutic options. Current treatments primarily address symptoms, with modest efficacy in halting disease progression, thus highlighting the urgent need for novel therapeutic approaches. Gene therapy, antisense oligonucleotides, and recombinant enzymes have recently been, and still are, under investigation. Drug repurposing may offer a promising approach to identify new, possibly effective, therapies. METHODS This study aims to investigate the conditions for repurposing empagliflozin, an SGLT2 (sodium/glucose cotransporter-2) inhibitor, as a potential treatment for LD and to establish a clinical protocol. Clinical phase: This 12-month prospective observational study will assess the safety and clinical efficacy of empagliflozin in two patients with early to intermediate LD stage. The primary endpoints will include changes in the severity of epilepsy and cognitive function, while the secondary endpoints will assess motor function, global function, and autonomy. Multiple clinical and instrumental evaluations (including MRI and PET with 18F-fluorodeoxyglucose) will be performed before and during treatment. Safety monitoring will include regular clinical assessments and reports of adverse events. Preclinical phase: In silico studies (using both molecular docking calculations and reverse ligand-based screening) and in vitro cell-based assays will allow us to investigate the effects of empagliflozin (and other gliflozins) on some key targets likely implicated in LD pathogenesis, such as GLUT1, GLUT3, glycogen synthase (hGYS), and glycogen phosphorylase (GP), as suggested in the literature and digital platforms for in silico target fishing. RESULTS The expected outcome of this study is twofold, i.e., (i) assessing the safety and tolerability of empagliflozin in LD patients and (ii) gathering preliminary data on its potential efficacy in improving clinical and neurologic features. Additionally, the in silico and in vitro studies may provide new insights into the mechanisms through which empagliflozin may exert its therapeutic effects in LD. CONCLUSION The findings of this study are expected to provide evidence in support of the repurposing of empagliflozin for the treatment of LD.
Collapse
Affiliation(s)
- Giuseppe d’Orsi
- Neurology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Antonella Liantonio
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.L.); (P.I.); (N.G.); (G.D.); (C.D.A.)
| | - Paola Imbrici
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.L.); (P.I.); (N.G.); (G.D.); (C.D.A.)
| | - Nicola Gambacorta
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.L.); (P.I.); (N.G.); (G.D.); (C.D.A.)
| | - Giorgia Dinoi
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.L.); (P.I.); (N.G.); (G.D.); (C.D.A.)
| | - Cosimo Damiano Altomare
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.L.); (P.I.); (N.G.); (G.D.); (C.D.A.)
| | | | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| |
Collapse
|
3
|
Agarwal V, Haldhar R, Hirad AH, Ahmed B, Han SB, Gupta A, Raj V, Lee S. Repurposing FDA-approved drugs as NLRP3 inhibitors against inflammatory diseases: machine learning and molecular simulation approaches. J Biomol Struct Dyn 2025; 43:4327-4339. [PMID: 38400742 DOI: 10.1080/07391102.2024.2308072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/10/2024] [Indexed: 02/26/2024]
Abstract
Activation of NLRP3 (NOD-like receptor family, pyrin domain-containing protein 3) has been associated with multiple chronic pathologies, including diabetes, atherosclerosis, and rheumatoid arthritis. Moreover, histone deacetylases (HDACs), specifically HDAC6 is required for the NLRP3 inflammasome to assemble and activate. Thus, NLRP3 serves as an attractive target for the development of novel therapeutic approaches. Several companies are now attempting to develop specific modulators of the NLRP3 inflammasome, but only a handful of small molecules of NLRP3 inflammasome inhibitors, such as MCC950 and Tranilast, are currently available for clinical use. However, their use is limited due to severe side effects and short half-lives. Thus, the repurposing of FDA-approved drugs with NLRP3 inhibitory activity is needed. The present study was aimed at repurposing preexisting drugs that might act as safe and effective NLRP3 inhibitors. A library of 2,697 FDA-approved drugs was screened for binding with NLRP3 (PDB: 7ALV) using Glide (Schrödinger). The top seven FDA-approved drugs with potential binding affinities were selected based on docking scores and subjected to ADMET profiling using pkCSM and SwissADME. The binding of the ADMET-favorable FDA-approved drugs to NLRP3 was validated using MMGBSA (Prime) and Molecular Dynamics (Desmond) in the Schrödinger suite. ADMET profiling revealed that of the seven best docking drugs, empagliflozin and citicoline had good drug-likeness properties. Moreover, MMGBSA analysis and molecular dynamics demonstrated that empagliflozin and citicoline exhibited stable ligand-NLRP3 interactions in the presence of solvents. This study sheds light on the ability of various FDA-approved drugs to act as NLRP3 inhibitors.
Collapse
Affiliation(s)
- Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Rajesh Haldhar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bilal Ahmed
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Sang Beom Han
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Anugya Gupta
- Faculty of Medical and Paramedical Sciences, Madhyanchal Professional University, Bhopal, Madhya Pradesh, India
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Zhou R, Zhang Z, Li X, Duan Q, Miao Y, Zhang T, Wang M, Li J, Zhang W, Wang L, Jones OD, Xu M, Liu Y, Xu X. Autophagy in High-Fat Diet and Streptozotocin-Induced Metabolic Cardiomyopathy: Mechanisms and Therapeutic Implications. Int J Mol Sci 2025; 26:1668. [PMID: 40004130 PMCID: PMC11855906 DOI: 10.3390/ijms26041668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic cardiomyopathy, encompassing diabetic and obese cardiomyopathy, is an escalating global health concern, driven by the rising prevalence of metabolic disorders such as insulin resistance, type 1 and type 2 diabetes, and obesity. These conditions induce structural and functional alterations in the heart, including left ventricular dysfunction, fibrosis, and ultimately heart failure, particularly in the presence of coronary artery disease or hypertension. Autophagy, a critical cellular process for maintaining cardiac homeostasis, is frequently disrupted in metabolic cardiomyopathy. This review explores the role of autophagy in the pathogenesis of high-fat diet (HFD) and streptozotocin (STZ)-induced metabolic cardiomyopathy, focusing on non-selective and selective autophagy pathways, including mitophagy, ER-phagy, and ferritinophagy. Key proteins and genes such as PINK1, Parkin, ULK1, AMPK, mTOR, ATG7, ATG5, Beclin-1, and miR-34a are central to the regulation of autophagy in metabolic cardiomyopathy. Dysregulated autophagic flux impairs mitochondrial function, promotes oxidative stress, and drives fibrosis in the heart. Additionally, selective autophagy processes such as lipophagy, regulated by PNPLA8, and ferritinophagy, modulated by NCOA4, play pivotal roles in lipid metabolism and iron homeostasis. Emerging therapeutic strategies targeting autophagy, including plant extracts (e.g., curcumin, dihydromyricetin), endogenous compounds (e.g., sirtuin 3, LC3), and lipid/glucose-lowering drugs, offer promising avenues for mitigating the effects of metabolic cardiomyopathy. Despite recent advances, the precise mechanisms underlying autophagy in this context remain poorly understood. A deeper understanding of autophagy's regulatory networks, particularly involving these critical genes and proteins, may lead to novel therapeutic approaches for treating metabolic cardiomyopathy.
Collapse
Affiliation(s)
- Rong Zhou
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Zutong Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Xinjie Li
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Yuanlin Miao
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Tingting Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Mofei Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Jiali Li
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Wei Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Liyang Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Odell D. Jones
- University Laboratory Animal Resources (ULAR), University of Pennsylvania School of Medicine, Philadelphia, PA 19144, USA;
| | - Mengmeng Xu
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Yingli Liu
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| |
Collapse
|
5
|
Hu H, Liu M, Fu Z, Li S, Wang K, Huang Z. The real-world safety profile of empagliflozin: a disproportionality analysis based on the FDA Adverse Event Reporting System (FAERS) database. BMC Pharmacol Toxicol 2025; 26:28. [PMID: 39920869 PMCID: PMC11806693 DOI: 10.1186/s40360-025-00861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the entire adverse events (AEs) spectrum and to identify some new or rare AEs associated with empagliflozin based on the FAERS database. METHODS A retrospective analysis was conducted on AE reports extracted from the FAERS, spanning from the first quarter of 2004 to that of 2023. Disproportionality analysis methods, including the ROR, PRR, BCPNN, and MGPS, were employed to quantify signals of AEs associated with empagliflozin. Additionally, demographic characteristics and time to onset were further elucidated. RESULTS The results showed a total of 20,734 AE reports related to empagliflozin, identifying 322 significant preferred terms (PTs) covering 27 System Organ Classes (SOCs). Empagliflozin was significantly associated with pre-specified AEs compared to other novel antidiabetic medications. Beyond common AEs, unexpected significant AEs such as pancreatitis, gastroenteritis, cerebral infarction, and cardiac operations were identified. The median onset time for empagliflozin-related AEs was 28 days (interquartile range (IQR) 4-154 days), with the majority of AE cases (n = 2,112, 10.19%) occurring within the first month following initiation of empagliflozin therapy. CONCLUSION The clinically observed AEs, along with potential new AE signals associated with empagliflozin were identified based on the FAERS database, which could provide valuable evidence for clinical monitoring, risk identification, and further safety studies of identification.
Collapse
Affiliation(s)
- Huiping Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maochang Liu
- Department of Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Administrative Office, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Zi Huang
- Department of Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Ma S, Jiang M, Wang X, Li B. Clinically approved representative small-molecule drugs for cardiopathy therapy. Eur J Med Chem 2025; 283:117172. [PMID: 39705736 DOI: 10.1016/j.ejmech.2024.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/22/2024]
Abstract
The application of therapeutic agents for cardiopathy has brought about significant advancements in the treatment of cardiovascular diseases. The intervention of small-molecule drugs has led to substantial reductions in morbidity and mortality rates, along with decreased utilization of healthcare resources. However, current treatment modalities do not exhibit uniform efficacy across all patients, and the emergence of drug resistance poses a significant challenge to further therapeutic efforts. Additionally, chronic administration of these drugs can result in toxicities, adding complexity to long-term management. This review focuses on the application of clinically approved small-molecule drugs for the treatment of cardiopathy, covering major classes such as angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, calcium channel blockers, β-blockers, and sodium-glucose co-transporter 2 inhibitors. The review provides an in-depth analysis of their synthetic routes, mechanisms of action, and roles in cardiopathy treatment. It also offers perspectives on future directions in the development of next-generation cardioprotective agents, aiming to optimize therapeutic strategies for cardiovascular disease management.
Collapse
Affiliation(s)
- Shaowei Ma
- Department of Interventional Therapy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China; Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Min Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Xiao Wang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| | - Bin Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| |
Collapse
|
7
|
Yang J, Ye W, Wang K, Wang A, Deng J, Chen G, Cai Y, Li Z, Chen Y, Lin D. Empagliflozin promotes skin flap survival by activating AMPK signaling pathway. Eur J Pharmacol 2025; 987:177207. [PMID: 39694175 DOI: 10.1016/j.ejphar.2024.177207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Flaps are widely used in surgical wound repair, yet distal necrosis poses a significant postoperative challenge, stemming from potential factors such as inadequate blood perfusion, inflammation, ischemia/reperfusion (I/R) injury, mitochondrial impairment, and subsequent ferroptosis. Empagliflozin (EMPA), a sodium-glucose cotransporter 2 inhibitor, has pharmacological activities that promote angiogenesis, mitophagy, and inhibit inflammation, I/R injury, and ferroptosis. However, it is unclear whether EMPA can enhance flap survival. Here, we established a modified McFarlane flap model and applied EMPA to demonstrate its mechanism of action. 24 rats were evenly divided into four groups: the control, low-dose EMPA (10 mg/kg), high-dose EMPA (30 mg/kg), and inhibitor groups. Molecular biology experiments demonstrated that EMPA promoted the expression of angiogenesis-related factors vascular endothelial growth factor (VEGF) and CD34. Additionally, it also increased superoxide dismutase (SOD) activity and reduced malondialdehyde (MDA) levels, thus suppressing oxidative stress. EMPA further alleviated inflammation by downregulating the expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In vitro experiments showed that EMPA promoted the proliferation of human umbilical vein endothelial cells (HUVECs) and reduce their reactive oxygen species (ROS) production. Further investigation demonstrated that EMPA improves flap prognosis by inducing the expression of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, further promoting mitophagy and inhibiting ferroptosis. These effects collectively contributed to the survival of the skin flap. Overall, our research elucidates the protective effects of EMPA on flap survival and its specific mechanisms, offering new insights into solving post-transplant flap necrosis.
