1
|
Chen J, Liu T, Wang M, Lu B, Bai D, Shang J, Chen Y, Zhang J. Supramolecular oral delivery technologies for polypeptide-based drugs. J Control Release 2025; 381:113549. [PMID: 40058501 DOI: 10.1016/j.jconrel.2025.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/11/2025] [Accepted: 02/18/2025] [Indexed: 03/24/2025]
Abstract
Oral supramolecular drug delivery systems (SDDSs) have shown promising potential, along with a rapid increase in the development of polypeptide-based drugs. Biofriendly, biocompatible, and multistimulation-responsive SDDSs achieve their unique deliverability via noncovalent bonds, which can encapsulate drugs and release them at the target site along the oral tract. In this review, we analyze the oral tract from an anatomical perspective and explain the potential physical, microenvironmental, and systematic barriers, as well as the properties of drug delivery. After understanding the specific environment at different oral sites, the application of SDDSs to the mouth, stomach, small intestine, and cell targeting is summarized. Finally, this review summarizes the application of SDDSs for the successful delivery of drugs and describes how to overcome the barriers of SDDSs in drug delivery using a more biofriendly approach.
Collapse
Affiliation(s)
- Jiawen Chen
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Tianqi Liu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Mi Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Beibei Lu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - De Bai
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Jiaqi Shang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Yingjun Chen
- Shenzhen JC innovation (Lazylab) Co., LTD., Shenzhen 518055, China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China.
| |
Collapse
|
2
|
Deng F, Zhang P, Li H, Fan X, Du Y, Zhong X, Wang N, He M, Wang Y, Pan T. Effect of the glucagon-like peptide-1 receptor agonists dulaglutide on kidney outcomes in db/db mice. Cell Signal 2025; 127:111603. [PMID: 39805329 DOI: 10.1016/j.cellsig.2025.111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Diabetic kidney disease (DKD), a microvascular complication of diabetes mellitus, represents a significant clinical challenge. This study investigated the reno-protective effects of dulaglutide, a glucagon-like peptide-1 receptor agonist (GLP-1 RA) widely used in the management of diabetes, and aimed to elucidate its underlying mechanisms. Mice with db/db and db/m genotypes were allocated into four experimental groups and treated with either dulaglutide or a saline control for 10 weeks. Following the treatment period, biological samples were collected for comprehensive analysis. Serum and urinary creatinine levels were measured using a creatinine assay, while urinary protein concentrations were quantified via ELISA. Histopathological kidney damage was assessed through hematoxylin and eosin (HE) staining, with glomerular lesions evaluated using periodic acid-Schiff (PAS) staining. Inflammatory markers, ferroptosis-related indicators, and fibrosis in kidney tissues were further analyzed through PCR, Western blot (WB), immunohistochemistry (IHC), and transmission electron microscopy (TEM). Consistent with prior findings, this research demonstrated that dulaglutide improves renal function and mitigates pathological kidney damage in db/db mice. Treatment with dulaglutide significantly reduced mRNA expression of ferroptosis-related markers, including ACSL4, SLC7A11, and Ptgs2, alongside a decrease in 4-HNE levels in kidney tissues. Furthermore, dulaglutide downregulated ACSL4 protein levels and upregulated GPX4 protein expression, thereby ameliorating mitochondrial damage in renal tubular cells. In addition to these effects, dulaglutide alleviated kidney inflammation and fibrosis in db/db mice, with concomitant suppression of P-STAT3 and P-ERK expression. Collectively, these findings underscore dulaglutide's reno-protective effects in DKD, mediated through the inhibition of inflammation, improvement in renal fibrosis and ferroptosis, and modulation of P-STAT3 and P-ERK signaling pathways.
Collapse
Affiliation(s)
- Fengyi Deng
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China
| | - Ping Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China
| | - Huaiyun Li
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China
| | - Xingyu Fan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China
| | - Yijun Du
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China
| | - Xing Zhong
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China
| | - Nuojin Wang
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China
| | - Meiwen He
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China
| | - Yue Wang
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China.
| | - Tianrong Pan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China.
| |
Collapse
|
3
|
Binder U, Skerra A. Strategies for extending the half-life of biotherapeutics: successes and complications. Expert Opin Biol Ther 2025; 25:93-118. [PMID: 39663567 DOI: 10.1080/14712598.2024.2436094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Engineering of the drug half-life in vivo has become an integral part of modern biopharmaceutical development due to the fact that many proteins/peptides with therapeutic potential are quickly cleared by kidney filtration after injection and, thus, circulate only a few hours in humans (or just minutes in mice). AREAS COVERED Looking at the growing list of clinically approved biologics that have been modified for prolonged activity, and also the plethora of such drugs under preclinical and clinical development, it is evident that not one solution fits all needs, owing to the vastly different structural features and functional properties of the pharmacologically active entities. This article provides an overview of established half-life extension strategies, as well as of emerging novel concepts for extending the in vivo stability of biologicals, and their pros and cons. EXPERT OPINION Beyond the classical and still dominating technologies for improving drug pharmacokinetics and bioavailability, Fc fusion and PEGylation, various innovative approaches that offer advantages in different respects have entered the clinical stage. While the Fc fusion partner may be gradually superseded by engineered albumin-binding domains, chemical PEGylation may be replaced by biodegradable recombinant amino-acid polymers like PASylation, thus also offering a purely biotechnological manufacturing route.
