1
|
Sunbul FS, Almuqbil RM, Zhang H, Alhudaithi SS, Fernandez ME, Aldaqqa RR, Garcia VA, Robila V, Halquist MS, Gordon SW, Bos PD, da Rocha SRP. An improved experimental model of osteosarcoma lung metastases to investigate innovative therapeutic interventions and sex as a biological variable. Int J Pharm 2025; 673:125372. [PMID: 39971171 DOI: 10.1016/j.ijpharm.2025.125372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy, with OS lung metastasis (OSLM) being the leading cause of death in OS patients. No curative pharmacotherapies for OSLM are available, highlighting the clinical need for new therapies. Improved and rigorous preclinical models of OSLM are key in supporting advancements in this field. We aimed to develop an immunocompetent mouse model of OSLM that allows monitoring pharmacotherapies' effect on the lung metastatic burden over time and assessing the impact of sex as a biological variable in tumor growth and response to therapy. We transformed K7M2 cells to express bioluminescence and fluorescence, enabling real-time tracking of OSLM in BALB/c mice following tail vein injection. Metastasis was confined to the lungs and exhibited exponential growth with typical downregulated Fas receptor expression. In vivo bioluminescence correlated strongly with ex vivo, suggesting its reliability for evaluating metastatic progression and therapy response. Fluorescence from tdT was stable upon tissue processing, providing unique opportunities to probe the tumor characteristics ex vivo. We also assessed the effect of local lung-delivered gemcitabine, which was well-tolerated and significantly reduced OSLM burden without causing pulmonary toxicity. However, treatment did not resolve metastatic disease. We also explored the effect of sex on tumor growth and response to therapy; while no difference was observed in tumor growth between male and female mice, females showed a better response to local gemcitabine administration. In sum, we established a robust and rigorous immunocompetent mouse model of OSLM that will facilitate exploring new pharmacotherapies for OSLM.
Collapse
Affiliation(s)
- Fatemah S Sunbul
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Rashed M Almuqbil
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Hanming Zhang
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Sulaiman S Alhudaithi
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Matthew E Fernandez
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Raneem R Aldaqqa
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Victoria A Garcia
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Valentina Robila
- Department of Pathology - School of Medicine, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Matthew S Halquist
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Sarah W Gordon
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Thomas JeffersonUniversity, Philadelphia, PA, the United States of America
| | - Paula D Bos
- Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Department of Pathology - School of Medicine, Virginia Commonwealth University, Richmond, VA, the United States of America; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, the United States of America
| | - Sandro R P da Rocha
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, the United States of America; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, the United States of America.
| |
Collapse
|
2
|
Markowitz MI, Donato Z, Constantinescu DS, Al-Hardan W, Baron M, Crawford B. Orthopedic approaches for bone sarcoma: A bibliometric review of the 50 most cited papers. J Orthop 2023; 38:53-61. [PMID: 37008450 PMCID: PMC10051026 DOI: 10.1016/j.jor.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/26/2023] [Accepted: 03/08/2023] [Indexed: 04/04/2023] Open
Abstract
Background Curative treatment of bone sarcoma is primarily based on operative management. The Orthopedic Oncology approach towards this disease has evolved greatly to the breakthrough in systemic treatment options as well as unique implant designs favoring limb salvage over amputations. The purpose of this study was to perform a bibliometric analysis of the top 50 most cited papers related to the orthopedic the approach to bone sarcomas. Methods We queried the ISI Web of Knowledge database in July 2022. Keywords utilized were: ""Bone Sarcoma" OR "Osteosarcoma" OR "Ewing Sarcoma" OR "Chondrosarcoma" OR "Chordoma". The top 50 articles pertaining to the orthopedic approach to bone sarcoma were included for analysis and included manuscript title, authors, citation count, journal and publication year. Results The mean number of citations are 187.06 (Range 125-400; SD 67.83). The average citations per year is 10.03 (Range 47.86-3.43; SD 8.05). Many articles were published from 2000 to 2009 (n = 20) and 1990-1999 (n = 13). The majority of the articles were published by institutions within the United States (n = 32). The most common level of evidence was level IV (n = 37). Majority of the articles focused on treatment outcome (n = 22). Conclusion This study offers a comprehensive review of the most cited literature regarding orthopedic approaches to bony sarcomas. Modern treatment approaches for bone sarcoma has resulted in an increased focus within the literature on achieving disease free survival wide tissue margins. Understanding the trends of available studies allows for physicians and researchers to target and innovate future areas of study.
Collapse
Affiliation(s)
- Moses I. Markowitz
- University of Miami Miller School of Medicine, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Zachary Donato
- University of Miami Miller School of Medicine, 1120 NW 14th St, Miami, FL, 33136, USA
| | - David S. Constantinescu
- University of Miami Miller School of Medicine, Department of Orthopaedic Surgery, 1611 NW 12th Ave #303, Miami, FL, 33136, USA
| | - Waleed Al-Hardan
- University of Miami Miller School of Medicine, Department of Orthopaedic Surgery, 1611 NW 12th Ave #303, Miami, FL, 33136, USA
| | - Max Baron
- University of Miami Miller School of Medicine, 1120 NW 14th St, Miami, FL, 33136, USA
| | - Brooke Crawford
- University of Miami Miller School of Medicine, Department of Orthopaedic Surgery, 1611 NW 12th Ave #303, Miami, FL, 33136, USA
| |
Collapse
|
3
|
Anderson PM, Subbiah V, Trucco MM. Current and future targeted alpha particle therapies for osteosarcoma: Radium-223, actinium-225, and thorium-227. Front Med (Lausanne) 2022; 9:1030094. [PMID: 36457575 PMCID: PMC9705365 DOI: 10.3389/fmed.2022.1030094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/07/2022] [Indexed: 07/30/2023] Open
Abstract
Osteosarcoma is a high-grade sarcoma characterized by osteoid formation, nearly universal expression of IGF1R and with a subset expressing HER-2. These qualities provide opportunities for the use of the alpha particle-emitting isotopes to provide targeted radiation therapy via alpha particles precisely to bone-forming tumors in addition to IFG1R or Her-2 expressing metastases. This review will detail experience using the alpha emitter radium-223 (223Ra, tradename Xofigo), that targets bone formation, in osteosarcoma, specifically related to patient selection, use of gemcitabine for radio-sensitization, and using denosumab to increasing the osteoblastic phenotype of these cancers. A case of an inoperable left upper lobe vertebral-paraspinal-mediastinal osteoblastic lesion treated successfully with 223Ra combined with gemcitabine is described. Because not all areas of osteosarcoma lesions are osteoblastic, but nearly all osteosarcoma cells overexpress IGF1R, and some subsets expressing Her-2, the anti-IGF1R antibody FPI-1434 linked to actinium-225 (225Ac) or the Her-2 antibody linked to thorium-227 (227Th) may become other means to provide targeted alpha particle therapy against osteosarcoma (NCT03746431 and NCT04147819).
