1
|
Fu X, Wang Y, Lu Y, Liu J, Li H. Association between metabolic syndrome and benign prostatic hyperplasia: The underlying molecular connection. Life Sci 2024; 358:123192. [PMID: 39488266 DOI: 10.1016/j.lfs.2024.123192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Benign prostatic hyperplasia (BPH), a common cause of lower urinary tract symptoms (LUTS), has been recently regarded as a metabolic disease. Metabolic syndrome (MetS) is a constellation of metabolic disarrangements, including insulin resistance, obesity, hypertension, and dyslipidemia, and it has been established that these components of MetS are important contributing factors exacerbating the degree of prostatic enlargement and bladder outlet obstruction among patients with BPH. Clinical and experimental studies demonstrated that many molecules, such as insulin, insulin-like growth factor 1 (IGF-1), androgen and estrogen, and adipokines, are involved in the overlapping pathogenesis of BPH and MetS, indicating that clinicians might be able to simultaneously alleviate or cure two diseases by choosing appropriate medications. This article aims to systematically review the pathophysiological aspect and traditional etiology and pathogenesis of BPH and discuss the intricate association between MetS and BPH from the molecular point of view, in an attempt to provide stronger evidence for better treatment of two diseases.
Collapse
Affiliation(s)
- Xun Fu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Yi Lu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Jiang Liu
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China.
| |
Collapse
|
2
|
Lima TCP, Trevisan IR, Monma F, da Costa LT, Tinti JC, Ribeiro LTC, Pithon-Curi TC, Hirabara SM, Curi R, De Angelis K, De Souza DR, Santa-Rosa FA. Impact of Obesity on Cardiac Autonomic System Functioning in Military Police Officers. High Blood Press Cardiovasc Prev 2024; 31:321-327. [PMID: 38735994 DOI: 10.1007/s40292-024-00647-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION Cardiac autonomic system functioning may be altered by obesity leading to cardiovascular diseases and associated complications. Military police officers are exposed to traditional and occupational risk factors for the development of CVD, however data on the cardiovascular health in this population is still scarce. AIM In this cross-sectional study, we investigated the impact of obesity on cardiac autonomic modulation and the hemodynamic profile in male active-duty military police officers. METHODS The body composition of the volunteers was assessed by octapolar electrical bioimpedance. Participants were classified as non-obese or obese in accordance with their body fat, with further subgroups as physically active obese or insufficiently active obese using International Physical Activity Questionnaire (IPAQ). Cardiac autonomic modulation was assessed by heart rate variability and the automatic oscillometric method allowed us to assess hemodynamic features. RESULTS 102 military police officers from the state of São Paulo participated in the study. Cardiac autonomic modulation revealed significant impairment in time and frequency domains and non-linear methods in the obese group compared to the non-obese (p < 0.05). A higher physical activity level did not alter these results in the obese group. However, no significant differences in the hemodynamic profile were observed between groups (p > 0.05). CONCLUSION These findings suggest a negative association between obesity and cardiac autonomic modulation in military police officers, unaffected by increased physical activity.
Collapse
Affiliation(s)
- Thabata Chaves Pereira Lima
- Department of Research and Development of Institutional Projects, School of Physical Education of the Military Police of the State of Sao Paulo, Sao Paulo, SP, Brazil
- Cruzeiro do Sul University - Interdisciplinary Postgraduate Program in Health Science, São Paulo, Brazil
| | | | - Fernanda Monma
- Department of Research and Development of Institutional Projects, School of Physical Education of the Military Police of the State of Sao Paulo, Sao Paulo, SP, Brazil
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Leonardo Thomaz da Costa
- Department of Research and Development of Institutional Projects, School of Physical Education of the Military Police of the State of Sao Paulo, Sao Paulo, SP, Brazil
| | - Julio Cesar Tinti
- Department of Research and Development of Institutional Projects, School of Physical Education of the Military Police of the State of Sao Paulo, Sao Paulo, SP, Brazil
- Cruzeiro do Sul University - Interdisciplinary Postgraduate Program in Health Science, São Paulo, Brazil
| | | | - Tânia Cristina Pithon-Curi
- Cruzeiro do Sul University - Interdisciplinary Postgraduate Program in Health Science, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Cruzeiro do Sul University - Interdisciplinary Postgraduate Program in Health Science, São Paulo, Brazil
| | - Rui Curi
- Cruzeiro do Sul University - Interdisciplinary Postgraduate Program in Health Science, São Paulo, Brazil
| | - Kátia De Angelis
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Diego Ribeiro De Souza
- Department of Research and Development of Institutional Projects, School of Physical Education of the Military Police of the State of Sao Paulo, Sao Paulo, SP, Brazil.