Collapse
Affiliation(s)
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Freising, Germany
| |
Collapse
|
4
|
Liang R, Fu Z, Chen L, Zhou S, Jiao H. A very rare cause of markedly elevated CA 19-9: Glucagon-like peptide-1 receptor agonists. DIABETES & METABOLISM 2024; 50:101578. [PMID: 39271004 DOI: 10.1016/j.diabet.2024.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
AIM Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP1-RAs) are commonly used to treat type 2 diabetes mellitus (T2DM). Various adverse reactions have been gradually reported. This case presents a rare phenomenon in which a GLP1-RA caused a marked elevation in carbohydrate antigen 19-9(CA 19-9) without evidence of a tumor. METHODS A mixed-methods approach was utilized, incorporating medical history obtained from regular outpatient consultations and follow-up visits, along with ancillary examinations derived from laboratory tests and imaging. RESULTS The use of a GLP1-RA for treating T2DM resulted in an increase in CA 19-9 without evidence of a tumor, which gradually normalized after discontinuation of the drug. CONCLUSION GLP1-RAs may lead to elevated levels of tumor markers during the treatment of T2DM, necessitating monitoring during therapy. Antidiabetic management should be adjusted on an individual basis as needed.
Collapse
Affiliation(s)
- Rongyue Liang
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Zhifang Fu
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Long Chen
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Shuang Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Hongmei Jiao
- Department of Geriatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
5
|
Yang X, Lin R, Feng C, Kang Q, Yu P, Deng Y, Jin Y. Research Progress on Peptide Drugs for Type 2 Diabetes and the Possibility of Oral Administration. Pharmaceutics 2024; 16:1353. [PMID: 39598478 PMCID: PMC11597531 DOI: 10.3390/pharmaceutics16111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Diabetes is a global disease that can lead to a range of complications. Currently, the treatment of type 2 diabetes focuses on oral hypoglycemic drugs and insulin analogues. Studies have shown that drugs such as oral metformin are useful in the treatment of diabetes but can limit the liver's ability to release sugar. The development of glucose-lowering peptides has provided new options for the treatment of type 2 diabetes. Peptide drugs have low oral utilization due to their easy degradation, short half-life, and difficulty passing through the intestinal mucosa. Therefore, improving the oral utilization of peptide drugs remains an urgent problem. This paper reviews the research progress of peptide drugs in the treatment of diabetes mellitus and proposes that different types of nano-formulation carriers, such as liposomes, self-emulsifying drug delivery systems, and polymer particles, should be combined with peptide drugs for oral administration to improve their absorption in the gastrointestinal tract.
Collapse
Affiliation(s)
- Xinxin Yang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (R.L.)
| | - Ruiting Lin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (R.L.)
| | - Changzhuo Feng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (C.F.); (Q.K.); (P.Y.)
| | - Qiyuan Kang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (C.F.); (Q.K.); (P.Y.)
| | - Peng Yu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (C.F.); (Q.K.); (P.Y.)
| | - Yongzhi Deng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (R.L.)
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (R.L.)
| |
Collapse
|
6
|
Cimellaro A, Cavallo M, Mungo M, Suraci E, Spagnolo F, Addesi D, Pintaudi M, Pintaudi C. Cardiovascular Effectiveness and Safety of Antidiabetic Drugs in Patients with Type 2 Diabetes and Peripheral Artery Disease: Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1542. [PMID: 39336583 PMCID: PMC11434261 DOI: 10.3390/medicina60091542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Peripheral artery disease (PAD) is an atherosclerotic condition commonly complicating type 2 diabetes (T2D), leading to poor quality of life and increased risk of major adverse lower-limb (MALE) and cardiovascular (CV) events (MACE). Therapeutic management of PAD in T2D patients is much more arduous, often due to bilateral, multi-vessel, and distal vascular involvement, in addition to increased systemic polyvascular atherosclerotic burden. On the other hand, the pathophysiological link between PAD and T2D is very complex, involving mechanisms such as endothelial dysfunction and increased subclinical inflammation in addition to chronic hyperglycemia. Therefore, the clinical approach should not ignore vascular protection with the aim of reducing limb and overall CV events besides a mere glucose-lowering effect. However, the choice of the best medications in this setting is challenging due to low-grade evidence or lacking targeted studies in PAD patients. The present review highlighted the strong relationship between T2D and PAD, focusing on the best treatment strategy to reduce CV risk and prevent PAD occurrence and worsening in patients with T2D. The Medline databases were searched for studies including T2D and PAD up to June 2024 and reporting the CV effectiveness and safety of the most used glucose-lowering agents, with no restriction on PAD definition, study design, or country. The main outcomes considered were MACE-including nonfatal acute myocardial infarction, nonfatal stroke, and CV death-and MALE-defined as lower-limb complications, amputations, or need for revascularization. To the best of our current knowledge, GLP-1 receptor agonists and SGLT2 inhibitors represent the best choice to reduce CV risk in T2D and PAD settings, but a personalized approach should be considered. GLP-1 receptor agonists should be preferred in subjects with prevalent atherosclerotic burden and a history of previous MALE, while SGLT2 inhibitors should be used in those with heart failure if overall CV benefits outweigh the risk of lower-limb complications.