Collapse
Affiliation(s)
- Jialong Yang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Weijian Ye
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Kaitao Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - An Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiapeng Deng
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Guodong Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yizhen Cai
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zijie Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medical, Wenzhou Medical University, China
| | - Yiqi Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Dingsheng Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
8
|
Dai X, Yu K, Chang Y, Hou Y. Drug-induced urinary retention: a real-world pharmacovigilance study using FDA and Canada vigilance databases. Front Pharmacol 2025; 15:1466875. [PMID: 39834827 PMCID: PMC11744018 DOI: 10.3389/fphar.2024.1466875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Background Urinary retention (UR) is a clinical condition where patients cannot fully empty their bladder. Although numerous drugs are associated with UR, comprehensive and reliable studies identifying drugs that induce UR are scarce. Methods This study leveraged data from the FDA Adverse Event Reporting System (FAERS) and the Canadian Vigilance Adverse Reaction (CVAR) database to explore adverse events (AEs) related to UR from 2004 to Q1 2024. The top 50 drugs were analyzed for annual reporting trends using linear regression. Disproportionality analysis using the reporting odds ratio (ROR) method, with P-values adjusted via Bonferroni correction, identified significant signals, which were then validated against drug labels and re-evaluated using the CVAR database. Time-to-onset analysis was also performed. Results From 2004 to Q1 2024, FAERS recorded 17,785,793 AEs, with 16,183 (0.09%) identified as UR cases. The median age among these cases was 65 years, with males comprising 53.4%. There were significant annual increases in UR reports associated with antineoplastic agents (0.19% per year) and antidiabetic drugs (0.09% per year), while reports linked to bronchodilators decreased (-0.53% per year). Disproportionality analysis revealed significant signals for 34 drugs (68%), with the highest RORs observed in Fesoterodine, Mirabegron, and Solifenacin. Initial signal detection identified potential new UR signals for Abiraterone, Valacyclovir, Fluoxetine, Empagliflozin, Clopidogrel, and Amlodipine, with CVAR confirming signals for Abiraterone, Fluoxetine, and Empagliflozin. The median time to onset of UR was 29 days, with over half of the cases occurring within 30 days of initiating medication. Conclusion The study identifies a rising trend in drug-related UR reports over the past 2 decades. The validation of new signals for Abiraterone, Fluoxetine, and Empagliflozin underscores the critical need for continuous drug safety monitoring and targeted research to better understand the mechanisms behind drug-induced UR.
Collapse
Affiliation(s)
- Xianyu Dai
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Kai Yu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Yu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuchuan Hou
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Duan Y, Wang Q, Chen X, Deng G, Huang K, Sun F, Zhu J, Jiang K. Empagliflozin reduces renal calcium oxalate deposition in hyperoxaluria rats induced with ethylene glycol-ammonium chloride. Biochem Biophys Res Commun 2024; 737:150912. [PMID: 39489113 DOI: 10.1016/j.bbrc.2024.150912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
A retrospective study reported that empagliflozin reduced the risk of urinary stone events in patients with diabetes mellitus. To further investigate empagliflozin's potential, we conducted an animal experiment to determine whether empagliflozin can prevent renal stone formation in hyperoxaluria rats. Hyperoxaluria rat models were constructed by administrating 0.75 % ethylene glycol and 1 % ammonium chloride in water. The empagliflozin-treated rats were gauged with empagliflozin at different concentrations, and their body weight and blood sugar data were recorded. After 30 days of treatment, we obtained 24-h urine, kidney, and blood samples. The urine samples were subjected to component detection. Blood samples were prepared for component detection and cytokines detection. Renal samples were subjected to von Kossa staining, transmission electron microscopy, immunohistochemistry, and transcriptome sequencing analysis. Results showed that in empagliflozin-treated hyperoxaluria rats, renal crystal deposition and mitochondria injury, urinary concentration, and excretion of oxalate were significantly decreased. Additionally, plasma levels of VEGF, IL-2, IL-1β, and MCP-1 were decreased. Immunohistochemistry showed that renal expression of KIM-1, MCP-1 was significantly decreased in empagliflozin-treated hyperoxaluria rats. Transcriptome sequencing of renal tissue represented that 25 genes were down-regulated while 12 were up-regulated in empagliflozin-treated hyperoxaluria rats. These regulated genes were mainly enriched in fatty acid metabolism, insulin resistance, muscle contraction, bile secretion, and parathyroid metabolism. Our animal experiments found that empagliflozin could reduce urinary concentration and excretion of oxalate and inhibit renal inflammation, then abating renal calcium oxalate deposition in hyperoxaluria rats in a non-diabetic state.
Collapse
Affiliation(s)
- Yu Duan
- Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China; Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Qing Wang
- Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Guanyun Deng
- Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China; Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Kunyuan Huang
- Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China; Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Fa Sun
- Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China; Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Jianguo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| | - Kehua Jiang
- Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China; Department of Urology, Guizhou Provincial People's Hospital, No.83 East Zhongshan Road, Nanming District, Guiyang, Guizhou, China.
| |
Collapse
|
10
|
Kciuk M, Kruczkowska W, Gałęziewska J, Wanke K, Kałuzińska-Kołat Ż, Aleksandrowicz M, Kontek R. Alzheimer's Disease as Type 3 Diabetes: Understanding the Link and Implications. Int J Mol Sci 2024; 25:11955. [PMID: 39596023 PMCID: PMC11593477 DOI: 10.3390/ijms252211955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two prevalent conditions that present considerable public health issue in aging populations worldwide. Recent research has proposed a novel conceptualization of AD as "type 3 diabetes", highlighting the critical roles of insulin resistance and impaired glucose metabolism in the pathogenesis of the disease. This article examines the implications of this association, exploring potential new avenues for treatment and preventive strategies for AD. Key evidence linking diabetes to AD emphasizes critical metabolic processes that contribute to neurodegeneration, including inflammation, oxidative stress, and alterations in insulin signaling pathways. By framing AD within this metabolic context, we can enhance our understanding of its etiology, which in turn may influence early diagnosis, treatment plans, and preventive measures. Understanding AD as a manifestation of diabetes opens up the possibility of employing novel therapeutic strategies that incorporate lifestyle modifications and the use of antidiabetic medications to mitigate cognitive decline. This integrated approach has the potential to improve patient outcomes and deepen our comprehension of the intricate relationship between neurodegenerative diseases and metabolic disorders.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| | - Weronika Kruczkowska
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland; (W.K.); (J.G.); (Ż.K.-K.)
| | - Julia Gałęziewska
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland; (W.K.); (J.G.); (Ż.K.-K.)
| | - Katarzyna Wanke
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland; (W.K.); (J.G.); (Ż.K.-K.)
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, 90-136 Lodz, Poland
| | - Marta Aleksandrowicz
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| |
Collapse
|
11
|
Mu Y, Luo LB, Huang R, Shen ZY, Huang D, Zhao SH, Yang J, Ma ZG. Cardiac-derived CTRP9 mediates the protection of empagliflozin against diabetes-induced male subfertility in mice. Clin Sci (Lond) 2024; 138:1421-1440. [PMID: 39392219 DOI: 10.1042/cs20241477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
Previous studies have shown beneficial effects of empagliflozin (Empa), a selective inhibitor of the sodium-glucose cotransporter 2 (SGLT2), on diabetes and cardiovascular outcomes in patients with diabetes. However, whether Empa could ameliorate diabetes mellitus (DM)-induced male spermatogenesis dysfunction remains unclear. Our study aimed to investigate the effect of Empa in the development of DM-induced male spermatogenesis dysfunction and to reveal the molecular mechanisms. DM mice were orally treated with Empa to investigate the effects of Empa on DM-induced male mice spermatogenesis dysfunction. We employed a cardiac-specific C1q/tumor necrosis factor-related protein 9 (CTRP9)-deficient mouse model and a cardiac-specific CTRP9 overexpression mouse model to investigate its role in the protection of Empa against diabetes-induced male subfertility. We found that Empa treatment could improve DM-induced male mice subfertility. Interestingly, we discovered that cardiac-derived CTRP9 was decreased in DM mice and this decrease was prevented by Empa treatment. A CTRP9 blocking antibody or cardiac-specific depletion of CTRP9 abolished the protection of Empa on DM-induced male subfertility. Cardiac-specific CTRP9 overexpression ameliorated DM-induced male subfertility. Mechanistically, we identified that cardiac-derived CTRP9 increased steroidogenesis in mice with diabetes in a PKA-dependent manner. We also provided direct evidence that activation of AMP activated protein kinase α (AMPKα)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signalling pathway by CTRP9 was responsible for the attenuation of ferroptosis in Leydig cells. In conclusions, we supposed that Empa was a potential therapeutic agent against DM-induced male mice spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ling-Bo Luo
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Rong Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zhuo-Yu Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Dan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Shu-Hong Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
12
|
Soares RR, Viggiani LF, Reis Filho JM, Joviano-Santos JV. Cardioprotection of Canagliflozin, Dapagliflozin, and Empagliflozin: Lessons from preclinical studies. Chem Biol Interact 2024; 403:111229. [PMID: 39244185 DOI: 10.1016/j.cbi.2024.111229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Clinical and preclinical studies have elucidated the favorable effects of Inhibitors of Sodium-Glucose Cotransporter-2 (iSGLT2) in patients and animal models with type 2 diabetes. Notably, these inhibitors have shown significant benefits in reducing hospitalizations and mortality among patients with heart failure. However, despite their incorporation into clinical practice for indications beyond diabetes, the decision-making process regarding their use often lacks a systematic approach. The selection of iSGLT2 remains arbitrary, with only a limited number of studies simultaneously exploring the different classes of them. Currently, no unique guideline establishes their application in both clinical and basic research. This review delves into the prevalent use of iSGLT2 in animal models previously subjected to induced cardiac stress. We have compiled key findings related to cardioprotection across various animal models, encompassing diverse dosages and routes of administration. Beyond their established role in diabetes management, iSGLT2 has demonstrated utility as agents for safeguarding heart health and cardioprotection can be class-dependent among the iSGLT2. These findings may serve as valuable references for other researchers. Preclinical studies play a pivotal role in ensuring the safety of novel compounds or treatments for potential human use. By assessing side effects, toxicity, and optimal dosages, these studies offer a robust foundation for informed decisions, identifying interventions with the highest likelihood of success and minimal risk to patients. The insights gleaned from preclinical studies, which play a crucial role in highlighting areas of knowledge deficiency, can guide the exploration of novel mechanisms and strategies involving iSGLT2.
Collapse
Affiliation(s)
- Rayla Rodrigues Soares
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil
| | - Larissa Freitas Viggiani
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil
| | - Juliano Moreira Reis Filho
- Post-Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Julliane V Joviano-Santos
- Post-Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Yu Z, Lu Y, Zhang M, Lin Y, Wong TS, Guan B, Meng Y, Hu B, Liu FN, Yin L, Li Y, Zhang H, Tang D, Dai Y. Mechanism of the cardioprotective effect of empagliflozin on diabetic nephropathy mice based on the basis of proteomics. Proteome Sci 2024; 22:9. [PMID: 39427190 PMCID: PMC11490188 DOI: 10.1186/s12953-024-00232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024] Open
Abstract
Diabetic nephropathy affects a significant proportion of individuals with diabetes, and its progression often leads to cardiovascular disease and infections before the need for renal replacement therapy arises. Empagliflozin has been shown to have various protective effects in cardiovascular disease studies, such as improving diabetic myocardial structure and function, and reducing myocardial oxidative stress. However, the impact of empagliflozin on cardiac protein expression and signaling pathways has not been comprehensively analyzed. To address this gap, we conducted proteome analysis to identify specific protein markers in cardiac tissue from the diabetes model group, including Myh7, Wdr37, Eif3k, Acot1, Acot2, Cat, and Scp2, in cardiac tissue from the diabetes model group. In our drug model, empagliflozin primarily modulates the fat-related metabolic signaling pathway within the heart. Empagliflozin downregulated the protein expression levels of ACOX1, ACADVL and CPT1A in the model group. Overall, our findings demonstrate that empagliflozin provides cardiac protection by targeting metabolic signaling pathways, particularly those related to fat metabolism. Moreover, the identification of cardiac biomarkers in a mouse model of diabetic nephropathy lays the foundation for further exploration of disease biomarkers in cardiac tissue.