- Cruzeiro do Sul University - Interdisciplinary Postgraduate Program in Health Science, São Paulo, Brazil.
| | - Fernando Alves Santa-Rosa
- Department of Research and Development of Institutional Projects, School of Physical Education of the Military Police of the State of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
3
|
Philbois SV, Facioli TP, De Lucca I, Veiga AC, Chinellato N, Simões MV, Tank J, Souza HCD. What do we know about the role of menopause in cardiovascular autonomic regulation in hypertensive women? Menopause 2024; 31:408-414. [PMID: 38564706 DOI: 10.1097/gme.0000000000002348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
OBJECTIVE We investigated the systemic arterial hypertension effects on cardiovascular autonomic modulation and baroreflex sensitivity (BRS) in women with or without preserved ovarian function. METHODS A total of 120 women were allocated into two groups: middle-aged premenopausal women (42 ± 3 y old; n = 60) and postmenopausal women (57 ± 4 y old; n = 60). Each group was also divided into two smaller groups (n = 30): normotensive and hypertensive. We evaluated hemodynamic and anthropometric parameters, cardiorespiratory fitness, BRS, heart rate variability (HRV), and blood pressure variability. The effects of hypertension and menopause were assessed using a two-way analysis of variance. Post hoc comparisons were performed using the Student-Newman-Keuls test. RESULTS Comparing premenopausal groups, women with systemic arterial hypertension showed lower BRS (9.1 ± 4.4 vs 13.4 ± 4.2 ms/mm Hg, P < 0.001 ) and HRV total variance (1,451 ± 955 vs 2,483 ± 1,959 ms 2 , P = 0.005) values than normotensive; however, the vagal predominance still remained. On the other hand, both postmenopausal groups showed an expressive reduction in BRS (8.3 ± 4.2 vs 11.3 ± 4.8 ms/mm Hg, P < 0.001) and HRV characterized by sympathetic modulation predominance (low-frequency oscillations; 56% ± 17 vs 44% ± 17, P < 0.001), in addition to a significant increase in blood pressure variability variance (28.4 ± 14.9 vs 22.4 ± 12.5 mm Hg 2 , P = 0.015) compared with premenopausal groups. Comparing both postmenopausal groups, the hypertensive group had significantly lower values of HRV total variance (635 ± 449 vs 2,053 ± 1,720 ms 2 , P < 0.001) and BRS (5.3 ± 2.8 vs 11.3 ± 3.2 ms/mm Hg) than the normotensive. CONCLUSIONS Hypertensive middle-aged premenopausal women present HRV autonomic modulation impairment, but they still maintain a vagal predominance. After menopause, even normotensive women show sympathetic autonomic predominance, which may also be associated with aging. Furthermore, postmenopausal women with hypertension present even worse cardiac autonomic modulation.
Collapse
Affiliation(s)
- Stella V Philbois
- From the Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Tabata P Facioli
- From the Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Izabella De Lucca
- From the Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Ana C Veiga
- From the Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Naiara Chinellato
- From the Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Marcus V Simões
- Division of Cardiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Hugo C D Souza
- From the Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brazil
| |
Collapse
|
4
|
Zhang Y, Huang K, Duan J, Zhao R, Yang L. Gut microbiota connects the brain and the heart: potential mechanisms and clinical implications. Psychopharmacology (Berl) 2024; 241:637-651. [PMID: 38407637 DOI: 10.1007/s00213-024-06552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/04/2024] [Indexed: 02/27/2024]
Abstract
Nowadays, high morbidity and mortality of cardiovascular diseases (CVDs) and high comorbidity rate of neuropsychiatric disorders contribute to global burden of health and economics. Consequently, a discipline concerning abnormal connections between the brain and the heart and the resulting disease states, known as psychocardiology, has garnered interest among researchers. However, identifying a common pathway that physicians can modulate remains a challenge. Gut microbiota, a constituent part of the human intestinal ecosystem, is likely involved in mutual mechanism CVDs and neuropsychiatric disorder share, which could be a potential target of interventions in psychocardiology. This review aimed to discuss complex interactions from the perspectives of microbial and intestinal dysfunction, behavioral factors, and pathophysiological changes and to present possible approaches to regulating gut microbiota, both of which are future directions in psychocardiology.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Rong Zhao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| |
Collapse
|
5
|
Scalise F, Quarti-Trevano F, Toscano E, Sorropago A, Vanoli J, Grassi G. Renal Denervation in End-Stage Renal Disease: Current Evidence and Perspectives. High Blood Press Cardiovasc Prev 2024; 31:7-13. [PMID: 38267652 PMCID: PMC10925565 DOI: 10.1007/s40292-023-00621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
In patients with end-stage renal disease (ESRD) undergoing haemodialysis, hypertension is of common detection and frequently inadequately controlled. Multiple pathophysiological mechanisms are involved in the development and progression of the ESRD-related high blood pressure state, which has been implicated in the increased cardiovascular risk reported in this hypertensive clinical phenotype. Renal sympathetic efferent and afferent nerves play a relevant role in the development and progression of elevated blood pressure values in patients with ESRD, often leading to resistant hypertension. Catheter-based bilateral renal nerves ablation has been shown to exert blood pressure lowering effects in resistant hypertensive patients with normal kidney function. Promising data on the procedure in ESRD patients with resistant hypertension have been reported in small scale pilot studies. Denervation of the native non-functioning kidney's neural excitatory influences on central sympathetic drive could reduce the elevated cardiovascular morbidity and mortality seen in ESRD patients. The present review article will focus on the promising results obtained with renal denervation in patients with ESRD, its mechanisms of action and future perspectives in these high risk patients.