Collapse
Affiliation(s)
- Antonio Cimellaro
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| | - Michela Cavallo
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| | - Marialaura Mungo
- Internal Medicine Unit, Department of Medical and Surgical Sciences, ‘Magna Græcia’ University of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy;
| | - Edoardo Suraci
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| | - Francesco Spagnolo
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| | - Desirée Addesi
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| | - Medea Pintaudi
- Unit of Plastic Surgery, Department of Surgery, Azienda Ospedaliero-Universitaria “Gaetano Martino”, 98124 Messina, Italy;
| | - Carmelo Pintaudi
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| |
Collapse
|
7
|
Liang L, Su X, Guan Y, Wu B, Zhang X, Nian X. Correlation between intestinal flora and GLP-1 receptor agonist dulaglutide in type 2 diabetes mellitus treatment-A preliminary longitudinal study. iScience 2024; 27:109784. [PMID: 38711446 PMCID: PMC11070333 DOI: 10.1016/j.isci.2024.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
GLP-1 receptor agonists (GLP-1 RA) are presently used as the first-line drugs for the clinical treatment of type 2 diabetes mellitus (T2DM). It can regulate blood glucose by stimulating insulin secretion and lowering glucagon levels. We used 16S rRNA amplicon sequencing to detect structural changes in the composition of the intestinal flora of newly diagnosed T2DM after 1 and 48 weeks of dulaglutide administration. Our research found no significant changes in the intestinal flora after the administration of dulaglutide for 1 week to subjects with newly diagnosed T2DM. Nevertheless, after 48 weeks of dulaglutide administration, the composition of the intestinal flora changed significantly, with a significant reduction in the abundance of intestinal flora. Furthermore, we found that fasting glucose levels, fasting c-peptide levels, HbA1c levels, and BMI are also closely associated with intestinal flora. This reveals that intestinal flora may be one of the mechanisms by which dulaglutide treats T2DM.
Collapse
Affiliation(s)
- Lei Liang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Endocrinology, Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - XiaoYun Su
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yaxin Guan
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bin Wu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuxiang Zhang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin Nian
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
8
|
Wang T, Ding J, Cheng X, Yang Q, Hu P. Glucagon-like peptide-1 receptor agonists: new strategies and therapeutic targets to treat atherosclerotic cardiovascular disease. Front Pharmacol 2024; 15:1396656. [PMID: 38720777 PMCID: PMC11076696 DOI: 10.3389/fphar.2024.1396656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of cardiovascular mortality and is increasingly prevalent in our population. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) can safely and effectively lower glucose levels while concurrently managing the full spectrum of ASCVD risk factors and improving patients' long-term prognosis. Several cardiovascular outcome trials (CVOTs) have been carried out to further investigate the cardiovascular benefits of GLP-1RAs. Analyzing data from CVOTs can provide insights into the pathophysiologic mechanisms by which GLP-1RAs are linked to ASCVD and define the use of GLP-1RAs in clinical practice. Here, we discussed various mechanisms hypothesized in previous animal and preclinical human studies, including blockade of the production of adhesion molecules and inflammatory factors, induction of endothelial cells' synthesis of nitric oxide, protection of mitochondrial function and restriction of oxidative stress, suppression of NOD-like receptor thermal protein domain associated protein three inflammasome, reduction of foam cell formation and macrophage inflammation, and amelioration of vascular smooth muscle cell dysfunction, to help explain the cardiovascular benefits of GLP-1RAs in CVOTs. This paper provides an overview of the clinical research, molecular processes, and possible therapeutic applications of GLP-1RAs in ASCVD, while also addressing current limitations in the literature and suggesting future research directions.
Collapse
Affiliation(s)
- Tianyu Wang
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Juncan Ding
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyi Cheng
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Yang
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pengfei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Domingo E, Marques P, Francisco V, Piqueras L, Sanz MJ. Targeting systemic inflammation in metabolic disorders. A therapeutic candidate for the prevention of cardiovascular diseases? Pharmacol Res 2024; 200:107058. [PMID: 38218355 DOI: 10.1016/j.phrs.2024.107058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death and disability worldwide. While many factors can contribute to CVD, atherosclerosis is the cardinal underlying pathology, and its development is associated with several metabolic risk factors including dyslipidemia and obesity. Recent studies have definitively demonstrated a link between low-grade systemic inflammation and two relevant metabolic abnormalities: hypercholesterolemia and obesity. Interestingly, both metabolic disorders are also associated with endothelial dysfunction/activation, a proinflammatory and prothrombotic phenotype of the endothelium that involves leukocyte infiltration into the arterial wall, one of the earliest stages of atherogenesis. This article reviews the current literature on the intricate relationship between hypercholesterolemia and obesity and the associated systemic inflammation and endothelial dysfunction, and discusses the effectiveness of present, emerging and in-development pharmacological therapies used to treat these metabolic disorders with a focus on their effects on the associated systemic inflammatory state and cardiovascular risk.
Collapse
Affiliation(s)
- Elena Domingo
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Patrice Marques
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Vera Francisco
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Valencia, Spain
| | - Laura Piqueras
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| | - Maria-Jesus Sanz
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| |
Collapse
|
10
|
Powell W, Song X, Mohamed Y, Walsh D, Parks EJ, McMahon TM, Khan M, Waitman LR. Medications and conditions associated with weight loss in patients prescribed semaglutide based on real-world data. Obesity (Silver Spring) 2023; 31:2482-2492. [PMID: 37593896 DOI: 10.1002/oby.23859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Approved by the Food and Drug Administration (FDA) in 2017 for diabetes and in 2021 for weight loss, semaglutide has seen widespread use among individuals who aim to lose weight. The aim of this study was to evaluate weight loss and the influence of clinical factors on semaglutide patients in real-world clinical practice. METHODS Using data from 10 health systems within the Greater Plains Collaborative (a PCORnet Clinical Research Network), nearly 4000 clinical factors encompassing demographic, diagnosis, and prescription information were extracted for semaglutide patients. A gradient-boosting, machine-learning classifier was developed for weight-loss prediction and identification of the most impactful factors via SHapley Additive exPlanations (SHAP) value extrapolation. RESULTS A total of 3555 eligible patients (539 of whom were observed 52 weeks following exposure) from March 2017 to April 2022 were studied. On average, individuals lost 4.44% (male individuals, 3.66%; female individuals, 5.08%) of their initial weight. History of diabetes mellitus diagnosis was associated with less weight loss, whereas prediabetes and linaclotide use were associated with more pronounced weight loss. CONCLUSIONS Weight loss in patients prescribed semaglutide from real-world evidence was strong but attenuated compared with previous clinical trials. Machine-learning analysis of electronic health record data identified factors that warrant further research and consideration when tailoring weight-loss therapy.