Collapse
Affiliation(s)
- Zongchao Yu
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yongping Lu
- Department of Nephrology, Center of Kidney and Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Mengxian Zhang
- Department of Internal Medicine, Humen Hospital, Dongguan City, Guangdong Province, China
| | - Yanshan Lin
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tak-Sui Wong
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Baozhang Guan
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu Meng
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bo Hu
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fan-Na Liu
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lianghong Yin
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yankun Li
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, China
| | - Han Zhang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, China.
| | - Donge Tang
- Clinical Medical Research Center, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China.
| | - Yong Dai
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China.
| |
Collapse
|
14
|
Hayat K, Nixon G, Zhang Q, Matziari M. Symmetrical Phosphinic Acids: Synthesis and Esterification Optimization toward Potential HIV Prodrugs. ACS OMEGA 2024; 9:41742-41757. [PMID: 39398174 PMCID: PMC11465283 DOI: 10.1021/acsomega.4c05988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
A highly efficient method to synthesize diverse symmetrical phosphinic acids with the potential to act as pivotal candidates in the design of HIV-1 protease inhibitors has been developed. Such compounds have been designed based on the enzyme-substrate specificity, and their elongated analogues are expected to demonstrate significant inhibition against the HIV-1 protease with IC50 values in the low nanomolar range. Moreover, a highly efficient esterification protocol with carbohydrates and flavonoids has been devised to address the inherent absorption challenges associated with phosphinic-based drugs. These esters not only exhibit low toxicity but also have the potential to generate flavonoid moieties in situ, which are associated with hepatoprotective effects, or naturally occurring carbohydrate metabolites. The methodology utilizes effective peptide coupling reagents, such as aminium-based TBTU and carbodiimide-based DIC, and affords the target products in excellent to quantitative yields. This research represents a promising avenue for the development of novel HIV-1 protease inhibitors with significant therapeutic benefits.
Collapse
Affiliation(s)
- Komal Hayat
- Department
of Chemistry, School of Science, Xi’an
Jiaotong-Liverpool University, 111 Ren’ai Road, SIP, Suzhou, Jiangsu Province 215123, P. R. China
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Gemma Nixon
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Qian Zhang
- Department
of Chemistry, School of Science, Xi’an
Jiaotong-Liverpool University, 111 Ren’ai Road, SIP, Suzhou, Jiangsu Province 215123, P. R. China
| | - Magdalini Matziari
- Department
of Chemistry, School of Science, Xi’an
Jiaotong-Liverpool University, 111 Ren’ai Road, SIP, Suzhou, Jiangsu Province 215123, P. R. China
| |
Collapse
|
15
|
Liu DY, Ruan YJ, Wang XL, Hu XY, Wang PF, Wen MM, Zhang CZ, Xiao YH, Liu XG. Concise synthesis of 3- C-glycosyl isocoumarins and 2-glycosyl-4 H-chromen-4-ones. Chem Commun (Camb) 2024; 60:10390-10393. [PMID: 39224044 DOI: 10.1039/d4cc03004d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A new Ru-catalyzed C-H activation/cyclization reaction for the synthesis of 3-C-glycosyl isocoumarins and 2-glycosyl-4H-chromen-4-ones with carbonyl sulfoxonium ylide glycogen are reported. In this catalytic system, benzoic acid and its derivatives react with carbonyl sulfoxonium ylide glycogen to yield isocoumarin C-glycosides, while 2-hydroxybenzaldehyde substrates react to produce chromone C-glycosides. These reactions were characterized by mild reaction conditions, broad substrate scope, high functional-group compatibility, and high stereoselectivity to yield several high-value isocoumarins and chromone skeleton-containing C-glycosides. The methods were successfully implemented in the context of large-scale reactions and the late-stage modification of complex natural products.
Collapse
Affiliation(s)
- Deng-Yin Liu
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Yu-Jun Ruan
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Xiao-Li Wang
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Xin-Yue Hu
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Peng-Fei Wang
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Miao-Miao Wen
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Cong-Zhen Zhang
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Yu-He Xiao
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Xu-Ge Liu
- The Zhongzhou Laboratory for Integrative Biology, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
16
|
Alhakamy NA, Abdullah S, Md S, Ansari AR, Bhattamisra SK, Ibrahim IM, Alahdal H, Altamimi AA, Shaik RA. Oral co-polymeric raft-forming nano gels for targeted empagliflozin delivery against stomach cancer (SGC7901). Heliyon 2024; 10:e34074. [PMID: 39071709 PMCID: PMC11279758 DOI: 10.1016/j.heliyon.2024.e34074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Empagliflozin (EMP) is known for its poor safety and efficacy profile due to its fast body distribution and poor solubility. Accordingly, an oral long-acting and floating/raft-forming nano gel was optimized to release coated EMP nanoparticles, and the released EMP nanoparticles showed enhanced dissolution compared to raw EMP particles. To repurpose EMP for cancer treatment, EMP shows anti-cancer and anti-inflammatory effects against cancer cells. EMP nanoparticles were characterized using FT-IR, PXRD, SEM, EMP encapsulation assay, and release studies. The raft-forming gel encapsulating the EMP was optimized and characterized. The EMP co-polymeric nanoparticles were studied to investigate EMP anti-cancer and anti-inflammatory activities against stomach cancer cells. The solubility of EMP nanoparticles was enhanced in 0.1 N HCl and pH 6.8 by 5 and 12 folds, respectively, compared to raw EMP powder. The particle size and zeta-potential values of improved EMP nanoparticles were 135.40 ± 18.60 nm, and -19.30 ± 0.80 mV, respectively. FT-IR, PXRD, SEM and TEM characterizations revealed polymeric coating of EMP particles. The study suggested that this optimized controlled-release raft-forming gel is a promising local oral approach against stomach cancer. The repurposing of EMP co-polymeric nanoparticles for stomach cancer and associated gastritis treatment was justified.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Drug Research Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samaa Abdullah
- Natural and Health Sciences Research Centre, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Drug Research Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Subrat Kumar Bhattamisra
- Department of Pharmaceutical Technology, School of Medical Science, Adamas University, Kolkata, India
| | - Ibrahim M. Ibrahim
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hadil Alahdal
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Abeer A. Altamimi
- Natural and Health Sciences Research Centre, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rasheed A. Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Bdeir R, Al-Sawalha NA, Al-Fawares O, Hamadeneh L, Khawaldeh A. Effects of empagliflozin on gonadal functions of hyperglycemic male wistar rats. PLoS One 2024; 19:e0305636. [PMID: 38885232 PMCID: PMC11182553 DOI: 10.1371/journal.pone.0305636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Empagliflozin (EMPA) showed antiapoptotic, oxidative and anti-inflammatory potential effect. EMPA attenuates the inflammation and oxidative stress biomarkers in patients with heart failure while significantly decreases the malondialdehyde (a lipid peroxidation marker) levels in the plasma of diabetic patients. The present study examined the effects of moderate hyperglycemia on reproductive function. Sixty male Wister rats were divided and randomly allocated into four groups of 15 animals each. Diabetes was induced by a single intraperitoneal injection of a prepared solution containing STZ diluted in 0.1 M sodium citrate buffer (pH 4.5) at a dosage of 40 mg/kg body weight in selected in groups II and III for seven days before starting the treatment with EMPA. The current study revealed that EMPA for eight weeks prevented testicular high glucose-induced oxidative stress markers such as penile nitric oxide (NO), glutathione peroxidase (GPX) and total anti-oxidant capacity (TAC) in STZ-induced hyperglycemia in a rat model. In addition, EMPA ameliorated the high levels of endogenous Interleukin-6 (IL-6) present in gonads in response to an acute inflammatory found in the hyperglycemic STZ-induced rats. The present study further suggested the protective effects of EMPA and how it has a beneficial role and can effectively attenuate hyperglycemia-induced testicular oxidative damage and inflammatory markers as well as androgen dependent testicular enzymes activity as a protective role against the consequences of hyperglycemia and male sub-infertility.
Collapse
Affiliation(s)
- Roba Bdeir
- Department of Allied Health Sciences, Faculty of Nursing, Al-Balqa Applied University, Al-Salt, Jordan
| | - Nour A. Al-Sawalha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - O’la Al-Fawares
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Lama Hamadeneh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, Jordan
| | - Alia Khawaldeh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Jadara University, Irbid, Jordan
| |
Collapse
|
18
|
Xie T, Zhao LJ. Synthetic approaches and clinical application of small-molecule inhibitors of sodium-dependent glucose transporters 2 for the treatment of type 2 diabetes mellitus. Eur J Med Chem 2024; 269:116343. [PMID: 38513341 DOI: 10.1016/j.ejmech.2024.116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Sodium-dependent glucose transporters 2 (SGLT2) inhibitors are a class of small-molecule drugs that have gained significant attention in recent years for their potential clinical applications in the treatment of type 2 diabetes mellitus (T2DM). These inhibitors function by obstructing the kidneys' ability to reabsorb glucose, resulting in a rise in the excretion of glucose in urine (UGE) and subsequently lowering blood glucose levels. Several SGLT2 inhibitors, such as Dapagliflozin, Canagliflozin, and Empagliflozin, have been approved by regulatory authorities and are currently available for clinical use. These inhibitors have shown notable enhancements in managing blood sugar levels, reducing body weight, and lowering blood pressure in individuals with T2DM. Additionally, they have exhibited potential advantages in decreasing the likelihood of cardiovascular incidents and renal complications among this group of patients. This review article focuses on the synthesis and clinical application of small-molecule SGLT2 inhibitors, which have provided a new therapeutic approach for the management of T2DM.
Collapse
Affiliation(s)
- Tong Xie
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476000, China.
| | - Li-Jie Zhao
- The Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
19
|
Mohamed HE, Abdelhady MA, Elmaghraby AM, Elrashidy RA. Empagliflozin and pirfenidone confer renoprotection through suppression of glycogen synthase kinase-3β and promotion of tubular regeneration in rats with induced metabolic syndrome. Toxicol Appl Pharmacol 2024; 485:116892. [PMID: 38492675 DOI: 10.1016/j.taap.2024.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Metabolic syndrome (MetS) is largely coupled with chronic kidney disease (CKD). Glycogen synthase kinase-3β (GSK-3β) pathway drives tubular injury in animal models of acute kidney injury; but its contribution in CKD is still elusive. This study investigated the effect empagliflozin and/or pirfenidone against MetS-induced kidney dysfunction, and to clarify additional underpinning mechanisms particularly the GSK-3β signaling pathway. Adult male rats received 10%w/v fructose in drinking water for 20 weeks to develop MetS, then treated with either drug vehicle, empagliflozin (30 mg/kg/day) and/or pirfenidone (100 mg/kg/day) via oral gavage for subsequent 4 weeks, concurrently with the high dietary fructose. Age-matched rats receiving normal drinking water were used as controls. After 24 weeks, blood and kidneys were harvested for subsequent analyses. Rats with MetS showed signs of kidney dysfunction, structural changes and interstitial fibrosis. Activation of GSK-3β, decreased cyclinD1 expression and enhanced apoptotic signaling were found in kidneys of MetS rats. There was abundant alpha-smooth muscle actin (α-SMA) expression along with up-regulation of TGF-β1/Smad3 in kidneys of MetS rats. These derangements were almost alleviated by empagliflozin or pirfenidone, with evidence that the combined therapy was more effective than either individual drug. This study emphasizes a novel mechanism underpinning the beneficial effects of empagliflozin and pirfenidone on kidney dysfunction associated with MetS through targeting GSK-3β signaling which can mediate the regenerative capacity, anti-apoptotic effects and anti-fibrotic properties of such drugs. These findings recommend the possibility of using empagliflozin and pirfenidone as promising therapies for management of CKD in patients with MetS.