Collapse
Affiliation(s)
- Peter M. Anderson
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, Cleveland Clinic Children’s Hospital, Pediatric Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Vivek Subbiah
- Investigational Cancer Therapeutics, Cancer Medicine, Clinical Center for Targeted Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Matteo M. Trucco
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, Cleveland Clinic Children’s Hospital, Pediatric Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
4
|
Anderson PM, Scott J, Parsai S, Zahler S, Worley S, Shrikanthan S, Subbiah V, Murphy E. 223-Radium for metastatic osteosarcoma: combination therapy with other agents and external beam radiotherapy. ESMO Open 2021; 5:S2059-7029(20)30059-4. [PMID: 32303572 PMCID: PMC7199915 DOI: 10.1136/esmoopen-2019-000635] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/31/2022] Open
Abstract
Background Bone-seeking radiopharmaceuticals can deposit radiation selectively to some osteosarcoma tumours because of the bone-forming nature of this cancer. Objectives This is the first report of using 223-radium, an alpha-emitting calcium analogue with a high therapeutic index, in combination therapy with other agents in 15 patients with metastatic osteoblastic osteosarcoma. Methods Candidates for alpha-radiotherapy if 99mTc-MDP bone scan had avid bone-forming lesions and no therapy of higher priority (eg, definitive surgery). Monthly 223-radium infusions (1.49 μCi/kg or 55.13 kBq/kg) were given. Results The median infusion number was three and the average time to progression was 4.3 months for this cohort receiving 223-radium+other agents. Agents provided during 223-radium included (1) drugs to reduce skeletal complications: monthly denosumab (n=13) or zolendronate (n=1); (2) agents with antivascular endothelial growth factor activity, pazopanib (n=8) or sorafenib (n=1), (3) alkylating agents: oral cyclophosphamide (n=1) or ifosfamide, given as a 14-day continuous infusion (n=1, two cycles), (4) high-dose methotrexate (n=1), pegylated liposomal doxorubicin (n=1); and (5) two other combinations: nivolumab and everolimus (n=1) and rapamycin and auranofin (n=1). Radiation therapy, including stereotactic body radiotherapy (SBRT), was also given to 11 patients concurrently with 223-radium (n=2), after 223-radium completion (n=3), or both concurrently and then sequentially for other sites (n=6). After 223-radium infusions, patients without RT had a median overall survival of 4.3 months compared with those with SBRT and/or RT, who had a median overall survival of 13.5 months. Conclusion Although only 1/15 of patients with osteoblastic osteosarcoma still remain alive after 223-radium, overall survival
Collapse
Affiliation(s)
- Pete M Anderson
- Pediatric Hematology/Oncology/BMT, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jacob Scott
- Radiation Oncology and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shireen Parsai
- Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stacey Zahler
- Pediatric Hematology/Oncology and BMT, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sarah Worley
- Quantative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Erin Murphy
- Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Tang RZ, Li ZZ, Hu D, Kanwal F, Yuan CB, Mustaqeem M, Batool AI, Rehman MFU. Sanjie Yiliu Formula Inhibits Colorectal Cancer Growth by Suppression of Proliferation and Induction of Apoptosis. ACS OMEGA 2021; 6:7761-7770. [PMID: 33778287 PMCID: PMC7992181 DOI: 10.1021/acsomega.0c05565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/24/2021] [Indexed: 05/04/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. As current therapies toward CRC, including chemotherapy and radiotherapy, pose limitations, such as multidrug resistance (MDR) as well as the intrinsic and potential cytotoxic effects, necessitating to find more effective treatment options with fewer side effects, traditional Chinese medicine (TCM) has an advantage in complementary therapies. In the present study, 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide (MTT assays), trypan blue staining, colony formation, 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining, cell cycle determination, and Annexin V-FITC/PI staining were used to examine the efficacy of Sanjie Yiliu Formula (SJYLF) against CRC proliferation and to investigate its underlying molecular mechanisms through protein expression of various proapoptotic factors by quantitative polymerase chain reaction (q-PCR) and Western blotting. This four-herb-TCM SJYLF can be suggested as one of the decoctions clinically effective in late-stage cancer treatment. Our results suggest that SJYLF robustly decreased the viability of only CRC cell lines (HCT-8, SW-480, HT-29, and DLD-1) and not the normal human kidney cells (HK-2). Moreover, SJYLF significantly suppressed proliferation and induced apoptosis in HCT-8 and downregulated cyclin D1, CDK4, and BCL-2, while Bax expression was upregulated at both mRNA and protein expression levels.
Collapse
Affiliation(s)
- Rong Zhu Tang
- Department
of Gastroenterology, Seventh People’s
Hospital of Shanghai University of Traditional Chinese Medicine, NO.358, Datong Road, Pudong New
Area, Shanghai 200137, P. R. China
| | - Zhang Zhi Li
- Department
of Hematology, Taihe Hospital Affiliated
to the Hubei University of Medicine, Shiyan, China
| | - Dan Hu
- Department
of Neurology, The Central Hospital of Xiaogan, Xiaogan, Hubei 432100, P. R. China
| | - Fariha Kanwal
- Med-X
Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 201620, P. R.
China
| | - Cheng Bin Yuan
- Department
of Critical Care Medicine, Shanghai General
Hospital, Shanghai 200080, P. R. China
- School
of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P. R. China
| | - Muhammad Mustaqeem
- Department
of Chemistry, University of Sargodha, Sub-Campus Bhakkar, Bhakkar 30000, Pakistan
| | - Aima Iram Batool
- Department
of Zoology, University of Sargodha, Sargodha 40100, Pakistan
| | | |
Collapse
|
6
|
Li PC, Tu MJ, Ho PY, Batra N, Tran MM, Qiu JX, Wun T, Lara PN, Hu X, Yu AX, Yu AM. In vivo fermentation production of humanized noncoding RNAs carrying payload miRNAs for targeted anticancer therapy. Am J Cancer Res 2021; 11:4858-4871. [PMID: 33754032 PMCID: PMC7978307 DOI: 10.7150/thno.56596] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/17/2021] [Indexed: 12/19/2022] Open
Abstract
Rationale: Noncoding RNAs (ncRNAs) such as microRNAs (miRs or miRNAs) play important roles in the control of cellular processes through posttranscriptional gene regulation. However, ncRNA research is limited to utilizing RNA agents synthesized in vitro. Recombinant RNAs produced and folded in living cells shall better recapitulate biologic RNAs. Methods: Herein, we developed a novel platform for in vivo fermentation production of humanized recombinant ncRNA molecules, namely hBERAs, carrying payload miRNAs or siRNAs. Target hBERAs were purified by anion exchange FPLC method. Functions of hBERA/miRNAs were investigated in human carcinoma cells and antitumor activities were determined in orthotopic osteosarcoma xenograft spontaneous lung metastasis mouse models. Results: Proper human tRNAs were identified to couple with optimal hsa-pre-miR-34a as new fully-humanized ncRNA carriers to accommodate warhead miRNAs or siRNAs. A group of 30 target hBERAs were all heterogeneously overexpressed (each accounting for >40% of total bacterial RNA), which facilitated large-scale production (8-31 mg of individual hBERAs from 1L bacterial culture). Model hBERA/miR-34a-5p and miR-124-3p were selectively processed to warhead miRNAs in human carcinoma cells to modulate target gene expression, enhance apoptosis and inhibit invasiveness. In addition, bioengineered miR-34a-5p and miR-124-3p agents both reduced orthotopic osteosarcoma xenograft tumor growth and spontaneous pulmonary metastases significantly. Conclusion: This novel ncRNA bioengineering technology and resulting recombinant ncRNAs are unique additions to conventional technologies and tools for basic research and drug development.
Collapse
|
7
|
Habre C, Dabadie A, Loundou AD, Banos JB, Desvignes C, Pico H, Aschero A, Colavolpe N, Seiler C, Bouvier C, Peltier E, Gentet JC, Baunin C, Auquier P, Petit P. Diffusion-weighted imaging in differentiating mid-course responders to chemotherapy for long-bone osteosarcoma compared to the histologic response: an update. Pediatr Radiol 2021; 51:1714-1723. [PMID: 33877417 PMCID: PMC8363524 DOI: 10.1007/s00247-021-05037-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/28/2020] [Accepted: 02/28/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Diffusion-weighted imaging (DWI) has been described to correlate with tumoural necrosis in response to preoperative chemotherapy for osteosarcoma. OBJECTIVE To assess the accuracy of DWI in evaluating the response to neoadjuvant chemotherapy at the mid-course treatment of long-bone osteosarcoma and in predicting survival. MATERIALS AND METHODS We conducted a prospective single-centre study over a continuous period of 11 years. Consecutive patients younger than 20 years treated with a neoadjuvant regimen for peripheral conventional osteosarcoma were eligible for inclusion. Magnetic resonance imaging (MRI) with DWI was performed at diagnosis, and mid- and end-course chemotherapy with mean apparent diffusion coefficients (ADC) calculated at each time point. A percentage less than or equal to 10% of the viable residual tissue at the histological analysis of the surgical specimen was defined as a good responder to chemotherapy. Survival comparisons were calculated using the Kaplan-Meier method. Uni- and multivariate analyses with ADC change were performed by Cox modelling. This is an expansion and update of our previous work. RESULTS Twenty-six patients between the ages of 4.8 and 19.6 years were included, of whom 14 were good responders. At mid-course chemotherapy, good responders had significantly higher mean ADC values (P=0.046) and a higher increase in ADC (P=0.015) than poor responders. The ADC change from diagnosis to mid-course MRI did not appear to be a prognosticator of survival and did not impact survival rates of both groups. CONCLUSION DWI at mid-course preoperative chemotherapy for osteosarcoma should be considered to evaluate the degree of histological necrosis and to predict survival. The anticipation of a response to neoadjuvant treatment by DWI may have potential implications on preoperative management.