Collapse
Affiliation(s)
- William Powell
- Department of Biomedical and Health Informatics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Xing Song
- Department of Health Management and Informatics, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Yahia Mohamed
- Department of Biomedical and Health Informatics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Dave Walsh
- Department of Biomedical and Health Informatics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - Tamara M McMahon
- Department of Biomedical and Health Informatics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Mirza Khan
- Department of Cardiovascular Medicine, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
- Section of Cardiology, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Lemuel R Waitman
- Department of Biomedical and Health Informatics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
- Department of Health Management and Informatics, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
11
|
Deng F, Wu W, Fan X, Zhong X, Wang N, Wang Y, Pan T, Du Y. Dulaglutide Protects Mice against Diabetic Sarcopenia-Mediated Muscle Injury by Inhibiting Inflammation and Regulating the Differentiation of Myoblasts. Int J Endocrinol 2023; 2023:9926462. [PMID: 37584041 PMCID: PMC10425251 DOI: 10.1155/2023/9926462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/17/2023] Open
Abstract
Background Type 2 diabetes mellitus increases the risk of sarcopenia, which is characterized by decreased muscle mass, strength, and function. However, there are no effective drugs to treat diabetic sarcopenia, and its underlying mechanism remains unknown. Here, we aimed to determine whether the GLP-1 receptor agonist (GLP-1RA) dulaglutide (Dul) affects the progression of diabetic sarcopenia. Methods db/db mice were injected intraperitoneally with 0.6 mg/kg dulaglutide for 10 weeks. Mouse muscle tissues were then pathologically evaluated and stained with F4/80 or MPO to detect macrophages and neutrophils, respectively. In addition, inflammatory factors and FNDC5 in the muscle tissues were detected using qRT-PCR. Moreover, C2C12 cells were induced to enable their differentiation into skeletal muscle cells, and muscle factor levels were then detected. Furthermore, changes in muscle factor levels were detected at various glucose concentrations (11 mM, 22 mM, and 44 mM). Results In vivo, dulaglutide alleviated muscle tissue injury; reduced levels of the inflammatory factors, IL-1β, IL-6, CCL2, and CXCL1; and reversed the level of FNDC5 in the muscle tissues of db/db mice. In vitro, a C2C12 cell differentiation model was established through the observation of cell morphology and determination of myokine levels. Upon stimulation with high glucose, the differentiation of C2C12 cells was inhibited. Dulaglutide improved this inhibitory state by upregulating the levels of both FNDC5 mRNA and protein. Conclusions Treatment with the GLP-1RA dulaglutide protects db/db mice against skeletal muscle injury by inhibiting inflammation and regulating the differentiation of myoblasts. High glucose inhibited the differentiation of C2C12 cells and decreased the mRNA and protein levels of myokines. Dulaglutide could reverse the differentiation state induced in C2C12 cells by high glucose.
Collapse
Affiliation(s)
- Fengyi Deng
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Wenyan Wu
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Xingyu Fan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Xing Zhong
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Nuojin Wang
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Yue Wang
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Tianrong Pan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Yijun Du
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| |
Collapse
|
12
|
Haddad F, Dokmak G, Bader M, Karaman R. A Comprehensive Review on Weight Loss Associated with Anti-Diabetic Medications. Life (Basel) 2023; 13:1012. [PMID: 37109541 PMCID: PMC10144237 DOI: 10.3390/life13041012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Obesity is a complex metabolic condition that can have a negative impact on one's health and even result in mortality. The management of obesity has been addressed in a number of ways, including lifestyle changes, medication using appetite suppressants and thermogenics, and bariatric surgery for individuals who are severely obese. Liraglutide and semaglutide are two of the five Food and Drug Administration (FDA)-approved anti-obesity drugs that are FDA-approved agents for the treatment of type 2 diabetes mellitus (T2DM) patients. In order to highlight the positive effects of these drugs as anti-obesity treatments, we analyzed the weight loss effects of T2DM agents that have demonstrated weight loss effects in this study by evaluating clinical studies that were published for each agent. Many clinical studies have revealed that some antihyperglycemic medications can help people lose weight, while others either cause weight gain or neutral results. Acarbose has mild weight loss effects and metformin and sodium-dependent glucose cotransporter proteins-2 (SGLT-2) inhibitors have modest weight loss effects; however, some glucagon-like peptide-1 (GLP-1) receptor agonists had the greatest impact on weight loss. Dipeptidyl peptidase 4 (DPP-4) inhibitors showed a neutral or mild weight loss effect. To sum up, some of the GLP-1 agonist drugs show promise as weight-loss treatments.
Collapse
Affiliation(s)
- Fatma Haddad
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine; (F.H.); (G.D.); (M.B.)
- Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Ghadeer Dokmak
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine; (F.H.); (G.D.); (M.B.)
| | - Maryam Bader
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine; (F.H.); (G.D.); (M.B.)
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine; (F.H.); (G.D.); (M.B.)