Collapse
Affiliation(s)
- Hoda E Mohamed
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Merna A Abdelhady
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa M Elmaghraby
- Histology and Cell Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt
| | - Rania A Elrashidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
20
|
Huo Q, Yue T, Li W, Wang X, Dong Y, Li D. Empagliflozin attenuates radiation-induced hematopoietic damage via NOX-4/ROS/p38 pathway. Life Sci 2024; 341:122486. [PMID: 38331314 DOI: 10.1016/j.lfs.2024.122486] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE Damage to the hematopoietic system and functional inhibition are severe consequences of radiation exposure. In this study, we have investigated the effect of empagliflozin on radiation-induced hematopoietic damage, with the aim of providing new preventive approach to such injuries. METHODS AND MATERIALS Mice were given 4 Gy total body irradiation (TBI) 1 h after the oral administration of empagliflozin, followed by the continuous administration of the same dose of empagliflozin for 6d, and then sacrificed on the 10th day after irradiation. The reactive oxygen species (ROS) levels in hematopoietic cells and their regulatory mechanisms were also been investigated. Colony forming unit granulocyte macrophage assay and bone marrow transplantation assays were performed to detect the function of the bone marrow cells. KEY FINDINGS Empagliflozin increased the cell viability, reduced ROS levels, and attenuated apoptosis in vitro after the bone marrow cells were exposed to 1 Gy radiation. Empagliflozin significantly attenuated ionizing radiation injuries to the hematopoietic system, increased the peripheral blood cell count, and enhanced the proportion and function of hematopoietic stem cells in mice exposed to 4 Gy TBI. These effects may be related to the NOX-4/ROS/p38 pathway-mediated suppression of MAPK in hematopoietic stem cells. Empagliflozin also influenced the expression of Nrf-2 and increased glutathione peroxidase activity, thereby promoting the clearance of reactive oxygen species. Furthermore, empagliflozin mitigated metabolic abnormalities by inhibiting the mammalian target of rapamycin. SIGNIFICANCE Our study has demonstrated that empagliflozin can reduce radiation-induced injury in hematopoietic stem cells. This finding suggests that empagliflozin is a promising novel agent for preventing radiation-induced damage to the hematopoietic system.
Collapse
Affiliation(s)
- Qidong Huo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Tongpeng Yue
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Wenxuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Xinyue Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.
| |
Collapse
|
21
|
Hasan I, Rashid T, Jaikaransingh V, Heilig C, Abdel-Rahman EM, Awad AS. SGLT2 inhibitors: Beyond glycemic control. J Clin Transl Endocrinol 2024; 35:100335. [PMID: 38525377 PMCID: PMC10957445 DOI: 10.1016/j.jcte.2024.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Multiple randomized controlled trials have extensively examined the therapeutic effectiveness of sodium-glucose cotransporter 2 (SGLT2) inhibitors, ushering in a transformative approach to treating individuals with type 2 diabetes mellitus (DM). Notably, emerging reports have drawn attention to the potential positive impacts of SGLT2 inhibitors in nondiabetic patients. In an effort to delve into this phenomenon, a comprehensive systematic literature review spanning PubMed (NLM), Medline (Ovid), and Cochrane Library, covering publications from 2000 to 2024 was undertaken. This systematic review encompassed twenty-six randomized control trials (RCTs) involving 35,317 participants. The findings unveiled a multifaceted role for SGLT2 inhibitors, showcasing their ability to enhance metabolic control and yield cardioprotective effects through a reduction in cardiovascular death (CVD) and hospitalization related to heart failure (HF). Additionally, a renalprotective effect was observed, evidenced by a slowdown in chronic kidney disease (CKD) progression and a decrease in albuminuria. Importantly, these benefits were coupled with an acceptable safety profile. The literature also points to various biological plausibility and underlying mechanistic pathways, offering insights into the association between SGLT2 inhibitors and these positive outcomes in nondiabetic individuals. Current research trends indicate a continual exploration of additional role for SGLT2 inhibitors in. Nevertheless, further research is imperative to fully elucidate the mechanisms and long-term outcomes associated with the nondiabetic use of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Irtiza Hasan
- University of Florida College of Medicine-Jacksonville, FL, USA
| | - Tasnuva Rashid
- University of Florida College of Medicine-Jacksonville, FL, USA
| | | | - Charles Heilig
- University of Florida College of Medicine-Jacksonville, FL, USA
| | | | - Alaa S. Awad
- University of Florida College of Medicine-Jacksonville, FL, USA
| |
Collapse
|
22
|
Luna-Marco C, Iannantuoni F, Hermo-Argibay A, Devos D, Salazar JD, Víctor VM, Rovira-Llopis S. Cardiovascular benefits of SGLT2 inhibitors and GLP-1 receptor agonists through effects on mitochondrial function and oxidative stress. Free Radic Biol Med 2024; 213:19-35. [PMID: 38220031 DOI: 10.1016/j.freeradbiomed.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Overloaded glucose levels in several metabolic diseases such as type 2 diabetes (T2D) can lead to mitochondrial dysfunction and enhanced production of reactive oxygen species (ROS). Oxidative stress and altered mitochondrial homeostasis, particularly in the cardiovascular system, contribute to the development of chronic comorbidities of diabetes. Diabetes-associated hyperglycemia and dyslipidemia can directly damage vascular vessels and lead to coronary artery disease or stroke, and indirectly damage other organs and lead to kidney dysfunction, known as diabetic nephropathy. The new diabetes treatments include Na+-glucose cotransporter 2 inhibitors (iSGLT2) and glucagon-like 1 peptide receptor agonists (GLP-1RA), among others. The iSGLT2 are oral anti-diabetic drugs, whereas GLP-1RA are preferably administered through subcutaneous injection, even though GLP-1RA oral formulations have recently become available. Both therapies are known to improve both carbohydrate and lipid metabolism, as well as to improve cardiovascular and cardiorenal outcomes in diabetic patients. In this review, we present an overview of current knowledge on the relationship between oxidative stress, mitochondrial dysfunction, and cardiovascular therapeutic benefits of iSGLT2 and GLP-1RA. We explore the benefits, limits and common features of the treatments and remark how both are an interesting target in the prevention of obesity, T2D and cardiovascular diseases, and emphasize the lack of a complete understanding of the underlying mechanism of action.
Collapse
Affiliation(s)
- Clara Luna-Marco
- INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain
| | - Francesca Iannantuoni
- Service of di Immunohematology and Transfusion Medicine, Ospedale Infermi, AUSL Romagna, Rimini, Italy
| | - Alberto Hermo-Argibay
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Deédeni Devos
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Juan D Salazar
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Víctor M Víctor
- INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain; Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia; National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd).
| | - Susana Rovira-Llopis
- INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain; Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia.
| |
Collapse
|
23
|
Shoaib A, Shahid S, Mansoor S, Javed M, Iqbal S, Mahmood S, Bahadur A, Jaber F, Alshalwi M. Tailoring of an anti-diabetic drug empagliflozin onto zinc oxide nanoparticles: characterization and in vitro evaluation of anti-hyperglycemic potential. Sci Rep 2024; 14:2499. [PMID: 38291095 PMCID: PMC10827742 DOI: 10.1038/s41598-024-52523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Diabetes is a serious health issue that can be a great risk factor related to numerous physical problems. A class of drugs "Gliflozin" especially Sodium Glucose Co. Transporter 2 was inhibited by a novel drug, which is known as "empagliflozin". While ZnO nanoparticles (NPs) had considerable promise for combating diabetes, it was employed in the treatment and management of type-2 diabetes mellitus. The new drug empagliflozin was initially incorporated into Zinc Oxide NPs in this study using the surface physio-sorption technique, and the degree of drug adsorption was assessed using the HPLC method. The tailored product was characterized by using the FTIR, EDX, Ultraviolet-Visible, XRD and SEM techniques. With an average particle size of 17 nm, SEM revealed mono-dispersion of NPs and sphere-like form. The Freundlich isotherm model best fits and explains the data for the physio-sorption investigation, which examined adsorption capabilities using adsorption isotherms. The enzymes α-amylase and α-glucosidase, which are involved in the human metabolism of carbohydrates, were used in the in-vitro anti-diabetic assays. It was discovered that the composite showed the highest levels of 81.72 and 92.77% inhibition of -α-amylase and -glucosidase at an absolute concentration of 1000 μg per ml with IC50 values of 30.6 μg per ml and 72 μg per ml.
Collapse
Affiliation(s)
- Abdullah Shoaib
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sammia Shahid
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sana Mansoor
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Shahid Iqbal
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
| | - Sajid Mahmood
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
- Functional Materials Group, Gulf University for Science and Technology, 32093, Mishref, Kuwait
| | - Ali Bahadur
- Department of Chemistry, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, 325060, China.
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, New Jersey, 07083, USA.
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University, Ajman, UAE.
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE.
| | - Matar Alshalwi
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, 11541, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Nakka S, Muchakayala SK, Manabolu Surya SB. A sensitive ultra-performance liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of assay and trace-level genotoxic tosylate analogs (methyl and ethyl) in empagliflozin and its tablet dosage forms. Biomed Chromatogr 2024; 38:e5755. [PMID: 37903616 DOI: 10.1002/bmc.5755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/27/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023]
Abstract
This study performed the simultaneous quantification of assay and two alkyl sulfonate (tosylate) analogs of empagliflozin (EGZ), specifically methyl 4-methyl benzene sulfonate (MMBS) and ethyl 4-methyl benzene sulfonate (EMBS) in EGZ, and its finished dosage form using an accurate and sensitive ultra-performance liquid chromatography-mass spectrometry method. The separation was achieved on a Waters Acquity BEH Shield RP18 (100 × 2.1 mm, 1.7 μm) column in gradient elution mode with 0.1% formic acid and acetonitrile as the mobile phases and a flow rate of 0.5 mL/min. For simultaneous quantification, the multiple reaction monitoring technique was utilized. The procedure was successfully validated in accordance with the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines. The peak areas of both impurities, along with their concentrations, exhibited a good relationship with Pearson's correlation coefficient (R), which was >0.999 in the range of 0.3-6 ppm with an EGZ concentration of 2 mg/mL. The percentage recoveries from the limit of quantitation (LOQ) to 200% to the specification level were in the range of 94.82%-102.92%, whereas the percentage relative standard deviation (%RSD) was <2. Therefore, this method is rapid and accurate to quantify MMBS, EMBS, and EGZ assay simultaneously from the marketed tablet dosage forms of EGZ for commercial release and stability sample testing.
Collapse
Affiliation(s)
- Srinivas Nakka
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, Telangana, India
| | | | | |
Collapse
|
25
|
Qin JH, Xiong ZQ, Cheng C, Hu M, Li JH. Electroreductive Carboxylation of Propargylic Acetates with CO 2: Access to Tetrasubstituted 2,3-Allenoates. Org Lett 2023; 25:9176-9180. [PMID: 38113454 DOI: 10.1021/acs.orglett.3c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An electroreductive carboxylation of propargylic alcohols with CO2 and then workup with TMSCHN2 to construct tetrasubstituted 2,3-allenoates is developed. This method allows the incorporation of an external ester group into the resulting allene system through electroreduction, carboxylation, and deacetoxylation cascades. Mechanistically, electricity on/off experiments and cyclic voltammetry analysis support the preferential generation of the CO2 radical anion or the 3-aryl propargylic acetate radical anion based on the electron nature of the aryl rings.