Collapse
Affiliation(s)
- Céline Habre
- Division of Pediatric Radiology, Hôpital Timone Enfants, Assistance publique - Hôpitaux de Marseille, 264 Rue Sainte Pierre, 13385, Marseille Cedex 05, France. .,Division of Pediatric Onco-Hematology, Hôpitaux Universitaires de Genève, Genève, Suisse.
| | - Alexia Dabadie
- grid.414336.70000 0001 0407 1584Division of Pediatric Radiology, Hôpital Timone Enfants, Assistance publique - Hôpitaux de Marseille, 264 Rue Sainte Pierre, 13385 Marseille Cedex 05, France
| | - Anderson D. Loundou
- grid.5399.60000 0001 2176 4817Division of Statistics and Methodology for Clinical Research, Assistance publique - Hôpitaux de Marseille, Aix-Marseille Université, Marseille, France
| | - Jean-Bruno Banos
- grid.414336.70000 0001 0407 1584Division of Pediatric Radiology, Hôpital Timone Enfants, Assistance publique - Hôpitaux de Marseille, 264 Rue Sainte Pierre, 13385 Marseille Cedex 05, France
| | - Catherine Desvignes
- grid.414336.70000 0001 0407 1584Division of Pediatric Radiology, Hôpital Timone Enfants, Assistance publique - Hôpitaux de Marseille, 264 Rue Sainte Pierre, 13385 Marseille Cedex 05, France
| | - Harmony Pico
- grid.414336.70000 0001 0407 1584Division of Pediatric Radiology, Hôpital Timone Enfants, Assistance publique - Hôpitaux de Marseille, 264 Rue Sainte Pierre, 13385 Marseille Cedex 05, France
| | - Audrey Aschero
- grid.414336.70000 0001 0407 1584Division of Pediatric Radiology, Hôpital Timone Enfants, Assistance publique - Hôpitaux de Marseille, 264 Rue Sainte Pierre, 13385 Marseille Cedex 05, France
| | - Nathalie Colavolpe
- grid.414336.70000 0001 0407 1584Division of Pediatric Radiology, Hôpital Timone Enfants, Assistance publique - Hôpitaux de Marseille, 264 Rue Sainte Pierre, 13385 Marseille Cedex 05, France
| | - Charlotte Seiler
- grid.414336.70000 0001 0407 1584Division of Pediatric Radiology, Hôpital Timone Enfants, Assistance publique - Hôpitaux de Marseille, 264 Rue Sainte Pierre, 13385 Marseille Cedex 05, France
| | - Corinne Bouvier
- grid.414336.70000 0001 0407 1584Anatomopathology Laboratory, Hôpital Timone Enfants, Assistance publique - Hôpitaux de Marseille, Marseille, France
| | - Emilie Peltier
- grid.414336.70000 0001 0407 1584Division of Pediatric Radiology and Prenatal Imaging, Hôpital Timone Enfants, Assistance publique - Hôpitaux de Marseille, Marseille, France
| | - Jean-Claude Gentet
- grid.414336.70000 0001 0407 1584Division of Pediatric Orthopedic Surgery, Hôpital Timone Enfants, Assistance publique - Hôpitaux de Marseille, Marseille, France
| | - Christiane Baunin
- grid.414336.70000 0001 0407 1584Division of Pediatric Radiology, Hôpital Timone Enfants, Assistance publique - Hôpitaux de Marseille, 264 Rue Sainte Pierre, 13385 Marseille Cedex 05, France
| | - Pascal Auquier
- grid.5399.60000 0001 2176 4817Division of Statistics and Methodology for Clinical Research, Assistance publique - Hôpitaux de Marseille, Aix-Marseille Université, Marseille, France
| | - Philippe Petit
- grid.414336.70000 0001 0407 1584Division of Pediatric Radiology, Hôpital Timone Enfants, Assistance publique - Hôpitaux de Marseille, 264 Rue Sainte Pierre, 13385 Marseille Cedex 05, France ,grid.5399.60000 0001 2176 4817Division of Statistics and Methodology for Clinical Research, Assistance publique - Hôpitaux de Marseille, Aix-Marseille Université, Marseille, France
| |
Collapse
|
8
|
Argenziano M, Di Paola A, Tortora C, Di Pinto D, Pota E, Di Martino M, Perrotta S, Rossi F, Punzo F. Effects of Iron Chelation in Osteosarcoma. Curr Cancer Drug Targets 2020; 21:443-455. [PMID: 33380300 DOI: 10.2174/1568009620666201230090531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteosarcoma is an aggressive bone tumor. It represents the principal cause of cancer-associated death in children. Considering the recent findings on the role of iron in cancer, iron chelation has been investigated for its antineoplastic properties in many tumors. Deferasirox is the most used iron chelator compound and in previous studies showed an anticancer effect in hematologic and solid malignancies. Eltrombopag is a Thrombopoietin receptor used in thrombocytopenia that also binds and mobilize iron. It demonstrated an effect on iron overload conditions and also in contrasting cancer cell proliferation. OBJECTIVE We analyzed the effects of deferasirox and eltrombopag in human osteosarcoma cells in an attempt to identify other therapeutic approaches for this tumor. METHODS We cultured and treated with deferasirox and Eltrombopag, alone and in combination, two human osteosarcoma cell lines, MG63 and 143B. After 72h exposure, we performed RTqPCR, Western Blotting, Iron Assay and cytofluorimetric assays to evaluate the effect on viability, apoptosis, cell cycle progression and ROS production. RESULTS The iron-chelating properties of the two compounds are also confirmed in osteosarcoma, but we did not observe any direct effect on tumor progression. DISCUSSION We tested deferasirox and eltrombopag, alone and in combination, in human osteosarcoma cells for the first time and demonstrated that their iron-chelating activity does not influence biochemical pathways related to cancer progression and maintenance. CONCLUSION Although further investigations on possible effects mediated by cells of the tumor microenvironment could be of great interest, in vitro iron chelation in osteosarcoma does not impair tumor progression.
Collapse
Affiliation(s)
- Maura Argenziano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Di Paola
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Chiara Tortora
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Daniela Di Pinto
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Elvira Pota
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Di Martino
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silverio Perrotta
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Punzo
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
9
|
Liang J, Chen D, Chen L, She X, Zhang H, Xiao Y. The potentiality of immunotherapy for sarcomas: a summary of potential predictive biomarkers. Future Oncol 2020; 16:1211-1223. [PMID: 32396026 DOI: 10.2217/fon-2020-0118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/23/2020] [Indexed: 12/31/2022] Open
Abstract
Sarcomas are rare and heterogeneous malignant tumors of mesenchymal origin. A total of 25-50% of patients treated with initial curative intent will develop as recurrent and metastatic disease. In the recurrent and metastatic setting, effect of chemotherapy is limited; therefore, more effective therapies are urgently desired. As a brake for activation of T cell, PD-1/PD-L1 plays a crucial role in the progression of tumor by altering status of immune surveillance. Some success has been acquired recently in the use of PD-1/PD-L1 inhibitors for the treatment of several solid tumors, for examples, non-small-cell lung cancer and melanoma. Immunotherapeutic strategies based on PD-1/PD-L1 for sarcomas have also been explored these years. As in other cancers, major challenges are identification of biomarkers to predict response for immunotherapy, optimization of patient's benefit and minimization of side effects. Therefore, we focused on potential biomarkers of immunotherapy for treatment of sarcomas in this review.