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
13
|
von Arx LB, Rachman J, Webb J, Casey C, Patel A, Diomatari C, Wood R, Idris I. Therapeutic inertia related to the injectable glucagon-like peptide-1 receptor agonists dulaglutide and semaglutide in patients with type 2 diabetes in UK primary care. Diabetes Obes Metab 2023; 25:1331-1340. [PMID: 36692268 DOI: 10.1111/dom.14985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
AIMS To determine the extent of therapeutic inertia related to the weekly injectable glucagon-like peptide-1 receptor agonists dulaglutide and semaglutide in patients with type 2 diabetes (T2D) in the United Kingdom. MATERIALS AND METHODS Adults with T2D who received their first primary care prescription of dulaglutide or semaglutide between January and July 2019 were identified from the UK Clinical Practice Research Datalink GOLD primary care database. Doses prescribed, glycated haemoglobin (HbA1c), body mass index (BMI) and concomitant T2D medications were assessed at first prescription and at 3, 6 and 9 months. RESULTS Of the patients prescribed dulaglutide (N = 748; mean [SD] age 59.0 [11.2] years) and semaglutide (N = 437; mean [SD] age 58.4 [10.6] years), 93.0% and 89.0%, respectively, had an HbA1c level ≥7.5% (≥58.46 mmol/mol), and 56.4% and 54.9%, respectively, had an HbA1c level ≥9.0% (≥74.86 mmol/mol), at first prescription. At 6 to 9 months, 75.0% of those on dulaglutide 0.75 mg and 57.6% of those on semaglutide 0.25 mg or 0.5 mg had an HbA1c level ≥7.5% (≥58.46 mmol/mol). At 9 months, 21.9% of the dulaglutide cohort were on the suboptimal dose of 0.75 mg, and 46.1% of the semaglutide cohort were on the suboptimal doses of 0.25 mg or 0.5 mg. CONCLUSIONS Multiple examples of therapeutic inertia were identified, including first prescription at HbA1c levels considerably above target and failure to escalate to optimal doses even with evidence of suboptimal metabolic control. A substantial proportion of patients therefore did not achieve optimal HbA1c targets.
Collapse
|
14
|
Al-Horani RA, Chedid M. Tirzepatide: A New Generation Therapeutic for Diabetes Type 2. Endocr Metab Immune Disord Drug Targets 2023; 23:1046-1050. [PMID: 36200219 PMCID: PMC10473544 DOI: 10.2174/1871530322666221004151212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022]
Abstract
Tirzepatide (mounjaro®) is a derivative of the human glucose-dependent insulinotropic polypeptide (GIP) hormone with a position-20 being modified with 1,20- eicosanedioic acid via a chemical linker. It acts as a glucagon-like peptide-1 (GLP-1) receptor and GIP receptor agonist. It has recently been approved by FDA as an adjunct therapy to exercise and diet to improve glycemic control in patients with type II diabetes mellitus (T2DM). It represents a new transforming paradigm in the management of T2DM. This mini-review will shed light on its different pharmacokinetic and pharmacodynamic aspects.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans LA 70125, United States of America
| | - Milad Chedid
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans LA 70125, United States of America
| |
Collapse
|
15
|
Zhang T, Zhang Q, Zheng W, Tao T, Li RL, Wang LY, Peng W, Wu CJ. Fructus Zanthoxyli extract improves glycolipid metabolism disorder of type 2 diabetes mellitus via activation of AMPK/PI3K/Akt pathway: Network pharmacology and experimental validation. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:543-560. [PMID: 35965234 DOI: 10.1016/j.joim.2022.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/13/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE This study investigated the potential mechanisms behind the beneficial effects of Fructus Zanthoxyli (FZ) against type 2 diabetes mellitus (T2DM) based on network pharmacology and experimental validation. METHODS Ultra-high-performance liquid chromatography coupled with hybrid quadrupole-orbitrap high-resolution mass spectrometry, and gas chromatography-mass spectrometry were used to identify the constituents of FZ. Next, the differentially expressed genes linked to the treatment of diabetes with FZ were screened using online databases (including Gene Expression Omnibus database and Swiss Target Prediction online database), and the overlapping genes and their enrichment were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, the pathway was verified by in vitro experiments, and cell staining with oil red and Nile red showed that the extract of FZ had a therapeutic effect on T2DM. RESULTS A total of 43 components were identified from FZ, and 39 differentially expressed overlapping genes were screened as the possible targets of FZ in T2DM. The dug component-target network indicated that PPARA, PPARG, PIK3R3, JAK2 and GPR88 might be the core genes targeted by FZ in the treatment of T2DM. Interestingly, the enrichment analysis of KEGG showed that effects of FZ against T2DM were closely correlated with the adenosine monophosphate-activated protein kinase (AMPK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathways. In vitro experiments further confirmed that FZ significantly inhibited palmitic acid-induced lipid formation in HepG2 cells. Moreover, FZ treatment was able to promote the AMPK and PI3K/Akt expressions in HepG2 cells. CONCLUSION Network pharmacology combined with experimental validation revealed that FZ extract can improve the glycolipid metabolism disorder of T2DM via activation of the AMPK/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ting Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Wei Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Ting Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Li-Yu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| |