Collapse
Affiliation(s)
- Filippo Scalise
- Department of Interventional Cardiology, Policlinico di Monza, Monza, Italy
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Via Pergolesi 33, 20052, Monza, Milan, Italy
| | - Evelina Toscano
- Department of Interventional Cardiology, Policlinico di Monza, Monza, Italy
| | - Antonio Sorropago
- Department of Interventional Cardiology, Policlinico di Monza, Monza, Italy
| | - Jennifer Vanoli
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Via Pergolesi 33, 20052, Monza, Milan, Italy
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Via Pergolesi 33, 20052, Monza, Milan, Italy.
| |
Collapse
|
6
|
Akumwami S, Morishita A, Iradukunda A, Kobara H, Nishiyama A. Possible organ-protective effects of renal denervation: insights from basic studies. Hypertens Res 2023; 46:2661-2669. [PMID: 37532952 DOI: 10.1038/s41440-023-01393-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023]
Abstract
Inappropriate sympathetic nervous activation is the body's response to biological stress and is thought to be involved in the development of various lifestyle-related diseases through an elevation in blood pressure. Experimental studies have shown that surgical renal denervation decreases blood pressure in hypertensive animals. Recently, minimally invasive catheter-based renal denervation has been clinically developed, which results in a reduction in blood pressure in patients with resistant hypertension. Accumulating evidence in basic studies has shown that renal denervation exerts beneficial effects on cardiovascular disease and chronic kidney disease. Interestingly, recent studies have also indicated that renal denervation improves glucose tolerance and inflammatory changes. In this review article, we summarize the evidence from animal studies to provide comprehensive insight into the organ-protective effects of renal denervation beyond changes in blood pressure.
Collapse
Affiliation(s)
- Steeve Akumwami
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| |
Collapse
|
7
|
Wang S, Luo H, Mao T, Xiang C, Hu H, Zhao J, Wang X, Wang J, Liu H, Yu L, Jiang H. Stereotactic arrhythmia radioablation: A novel therapy for cardiac arrhythmia. Heart Rhythm 2023; 20:1327-1336. [PMID: 37150313 DOI: 10.1016/j.hrthm.2023.04.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023]
Abstract
Cardiac arrhythmia is a global health problem, and catheter ablation has been one of its main treatments for decades. However, catheter ablation is an invasive method that cannot reach the deep myocardium, and it carries a considerable risk of side effects and recurrence. Therefore, it is necessary to explore a novel approach. Stereotactic body radiotherapy, which has been widely used in the field of radiation oncology, has recently expanded in the treatment of cardiac arrhythmia; when used in this context, it is known as stereotactic arrhythmia radioablation (STAR). As a noninvasive, effective, and well-tolerated treatment, STAR may be a suitable alternative method for patients with cardiac arrhythmia who are resistant or intolerant to catheter ablation. The main particles used to deliver energy in STAR are photons, protons, and carbon ions. Most studies have shown the short-term effectiveness of STAR, but problems such as a high long-term recurrence rate with a cumulative ventricular tachycardia-free survival rate from the published literature of 38.6% and related complications have also emerged. Therefore, in this article, we review the application of stereotactic body radiotherapy in cardiac arrhythmia, analyze its potential problems, and explore methods for improvement.