Collapse
Affiliation(s)
- Jin Liang
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan province 650032, PR China
| | - Dedian Chen
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan, Kunming, Yunnan 650118, PR China
| | - Liyao Chen
- Department of Radiotherapy, The First People's Hospital of Yuxi City. Yuxi, Yunnan province 653100, PR China
| | - Xueke She
- The Medical Department, 3D Medicines Inc., Shanghai, 201114, PR China
| | - Hushan Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, 201114, PR China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Yanbin Xiao
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan, Kunming, Yunnan province 650118, PR China
| |
Collapse
|
10
|
In vitro drug sensitivity (IDS) of patient-derived primary osteosarcoma cells as an early predictor of the clinical outcomes of osteosarcoma patients. Cancer Chemother Pharmacol 2020; 85:1165-1176. [PMID: 32476109 DOI: 10.1007/s00280-020-04081-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Early prediction of clinical response to conventional chemotherapy is a significant factor in determining an overall treatment strategy for osteosarcoma. METHODS Cells were extracted from treatment-naïve biopsies from 16 osteosarcoma patients who received a doxorubicin and cisplatin-based neoadjuvant chemotherapy regimen and their sensitivities to doxorubicin and cisplatin were measured as IC50 values. Associations of in vitro drug sensitivity (IDS) levels and clinical outcomes were examined. RESULTS Primary osteosarcoma cells responded to doxorubicin and cisplatin with IC50 values of 0.088 ± 0.032 µM and 16.7 ± 8.5 µM, respectively. The patients with a non-metastatic phenotype and surviving patients showed significantly lower IC50 values for both drugs. ROC analysis defined the optimal IC50 cut-off values for doxorubicin (IDSdox) and cisplatin (IDScpt) as 0.05 µM (AUC 0.82) and 14 µM (AUC 0.87), respectively. Survival analysis found significantly longer disease-free survival (DFS, n = 14) and overall survival (OS, n = 16) times in the patients with low IDSdox (p = 0.0064 for DFS and p = 0.0102 for OS) and low IDScpt (p = 0.0204 for DFS and p = 0.0021 for OS). Interestingly, when the patients with low IDScpt and those with low IDSdox were combined (Group 1), significant associations with prolonged DFS (p = 0.0042, C-statistic 0.78) and OS (p = 0.0010, C-statistic 0.79) were found. In this cohort, histological response to neoadjuvant chemotherapy could predict only OS. CONCLUSIONS This study indicates that IDS analysis could potentially be a practical, rapid, and reliable technique for predicting clinical outcomes. It could also be used to identify patients for whom conventional chemotherapy is most appropriate and, in the future, help advance personalized therapy.
Collapse
|
11
|
Zhou H, Yi W, Li A, Wang B, Ding Q, Xue L, Zeng X, Feng Y, Li Q, Wang T, Li Y, Cheng X, Tang L, Deng Z, Wu M, Xiao Y, Hong X. Specific Small-Molecule NIR-II Fluorescence Imaging of Osteosarcoma and Lung Metastasis. Adv Healthc Mater 2020; 9:e1901224. [PMID: 31793757 DOI: 10.1002/adhm.201901224] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/06/2019] [Indexed: 12/15/2022]
Abstract
Osteosarcoma is an aggressive tumor of mesenchymal origin that is more likely to spread to the lung than others, with a major impact on patients' prognosis. The optimal imaging method that can reliably detect or exclude pulmonary metastases from osteosarcoma is still scarce. Herein, two homologous types of fluorescent probes CH1055-PEG-PT and CH1055-PEG-Affibody, which show highly promising results for targeting imaging of osteosarcoma and its lung metastasis, respectively, are designed and synthesized. It is found that the NIR-II imaging quality of CH1055-PEG-PT is far superior to that of computed tomography for the early in vivo 143B tumor imaging, and this probe-guided surgery for accurate resection of 143B tumor is further performed. The high-resolution visualization of primary and micrometastatic lung lesions of osteosarcoma by using CH1055-PEG-Affibody is also demonstrated. Therefore, the attractive imaging properties of CH1055-PEG-PT and CH1055-PEG-Affibody, including high levels of uptakes, and high spatial and temporal resolution, open up opportunities for molecular imaging and clinical translation of osteosarcoma and its lung metastasis in the unique second near-infrared window.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of VirologyDepartment GynecologyCancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei 430030 P. R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Wanrong Yi
- Department of Orthopedics Trauma and MicrosurgeryZhongnan Hospital of Wuhan University Wuhan Hubei 430071 China
| | - Anguo Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
| | - Bo Wang
- State Key Laboratory of VirologyDepartment GynecologyCancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei 430030 P. R. China
| | - Qihang Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
| | - Liru Xue
- State Key Laboratory of VirologyDepartment GynecologyCancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei 430030 P. R. China
| | - Xiaodong Zeng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Yanzhi Feng
- State Key Laboratory of VirologyDepartment GynecologyCancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei 430030 P. R. China
| | - Qianqian Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Tian Wang
- State Key Laboratory of VirologyDepartment GynecologyCancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei 430030 P. R. China
| | - Yang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
| | - Xiaoding Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
| | - Lin Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
| | - Mingfu Wu
- State Key Laboratory of VirologyDepartment GynecologyCancer Biology Research CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei 430030 P. R. China
| | - Yuling Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Xuechuan Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE)Hubei Province Engineering and Technology Research Center for Fluorinated PharmaceuticalsWuhan University School of Pharmaceutical Sciences Wuhan 430071 China
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| |
Collapse
|
12
|
Yi W, Tu MJ, Liu Z, Zhang C, Batra N, Yu AX, Yu AM. Bioengineered miR-328-3p modulates GLUT1-mediated glucose uptake and metabolism to exert synergistic antiproliferative effects with chemotherapeutics. Acta Pharm Sin B 2020; 10:159-170. [PMID: 31993313 PMCID: PMC6976971 DOI: 10.1016/j.apsb.2019.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/16/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are small noncoding RNAs derived from genome to control target gene expression. Recently we have developed a novel platform permitting high-yield production of bioengineered miRNA agents (BERA). This study is to produce and utilize novel fully-humanized BERA/miR-328-3p molecule (hBERA/miR-328) to delineate the role of miR-328-3p in controlling nutrient uptake essential for cell metabolism. We first demonstrated successful high-level expression of hBERA/miR-328 in bacteria and purification to high degree of homogeneity (>98%). Biologic miR-328-3p prodrug was selectively processed to miR-328-3p to suppress the growth of highly-proliferative human osteosarcoma (OS) cells. Besides glucose transporter protein type 1, gene symbol solute carrier family 2 member 1 (GLUT1/SLC2A1), we identified and verified large neutral amino acid transporter 1, gene symbol solute carrier family 7 member 5 (LAT1/SLC7A5) as a direct target for miR-328-3p. While reduction of LAT1 protein levels by miR-328-3p did not alter homeostasis of amino acids within OS cells, suppression of GLUT1 led to a significantly lower glucose uptake and decline in intracellular levels of glucose and glycolytic metabolite lactate. Moreover, combination treatment with hBERA/miR-328 and cisplatin or doxorubicin exerted a strong synergism in the inhibition of OS cell proliferation. These findings support the utility of novel bioengineered RNA molecules and establish an important role of miR-328-3p in the control of nutrient transport and homeostasis behind cancer metabolism.