Collapse
|
16
|
Xie D, Li Y, Xu M, Zhao X, Chen M. Effects of dulaglutide on endothelial progenitor cells and arterial elasticity in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2022; 21:200. [PMID: 36199064 PMCID: PMC9533545 DOI: 10.1186/s12933-022-01634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Randomised controlled trial showed that dulaglutide can reduce the risk of atherosclerotic cardiovascular disease (ASCVD) in patients with type 2 diabetes mellitus (T2DM), but the underlying mechanisms remain unclear. This study aimed to investigate the effect of dulaglutide on the number and function of endothelial progenitor cells (EPCs) in the peripheral blood of patients with T2DM and its role in improving arterial elasticity, so as to determine potential mechanisms of preventive effect of dulaglutide on ASCVD. Methods Sixty patients with T2DM were treated with 1000 mg/day of metformin and randomly divided into two groups for 12 weeks: metformin monotherapy group (MET group, n = 30), and metformin combined with dulaglutide group (MET-DUL group, n = 30). Before and after treatment, the number of CD34+CD133+KDR+ EPCs and the brachial–ankle pulse wave velocity (baPWV) of the participants were measured, and EPC proliferation, adhesion, migration, and tubule formation were assessed in vitro. Results There were no significant differences in the number and function of EPCs and baPWV changes in MET group (P > 0.05). In MET-DUL group, nitric oxide (NO) levels and the number of EPCs increased after treatment (P < 0.05), while the levels of C-reactive protein (CRP), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), advanced glycation end products (AGEs), and baPWV decreased (P < 0.05). EPC proliferation, adhesion, migration, and tubule formation abilities were significantly enhanced (P < 0.05). Correlation analysis showed that in MET-DUL group, the changes in CRP, IL-6, TNF-α, and AGEs were negatively correlated with the number of EPCs and their proliferation and migration abilities (P < 0.05). Body weight, NO, CRP, and IL-6 levels were independent factors affecting the number of EPCs (P < 0.05). The changes in number of EPCs, proliferation and migration abilities of EPCs, and NO and IL-6 levels were independent influencing factors of baPWV changes (P < 0.05). Conclusion Dulaglutide can increase the number and function of EPCs in peripheral blood and improve arterial elasticity in patients with T2DM; it is accompanied by weight loss, inflammation reduction, and high NO levels. Dulaglutide regulation of EPCs may be a mechanism of cardiovascular protection.
Collapse
Affiliation(s)
- Dandan Xie
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei, 230032, Anhui, People's Republic of China
| | - Yutong Li
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei, 230032, Anhui, People's Republic of China
| | - Murong Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei, 230032, Anhui, People's Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei, 230032, Anhui, People's Republic of China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
17
|
Bolus Injection of Liraglutide Raises Plasma Glucose in Normal Rats by Activating Glucagon-like Peptide 1 Receptor in the Brain. Pharmaceuticals (Basel) 2022; 15:ph15070904. [PMID: 35890201 PMCID: PMC9320491 DOI: 10.3390/ph15070904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is commonly treated with glucagon-like peptide-1 receptor (GLP-1R) agonists including liraglutide and others. However, liraglutide was found to raise plasma glucose levels in normal rats. The current study aims to determine how liraglutide causes this contentious condition in rats, both normal and diabetic. An adrenalectomy was performed to investigate the relationship between steroid hormone and liraglutide. To investigate the effect of central liraglutide infusion on blood glucose in rats, rats were intracerebroventricularly administrated with liraglutide with or without HPA axis inhibitors such as berberine and dexamethasone. The results showed that a single injection of liraglutide caused a temporary increase in blood glucose in healthy rats. Another GLP-1R agonist, Exendin-4 (Ex-4), increased blood sugar in a manner similar to that of liraglutide. The effects of liraglutide were also blocked by guanethidine pretreatment and vanished in normal rats with adrenalectomy. Additionally, central infusion of liraglutide via intracerebroventricular (icv) injection into normal rats also causes a temporary increase in blood glucose that was blocked by GLP-1R antagonists or the inhibitors such as berberine and dexamethasone. Similarly, central liraglutide treatment causes temporary increases in plasma glucose, adrenocorticotropic hormone (ACTH), and cortisol levels, which were reversed by inhibitors for the hypothalamic-pituitary-adrenal (HPA) axis. In normal rats, the temporary glucose-increasing effect of liraglutide was gradually eliminated during consecutive daily treatments, indicating tolerance formation. Additionally, liraglutide and Ex-4 cross-tolerance was also discovered in normal rats. Liraglutide was more effective in diabetic rats than in normal rats in activating GLP-1R gene expression in the isolated adrenal gland. Interestingly, the effect of liraglutide on glycemic control varied depending on whether the rats were diabetic or not. In normal rats, bolus injection of liraglutide, such as Ex-4, may stimulate the HPA axis, resulting in hyperglycemia. The cross-tolerance of liraglutide and Ex-4 provided a novel perspective on GLP-1R activation.