Collapse
Affiliation(s)
- Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Hao Luo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Tianlong Mao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Chunrong Xiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Haoyuan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Jiahui Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Xinqi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Jiale Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Huafen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China; Hubei Key Laboratory of Cardiology, Wuhan, P.R. China.
| |
Collapse
|
8
|
Wei X, Zhao C, Jia X, Zhao B, Liu Y. Expression of group II metabotropic glutamate receptors in rat superior cervical ganglion. Auton Neurosci 2023; 244:103053. [PMID: 36463578 DOI: 10.1016/j.autneu.2022.103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/06/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The superior cervical ganglion (SCG) plays critical roles in the regulation of blood pressure and cardiac output. Metabotropic glutamate receptors (mGluRs) in the SCG are not clearly elucidated yet. Most studies on the expression and functions of mGluRs in the SCG focused on the cultured SCG neurons, and yet little information has been reported in the SCG tissue. Chronic intermittent hypoxia (CIH), one of the major clinical features of obstructive sleep apnea (OSA) patients, is a critical pathological cause of secondary hypertension in OSA patients, but its impact on the level of mGluRs in the SCG is unknown. OBJECTIVE To explore the expression and localization of mGluR2/3 and the effect of CIH on mGluR2/3 level in rat SCG tissue. METHODS RT-PCR and immunostaining were conducted to examine the mRNA and protein expression of mGluR2/3 in rat SCG. Immunofluorescence staining was conducted to examine the distribution of mGluR2/3. Rats were divided into control and CIH group which the rats were exposed to CIH for 6 weeks. Western blots were performed to examine the level of mGluR2/3 in rat SCG. RESULTS mRNAs of mGluR2/3 expressed in rat SCG. mGluR2 distributed in principal neurons and small intensely fluorescent cells but not in satellite glial cells, nerve fibers, and vascular endothelial cells; mGluR3 was detected in nerve fibers rather than in the cells mentioned above. CIH exposure reduced the protein level of mGluR2/3 in rat SCG. CONCLUSION mGluR2/3 exists in rat SCG with diverse distribution patterns, and may be involved in CIH-induced hypertension.
Collapse
Affiliation(s)
- Xixi Wei
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China
| | - Chenlu Zhao
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China
| | - Xinyun Jia
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China
| | - Baosheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China
| | - Yuzhen Liu
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China; Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, Henan, China.
| |
Collapse
|
9
|
Seravalle G, Grassi G. Sympathetic nervous system and hypertension: New evidences. Auton Neurosci 2022; 238:102954. [PMID: 35151003 DOI: 10.1016/j.autneu.2022.102954] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/21/2021] [Accepted: 02/05/2022] [Indexed: 12/26/2022]
Abstract
Evidences collected in the past few years have strengthened the concept that the sympathetic nervous system plays a primary role in the development and progression of the hypertensive state, starting from the early stage, and in the hypertension-related cardiovascular diseases. Several pathophysiological mechanisms are involved. Among them the genetic background, the immune system in conjunction with sympathetic activation. The present review will briefly discuss the importance of the above mentioned mechanisms in the development of hypertension. The paper will also examine the sympathetic mechanisms underlying attended vs unattended blood pressure measurements as well as their role in resistant vs pseudo-resistant hypertension. Finally evidence from recent meta-analysis on the relevance of sympathetic nerve traffic activation in the pathogenesis of hypertension will be briefly discussed.
Collapse
Affiliation(s)
- Gino Seravalle
- Cardiology Department, IRCCS S. Luca Hospital, Istituto Auxologico Italiano, Milan, Italy.
| | - Guido Grassi
- Clinica Medica, S. Gerardo Hospital, University Milano Bicocca, Monza, Italy
| |
Collapse
|
10
|
Improta-Caria AC, Aras MG, Nascimento L, De Sousa RAL, Aras-Júnior R, Souza BSDF. MicroRNAs Regulating Renin-Angiotensin-Aldosterone System, Sympathetic Nervous System and Left Ventricular Hypertrophy in Systemic Arterial Hypertension. Biomolecules 2021; 11:biom11121771. [PMID: 34944415 PMCID: PMC8698399 DOI: 10.3390/biom11121771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that regulate gene and protein expression. MicroRNAs also regulate several cellular processes such as proliferation, differentiation, cell cycle, apoptosis, among others. In this context, they play important roles in the human body and in the pathogenesis of diseases such as cancer, diabetes, obesity and hypertension. In hypertension, microRNAs act on the renin-angiotensin-aldosterone system, sympathetic nervous system and left ventricular hypertrophy, however the signaling pathways that interact in these processes and are regulated by microRNAs inducing hypertension and the worsening of the disease still need to be elucidated. Thus, the aim of this review is to analyze the pattern of expression of microRNAs in these processes and the possible associated signaling pathways.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil;
- Department of Physical Education in Cardiology of the State of Bahia, Brazilian Society of Cardiology, Salvador 41170-130, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Brazil
- Correspondence: (A.C.I.-C.); (B.S.d.F.S.)