Collapse
Affiliation(s)
- Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Chaozhihui Cheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ming Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
26
|
Yabe D, Shiki K, Homma G, Meinicke T, Ogura Y, Seino Y. Efficacy and safety of the sodium-glucose co-transporter-2 inhibitor empagliflozin in elderly Japanese adults (≥65 years) with type 2 diabetes: A randomized, double-blind, placebo-controlled, 52-week clinical trial (EMPA-ELDERLY). Diabetes Obes Metab 2023; 25:3538-3548. [PMID: 37622398 DOI: 10.1111/dom.15249] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023]
Abstract
AIM Use of sodium-glucose co-transporter-2 inhibitors (SGLT2is) for glycaemic control is increasing in individuals with type 2 diabetes (T2D) for their additional benefits on heart failure and chronic kidney disease. However, SGLT2is generally reduce body weight, which might promote sarcopenia in older individuals. We evaluated the effects of the SGLT2i empagliflozin on muscle mass and strength in addition to glucose control in elderly adults with T2D. MATERIALS AND METHODS Individuals with T2D aged ≥65 years with body mass index ≥22 kg/m2 and glycated haemoglobin (HbA1c) 7.0%-10.0% were randomized 1:1 to once-daily empagliflozin 10 mg or placebo for 52 weeks. The primary endpoint was change from baseline in HbA1c at week 52. Secondary endpoints included changes from baseline in muscle mass and strength. RESULTS Of the 129 individuals randomized, 72.4% were men, mean age 74.1 years, body mass index 25.6 kg/m2 and HbA1c 7.6%. The placebo-adjusted mean change from baseline in HbA1c at week 52 with empagliflozin was -0.57% [95% confidence interval (CI) -0.78, -0.36]. Change in body weight was -3.26 kg and -0.90 kg with empagliflozin and placebo, respectively (placebo-adjusted difference: -2.37 kg; 95% CI -3.07, -1.68). Placebo-adjusted change in muscle mass was -0.61 kg (95% CI -1.61, 0.39), fat mass -1.84 kg (95% CI -2.65, -1.04) and grip strength -0.3 kg (95% CI -1.1, 0.5). CONCLUSIONS Empagliflozin improved glucose control and reduced body weight without compromising muscle mass or strength in elderly adults with T2D in this trial.
Collapse
Affiliation(s)
- Daisuke Yabe
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto, Japan
- Department of Diabetes, Endocrinology and Metabolism and Department of Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research, Gifu University, Gifu, Japan
| | - Kosuke Shiki
- Medicine Division, Nippon Boehringer Ingelheim Co. Ltd, Tokyo, Japan
| | - Gosuke Homma
- Biostatistics & Data Science, Nippon Boehringer Ingelheim Co. Ltd, Tokyo, Japan
| | - Thomas Meinicke
- Therapeutic Area Cardiovascular/Metabolism/Respiratory, Boehringer Ingelheim International GmbH, Biberach, Germany
| | - Yuji Ogura
- Medicine Division, Nippon Boehringer Ingelheim Co. Ltd, Tokyo, Japan
| | - Yutaka Seino
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto, Japan
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka, Japan
| |
Collapse
|
27
|
Zimmermann P, Sourij H, Aberer F, Rilstone S, Schierbauer J, Moser O. SGLT2 Inhibitors in Long COVID Syndrome: Is There a Potential Role? J Cardiovasc Dev Dis 2023; 10:478. [PMID: 38132646 PMCID: PMC10744331 DOI: 10.3390/jcdd10120478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
The coronavirus disease (COVID)-19 has turned into a pandemic causing a global public health crisis. While acute COVID-19 mainly affects the respiratory system and can cause acute respiratory distress syndrome, an association with persistent inflammatory stress affecting different organ systems has been elucidated in long COVID syndrome (LCS). Increased severity and mortality rates have been reported due to cardiophysiological and metabolic systemic disorders as well as multiorgan failure in COVID-19, additionally accompanied by chronic dyspnea and fatigue in LCS. Hence, novel therapies have been tested to improve the outcomes of LCS of which one potential candidate might be sodium-glucose cotransporter 2 (SGLT2) inhibitors. The aim of this narrative review was to discuss rationales for investigating SGLT2 inhibitor therapy in people suffering from LCS. In this regard, we discuss their potential positive effects-next to the well described "cardio-renal-metabolic" conditions-with a focus on potential anti-inflammatory and beneficial systemic effects in LCS. However, potential beneficial as well as potential disadvantageous effects of SGLT2 inhibitors on the prevalence and long-term outcomes of COVID-19 will need to be established in ongoing research.
Collapse
Affiliation(s)
- Paul Zimmermann
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (P.Z.); (S.R.); (J.S.)
- Interdisciplinary Center of Sportsmedicine Bamberg, Klinikum Bamberg, 96049 Bamberg, Germany
- Department of Cardiology, Klinikum Bamberg, 96049 Bamberg, Germany
| | - Harald Sourij
- Interdisciplinary Metabolic Medicine Research Group, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria; (H.S.); (F.A.)
| | - Felix Aberer
- Interdisciplinary Metabolic Medicine Research Group, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria; (H.S.); (F.A.)
| | - Sian Rilstone
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (P.Z.); (S.R.); (J.S.)
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Janis Schierbauer
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (P.Z.); (S.R.); (J.S.)
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (P.Z.); (S.R.); (J.S.)
- Interdisciplinary Metabolic Medicine Research Group, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria; (H.S.); (F.A.)
| |
Collapse
|
28
|
Bhopale KK, Srinivasan MP. Therapeutics for Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD). LIVERS 2023; 3:597-617. [DOI: 10.3390/livers3040040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Metabolic dysfunction associated fatty liver disease (MAFLD) has been recently recognized as a new global chronic liver disease entity with non-alcoholic fatty liver disease (NAFLD) associated with overweight/obesity or type 2 diabetes mellitus (T2DM) and evidence of metabolic dysregulation. Due to the rising rates of obesity and diabetes, MAFLD is considered a rapidly emerging chronic liver disease globally. Nearly 25–30% of the global population poses health issues due to MAFLD with a substantial economic burden to societies. Disease progression depends on the persistence of risk factors and etiological agents, from simple steatosis, hepatitis, fibrosis, to cirrhosis, and if untreated, leads to hepatocellular carcinoma. In this review article we summarize various risk and etiological factors, diagnostic techniques, and therapeutic evaluation of pharmacological agents developed for MAFLD. Effective pharmaceutical agents for the treatment of MAFLD (and NAFLD) are lacking, and research is ongoing to search for effective medications in this direction. Currently, pioglitazone is advised for MAFLD patients, whereas Vitamin E is advised for non-diabetic MAFLD patients with ≥F2 non-cirrhosis. Current approaches to disease management emphasize diet control, lifestyle changes, and weight loss. In this review, we summarized the pharmacological agents currently being developed and their current status to treat patients with MAFLD.
Collapse
Affiliation(s)
- Kamlesh K. Bhopale
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mukund P. Srinivasan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
29
|
d'Avila JC, Carlos AS, Vieira RL, Vergueiro C, Lima AT, Silva IDS, de Figueiredo VC, Chateaubriand PHP, Moreno AM, de Castro Faria Neto HC, Estato V, Siqueira RA. Beneficial effects of empagliflozin and liraglutide on the cerebral microcirculation of diabetic rats. Microcirculation 2023; 30:e12825. [PMID: 37549191 DOI: 10.1111/micc.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVES This study aimed to evaluate the effects of the antidiabetics liraglutide, a GLP-1 analog, and empagliflozin, an SGLT-2 inhibitor, on the brain microcirculation of diabetic rats. METHODS Type 2 diabetes mellitus (DM) was experimentally induced in male Wistar rats by combining a high-fat diet and a low dose of streptozotocin (35 mg/kg). Liraglutide (100 μg/kg s.c.) and empagliflozin (10 mg/kg, oral) were administered for 5 weeks. Body weight was monitored periodically. Oral glucose tolerance, fasting glycemia, and blood triglycerides were evaluated after the treatments. Endothelial-leukocyte interactions in the brain microcirculation and structural capillary density were assessed. RESULTS DM rats presented metabolic and cerebrovascular alterations. Liraglutide treatment decreased body weight and blood triglycerides of DM rats. Empagliflozin treatment improved glucose tolerance but only the combination therapy significantly reduced fasting blood glucose. Both treatments and their combination reduced leukocyte adhesion into the endothelium of brain venules. However, empagliflozin was more effective in preventing DM-induced microvascular rarefaction. CONCLUSION These findings suggest that chronic treatment with SGLT2 inhibitors and GLP-1 receptor agonists may serve as potential therapeutic approaches to prevent microvascular complications associated with diabetes.
Collapse
Affiliation(s)
- Joana Costa d'Avila
- Pre-clinical Research Laboratory, Iguaçu University, Nova Iguaçu, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | - Carla Vergueiro
- Pre-clinical Research Laboratory, Iguaçu University, Nova Iguaçu, Brazil
| | | | | | | | | | | | | | - Vanessa Estato
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- School of Medicine, Estácio de Sá University, Rio de Janeiro, Brazil
| | | |
Collapse
|
30
|
Neutel CHG, Wesley CD, Van Praet M, Civati C, Roth L, De Meyer GRY, Martinet W, Guns PJ. Empagliflozin decreases ageing-associated arterial stiffening and vascular fibrosis under normoglycemic conditions. Vascul Pharmacol 2023; 152:107212. [PMID: 37619798 DOI: 10.1016/j.vph.2023.107212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Arterial stiffness is a hallmark of vascular ageing and results in increased blood flow pulsatility to the periphery, damaging end-organs such as the heart, kidneys and brain. Treating or "reversing" arterial stiffness has therefore become a central target in the field of vascular ageing. SGLT2 inhibitors, initially developed in the context of type 2 diabetes mellitus, have become a cornerstone of heart failure treatment. Additionally, effects on the vasculature have been reported. Here, we demonstrate that treatment with the SGLT2 inhibitor empagliflozin (7 weeks, 15 mg/kg/day) decreased ageing-induced arterial stiffness of the aorta in old mice with normal blood glucose levels. However, no universal mechanism was identified. While empagliflozin reduced the ageing-associated increase in collagen type I in the medial layer of the abdominal infrarenal aorta and decreased medial TGF-β deposition, this was not observed in the thoracic descending aorta. Moreover, empagliflozin was not able to prevent elastin fragmentation. In conclusion, empagliflozin decreased arterial stiffness in aged mice, indicating that SGLT2 inhibition could be a valuable strategy in mitigating vascular ageing. Further research is warranted to unravel the underlying, possibly region-specific, mechanisms.
Collapse
Affiliation(s)
- Cédric H G Neutel
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium.
| | - Callan D Wesley
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Melissa Van Praet
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Celine Civati
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| |
Collapse
|
31
|
Yu H, Xu F. Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp 3)-H to construct C-C bonds. Beilstein J Org Chem 2023; 19:1259-1288. [PMID: 37701303 PMCID: PMC10494247 DOI: 10.3762/bjoc.19.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
Ether derivatives are widespread as essential building blocks in various drugs, natural products, agrochemicals, and materials. Modern economy requires developing green strategies with improved efficiency and reduction of waste. Due to its atom and step-economy, the cross-dehydrogenative coupling (CDC) reaction has become a major strategy for ether functionalization. This review covers C-H/C-H cross-coupling reactions of ether derivatives with various C-H bond substrates via non-noble metal catalysts (Fe, Cu, Co, Mn, Ni, Zn, Y, Sc, In, Ag). We discuss advances achieved in these CDC reactions and hope to attract interest in developing novel methodologies in this field of organic chemistry.
Collapse
Affiliation(s)
- Hui Yu
- Department of Pharmacy, Shi zhen College of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550200, P. R. China
| | - Feng Xu
- School of Mathematics and Information Science, Guiyang University, Guiyang, Guizhou 550005, P. R. China
| |
Collapse
|
32
|
Wu W, Wang Y, Xie J, Fan S. Empagliflozin: a potential anticancer drug. Discov Oncol 2023; 14:127. [PMID: 37436535 DOI: 10.1007/s12672-023-00719-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, is a highly effective and well-tolerated antidiabetic drug. In addition to hypoglycemic effects, empagliflozin has many other effects, such as being hypotensive and cardioprotective. It also has anti-inflammatory and antioxidative stress effects in diabetic nephropathy. Several studies have shown that empagliflozin has anticancer effects. SGLT2 is expressed in a variety of cancer cell lines. The SGLT2 inhibitor empagliflozin has significant inhibitory effects on certain types of tumor cells, such as inhibition of proliferation, migration and induction of apoptosis. In conclusion, empagliflozin has promising applications in cancer therapy as a drug for the treatment of diabetes and heart failure. This article provides a brief review of the anticancer effects of empagliflozin.