Collapse
|
18
|
Yang X, Qiang Q, Li N, Feng P, Wei W, Hölscher C. Neuroprotective Mechanisms of Glucagon-Like Peptide-1-Based Therapies in Ischemic Stroke: An Update Based on Preclinical Research. Front Neurol 2022; 13:844697. [PMID: 35370875 PMCID: PMC8964641 DOI: 10.3389/fneur.2022.844697] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
The public and social health burdens of ischemic stroke have been increasing worldwide. Hyperglycemia leads to a greater risk of stroke. This increased risk is commonly seen among patients with diabetes and is in connection with worsened clinical conditions and higher mortality in patients with acute ischemic stroke (AIS). Therapy for stroke focuses mainly on restoring cerebral blood flow (CBF) and ameliorating neurological impairment caused by stroke. Although choices of stroke treatment remain limited, much advance have been achieved in assisting patients in recovering from ischemic stroke, along with progress of recanalization therapy through pharmacological and mechanical thrombolysis. However, it is still necessary to develop neuroprotective therapies for AIS to protect the brain against injury before and during reperfusion, prolong the time window for intervention, and consequently improve neurological prognosis. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are broadly regarded as effective drugs in the treatment of type 2 diabetes mellitus (T2DM). Preclinical data on GLP-1 and GLP-1 RAs have displayed an impressive neuroprotective efficacy in stroke, Parkinson's disease (PD), Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS), and other neurodegenerative diseases. Based on the preclinical studies in the past decade, we review recent progress in the biological roles of GLP-1 and GLP-1 RAs in ischemic stroke. Emphasis will be placed on their neuroprotective effects in experimental models of cerebral ischemia stroke at cellular and molecular levels.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiang Qiang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Nan Li
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Peng Feng
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Christian Hölscher
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China.,Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
19
|
Kyriakos G, Diamantis E, Memi E, Elefsiniotis I. An Uncommon Case of Dulaglutide-Related Morbilliform Drug Eruption. Cureus 2022; 14:e21536. [PMID: 35223310 PMCID: PMC8864188 DOI: 10.7759/cureus.21536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2022] [Indexed: 11/23/2022] Open
Abstract
Dulaglutide is a once-weekly injectable glucagon-like peptide-1 (GLP-1) receptor agonist that has shown a durable glycemic efficacy as well as beneficial effects on body weight and major adverse cardiovascular events (MACE) outcomes, making it an important option for the treatment of type 2 diabetes. Common side effects of dulaglutide include nausea, diarrhea, and abdominal distension, and these are usually mild to moderate in severity and tend to diminish over time. Morbilliform drug eruptions to dulaglutide are very rare, with only one case reported until now. We report another case of dulaglutide-morbilliform drug eruption to alert the attending physicians that dulaglutide-related adverse skin reactions should be kept in mind as generalized use of dulaglutide and other GLP-1 receptor agonists are expected to remain in widespread clinical use in the future.
Collapse
|
20
|
Karakousis N, Kostakopoulos NA, Georgakopoulou VE, Pyrgioti EE, Georgakopoulos PN. A Rare Case of Dulaglutide-Associated Angioedema in a Male Patient. Cureus 2021; 13:e20041. [PMID: 34987924 PMCID: PMC8717822 DOI: 10.7759/cureus.20041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/05/2022] Open
|
21
|
Zhou Y, Zhu J, Wu H, Deng Y, Ji Q. Pancreatic Safety of Once-Weekly Dulaglutide in Chinese Patients with Type 2 Diabetes Mellitus: Subgroup Analysis by Potential Influencing Factors. Diabetes Ther 2021; 12:2677-2690. [PMID: 34453682 PMCID: PMC8479006 DOI: 10.1007/s13300-021-01139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION In the randomized, open-label, parallel-arm, active-controlled phase III AWARD-CHN2 trial, once-weekly dulaglutide plus concomitant oral antihyperglycemic medications (OAMs) improved HbA1c over 26 weeks compared with once-daily insulin glargine in patients with type 2 diabetes mellitus (T2DM). This post-hoc subgroup analysis of AWARD-CHN2 investigated the pancreatic safety of dulaglutide in Chinese patients with T2DM, stratified by potential influencing factors. METHODS Changes in pancreatic enzyme (pancreatic amylase, total amylase, and lipase) levels over 26 weeks were assessed and stratified by patient age (< 60, ≥ 60 years), sex (female, male), duration of diabetes (< 10, ≥ 10 years), baseline weight (< 70, ≥ 70 kg), BMI (< 25, ≥ 25 kg/m2), HbA1c (< 8.5, ≥ 8.5%), triglycerides (< 2.3, ≥ 2.3 mmol/L), and concomitant OAMs (metformin, sulfonylurea, metformin plus sulfonylurea). RESULTS A total of 203 Chinese patients with T2DM were included in this post-hoc analysis. Pancreatic enzyme levels increased within the normal range from baseline to Week 26, and no pancreatitis events were confirmed by independent adjudication. Least-squares mean increase in pancreatic amylase (U/L) from baseline to Week 26 was comparable across all subgroups with no statistically (all P-values > 0.05) or clinically significant between-group differences for age (< 60 years: 5.34; ≥ 60 years: 6.71), sex (female: 5.85; male: 5.66), duration of diabetes (< 10 years: 6.15; ≥ 10 years: 4.85), weight (< 70 kg: 6.19; ≥ 70 kg: 5.39), BMI (< 25 kg/m2: 5.92; ≥ 25 kg/m2: 5.61), HbA1c (< 8.5%: 6.82; ≥ 8.5%: 4.08), triglycerides (< 2.3 mmol/L: 4.94; ≥ 2.3 mmol/L: 8.04), and concomitant OAMs (metformin: 5.68; sulfonylurea: 5.44; metformin plus sulfonylurea: 5.87). Similar results were observed for total amylase and lipase. CONCLUSION In Chinese patients with T2DM receiving dulaglutide 1.5 mg in AWARD-CHN2, elevations of pancreatic enzymes over 26 weeks were within the normal range and were neither associated with pancreatitis nor baseline factors, which suggests the clinical use of dulaglutide in Chinese patients with T2DM is not associated with pancreatic safety issues. CLINICAL TRIAL REGISTRATION NCT01648582.