Collapse
Key Words
- 2-NBDG, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose
- ABCG2, ATP-binding cassette subfamily G member 2
- ACN, acetonitrile
- Au/Uv, absorbance unit of ultraviolet-visible spectroscopy
- BCRP, breast cancer resistant protein
- BERA, bioengineered miRNA agent
- Bioengineered RNA
- CI, combination index
- CPT, cisplatin
- Cancer
- Chemosensitivity
- DOX, doxorubicin
- E. coli, Escherichia coli
- ESI, electrospray ionization
- FPLC, fast protein liquid chromatography
- Fa, fraction affected
- GLUT1
- GLUT1, glucose transporter protein type 1
- HCC, hepatocellular carcinoma
- HPLC, high-performance liquid chromatography
- IS, internal standard
- KRB, Krebs–Ringer bicarbonate
- LAT1
- LAT1, large neutral amino acid transporter 1
- LC–MS/MS, liquid chromatography–tandem mass spectroscopy
- MCT4, monocarboxylate transporter 4
- MRE, miRNA response elements
- MRM, multiple reaction monitoring
- MiR-328
- OS, osteosarcoma
- PAGE, polyacrylamide gel electrophoresis
- PTEN, phosphatase and tensin homolog
- PVDF, Polyvinylidene fluoride
- RAGE, receptor for advanced glycosylation end products
- RT-qPCR, reverse transcription quantitative real-time polymerase chain reaction
- SLC2A1, 7A5, 16A3, solute carrier family 2 member 1, family 7 member 5, family 16 member 3
- WT, wild type
- hBERA, humanized bioengineered miRNA agent
- hsa, Homo sapiens
- htRNASer, human seryl-tRNA
- mTOR, mammalian target of rapamycin
- miR or miRNA, microRNA
- ncRNA, noncoding RNAs
- nt, nucleotide
Collapse
Affiliation(s)
- Wanrong Yi
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento 95817, CA, USA
| | - Mei-Juan Tu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento 95817, CA, USA
| | - Zhenzhen Liu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento 95817, CA, USA
| | - Chao Zhang
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento 95817, CA, USA
| | - Neelu Batra
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento 95817, CA, USA
| | - Ai-Xi Yu
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento 95817, CA, USA
| |
Collapse
|
13
|
Zhang W, Lei Z, Meng J, Li G, Zhang Y, He J, Yan W. Water Extract of Sporoderm-Broken Spores of Ganoderma lucidum Induces Osteosarcoma Apoptosis and Restricts Autophagic Flux. Onco Targets Ther 2019; 12:11651-11665. [PMID: 32021244 PMCID: PMC6942530 DOI: 10.2147/ott.s226850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose Osteosarcoma (OS) is a malignant bone tumor with easy metastasis and poor prognosis. Ganoderma lucidum (G. lucidum), a traditional Chinese medicine, was reported playing a critical role in suppressing multiple tumor progress. So we wanted to investigate the effects and molecular mechanisms of water extract of sporoderm-broken spores of G. lucidum (BSGLWE) on osteosarcoma. Methods In vitro, the effects on cell proliferation of BSGLWE in osteosarcoma cells were detected by CCK-8, colony formation assay and flow cytometry; migration ability of osteosarcoma cells was evaluated by cell scratch and transwell assays. Cell apoptosis and autophagy were tested by transmission electron microscopy (TEM). Potential signaling pathways were detected by Western blotting and immunofluorescence. In xenograft orthotopic model, the luminescence intensity measured by an in vivo bioluminescence imaging system, and the expression of related proteins in tumor cells were assessed by IHC analysis. Results BSGLWE suppressed the proliferation and migration of osteosarcoma cells in a dose-dependent manner, and osteosarcoma cell cycle progression at the G2/M phase was arrested by the BSGLWE. In addition, increased apoptosis-related protein expression meant BSFLWE induced caspase-dependent apoptosis of osteosarcoma cells. TEM results indicated that BSGLWE promoted the formation of apoptotic bodies and autophagosomes in HOS and U2 cells. Western blotting or immunofluorescence and rescue assay revealed that BSGLWE blocked autophagic flux by inducing initiation of autophagy and increasing autophagosome accumulation of osteosarcoma cells. BSGLWE not only repressed the angiogenesis in the mouse model, but also induced apoptosis and blocked autophagy in vivo. Conclusion BSGLWE inhibits osteosarcoma progression.
Collapse
Affiliation(s)
- Wenkan Zhang
- Department of Orthopedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Zhong Lei
- Department of Orthopedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Jiahong Meng
- Department of Orthopedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Guoqi Li
- Department of Orthopedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Yuxiang Zhang
- Department of Orthopedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Jiaming He
- Department of Orthopedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Weiqi Yan
- Department of Orthopedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China
| |
Collapse
|
14
|
TIPE1 suppresses osteosarcoma tumor growth by regulating macrophage infiltration. Clin Transl Oncol 2018; 21:334-341. [PMID: 30062520 DOI: 10.1007/s12094-018-1927-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Osteosarcoma is the most common primary malignancy of the bone, and macrophages play a promotional role during osteosarcoma development and progression. TIPE1 is known to function as a tumor suppressor in diverse cancers by inducing cell arrest and apoptosis. However, the biological function of TIPE1 in osteosarcoma is still unclear. PURPOSE The purpose of this study was to investigate the expression and function of TIPE1 in osteosarcoma. METHODS In the present study, TIPE1 expression in osteosarcoma cancer cells was determined by qPCR and western blotting. A subcutaneous tumor model was established to investigate the potential anti-tumor activity of TIPE1 in osteosarcoma. Further, flow cytometry, western blotting, immunofluorescence staining, and ELISA were performed to clarify the underlying mechanism by which TIPE1 regulates growth of osteosarcoma. RESULTS Our results suggest that TIPE1 is downregulated in osteosarcoma cancer cells, and ectopic expression TIPE1 significantly inhibited osteosarcoma tumor growth in vivo. Furthermore, TIPE1 inhibits the infiltration of macrophages in osteosarcoma tumor by suppressing MCP-1 expression in osteosarcoma cells. Further in vivo study revealed that inhibition of MCP-1/CCR2 axis by Bindarit blocked the inhibitory effect of TIPE1 on osteosarcoma growth. CONCLUSION Collectively, our results demonstrate the anti-tumor role of TIPE1 in osteosarcoma and reveal a novel therapy target for osteosarcoma.
Collapse
|
15
|
Jian C, Tu MJ, Ho PY, Duan Z, Zhang Q, Qiu JX, DeVere White RW, Wun T, Lara PN, Lam KS, Yu AX, Yu AM. Co-targeting of DNA, RNA, and protein molecules provides optimal outcomes for treating osteosarcoma and pulmonary metastasis in spontaneous and experimental metastasis mouse models. Oncotarget 2018; 8:30742-30755. [PMID: 28415566 PMCID: PMC5458164 DOI: 10.18632/oncotarget.16372] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/03/2017] [Indexed: 11/30/2022] Open
Abstract
Metastasis is a major cause of mortality for cancer patients and remains as the greatest challenge in cancer therapy. Driven by multiple factors, metastasis may not be controlled by the inhibition of single target. This study was aimed at assessing the hypothesis that drugs could be rationally combined to co-target critical DNA, RNA and protein molecules to achieve saturation attack against metastasis. Independent actions of the model drugs DNA-intercalating doxorubicin, RNA-interfering miR-34a and protein-inhibiting sorafenib on DNA replication, RNA translation and protein kinase signaling in highly metastatic, human osteosarcoma 143B cells were demonstrated by the increase of? H2A.X foci formation, reduction of c-MET expression and inhibition of Erk1/2 phosphorylation, respectively, and optimal effects were found for triple-drug combination. Consequently, triple-drug treatment showed a strong synergism in suppressing 143B cell proliferation and the greatest effects in reducing cell invasion. Compared to single- and dual-drug treatment, triple-drug therapy suppressed pulmonary metastases and orthotopic osteosarcoma progression to significantly greater degrees in orthotopic osteosarcoma xenograft/spontaneous metastases mouse models, while none showed significant toxicity. In addition, triple-drug therapy improved the overall survival to the greatest extent in experimental metastases mouse models. These findings demonstrate co-targeting of DNA, RNA and protein molecules as a novel therapeutic strategy for the treatment of metastasis.
Collapse
Affiliation(s)
- Chao Jian
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Mei-Juan Tu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Pui Yan Ho
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Zhijian Duan
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Qianyu Zhang
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Jing-Xin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Theodore Wun
- Division of Hematology Oncology, UC Davis School of Medicine, Sacramento, CA, USA
| | - Primo N Lara
- Division of Hematology Oncology, UC Davis School of Medicine, Sacramento, CA, USA.,Department of Internal Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Kit S Lam
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Ai-Xi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
16
|
Li PC, Tu MJ, Ho PY, Jilek JL, Duan Z, Zhang QY, Yu AX, Yu AM. Bioengineered NRF2-siRNA Is Effective to Interfere with NRF2 Pathways and Improve Chemosensitivity of Human Cancer Cells. Drug Metab Dispos 2018; 46:2-10. [PMID: 29061583 PMCID: PMC5733456 DOI: 10.1124/dmd.117.078741] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/18/2017] [Indexed: 12/28/2022] Open
Abstract
The nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a transcription factor in the regulation of many oxidative enzymes and efflux transporters critical for oxidative stress and cellular defense against xenobiotics. NRF2 is dysregulated in patient osteosarcoma (OS) tissues and correlates with therapeutic outcomes. Nevertheless, research on the NRF2 regulatory pathways and its potential as a therapeutic target is limited to the use of synthetic small interfering RNA (siRNA) carrying extensive artificial modifications. Herein, we report successful high-level expression of recombinant siRNA against NRF2 in Escherichia coli using our newly established noncoding RNA bioengineering technology, which was purified to >99% homogeneity using an anion-exchange fast protein liquid chromatography method. Bioengineered NRF2-siRNA was able to significantly knock down NRF2 mRNA and protein levels in human OS 143B and MG63 cells, and subsequently suppressed the expression of NRF2-regulated oxidative enzymes [heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1] and elevated intracellular levels of reactive oxygen species. In addition, recombinant NRF2-siRNA was effective to sensitize both 143B and MG63 cells to doxorubicin, cisplatin, and sorafenib, which was associated with significant downregulation of NRF2-targeted ATP-binding cassette (ABC) efflux transporters (ABCC3, ABCC4, and ABCG2). These findings support that targeting NRF2 signaling pathways may improve the sensitivity of cancer cells to chemotherapy, and bioengineered siRNA molecules should be added to current tools for related research.