Collapse
Affiliation(s)
- Wenwen Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Jun Xie
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Shaohua Fan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
33
|
Kaku K, Nakayama Y, Yabuuchi J, Naito Y, Kanasaki K. Safety and effectiveness of empagliflozin in clinical practice as monotherapy or with other glucose-lowering drugs in Japanese patients with type 2 diabetes: subgroup analysis of a 3-year post-marketing surveillance study. Expert Opin Drug Saf 2023; 22:819-832. [PMID: 37194266 DOI: 10.1080/14740338.2023.2213477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Sodium-glucose co-transporter-2 (SGLT2) inhibitors such as empagliflozin are increasingly prescribed as initial glucose-lowering drugs for type 2 diabetes (T2D), based on their cardiorenal benefits. However, information regarding the safety and the effectiveness of monotherapy with SGLT2 inhibitors in routine clinical practice is limited. RESEARCH DESIGN AND METHODS We analyzed data from a prospective, 3-year, post-marketing surveillance study of empagliflozin in Japan. We evaluated adverse drug reactions (ADRs) (the primary endpoint) and glycemic effectiveness with or without other glucose-lowering drugs. RESULTS 7931 T2D patients were treated with empagliflozin. At baseline, mean age was 58.7 years, 63.0% were male, and 1835 (23.14%) were not receiving other glucose-lowering drugs. ADRs occurred in 141 (7.68%) and 875 (14.62%) patients initiating empagliflozin as monotherapy or combination therapy, respectively. The most frequent ADRs of special interest with empagliflozin as monotherapy or combination therapy were urinary tract infections (0.82% and 1.14% of patients, respectively) and excessive/frequent urination (0.65%, 1.50%). At last observation, glycated hemoglobin level was reduced by a mean of 0.78% with empagliflozin monotherapy (from baseline mean of 7.55%) and 0.74% with combination therapy (baseline 8.16%). CONCLUSIONS Empagliflozin is well tolerated and effective in clinical practice in Japan when initiated as monotherapy or combination therapy.
Collapse
Affiliation(s)
- Kohei Kaku
- Department of Medicine, Kawasaki Medical School, Okayama, Japan
| | - Yayoi Nakayama
- Medicine Division, Nippon Boehringer Ingelheim Co. Ltd, Tokyo, Japan
| | - Junko Yabuuchi
- Medicines Development Unit Japan and Medical Affairs, Eli Lilly Japan K.K, Kobe, Japan
| | - Yusuke Naito
- Medicine Division, Nippon Boehringer Ingelheim Co. Ltd, Tokyo, Japan
| | - Keizo Kanasaki
- Department of Internal Medicine 1, Faculty of Medicine, Shimane University, Izumo, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Kahoku-gun, Japan
| |
Collapse
|
34
|
Lu CW, Lee CJ, Hsieh YJ, Hsu BG. Empagliflozin Attenuates Vascular Calcification in Mice with Chronic Kidney Disease by Regulating the NFR2/HO-1 Anti-Inflammatory Pathway through AMPK Activation. Int J Mol Sci 2023; 24:10016. [PMID: 37373164 DOI: 10.3390/ijms241210016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular calcification (VC) is associated with increased cardiovascular risks in patients with chronic kidney disease (CKD). Sodium-glucose cotransporter 2 inhibitors, such as empagliflozin, can improve cardiovascular and renal outcomes. We assessed the expression of Runt-related transcription factor 2 (Runx2), interleukin (IL)-1β, IL-6, AMP-activated protein kinase (AMPK), nuclear factor erythroid-2-related factor (Nrf2), and heme oxygenase 1 (HO-1) in inorganic phosphate-induced VC in mouse vascular smooth muscle cells (VSMCs) to investigate the mechanisms underlying empagliflozin's therapeutic effects. We evaluated biochemical parameters, mean artery pressure (MAP), pulse wave velocity (PWV), transcutaneous glomerular filtration rate (GFR), and histology in an in vivo mouse model with VC induced by an oral high-phosphorus diet following a 5/6 nephrectomy in ApoE-/- mice. Compared to the control group, empagliflozin-treated mice showed significant reductions in blood glucose, MAP, PWV, and calcification, as well as increased calcium and GFR levels. Empagliflozin inhibited osteogenic trans-differentiation by decreasing inflammatory cytokine expression and increasing AMPK, Nrf2, and HO-1 levels. Empagliflozin mitigates high phosphate-induced calcification in mouse VSMCs through the Nrf2/HO-1 anti-inflammatory pathway by activating AMPK. Animal experiments suggested that empagliflozin reduces VC in CKD ApoE-/- mice on a high-phosphate diet.
Collapse
Affiliation(s)
- Chia-Wen Lu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Chung-Jen Lee
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 97005, Taiwan
| | - Yi-Jen Hsieh
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Bang-Gee Hsu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
35
|
Guler E, Nur Hazar-Yavuz A, Tatar E, Morid Haidari M, Sinemcan Ozcan G, Duruksu G, Graça MPF, Kalaskar DM, Gunduz O, Emin Cam M. Oral empagliflozin-loaded tri-layer core-sheath fibers fabricated using tri-axial electrospinning: Enhanced in vitro and in vivo antidiabetic performance. Int J Pharm 2023; 635:122716. [PMID: 36791999 DOI: 10.1016/j.ijpharm.2023.122716] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Empagliflozin (EM) was successfully loaded in polycaprolactone/poly (L-lactic acid)/polymethyl methacrylate (PCL/PLA/PMMA) fibers. In the rat β-cell line (BRIN-BD11), the insulin expression ratio of pancreatic β-cells was stimulated at high and low glucose by culturing with tri-layer EM-loaded fiber (EMF) for 48 h. The expression ratios of glucokinase and GLUT-2 proteins increased after EMF treatment. According to the in vitro drug release test, 97% of all drug contained in fibers was released in a controlled manner for 24 h. The pharmacokinetic test revealed that the bioavailability was improved ∼4.8-fold with EMF treatment compared to EM-powder and blood glucose level was effectively controlled for 24 h with EMF. Oral administration of EMF exhibited a better sustainable anti-diabetic activity even in the half-dosage than EM-powder in streptozotocin/nicotinamide-induced T2DM rats. The levels of GLP-1, PPAR-γ, and insulin were increased while the levels of SGLT-2 and TNF-α were decreased with EMF treatment. Also, EMF recovered the histopathological changes in the liver, pancreas, and kidney in T2DM rats and protected pancreatic β-cells. Consequently, EMF is suggested as an unprecedented and promotive treatment approach for T2DM with a higher bioavailability and better antidiabetic effect compared to conventional dosage forms.
Collapse
Affiliation(s)
- Ece Guler
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Ayse Nur Hazar-Yavuz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey
| | - Esra Tatar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey
| | - Mohammad Morid Haidari
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey
| | - Gul Sinemcan Ozcan
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey
| | - Gokhan Duruksu
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey
| | | | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Muhammet Emin Cam
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; Biomedical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Istanbul, Turkey.
| |
Collapse
|
36
|
Sun Z, Zhang M, Wei Y, Li M, Wu X, Xin M. A simple but novel glycymicelle ophthalmic solution based on two approved drugs empagliflozin and glycyrrhizin: in vitro/ in vivo experimental evaluation for the treatment of corneal alkali burns. Biomater Sci 2023; 11:2531-2542. [PMID: 36779571 DOI: 10.1039/d2bm01957d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A simple but novel ophthalmic solution based on two approved drugs was developed to reposition existing drugs to treat new diseases. This nanoformulation was developed using the phytochemical drug glycyrrhizin as an amphiphilic nanocarrier to micellarly solubilize empagliflozin (EMP), an oral drug that is widely used to control high blood glucose but has poor water solubility. This novel nanoformulation, which we designated the EMP@glycymicelle ophthalmic solution, was obtained using a simple preparation process. The resulting solution was a clear solution with an EMP encapsulation efficiency of 97.91 ± 0.50%, a small glycymicelle size of 6.659 ± 0.196 nm, and a narrow polydispersity index of 0.226 ± 0.059. The optimized formulation demonstrated that EMP was soluble in water up to 18 mg ml-1 because of its encapsulation within glycymicelles. The EMP@glycymicelle ophthalmic solution exhibited excellent characteristics, including good storage stability, fast in vitro release profiles, improved in vitro antioxidant activity, and no ocular irritation. Ocular permeation evaluation showed that the EMP@glycymicelle ophthalmic solution had strong ocular permeation of EMP, and it reached the posterior segment of mouse eyes after ocular topical administration. The treatment efficacy evaluation showed that the EMP@glycymicelle ophthalmic solution had a significant effect against corneal alkali burns in mice, prompting corneal wound healing, recovering corneal sensitivity, reducing corneal haze, and relieving corneal NV invasion. The mechanism of inhibiting HMGB1 signaling was involved in this strong treatment effect. These results indicated that the EMP@glycymicelle ophthalmic solution provided a new concept of drug repurposing and a promising ocular system for the nano-delivery of EMP with significantly improved in vivo profiles.
Collapse
Affiliation(s)
- Zongjian Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. .,Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China.
| | - Mingxin Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yanjun Wei
- Viwit Pharmaceutical Co., Ltd. Zaozhuang, Shandong, China
| | - Mengshuang Li
- Qingdao Women and Children's Hospital, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Meng Xin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. .,Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China.
| |
Collapse
|
37
|
Chemical and Biological Review of Endophytic Fungi Associated with Morus sp. (Moraceae) and In Silico Study of Their Antidiabetic Potential. Molecules 2023; 28:molecules28041718. [PMID: 36838706 PMCID: PMC9968060 DOI: 10.3390/molecules28041718] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
The chronic nature of diabetes mellitus motivates the quest for novel agents to improve its management. The scarcity and prior uncontrolled utilization of medicinal plants have encouraged researchers to seek new sources of promising compounds. Recently, endophytes have presented as eco-friendly leading sources for bioactive metabolites. This article reviewed the endophytic fungi associated with Morus species and their isolated compounds, in addition to the biological activities tested on their extracts and chemical constituents. The relevant literature was collected from the years 2008-2022 from PubMed and Web of Science databases. Notably, no antidiabetic activity was reported for any of the Morus-associated endophytic fungal extracts or their twenty-one previously isolated compounds. This encouraged us to perform an in silico study on the previously isolated compounds to explore their possible antidiabetic potential. Furthermore, pharmacokinetic and dynamic stability studies were performed on these compounds. Upon molecular docking, Colletotrichalactone A (14) showed a promising antidiabetic activity due to the inhibition of the α-amylase local target and the human sodium-glucose cotransporter 2 (hSGT2) systemic target with safe pharmacokinetic features. These results provide an in silico interpretation of the possible anti-diabetic potential of Morus endophytic metabolites, yet further study is required.
Collapse
|
38
|
Vasiliu O. Impact of SGLT2 inhibitors on metabolic status in patients with psychiatric disorders undergoing treatment with second‑generation antipsychotics (Review). Exp Ther Med 2023; 25:125. [PMID: 36845949 PMCID: PMC9947579 DOI: 10.3892/etm.2023.11824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Metabolic dysfunctions have been reported in patients diagnosed with severe mental illnesses who are undergoing treatment with antipsychotics, especially second-generation agents. Sodium-glucose co-transporter 2 inhibitors (SGLT2Is) and glucagon-like peptide receptor agonists are new-generation antidiabetics whose favourable effects in the treatment of diabetes mellitus in the non-psychiatric population may raise interest in their use in patients presenting with severe mental illnesses and metabolic comorbidities possibly related to the use of antipsychotics. The objectives of this review were to investigate the evidence to support the use of SGLT2Is in this population and to find the most important aspects that need to be addressed by future research. A total of one preclinical trial, two guideline-format clinical recommendations, one systematic review and one case report were found, and their conclusions were analysed. The results support the following conclusions: i) SGLT2Is may be combined with metformin in selected cases of type 2 diabetes mellitus in the context of antipsychotic treatment, as they have been associated with favourable metabolic effects; and ii) data for the recommendation of SGLT2Is as second-line treatment in patients with diabetes mellitus who are also treated with olanzapine or clozapine are supported by very limited preclinical and clinical evidence. Further high-quality, large-scale research is needed in the field of the management of metabolic dysfunctions in patients with severe psychiatric illnesses who undergo treatment with second-generation antipsychotics.