| | - Marcela Gordilho Aras
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | - Luca Nascimento
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | | | - Roque Aras-Júnior
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil;
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador 22281-100, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Correspondence: (A.C.I.-C.); (B.S.d.F.S.)
| |
Collapse
|
11
|
Ye C, Zheng F, Wang JX, Wang XL, Chen Q, Li YH, Kang YM, Zhu GQ. Dysregulation of the Excitatory Renal Reflex in the Sympathetic Activation of Spontaneously Hypertensive Rat. Front Physiol 2021; 12:673950. [PMID: 34149454 PMCID: PMC8209386 DOI: 10.3389/fphys.2021.673950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/08/2021] [Indexed: 11/20/2022] Open
Abstract
Excessive sympathetic activation plays crucial roles in the pathogenesis of hypertension. Chemical stimulation of renal afferents increases the sympathetic activity and blood pressure in normal rats. This study investigated the excitatory renal reflex (ERR) in the development of hypertension in the spontaneously hypertensive rat (SHR). Experiments were performed in the Wistar-Kyoto rat (WKY) and SHR aged at 4, 12, and 24 weeks under anesthesia. Renal infusion of capsaicin was used to stimulate renal afferents, and thus, to induce ERR. The ERR was evaluated by the changes in the contralateral renal sympathetic nerve activity and mean arterial pressure. At the age of 4 weeks, the early stage with a slight or moderate hypertension, the ERR was more enhanced in SHR compared with WKY. The pressor response was greater than the sympathetic activation response in the SHR. At the age of 12 weeks, the development stage with severe hypertension, there was no significant difference in the ERR between the WKY and SHR. At the age of 24 weeks, the later stage of hypertension with long-term several hypertensions, the ERR was more attenuated in the SHR compared with the WKY. On the other hand, the pressor response to sympathetic activation due to the ERR was smaller at the age of 12 and 24 weeks than those at the age of 4 weeks. These results indicate that ERR is enhanced in the early stage of hypertension, and attenuated in the later stage of hypertension in the SHR. Abnormal ERR is involved in the sympathetic activation and the development of hypertension.
Collapse
Affiliation(s)
- Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Jing-Xiao Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xiao-Li Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, China.,Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Zhang Y, Fan X, Li S, Wang Y, Shi S, Lu H, Yan F, Ma Y. Prevalence and risk factors of hypertension among Hui population in China: A systematic review and meta-analysis based on 30,565 study participants. Medicine (Baltimore) 2021; 100:e25192. [PMID: 33950917 PMCID: PMC8104273 DOI: 10.1097/md.0000000000025192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/15/2021] [Accepted: 02/15/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Hypertension (HTN) has been considered as a health concern in developing countries. And Hui is a minority group with a large population in China. Its genetic background, inadequate access to health services, eating habits, religious belief, ethnic customs, and other factors differ from that of other ethnic groups, which may influence the prevalence of HTN. However, there is no current meta-analysis on the prevalence and risk factors of HTN among Hui population. Thus we conducted a systematic review aiming to estimate the pooled prevalence and risk factors of HTN among Hui population. METHODS PubMed, The Cochrane library, Web of science, CINAHL Complete, Weipu Database (VIP), China Knowledge Resource Integrated Database (CNKI), Wanfang Database, and SinoMed were systematically searched from inception to February 28, 2020 with publication language restricted to English and Chinese. We included cross-sectional, case-control, or cohort studies that focused on prevalence and risk factors of HTN among Hui population. Two investigators independently assessed the risk of bias of the studies included in the review using tools developed by JBI. Meta-analysis was conducted using Stata 12.0 software package. RESULTS Twenty-three