Collapse
Affiliation(s)
- Peng-Cheng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Mei-Juan Tu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Pui Yan Ho
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Joseph L Jilek
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Zhijian Duan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Qian-Yu Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Ai-Xi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Ai-Ming Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| |
Collapse
|
17
|
pH-responsive mesoporous ZSM-5 zeolites/chitosan core-shell nanodisks loaded with doxorubicin against osteosarcoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 85:142-153. [PMID: 29407142 DOI: 10.1016/j.msec.2017.12.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
Oral or intravenous chemotherapy is an important strategy to treat metastatic cancer, but it may cause systemic toxicity for healthy tissue. Herein, we for the first time fabricated mesoporous ZSM-5 zeolites/chitosan core-shell nanodisks loaded with doxorubicin (ZSM-5/CS/DOX) as drug delivery systems against osteosarcoma. The mesoporous ZSM-5 zeolites exhibited disk-like shapes with thicknesses of 100nm and diameters of 300nm, and the mesopores with pore sizes of 3.75nm were originated from desilication treatment. The pH-responsive ZSM-5/CS/DOX nanodisks possessed a great drug loading efficiency of 97.7%, and their controlled release trends of DOX were fitted well with the Korsmeyer-Peppas model. The DOX could be efficiently released the ZSM-5/CS/DOX nanodisks after cellular endocytosis and induced cancer cells apoptosis. Moreover, the pH-responsive drug carriers led to efficient tumor inhibition with low side effects, especially cardiac toxicity, as confirmed by pharmacokinetic study, serological examination and H&E staining assays. Therefore, the ZSM-5/CS/DOX nanodisks are a promising pH-responsive drug carrier for targeted cancer therapy.
Collapse
|
18
|
Liu H, Li P, Chen L, Jian C, Li Z, Yu A. MicroRNAs as a novel class of diagnostic biomarkers for the detection of osteosarcoma: a meta-analysis. Onco Targets Ther 2017; 10:5229-5236. [PMID: 29138575 PMCID: PMC5677380 DOI: 10.2147/ott.s143974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have been considered as promising diagnostic biomarkers for many diseases, especially for cancers. Numerous studies have reported the value of miRNAs in the diagnosis of osteosarcoma (OS), but the results vary greatly across different studies. Therefore, we conducted this meta-analysis to assess the prospective diagnostic value of miRNAs in diagnosing OS. All relevant articles from prior to July 28, 2017 were selected from PubMed, EMBASE, Web of Science, Cochrane Library, Chinese National Knowledge Infrastructure, and Wan-fang databases. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was performed to assess the quality of each article. A random-effects model was used to pool the sensitivity and specificity of the positive likelihood ratio (PLR), negative likelihood ratio (NLR) and, diagnostic odds ratio (DOR) together with the area under the curve (AUC) to evaluate diagnostic values. Seventeen studies comprising 2,214 OS patients and 1,534 healthy humans were included in our meta-analysis. The pooled estimations indicated that the miRNAs had a high accuracy for diagnosing OS, with a sensitivity of 0.82, specificity of 0.88, PLR of 10.96, NLR of 0.20, DOR of 54.55, and AUC of 0.93. Twenty-five miRNAs were differentially expressed in OS, including 17 upregulated and 8 downregulated. These miRNAs were correlated with survival time, tumor size, cell differentiation, tumor node metastasis staging, metastasis, tumor/cell invasion, pathological type, and response to radiotherapy and chemotherapy. Several different miRNAs are expressed in OS, and some of them might be potential biomarkers for the early diagnosis of OS.
Collapse
Affiliation(s)
- Hong Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Li
- Department of Surgery, Experimental Surgery and Regenerative Medicine, Ludwig-Maximilians University, München, Germany
| | - Liang Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Jian
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zonghuan Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Aixi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Angulo P, Kaushik G, Subramaniam D, Dandawate P, Neville K, Chastain K, Anant S. Natural compounds targeting major cell signaling pathways: a novel paradigm for osteosarcoma therapy. J Hematol Oncol 2017; 10:10. [PMID: 28061797 PMCID: PMC5219787 DOI: 10.1186/s13045-016-0373-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/08/2016] [Indexed: 11/29/2022] Open
Abstract
Osteosarcoma is the most common primary bone cancer affecting children and adolescents worldwide. Despite an incidence of three cases per million annually, it accounts for an inordinate amount of morbidity and mortality. While the use of chemotherapy (cisplatin, doxorubicin, and methotrexate) in the last century initially resulted in marginal improvement in survival over surgery alone, survival has not improved further in the past four decades. Patients with metastatic osteosarcoma have an especially poor prognosis, with only 30% overall survival. Hence, there is a substantial need for new therapies. The inability to control the metastatic progression of this localized cancer stems from a lack of complete knowledge of the biology of osteosarcoma. Consequently, there has been an aggressive undertaking of scientific investigation of various signaling pathways that could be instrumental in understanding the pathogenesis of osteosarcoma. Here, we review these cancer signaling pathways, including Notch, Wnt, Hedgehog, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT, and JAK/STAT, and their specific role in osteosarcoma. In addition, we highlight numerous natural compounds that have been documented to target these pathways effectively, including curcumin, diallyl trisulfide, resveratrol, apigenin, cyclopamine, and sulforaphane. We elucidate through references that these natural compounds can induce cancer signaling pathway manipulation and possibly facilitate new treatment modalities for osteosarcoma.
Collapse
Affiliation(s)
- Pablo Angulo
- Division of Hematology and Oncology, Children's Mercy Hospital, Kansas City, MO, 64108, USA.,Department of Surgery, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 3040, Kansas City, KS, 66160, USA
| | - Gaurav Kaushik
- Department of Surgery, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 3040, Kansas City, KS, 66160, USA
| | - Dharmalingam Subramaniam
- Department of Surgery, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 3040, Kansas City, KS, 66160, USA.,The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Prasad Dandawate
- Department of Surgery, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 3040, Kansas City, KS, 66160, USA
| | - Kathleen Neville
- Division of Hematology and Oncology, Arkansas Children's Hospital, Little Rock, AR, 72202, USA
| | - Katherine Chastain
- Division of Hematology and Oncology, Children's Mercy Hospital, Kansas City, MO, 64108, USA.,Department of Surgery, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 3040, Kansas City, KS, 66160, USA
| | - Shrikant Anant
- Department of Surgery, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 3040, Kansas City, KS, 66160, USA. .,The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
20
|
Lopez C, Correa A, Vaporciyan A, Austin M, Rice D, Hayes-Jordan A. Outcomes of chest wall resections in pediatric sarcoma patients. J Pediatr Surg 2017; 52:109-114. [PMID: 27914587 DOI: 10.1016/j.jpedsurg.2016.10.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/20/2016] [Indexed: 01/24/2023]
Abstract
PURPOSE Chest wall tumors in pediatric patients are rare. This study evaluates outcomes in pediatric patients who have undergone chest wall resections secondary to sarcomas. METHODS A retrospective review was performed for patients <19years old who underwent chest wall resections for sarcoma 1999-2014 at the University of Texas MD Anderson Cancer Center. RESULTS Of 44 patients, Ewing's sarcoma (n=18) and osteosarcoma (n=16) were most common. Other sarcomas included synovial sarcoma, chondrosarcoma, and rhabdomyosarcoma. Gore-Tex® or a Marlex™ mesh and methyl methacrylate sandwich was used in 22 patients, and 9 children did not require reconstruction. Twenty-four (54.5%) patients had normal activity, 3 (6.8%) had occasional discomfort, 2 (4.5%) had pain impairing function, 7 (15.9%) required medication or physical therapy for impairment, and 8 (18.2%) needed additional surgery. Five children (11.4%) developed scoliosis, and all of these patients had posterior rib tumors. Median overall survival for the entire cohort was 41.9±11.82months. Histology (p=0.003), location of tumor on the ribs (p=0.007), and surgical margins (p=0.011) were significantly associated with overall survival. Tumors on the middle and posterior (p=0.003) portions of the ribs had a lower chance of death. CONCLUSION Scoliosis is more common in posterior rib resections. Histology, location of the tumor, and surgical margins impact survival, but, type of reconstruction does not. LEVEL OF EVIDENCE III. TYPE OF STUDY Treatment Study.