Collapse
Affiliation(s)
- Octavian Vasiliu
- Department of Psychiatry, ‘Dr Carol Davila’ University Emergency Central Military Hospital, 010816 Bucharest, Romania,Correspondence to: Dr Octavian Vasiliu, Department of Psychiatry, ‘Dr Carol Davila’ University Emergency Central Military Hospital, 88 Mircea Vulcanescu Street, Bucharest 010816, Romania
| |
Collapse
|
39
|
Empagliflozin activates JAK2/STAT3 signaling and protects cardiomyocytes from hypoxia/reoxygenation injury under high glucose conditions. J Thromb Thrombolysis 2023; 55:116-125. [PMID: 36396837 DOI: 10.1007/s11239-022-02719-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2022] [Indexed: 11/18/2022]
Abstract
The morbidity and mortality rates of cardiovascular disease are markedly higher in patients with diabetes than in non-diabetic patients, including patients with ischemia-reperfusion injury (IRI). However, the cardiovascular protective effects of Empagliflozin (EMPA) on IRI in diabetes mellitus have rarely been studied. In this study, we established a cardiomyocyte hypoxia/reoxygenation (H/R) injury model to mimic myocardial I/R injuries that occur in vivo. H9C2 cells were subjected to high glucose (HG) treatment plus H/R injury to mimic myocardial I/R injuries that occur in diabetes mellitus. Next, different concentrations of EMPA were added to the H9C2 cells and its protective effect was detected. STAT3 knockdown with recombinant plasmids was used to determine its roles. Our results showed that H/R injury-induced cell apoptosis, necroptosis, oxidative stress, and endoplasmic reticulum stress were further promoted by HG conditions, and HG treatment plus an H/R injury inhibited the activation of JAK2/STAT3 signaling. EMPA was found to protect against H/R-induced cardiomyocyte injury under HG conditions and activate JAK2/STAT3 signaling, while down-regulation of STAT3 reversed the protective effect of EMPA. When taken together, these findings indicate that EMPA protects against I/R-induced cardiomyocyte injury by activating JAK2/STAT3 signaling under HG conditions. Our results clarified the mechanisms that underlie the cardiovascular protective effects of EMPA in diabetes mellitus and provide new therapeutic targets for IRI in diabetes mellitus.
Collapse
|
40
|
Kim H, Kim CO, Park H, Park MS, Kim D, Hong T, Shin Y, Jin BH. Evaluation of pharmacokinetic interactions between lobeglitazone, empagliflozin, and metformin in healthy subjects. Transl Clin Pharmacol 2023; 31:59-68. [PMID: 37034122 PMCID: PMC10079507 DOI: 10.12793/tcp.2023.31.e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Concomitant administration of lobeglitazone, empagliflozin, and metformin is expected to enhance blood glucose-lowering effects and improve medication compliance in patients with diabetes mellitus. In this study, we investigated the pharmacokinetic (PK) interactions and safety of lobeglitazone and co-administered empagliflozin and metformin, which are approved agents used in clinical settings. Two randomized, open-label, multiple-dose, 2-treatment, 2-period, 2-sequence crossover clinical trials (parts 1 and 2) were conducted independently. In part 1, lobeglitazone monotherapy or lobeglitazone, empagliflozin, and metformin triple therapy was administered for 5 days. In part 2, empagliflozin and metformin dual therapy or the abovementioned triple therapy were administered for 5 days. Serial blood samples were collected up to 24 hours after the last dose in each period for PK evaluation. The primary PK parameters (AUCtau,ss, Cmax,ss) of treatment regimens in each study part were calculated and compared. For lobeglitazone, the geometric mean ratios (GMRs) with 90% confidence intervals (CI) for triple therapy over monotherapy were 1.08 (1.03-1.14) for Cmax,ss and 0.98 (0.90-1.07) for AUCtau,ss. For empagliflozin, the GMRs and 90% CIs for triple therapy over dual therapy were 0.87 (0.78-0.97) for Cmax,ss and 0.97 (0.93-1.00) for AUCtau,ss. For metformin, the GMRs and 90% CIs for triple therapy over dual therapy were 1.06 (0.95-1.17) for Cmax,ss and 1.04 (0.97-1.12) for AUCtau,ss. All reported adverse events were mild. The triple therapy consisting of lobeglitazone, empagliflozin, and metformin did not show any clinically relevant drug interactions in relation to the PKs and safety of each drug substance. Trial Registration ClinicalTrials.gov Identifier: NCT04334213.
Collapse
Affiliation(s)
- Heeyoung Kim
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Choon Ok Kim
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyeonsoo Park
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Min Soo Park
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University College of Medicine and Pharmacy, Incheon 21983, Korea
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Dasohm Kim
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Taegon Hong
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yesong Shin
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Byung Hak Jin
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
41
|
Mosallanejad S, Mahmoodi M, Tavakkoli H, Khosravi A, Salarkia E, Keyhani A, Dabiri S, Gozashti MH, Pardakhty A, Khodabandehloo H, Pourghadamyari H. Empagliflozin induces apoptotic-signaling pathway in embryonic vasculature: In vivo and in silico approaches via chick’s yolk sac membrane model. Front Pharmacol 2022; 13:970402. [PMID: 36120349 PMCID: PMC9474685 DOI: 10.3389/fphar.2022.970402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
The present investigation was conducted to evaluate the vascular-toxicity of empagliflozin (EMP) in embryonic vasculature. Firstly, the vascular-toxicity of the drug as well as its interaction with apoptotic regulator proteins was predicted via in silico approach. In the next step, the apoptotic-signaling pathway in embryonic vasculature was evaluated using a chick’s YSM model. In silico simulation confirmed vascular-toxicity of EMP. There was also an accurate affinity between EMP, Bax and Bcl-2 (−7.9 kcal/mol). Molecular dynamics assay revealed complex stability in the human body conditions. Furthermore, EMP is suggested to alter Bcl-2 more than BAX. Morphometric quantification of the vessels showed that the apoptotic activity of EMP in embryonic vasculature was related to a marked reduction in vessel area, vessel diameter and mean capillary area. Based on the qPCR and immunohistochemistry assays, enhanced expression level of BAX and reduced expression level of Bcl-2 confirmed apoptotic responses in the vessels of the YSM. We observed that induction of an apoptotic signal can cause the embryonic defect of the vascular system following EMP treatment. The acquired data also raised suspicions that alteration in apoptotic genes and proteins in the vasculature are two critical pathways in vascular-toxicity of EMP.
Collapse
Affiliation(s)
- Saeedeh Mosallanejad
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- *Correspondence: Mehdi Mahmoodi, ; Hossein Pourghadamyari,
| | - Hadi Tavakkoli
- Department of Clinical Sciences, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine, Pathology and Stem Cell Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Hossein Gozashti
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hadi Khodabandehloo
- Department of Clinical Biochemistry, School of Medicine Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- *Correspondence: Mehdi Mahmoodi, ; Hossein Pourghadamyari,
| |
Collapse
|
42
|
Efficacy and Safety of Empagliflozin in Type 2 Diabetes Mellitus Saudi Patients as Add-On to Antidiabetic Therapy: A Prospective, Open-Label, Observational Study. J Clin Med 2022; 11:jcm11164769. [PMID: 36013008 PMCID: PMC9410062 DOI: 10.3390/jcm11164769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
The Saudi Food and Drug Authority (SFDA) approved sodium-glucose cotransporter-2 (SGLT2) inhibitors in 2018. The efficacy and safety of empagliflozin (EMPA) have been confirmed in the U.S., Europe, and Japan for patients with type 2 diabetes mellitus (T2DM); however, analogous evidence is lacking for Saudi T2DM patients. Therefore, the current study aimed to assess the efficacy and safety of EMPA in Saudi patients (n = 256) with T2DM. This is a 12-week prospective, open-label, observational study. Adult Saudi patients with T2DM who had not been treated with EMPA before enrolment were eligible. The exclusion criteria included T2DM patients less than 18 years of age, adults with type one diabetes, pregnant women, paediatric population. The results related to efficacy included a significant decrease in haemoglobin A1c (HbA1c) (adjusted mean difference −0.93% [95% confidence interval (CI) −0.32, −1.54]), significant improvements in fasting plasma glucose (FPG) (−2.28 mmol/L [95% CI −2.81, −1.75]), and a reduction in body weight (−0.874 kg [95% CI −4.36, −6.10]) following the administration of 25 mg of EMPA once daily as an add-on to ongoing antidiabetic therapy after 12 weeks. The primary safety endpoints were the change in the mean blood pressure (BP) values, which indicated significantly reduced systolic and diastolic BP (−3.85 mmHg [95% CI −6.81, −0.88] and −0.06 mmHg [95% CI −0.81, −0.88], respectively) and pulse rate (−1.18 [95% CI −0.79, −3.15]). In addition, kidney function was improved, with a significant reduction in the urine albumin/creatinine ratio (UACR) (−1.76 mg/g [95% CI −1.07, −34.25]) and a significant increase in the estimated glomerular filtration rate (eGFR) (3.54 mL/min/1.73 m2 [95% CI 2.78, 9.87]). Furthermore, EMPA reduced aminotransferases (ALT) in a pattern (reduction in ALT > AST). The adjusted mean difference in the change in ALT was −2.36 U/L [95% CI −1.031, −3.69], while it was −1.26 U/L [95% CI −0.3811, −2.357] for AST and −1.98 U/L [95% CI −0.44, −3.49] for GGT. Moreover, in the EMPA group, serum high-density lipoprotein (HDL) significantly increased (0.29 mmol/L [95% CI 0.74, 0.15]), whereas a nonsignificant increase was seen in low-density lipoprotein (LDL) (0.01 mmol/L [95% CI 0.19, 0.18]) along with a significant reduction in plasma triglyceride (TG) levels (−0.43 mmol/L [95% CI −0.31, −1.17]). Empagliflozin once daily is an efficacious and tolerable strategy for treating Saudi patients with insufficiently controlled T2DM as an add-on to ongoing antidiabetic therapy.
Collapse
|
43
|
Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduct Target Ther 2022; 7:218. [PMID: 35798726 PMCID: PMC9261907 DOI: 10.1038/s41392-022-01080-1] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular oxygen (O2) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases, it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection, metabolic adaptation, cancer, acute and chronic diseases, and other stress responses. The mechanism underlying cells respond to oxygen changes to mediate subsequent signal response is the central question during hypoxia. Hypoxia-inducible factors (HIFs) sense hypoxia to regulate the expressions of a series of downstream genes expression, which participate in multiple processes including cell metabolism, cell growth/death, cell proliferation, glycolysis, immune response, microbe infection, tumorigenesis, and metastasis. Importantly, hypoxia signaling also interacts with other cellular pathways, such as phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-B (NF-κB) pathway, extracellular signal-regulated kinases (ERK) signaling, and endoplasmic reticulum (ER) stress. This paper systematically reviews the mechanisms of hypoxia signaling activation, the control of HIF signaling, and the function of HIF signaling in human health and diseases. In addition, the therapeutic targets involved in HIF signaling to balance health and diseases are summarized and highlighted, which would provide novel strategies for the design and development of therapeutic drugs.
Collapse
|
44
|
Supakul S, Nishikawa Y, Teramura M, Takase T. Short-Term Treatment with Empagliflozin Resulted in Dehydration and Cardiac Arrest in an Elderly Patient with Specific Complications: A Case Report and Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060815. [PMID: 35744078 PMCID: PMC9227880 DOI: 10.3390/medicina58060815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
Empagliflozin is a sodium-glucose cotransporter-2 inhibitor widely used in the treatment of diabetes mellitus and heart failure. Our case study involved a 68-year-old patient who was admitted to the hospital because of a cerebral infarction. The patient was simultaneously diagnosed with diabetes mellitus and heart failure, for which empagliflozin was initiated. However, food and fluid intake were reduced due to poor appetite. In addition to the side effects of empagliflozin, the patient developed severe dehydration and cardiac arrest. Careful assessment of dehydration and preventive water intake is recommended in elderly patients and those with neurological deficits, especially when receiving empagliflozin.