Collapse
Affiliation(s)
- Yan Zhou
- Endocrinology Department of Xi'an International Medical Center Hospital, 777 Xitai Road, Gaoxin District, Xi'an, 710100, Shaanxi Province, China
| | - Jiankun Zhu
- Lilly Suzhou Pharmaceutical Co. Ltd., 19F, Centre T1, HKRI Taikoo, No. 288, Shimen No.1 Road, Jing'an District, Shanghai, 200041, China
| | - Haiya Wu
- Lilly Suzhou Pharmaceutical Co. Ltd., 19F, Centre T1, HKRI Taikoo, No. 288, Shimen No.1 Road, Jing'an District, Shanghai, 200041, China
| | - Yuying Deng
- Lilly Suzhou Pharmaceutical Co. Ltd., 19F, Centre T1, HKRI Taikoo, No. 288, Shimen No.1 Road, Jing'an District, Shanghai, 200041, China.
| | - Qiuhe Ji
- Endocrinology Department of the First Affiliated Hospital (Xijing Hospital) of Air Force Medical University, 127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
22
|
van den Boom L, Stuecher T, Mader JK. Safe use of a once-a-week glucagon-like peptide-1 receptor agonist in a 16-year-old girl with type 2 diabetes when approved therapy options fail. Clin Case Rep 2021; 9:e04811. [PMID: 34567554 PMCID: PMC8449226 DOI: 10.1002/ccr3.4811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023] Open
Abstract
This case report demonstrates that using a non-approved long-acting GLP-1-RA (dulaglutide) in adolescents with T2D is possible and feasible under special circumstances when approved therapeutic options for the pediatric population fail to achieve adequate glycemic control.
Collapse
Affiliation(s)
| | - Theresa Stuecher
- Division of PediatricsDRK‐Kinderklinik Siegen gGmbHSiegenGermany
| | - Julia K. Mader
- Division of PediatricsDRK Hospital KirchenKirchenGermany
- Medical University of Graz, Endocrinology and DiabetologyGrazAustria
| |
Collapse
|
23
|
Mody R, Yu M, Grabner M, Boye K, Teng CC, Kwan AYM. Dulaglutide Shows Sustained Reduction in Glycosylated Hemoglobin Values: 2-Year US Real-world Study Results. Clin Ther 2020; 42:2184-2195. [PMID: 33256915 DOI: 10.1016/j.clinthera.2020.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/03/2020] [Accepted: 09/18/2020] [Indexed: 01/14/2023]
Abstract
PURPOSE Due to the chronic and progressive nature of type 2 diabetes mellitus (T2DM), it is important to understand the long-term outcomes associated with antihyperglycemic medications. There are currently few long-term studies evaluating the real-world effectiveness of dulaglutide, a glucagon-like peptide-1 receptor agonist. The primary objective of this retrospective observational study was to evaluate glycemic control over a 24-month follow-up period among dulaglutide initiators with continuous treatment. The study used US claims data from the HealthCore Integrated Research Database between May 2014 and May 2019. METHODS Patients were included if they were ≥18 years old with T2DM and had ≥1 pharmacy claim for dulaglutide during the index period between November 2014 and May 2017 (with index date = set as the earliest dulaglutide fill during index period), continuous enrollment in the 6 months' preindex and 24 months' postindex, ≥1 claim for dulaglutide or ≥60 days' supply in every quarter during the 24-month follow-up period, and ≥1 glycosylated hemoglobin (HbA1c) result at both baseline and 24 months. FINDINGS At baseline, 872 patients (47.5% female) had a mean (SD) age of 54.5 (8.2) years and an HbA1c value of 8.68% (1.8%) (71.36 [19.7] mmol/mol). More than two thirds were being treated for dyslipidemia, hypertension, or cardiovascular disease. A significant HbA1c reduction was observed from baseline to 24 months (-1.3% [-14.2 mmol/mol]; P < 0.0001) for dulaglutide initiators with continuous treatment. A significant reduction in HbA1c level was also observed for all prespecified subgroups (age, index dulaglutide dose [0.75 mg or 1.5 mg], insulin use, sodium-glucose co-transporter 2 inhibitor use, and dipeptidyl peptidase-4 inhibitor use; all, P < 0.0001). Forty-three percent of patients achieved an HbA1c value < 7% (53 mmol/mol), and 73% achieved an HbA1c value < 8% (64 mmol/mol) at 24 months. Most (520 [59.6%]) patients were initiated on dulaglutide 0.75 mg. Of these patients, 70% increased to dulaglutide 1.5 mg during follow-up. The mean time to first dose change was 242 (196) days for 0.75 mg-1.5 mg and 225 (160) days for 1.5 mg-0.75 mg. Antihyperglycemic medication use preindex/postindex included: insulin, 28%/35%; dipeptidyl peptidase-4 inhibitors, 37%/20%; and sodium-glucose co-transporter 2 inhibitors, 29%/44%. IMPLICATIONS In this real-world study among dulaglutide initiators with continuous treatment, a clinically significant reduction in HbA1c value was seen at the 3-month assessment and persisted for up to 24 months. These data support the use of dulaglutide as an effective long-term treatment for T2DM in clinical practice.
Collapse
Affiliation(s)
- Reema Mody
- Eli Lilly and Company, Lilly Diabetes, Indianapolis, IN, USA.
| | - Maria Yu
- Eli Lilly and Company, Lilly Diabetes, Indianapolis, IN, USA
| | | | - Kristina Boye
- Eli Lilly and Company, Lilly Diabetes, Indianapolis, IN, USA
| | | | - Anita Y M Kwan
- Eli Lilly and Company, Lilly Diabetes, Indianapolis, IN, USA
| |
Collapse
|
24
|
He S, Zhang J, Wang T, Wu P, Liu J, Li M, Ma B. The Biological Role of Optimized Recombinant Oral Long-Acting Glucagon Like Peptide-1 and Its Impact on the Expression of Genes Associated with Glucose Metabolism of Diabetes. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|