Collapse
|
21
|
Li P, Zheng X, Shou K, Niu Y, Jian C, Zhao Y, Yi W, Hu X, Yu A. The iron chelator Dp44mT suppresses osteosarcoma's proliferation, invasion and migration: in vitro and in vivo. Am J Transl Res 2016; 8:5370-5385. [PMID: 28078009 PMCID: PMC5209489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), the novel iron chelator, has been reported to inhibit the tumorigenesis and progression of various cancer cells, including neuroblastoma, neuroepithelioma and prostate cancer. However, whether Dp44mT has anticancer effects in osteosarcoma is still unknown. Here, we investigated the antitumor action of Dp44mT in osteosarcoma and its underlying mechanisms. A human osteosarcoma 143B cell line in vitro and 143B xenograft in nude mice in vivo were utilized, the anticancer effects of Dp44mT were examined through methods of MTT assay, transwell, wound healing assay, flow cytometry, western blot, immunohistochemistry and H&E staining. We showed that Dp44mT inhibits cell proliferation, invasion and migration in vitro. In addition, flow cytometry further illustrated that Dp44mT suppression of 143B cell proliferation, invasion and migration were partially due to induction of cell apoptosis, cell cycle arrest in S phase and ROS production. Also in vitro and in vivo, the expression levels of Bcl2, Bax, Caspase3, Caspase9, LC3-II, β-catenin and its downstream targets such as C-myc and Cyclin D1 demonstrated that cell apoptosis and autophagy, as well as Wnt/β-catenin pathway were involved in Dp44mT induced osteosarcoma suppression. The Dp44mT inhibition of osteosarcoma was further verified via animal models. The findings indicated that in vivo Dp44mT showed a significant reduction in the 143B xenograft tumor growth and metastasis. In conclusion, our data demonstrated that Dp44mT has effective anticancer capability in osteosarcoma and that may represent a promising treatment strategy for osteosarcoma.
Collapse
Affiliation(s)
- Pengcheng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, China
| | - Xun Zheng
- Department of Orthopedics, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, China
| | - Kangquan Shou
- Department of Orthopedics, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, China
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford UniversityStanford, CA, USA
| | - Yahui Niu
- Department of Orthopedics, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, China
| | - Chao Jian
- Department of Orthopedics, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, China
- Department of Biochemistry & Molecular Medicine, UC Davis School of MedicineSacramento 95871, CA, USA
| | - Yong Zhao
- Department of Orthopedics, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, China
| | - Wanrong Yi
- Department of Orthopedics, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, China
| | - Xiang Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, China
| | - Aixi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, China
| |
Collapse
|
22
|
Kager L, Tamamyan G, Bielack S. Novel insights and therapeutic interventions for pediatric osteosarcoma. Future Oncol 2016; 13:357-368. [PMID: 27651036 DOI: 10.2217/fon-2016-0261] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High-grade osteosarcomas are the most common primary malignant tumors of bone. With complete surgical resection and multi-agent chemotherapy up to 70% of patients with high-grade osteosarcomas and localized extremity tumors can become long-term survivors. The prognosis, however, is poor for patients with nonresectable, primary metastatic or relapsed disease. Outcome is essentially unchanged for three decades. Herein, we describe selected novel insights into the genomics, biology and immunology of the disease and discuss selected strategies, which hold promise to overcome the current stagnation in the therapeutic success in childhood osteosarcoma.
Collapse
Affiliation(s)
- Leo Kager
- Department of Pediatrics, St Anna Children's Hospital, Medical University Vienna, Vienna, Austria.,Children's Cancer Research Institute, Vienna, Austria
| | - Gevorg Tamamyan
- Department of Oncology, Yerevan State Medical University, Yerevan, Armenia.,Clinic of Chemotherapy, Muratsan Hospital Complex of Yerevan State Medical University, Yerevan, Armenia
| | - Stefan Bielack
- Klinikum Stuttgart, Olgahospital, Pediatrics 5 - Oncology, Hematology, Immunology, Stuttgart, Germany
| |
Collapse
|
23
|
Buondonno I, Gazzano E, Jean SR, Audrito V, Kopecka J, Fanelli M, Salaroglio IC, Costamagna C, Roato I, Mungo E, Hattinger CM, Deaglio S, Kelley SO, Serra M, Riganti C. Mitochondria-Targeted Doxorubicin: A New Therapeutic Strategy against Doxorubicin-Resistant Osteosarcoma. Mol Cancer Ther 2016; 15:2640-2652. [PMID: 27466354 DOI: 10.1158/1535-7163.mct-16-0048] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/23/2016] [Indexed: 11/16/2022]
Abstract
Doxorubicin is one of the leading drugs for osteosarcoma standard chemotherapy. A total of 40% to 45% of high-grade osteosarcoma patients are unresponsive, or only partially responsive, to doxorubicin (Dox), due to the overexpression of the drug efflux transporter ABCB1/P-glycoprotein (Pgp). The aim of this work is to improve Dox-based regimens in resistant osteosarcomas. We used a chemically modified mitochondria-targeted Dox (mtDox) against Pgp-overexpressing osteosarcomas with increased resistance to Dox. Unlike Dox, mtDox accumulated at significant levels intracellularly, exerted cytotoxic activity, and induced necrotic and immunogenic cell death in Dox-resistant/Pgp-overexpressing cells, fully reproducing the activities exerted by anthracyclines in drug-sensitive tumors. mtDox reduced tumor growth and cell proliferation, increased apoptosis, primed tumor cells for recognition by the host immune system, and was less cardiotoxic than Dox in preclinical models of drug-resistant osteosarcoma. The increase in Dox resistance was paralleled by a progressive upregulation of mitochondrial metabolism. By widely modulating the expression of mitochondria-related genes, mtDox decreased mitochondrial biogenesis, the import of proteins and metabolites within mitochondria, mitochondrial metabolism, and the synthesis of ATP. These events were paralleled by increased reactive oxygen species production, mitochondrial depolarization, and mitochondria-dependent apoptosis in resistant osteosarcoma cells, where Dox was completely ineffective. We propose mtDox as a new effective agent with a safer toxicity profile compared with Dox that may be effective for the treatment of Dox-resistant/Pgp-positive osteosarcoma patients, who strongly need alternative and innovative treatment strategies. Mol Cancer Ther; 15(11); 2640-52. ©2016 AACR.
Collapse
Affiliation(s)
| | - Elena Gazzano
- Department of Oncology, University of Torino, Torino, Italy
| | - Sae Rin Jean
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Department of Chemistry, Faculty of Arts and Science, University of Toronto, Toronto, Ontario, Canada
| | - Valentina Audrito
- Human Genetics Foundation (HuGeF), Torino, Italy.,Department of Medical Sciences, University of Torino, Torino, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | - Marilù Fanelli
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | | | | | - Ilaria Roato
- Center for Research and Experimental Medicine (Ce.R.M.S.), San Giovanni Battista Hospital, Torino, Italy
| | - Eleonora Mungo
- Department of Oncology, University of Torino, Torino, Italy
| | - Claudia M Hattinger
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Silvia Deaglio
- Human Genetics Foundation (HuGeF), Torino, Italy.,Department of Medical Sciences, University of Torino, Torino, Italy
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Department of Chemistry, Faculty of Arts and Science, University of Toronto, Toronto, Ontario, Canada
| | - Massimo Serra
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy.
| |
Collapse
|
24
|
Jackson TM, Bittman M, Granowetter L. Pediatric Malignant Bone Tumors: A Review and Update on Current Challenges, and Emerging Drug Targets. Curr Probl Pediatr Adolesc Health Care 2016; 46:213-228. [PMID: 27265835 DOI: 10.1016/j.cppeds.2016.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Osteosarcoma (OS) and the Ewing sarcoma family of tumors (ESFT) are the most common malignant bone tumors in children and adolescents. While significant improvements in survival have been seen in other pediatric malignancies the treatment and prognosis for pediatric bone tumors has remained unchanged for the past 3 decades. This review and update of pediatric malignant bone tumors will provide a general overview of osteosarcoma and the Ewing sarcoma family of tumors, discuss bone tumor genomics, current challenges, and emerging drug targets.