studies were identified with a total of 30,565 study participants. The overall pooled prevalence of HTN was 28% (95% confidence interval [CI]: 24%-32%, I2 = 98.8%, P < .001). Stratified by gender, the pooled prevalence of HTN in Hui was 26% (95%CI: 20%-33%, I2 = 97.6%, P < .001) for males and 30% (95%CI: 23%-37%, I2 = 98.3%, P < .001) for females. Pooled prevalence of HTN in Hui was 2% (95%CI: 2%-6%, I2 = 70.6%, P = .065), 10% (95%CI: 3%-17%, I2 = 83.7%, P < .001), 22% (95%CI: 12%-32%, I2 = 87.9%, P < .001), 37% (95%CI: 20%-53%, I2 = 94.0%, P < .001), 39% (95%CI: 24%-54%, I2 = 97.7%, P < .001) and 42% (95%CI: 29%-56%, I2 = 95.6%, P < .001) for those aged 18 to 29, 30 to 39, 40 to 49, 50 to 59, 60 to 69, and ≥70 years, respectively. Pooled prevalence of HTN in Hui was 22% (95%CI: 14%-29%, I2 = 97.9%, P < .001) in urban areas and 23% (95%CI: 16%-30%, I2 = 95.8%, P < .001) in rural areas. Daily salt intake (odd ratio [OR] = 3.94, 95%CI: 3.03-5.13, I2 = 90.2%, P < 001), family history (OR = 3.50, 95%CI: 2.60-4.71, I2 = 95.3%, P < .001), smoking (OR = 1.84, 95%CI: 1.61-2.09, I2 = 59.6%, P < .001), drinking (OR = 1.74, 95%CI: 1.26-2.39, I2 = 95.3%, P = .001), weekly meat intake (OR = 1.92, 95%CI: 1.04-3.54, I2 = 96.5%, P = .036), body mass index (OR = 2.20, 95%CI: 1.81-2.66, I2 = 91.3%, P < .001), and areas (OR = 1.29, 95%CI: 1.10-1.51, I2 = 81.5%, P = .001) were risk factors of HTN in Hui, while physical exercise (OR = 0.76, 95%CI: 0.66-0.88, I2 = 62.7%, P < .001) was protective factor. CONCLUSIONS The pooled prevalence of HTN among Hui people was 28%, daily salt intake, family history, drinking, smoking, weekly meat intake, body mass index, areas, and physical exercise were all risk factors for HTN among Hui population. Early screening and treatment of HTN among Hui population should be given due attention.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Evidence-Based Nursing Center, School of Nursing, Lanzhou University
| | - Xiangping Fan
- Department of Nursing, the Third People's Hospital of Lanzhou, Lanzhou, China
| | - Sijun Li
- Evidence-Based Nursing Center, School of Nursing, Lanzhou University
| | - Yutan Wang
- Evidence-Based Nursing Center, School of Nursing, Lanzhou University
| | - Sujie Shi
- Evidence-Based Nursing Center, School of Nursing, Lanzhou University
| | - Huilan Lu
- Evidence-Based Nursing Center, School of Nursing, Lanzhou University
| | - Fanghong Yan
- Evidence-Based Nursing Center, School of Nursing, Lanzhou University
| | - Yuxia Ma
- Evidence-Based Nursing Center, School of Nursing, Lanzhou University
| |
Collapse
|
13
|
Moskalenko M, Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. Polymorphisms of the matrix metalloproteinase genes are associated with essential hypertension in a Caucasian population of Central Russia. Sci Rep 2021; 11:5224. [PMID: 33664351 PMCID: PMC7933364 DOI: 10.1038/s41598-021-84645-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
This study aimed to determine possible association of eight polymorphisms of seven MMP genes with essential hypertension (EH) in a Caucasian population of Central Russia. Eight SNPs of the MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, and MMP12 genes and their gene–gene (epistatic) interactions were analyzed for association with EH in a cohort of 939 patients and 466 controls using logistic regression and assuming additive, recessive, and dominant genetic models. The functional significance of the polymorphisms associated with EH and 114 variants linked to them (r2 ≥ 0.8) was analyzed in silico. Allele G of rs11568818 MMP7 was associated with EH according to all three genetic models (OR = 0.58–0.70, pperm = 0.01–0.03). The above eight SNPs were associated with the disorder within 12 most significant epistatic models (OR = 1.49–1.93, pperm < 0.02). Loci rs1320632 MMP8 and rs11568818 MMP7 contributed to the largest number of the models (12 and 10, respectively). The EH-associated loci and 114 SNPs linked to them had non-synonymous, regulatory, and eQTL significance for 15 genes, which contributed to the pathways related to metalloendopeptidase activity, collagen degradation, and extracellular matrix disassembly. In summary, eight studied SNPs of MMPs genes were associated with EH in the Caucasian population of Central Russia.