Collapse
Affiliation(s)
- Sopak Supakul
- Graduate School of Medicine, Keio University, Tokyo 160-8582, Japan;
| | | | - Masanori Teramura
- Department of Cardiovascular Medicine, Ichinomiya Nishi Hospital, Aichi 494-0001, Japan;
| | - Tetsuro Takase
- Department of Cardiovascular Medicine, Ichinomiya Nishi Hospital, Aichi 494-0001, Japan;
- Correspondence:
| |
Collapse
|
45
|
Hypertension and Type 2 Diabetes-The Novel Treatment Possibilities. Int J Mol Sci 2022; 23:ijms23126500. [PMID: 35742943 PMCID: PMC9224227 DOI: 10.3390/ijms23126500] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Elevated blood pressure and hyperglycaemia frequently coexist and are both components of metabolic syndrome. Enhanced cardiovascular risk is strongly associated with diabetes and the occurrence of hypertension. Both hypertension and type 2 diabetes, if treated inappropriately, lead to serious complications, increasing the mortality of patients and generating much higher costs of health systems. This is why it is of great importance to find the missing link between hypertension and diabetes development and to simultaneously search for drugs influencing these two disorders or even drugs aimed at their pathological bases. Standard antihypertensive therapy mainly focuses on blood pressure reduction, while novel drugs also possess a wide range of pleiotropic modes of actions, such as cardio- and nephroprotective properties or body weight reduction. These properties are especially desirable in a situation when type 2 diabetes coexists with hypertension. This review describes the connections between diabetes and hypertension development and briefly summarises the current knowledge regarding attempts to define targets for the treatment of high blood pressure in diabetic patients. It also describes the standard hypotensive drugs preferred in patients with type 2 diabetes, as well as novel drugs, such as finerenone, esaxerenone, sodium-glucose co-transporter-2 inhibitors, glucagon-like peptide-1 analogues and sacubitril/valsartan.
Collapse
|
46
|
Al-Wakeel DE, El-Kashef DH, Nader MA. Renoprotective effect of empagliflozin in cafeteria diet-induced insulin resistance in rats: Modulation of HMGB-1/TLR-4/NF-κB axis. Life Sci 2022; 301:120633. [PMID: 35568226 DOI: 10.1016/j.lfs.2022.120633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 12/16/2022]
Abstract
AIM Cafeteria diet (CAF) is a well-established model used to mimic what occurs in human upon eating junk and ultra-processed food. This study aimed to investigate the possible protective impact of empagliflozin (EMPA) against CAF-induced insulin resistance (IR) in rats and the possible underlying mechanisms. MAIN METHODS Rats were fed on CAF diet for 12 weeks while treatment with EMPA (10 & 30 mg/kg/day, orally) and/or metformin (MET) (100 mg/kg/day, orally) started at day 29. KEY FINDINGS Oral administration of EMPA and/or MET significantly and dose-dependently succeeded to attenuate CAF-induced obesity which was evidenced by decreased oral glucose tolerance test (AUCOGTT), insulin tolerance test (AUCITT) and decreased fasting serum insulin level besides improving the histopathological alterations induced by CAF. Moreover, EMPA significantly mitigated CAF-induced elevation in serum levels of creatinine urea, transaminases (ALT and AST), and increased albumin level as well as improving dyslipidemia and oxidative stress. Furthermore, EMPA markedly reduced renal levels of high mobility group box 1 (HMGB-1), toll like receptor4 (TLR-4) and nuclear factor κB (NF-κB) as well as decreasing the expression of tumor necrosis factor α (TNF-α) and Caspase 3. Combining EMPA30 with MET synergistically improved dyslipidemia, oxidative stress and enhanced kidney function. SIGNIFICANCE EMPA administration could confer protection against CAF-induced IR and its complications through its hypoglycemic, insulin-sensitizing, hypolipidemic, hepatoprotective, renoprotective, anti-inflammatory, anti-oxidant and anti-apoptotic properties. Also, our findings highlighted the synergistic effect of combining EMPA30 with MET so this combination might be promising in treatment of IR.
Collapse
Affiliation(s)
- Dina E Al-Wakeel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
47
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7:131. [PMID: 35459215 PMCID: PMC9033871 DOI: 10.1038/s41392-022-00955-7] [Citation(s) in RCA: 500] [Impact Index Per Article: 166.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease driven by traditional and nontraditional risk factors. Genome-wide association combined with clonal lineage tracing and clinical trials have demonstrated that innate and adaptive immune responses can promote or quell atherosclerosis. Several signaling pathways, that are associated with the inflammatory response, have been implicated within atherosclerosis such as NLRP3 inflammasome, toll-like receptors, proprotein convertase subtilisin/kexin type 9, Notch and Wnt signaling pathways, which are of importance for atherosclerosis development and regression. Targeting inflammatory pathways, especially the NLRP3 inflammasome pathway and its regulated inflammatory cytokine interleukin-1β, could represent an attractive new route for the treatment of atherosclerotic diseases. Herein, we summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways for atherosclerosis, the clinical trials that are going to target some of these processes, and the effects of quelling inflammation and atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zi-Yang Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
48
|
Kaku K, Yamamoto K, Fukushima Y, Mizuno S, Nitta D. Safety and effectiveness of empagliflozin according to body mass index in Japanese patients with type 2 diabetes: a subgroup analysis of a 3-year post-marketing surveillance study. Expert Opin Drug Saf 2022; 21:1411-1422. [PMID: 35379060 DOI: 10.1080/14740338.2022.2062322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Empagliflozin, a glucose-lowering drug licensed for type 2 diabetes (T2D), demonstrated tolerability and effectiveness overall in a post-marketing surveillance (PMS) study in Japan. However, the impact of body mass index (BMI) is unclear. RESEARCH DESIGN AND METHODS This was a prespecified sub-analysis of the prospective, 3-year, PMS study of empagliflozin in Japan where the primary endpoint was adverse drug reactions (ADRs). We evaluated results according to BMI. RESULTS We enrolled 7931 T2D patients treated with empagliflozin. Baseline mean age was 58.7 years; 63.01% were male. Baseline BMI was <20 kg/m2 in 2.06% of patients, while 21.28%, 37.35%, and 24.97% had BMI 20-<25, 25-<30 and ≥30 kg/m2, respectively. ADRs occurred in 19 (11.66%), 203 (12.03%), 411 (13.88%), and 295 (14.90%) patients with BMI <20, 20-<25, 25-<30 and ≥30 kg/m2, respectively. Excessive/frequent urination was the most frequent ADR of special interest in all BMI subgroups except 20-<25 kg/m2 (urinary tract infection). Mean change in glycated hemoglobin from baseline was -0.75%, with similar magnitude across BMI subgroups. Body-weight reduction seemed dependent on BMI, with almost no change in the <20 kg/m2 subgroup. CONCLUSIONS Empagliflozin appeared well tolerated and effective in Japanese T2D patients regardless of BMI, although the number of patients with BMI <20 kg/m2 was small in this study.
Collapse
Affiliation(s)
- Kohei Kaku
- Department of Medicine, Kawasaki Medical School, Okayama, Japan
| | - Kazuhiro Yamamoto
- Department of Cardiovascular Medicine, and Endocrinology and Metabolism, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yumiko Fukushima
- Medicine Division, Nippon Boehringer Ingelheim Co. Ltd., Tokyo, Japan
| | | | - Daisuke Nitta
- Medicine Division, Nippon Boehringer Ingelheim Co. Ltd., Tokyo, Japan
| |
Collapse
|
49
|
Kaku K, Yamamoto K, Fukushima Y, Lliev H, Yasui A. Safety and effectiveness of empagliflozin in Japanese patients with type 2 diabetes: final results of a 3-year post-marketing surveillance study. Expert Opin Drug Saf 2022; 21:1315-1328. [PMID: 35315729 DOI: 10.1080/14740338.2022.2054987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Empagliflozin, a sodium-glucose co-transporter-2 inhibitor, was licensed for treating type 2 diabetes (T2D) in Japan and elsewhere in recent years. We conducted a post-marketing surveillance study of empagliflozin in Japan. RESEARCH DESIGN AND METHODS This was a 3-year, prospective, multicenter, observational study of the safety and effectiveness of empagliflozin in T2D patients in Japanese clinical practice who had not previously received this medication. The primary endpoint was the incidence of adverse drug reactions (ADRs). RESULTS Of 8145 patients enrolled from 1103 sites, 7931 received ≥1 dose of empagliflozin. Mean age was 58.7 years (10.5% aged ≥75), glycated hemoglobin (HbA1c) 8.0%, body mass index 28.1 kg/m2 (<20 kg/m2 in 2.1%); 63.0% were male and most had comorbidities (renal impairment in ~62%). Median treatment duration was 36.5 months. ADRs occurred in 1024 (12.91%) patients overall (serious ADRs in 2.09%) and 120 patients aged ≥75 years (14.46%). ADRs of special interest included hypoglycemia (0.44% of patients), urinary tract infections (1.07%), genital infections (0.66%), volume depletion (0.50%), diabetic ketoacidosis (0%), and lower limb amputation (0.04%). Overall mean change in HbA1c from baseline was -0.75%. CONCLUSIONS Empagliflozin is effective and generally well tolerated in Japanese patients, and ADRs are consistent with its known safety profile.
Collapse
Affiliation(s)
- Kohei Kaku
- Department of Medicine, Kawasaki Medical School, Okayama, Japan
| | - Kazuhiro Yamamoto
- Department of Cardiovascular Medicine, and Endocrinology and Metabolism, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yumiko Fukushima
- Medicine Division, Nippon Boehringer Ingelheim Co. Ltd, Tokyo, Japan
| | - Hristo Lliev
- Global Pharmacovigilance, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Atsutaka Yasui
- Medicine Division, Nippon Boehringer Ingelheim Co. Ltd, Tokyo, Japan
| |
Collapse
|
50
|
Ehlers LH, Lamotte M, Ramos MC, Sandgaard S, Holmgaard P, Kristensen MM, Ejskjaer N. The Cost-Effectiveness of Subcutaneous Semaglutide Versus Empagliflozin in Type 2 Diabetes Uncontrolled on Metformin Alone in Denmark. Diabetes Ther 2022; 13:489-503. [PMID: 35187628 PMCID: PMC8934846 DOI: 10.1007/s13300-022-01221-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION International and Danish guidelines recommend the use of glucagon-like peptide 1 receptor agonists (GLP-1 RA) and sodium-glucose cotransporter 2 (SGLT-2) inhibitors already in second line in the management of type 2 diabetes (T2D). The objective of this study was to evaluate the long-term cost-effectiveness (CE) of subcutaneous (SC) semaglutide (GLP-1 RA) versus empagliflozin (SGLT-2 inhibitor) in individuals with T2D uncontrolled on metformin alone from a Danish payer's perspective. METHODS Cost-effectiveness analyses (CEA) were conducted from a Danish payer's perspective, using the IQVIA Core Diabetes model (CDM 9.5), with a time horizon of 50 years and an annual discount of 4% on costs and effects. Patients received either SC semaglutide or empagliflozin, in addition to metformin, until HbA1c threshold of 7.5% (58 mmol/mol) was reached, following which treatment intensification with insulin glargine in addition to empagliflozin or SC semaglutide plus metformin was considered. Baseline cohort characteristics and treatment effects were sourced from a published CEA. Utilities and cost of diabetes-related complications were also obtained from published sources. Treatment costs were derived from Danish official sources. Scenario analyses were also performed to test the accuracy of the base case results. RESULTS Individuals with T2D on SC semaglutide plus metformin gained 0.065 life-years (LYs) and 0.130 quality-adjusted LYs (QALYs), respectively, at an incremental cost of DKK 96,923 (€ 13,031) compared to empagliflozin plus metformin, resulting in an incremental cost-effectiveness ratio (ICER) of DKK 745,561(€ 100,239) per QALY gained. The probabilistic sensitivity analysis (PSA) results showed that the SC semaglutide plus metformin was cost-effective in 19% of simulations assuming a willingness-to-pay (WTP) threshold of DKK 357,100 (€ 48,011)/QALY gained. Duration of therapy with SC semaglutide seems the key driver of results. CONCLUSION The current analyses suggest that SC semaglutide plus metformin is not cost-effective compared to empagliflozin plus metformin from a Danish payer's perspective.
Collapse
Affiliation(s)
- Lars H Ehlers
- Department of Clinical Medicine, Aalborg University, Ålborg, Denmark
| | - Mark Lamotte
- IQVIA Global IQVIA, Da Vincilaan 7, 1930, Zaventem, Belgium.
| | | | | | - Pia Holmgaard
- Boehringer Ingelheim Denmark A/S, Copenhagen, Denmark
| | | | - Niels Ejskjaer
- Department of Clinical Medicine, Aalborg University, Ålborg, Denmark
- Steno Diabetes Centre North Denmark, Aalborg University Hospital, Ålborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Ålborg, Denmark
| |
Collapse
|