Collapse
Affiliation(s)
- Twana M Jackson
- Division of Pediatric Hematology Oncology, NYU Langone Medical Center, New York, NY.
| | - Mark Bittman
- Department of Radiology, NYU Langone Medical Center, New York, NY
| | - Linda Granowetter
- Division of Pediatric Hematology Oncology, NYU Langone Medical Center, New York, NY
| |
Collapse
|
25
|
Genetically engineered pre-microRNA-34a prodrug suppresses orthotopic osteosarcoma xenograft tumor growth via the induction of apoptosis and cell cycle arrest. Sci Rep 2016; 6:26611. [PMID: 27216562 PMCID: PMC4877571 DOI: 10.1038/srep26611] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/05/2016] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children, and microRNA-34a (miR-34a) replacement therapy represents a new treatment strategy. This study was to define the effectiveness and safety profiles of a novel bioengineered miR-34a prodrug in orthotopic OS xenograft tumor mouse model. Highly purified pre-miR-34a prodrug significantly inhibited the proliferation of human 143B and MG-63 cells in a dose dependent manner and to much greater degrees than controls, which was attributed to induction of apoptosis and G2 cell cycle arrest. Inhibition of OS cell growth and invasion were associated with release of high levels of mature miR-34a from pre-miR-34a prodrug and consequently reduction of protein levels of many miR-34a target genes including SIRT1, BCL2, c-MET, and CDK6. Furthermore, intravenous administration of in vivo-jetPEI formulated miR-34a prodrug significantly reduced OS tumor growth in orthotopic xenograft mouse models. In addition, mouse blood chemistry profiles indicated that therapeutic doses of bioengineered miR-34a prodrug were well tolerated in these animals. The results demonstrated that bioengineered miR-34a prodrug was effective to control OS tumor growth which involved the induction of apoptosis and cell cycle arrest, supporting the development of bioengineered RNAs as a novel class of large molecule therapeutic agents.
Collapse
|
26
|
Shaikh AB, Li F, Li M, He B, He X, Chen G, Guo B, Li D, Jiang F, Dang L, Zheng S, Liang C, Liu J, Lu C, Liu B, Lu J, Wang L, Lu A, Zhang G. Present Advances and Future Perspectives of Molecular Targeted Therapy for Osteosarcoma. Int J Mol Sci 2016; 17:506. [PMID: 27058531 PMCID: PMC4848962 DOI: 10.3390/ijms17040506] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 03/30/2016] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS) is a bone cancer mostly occurring in pediatric population. Current treatment regime of surgery and intensive chemotherapy could cure about 60%-75% patients with primary osteosarcoma, however only 15% to 30% can be cured when pulmonary metastasis or relapse has taken place. Hence, novel precise OS-targeting therapies are being developed with the hope of addressing this issue. This review summarizes the current development of molecular mechanisms and targets for osteosarcoma. Therapies that target these mechanisms with updated information on clinical trials are also reviewed. Meanwhile, we further discuss novel therapeutic targets and OS-targeting drug delivery systems. In conclusion, a full insight in OS pathogenesis and OS-targeting strategies would help us explore novel targeted therapies for metastatic osteosarcoma.
Collapse
Affiliation(s)
- Atik Badshah Shaikh
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Fangfei Li
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Min Li
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Department of Orthopaedic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China.
| | - Bing He
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Xiaojuan He
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Guofen Chen
- Orthopaedic Surgery Department, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Baosheng Guo
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Defang Li
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Feng Jiang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Lei Dang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Shaowei Zheng
- Department of Orthopaedic Surgery, the First Hospital of Huizhou, Huizhou 516000, China.
| | - Chao Liang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Jin Liu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Cheng Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Biao Liu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Jun Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Luyao Wang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Aiping Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
27
|
Grünewald TGP, Fulda S. Editorial: Biology-Driven Targeted Therapy of Pediatric Soft-Tissue and Bone Tumors: Current Opportunities and Future Challenges. Front Oncol 2016; 6:39. [PMID: 26925391 PMCID: PMC4757644 DOI: 10.3389/fonc.2016.00039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/05/2016] [Indexed: 11/29/2022] Open
Affiliation(s)
- Thomas G P Grünewald
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology, Ludwig Maximilian University of Munich , Munich , Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
28
|
Abstract
Osteosarcoma is the most common primary bone malignancy in children. Treatment has evolved to include systemic chemotherapy and local control surgery. Although survival improved initially in a drastic fashion with this approach, recent decades have seen little to no further gains in this area. Limb salvage surgery evolved with effective chemotherapy and advances in imaging, and continues to improve in the recent era. This article serves as a review of survival in high-grade osteosarcoma: prognostic factors, advances in chemotherapy and surgery, late effects of chemotherapy and surgery in survivors, and future directions.
Collapse
|
29
|
Zhao Y, Tu MJ, Yu YF, Wang WP, Chen QX, Qiu JX, Yu AX, Yu AM. Combination therapy with bioengineered miR-34a prodrug and doxorubicin synergistically suppresses osteosarcoma growth. Biochem Pharmacol 2015; 98:602-13. [PMID: 26518752 PMCID: PMC4725324 DOI: 10.1016/j.bcp.2015.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/21/2015] [Indexed: 01/07/2023]
Abstract
Osteosarcoma (OS) is the most common form of primary malignant bone tumor and prevalent among children and young adults. Recently we have established a novel approach to bioengineering large quantity of microRNA-34a (miR-34a) prodrug for miRNA replacement therapy. This study is to evaluate combination treatment with miR-34a prodrug and doxorubicin, which may synergistically suppress human OS cell growth via RNA interference and DNA intercalation. Synergistic effects were indeed obvious between miR-34a prodrug and doxorubicin for the suppression of OS cell proliferation, as defined by Chou-Talalay method. The strongest antiproliferative synergism was achieved when both agents were administered simultaneously to the cells at early stage, which was associated with much greater degrees of late apoptosis, necrosis, and G2 cell cycle arrest. Alteration of OS cellular processes and invasion capacity was linked to the reduction of protein levels of miR-34a targeted (proto-)oncogenes including SIRT1, c-MET, and CDK6. Moreover, orthotopic OS xenograft tumor growth was repressed to a significantly greater degree in mouse models when miR-34a prodrug and doxorubicin were co-administered intravenously. In addition, multiple doses of miR-34a prodrug and doxorubicin had no or minimal effects on mouse blood chemistry profiles. The results demonstrate that combination of doxorubicin chemotherapy and miR-34a replacement therapy produces synergistic antiproliferative effects and it is more effective than monotherapy in suppressing OS xenograft tumor growth. These findings support the development of mechanism-based combination therapy to combat OS and bioengineered miR-34a prodrug represents a new natural miRNA agent.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430070, China; Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Mei-Juan Tu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Yi-Feng Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430070, China
| | - Wei-Peng Wang
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Qiu-Xia Chen
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jing-Xin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Ai-Xi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430070, China.
| | - Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
30
|
Chen H, Shen J, Choy E, Hornicek FJ, Duan Z. Targeting protein kinases to reverse multidrug resistance in sarcoma. Cancer Treat Rev 2015; 43:8-18. [PMID: 26827688 DOI: 10.1016/j.ctrv.2015.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 12/28/2022]
Abstract
Sarcomas are a group of cancers that arise from transformed cells of mesenchymal origin. They can be classified into over 50 subtypes, accounting for approximately 1% of adult and 15% of pediatric cancers. Wide surgical resection, radiotherapy, and chemotherapy are the most common treatments for the majority of sarcomas. Among these therapies, chemotherapy can palliate symptoms and prolong life for some sarcoma patients. However, sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multidrug resistance (MDR). MDR attenuates the efficacy of anticancer drugs and results in treatment failure for sarcomas. Therefore, overcoming MDR is an unmet need for sarcoma therapy. Certain protein kinases demonstrate aberrant expression and/or activity in sarcoma cells, which have been found to be involved in the regulation of sarcoma cell progression, such as cell cycle, apoptosis, and survival. Inhibiting these protein kinases may not only decrease the proliferation and growth of sarcoma cells, but also reverse their resistance to chemotherapeutic drugs to subsequently reduce the doses of anticancer drugs and decrease drug side-effects. The discovery of novel strategies targeting protein kinases opens a door to a new area of sarcoma research and provides insight into the mechanisms of MDR in chemotherapy. This review will focus on the recent studies in targeting protein kinase to reverse chemotherapeutic drug resistance in sarcoma.
Collapse
Affiliation(s)
- Hua Chen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, United States; Department of Emergency Surgery, ShenZhen People's Hospital, 2nd Clinical Medical College of Jinan University, No. 1017 Dongmenbei Road, Shenzhen, Guangdong Province 518020, China
| | - Jacson Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, United States
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, United States
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, United States
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, United States.
| |
Collapse
|