Collapse
Affiliation(s)
- Maria Moskalenko
- Department of Medical Biological Disciplines, Belgorod State University, 308015, Belgorod, Russia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State University, 308015, Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State University, 308015, Belgorod, Russia.
| | - Volodymyr Dvornyk
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, 11533, Saudi Arabia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 308015, Belgorod, Russia
| |
Collapse
|
14
|
Sales da Silva E, Ferreira PM, Castro CH, Pacheco LF, Graziani D, Pontes CNR, Bessa ADSMD, Fernandes E, Naves LM, Ribeiro LCDS, Mendonça MM, Gomes RM, Pedrino GR, Ferreira RN, Xavier CH. Brain and kidney GHS-R1a underexpression is associated with changes in renal function and hemodynamics during neurogenic hypertension. Mol Cell Endocrinol 2020; 518:110984. [PMID: 32814069 DOI: 10.1016/j.mce.2020.110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Ghrelin is a peptide hormone whose effects are mediated by the growth hormone secretagogue receptor subtype 1a (GHS-R1a), mainly expressed in the brain but also in kidneys. The hypothesis herein raised is that GHS-R1a would be player in the renal contribution to the neurogenic hypertension pathophysiology. To investigate GHS-R1a role on renal function and hemodynamics, we used Wistar (WT) and spontaneously hypertensive rats (SHR). First, we assessed the effect of systemically injected vehicle, ghrelin, GHS-R1a antagonist PF04628935, ghrelin plus PF04628935 or GHS-R1a synthetic agonist MK-677 in WT and SHR rats housed in metabolic cages (24 h). Blood and urine samples were also analyzed. Then, we assessed the GHS-R1a contribution to the control of renal vasomotion and hemodynamics in WT and SHR. Finally, we assessed the GHS-R1a levels in brain areas, aorta, renal artery, renal cortex and medulla of WT and SHR rats using western blot. We found that ghrelin and MK-677 changed osmolarity parameters of SHR, in a GHS-R1a-dependent manner. GHS-R1a antagonism reduced the urinary Na+ and K+ and creatinine clearance in WT but not in SHR. Ghrelin reduced arterial pressure and increased renal artery conductance in SHR. GHS-R1a protein levels were decreased in the kidney and brain areas of SHR when compared to WT. Therefore, GHS-R1a role in the control of renal function and hemodynamics during neurogenic hypertension seem to be different, and this may be related to brain and kidney GHS-R1a downregulation.
Collapse
Affiliation(s)
- Elder Sales da Silva
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Patrícia Maria Ferreira
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Carlos Henrique Castro
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Lilian Fernanda Pacheco
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Daniel Graziani
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Carolina Nobre Ribeiro Pontes
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Amanda de Sá Martins de Bessa
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Erika Fernandes
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Lara Marques Naves
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Larissa Cristina Dos Santos Ribeiro
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Michelle Mendanha Mendonça
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Rodrigo Mello Gomes
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Gustavo Rodrigues Pedrino
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Reginaldo Nassar Ferreira
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| | - Carlos Henrique Xavier
- Systems Neurobiology Laboratory, Department of Physiology, Institute of Biological Sciences, Room 203, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
15
|
Ednie AR, Bennett ES. Intracellular O-linked glycosylation directly regulates cardiomyocyte L-type Ca 2+ channel activity and excitation-contraction coupling. Basic Res Cardiol 2020; 115:59. [PMID: 32910282 DOI: 10.1007/s00395-020-00820-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Cardiomyocyte L-type Ca2+ channels (Cavs) are targets of signaling pathways that modulate channel activity in response to physiologic stimuli. Cav regulation is typically transient and beneficial but chronic stimulation can become pathologic; therefore, gaining a more complete understanding of Cav regulation is of critical importance. Intracellular O-linked glycosylation (O-GlcNAcylation), which is the result of two enzymes that dynamically add and remove single N-acetylglucosamines to and from intracellular serine/threonine residues (OGT and OGA respectively), has proven to be an increasingly important post-translational modification that contributes to the regulation of many physiologic processes. However, there is currently no known role for O-GlcNAcylation in the direct regulation of Cav activity nor is its contribution to cardiac electrical signaling and EC coupling well understood. Here we aimed to delineate the role of O-GlcNAcylation in regulating cardiomyocyte L-type Cav activity and its subsequent effect on EC coupling by utilizing a mouse strain possessing an inducible cardiomyocyte-specific OGT-null-transgene. Ablation of the OGT-gene in adult cardiomyocytes (OGTKO) reduced OGT expression and O-GlcNAcylation by > 90%. Voltage clamp recordings indicated an ~ 40% reduction in OGTKO Cav current (ICa), but with increased efficacy of adrenergic stimulation, and Cav steady-state gating and window current were significantly depolarized. Consistently, OGTKO cardiomyocyte intracellular Ca2+ release and contractility were diminished and demonstrated greater beat-to-beat variability. Additionally, we show that the Cav α1 and β2 subunits are O-GlcNAcylated while α2δ1 is not. Echocardiographic analyses indicated that the reductions in OGTKO cardiomyocyte Ca2+ handling and contractility were conserved at the whole-heart level as evidenced by significantly reduced left-ventricular contractility in the absence of hypertrophy. The data indicate, for the first time, that O-GlcNAc signaling is a critical and direct regulator of cardiomyocyte ICa achieved through altered Cav expression, gating, and response to adrenergic stimulation; these mechanisms have significant implications for understanding how EC coupling is regulated in health and disease.
Collapse
Affiliation(s)
- Andrew R Ednie
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, 143 Biological Sciences II, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Eric S Bennett
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, 143 Biological Sciences II, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| |
Collapse
|
16
|
Gueguen C, Burke SL, Barzel B, Eikelis N, Watson AMD, Jha JC, Jackson KL, Sata Y, Lim K, Lambert GW, Jandeleit-Dahm KAM, Cooper ME, Thomas MC, Head GA. Empagliflozin modulates renal sympathetic and heart rate baroreflexes in a rabbit model of diabetes. Diabetologia 2020; 63:1424-1434. [PMID: 32372207 DOI: 10.1007/s00125-020-05145-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS We determined whether empagliflozin altered renal sympathetic nerve activity (RSNA) and baroreflexes in a diabetes model in conscious rabbits. METHODS Diabetes was induced by alloxan, and RSNA, mean arterial pressure (MAP) and heart rate were measured before and after 1 week of treatment with empagliflozin, insulin, the diuretic acetazolamide or the ACE inhibitor perindopril, or no treatment, in conscious rabbits. RESULTS Four weeks after alloxan administration, blood glucose was threefold and MAP 9% higher than non-diabetic controls (p < 0.05). One week of treatment with empagliflozin produced a stable fall in blood glucose (-43%) and increased water intake (+49%) but did not change RSNA, MAP or heart rate compared with untreated diabetic rabbits. The maximum RSNA to hypotension was augmented by 75% (p < 0.01) in diabetic rabbits but the heart rate baroreflex was unaltered. Empagliflozin and acetazolamide reduced the augmentation of the RSNA baroreflex (p < 0.05) to be similar to the non-diabetic group. Noradrenaline (norepinephrine) spillover was similar in untreated diabetic and non-diabetic rabbits but twofold greater in empagliflozin- and acetazolamide-treated rabbits (p < 0.05). CONCLUSIONS/INTERPRETATION As empagliflozin can restore diabetes-induced augmented sympathetic reflexes, this may be beneficial in diabetic patients. A similar action of the diuretic acetazolamide suggests that the mechanism may involve increased sodium and water excretion. Graphical abstract.
Collapse
Affiliation(s)
- Cindy Gueguen
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, P.O. Box 6492, Melbourne, VIC, 3004, Australia
| | - Sandra L Burke
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, P.O. Box 6492, Melbourne, VIC, 3004, Australia
| | - Benjamin Barzel
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, P.O. Box 6492, Melbourne, VIC, 3004, Australia
| | - Nina Eikelis
- Iverson Health Innovation Research Institute and School of Health Science, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Anna M D Watson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jay C Jha
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, P.O. Box 6492, Melbourne, VIC, 3004, Australia
| | - Yusuke Sata
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, P.O. Box 6492, Melbourne, VIC, 3004, Australia
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Kyungjoon Lim
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, P.O. Box 6492, Melbourne, VIC, 3004, Australia
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Gavin W Lambert
- Iverson Health Innovation Research Institute and School of Health Science, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Karin A M Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Diabetic Nephropathy Research Group, Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibnitz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Merlin C Thomas
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, P.O. Box 6492, Melbourne, VIC, 3004, Australia.
- Department of Pharmacology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Usselman CW, Adler TE, Coovadia Y, Leone C, Paidas MJ, Stachenfeld NS. A recent history of preeclampsia is associated with elevated central pulse wave velocity and muscle sympathetic outflow. Am J Physiol Heart Circ Physiol 2020; 318:H581-H589. [DOI: 10.1152/ajpheart.00578.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We demonstrate that resting muscle sympathetic nerve activity is elevated in women with a recent history of preeclampsia relative to women who have recently had uncomplicated pregnancies and without a history of preeclampsia. Structural changes in the central arteries are associated with arterial stiffness following preeclampsia, independent of changes in the sympathetic nervous system. The structural changes are observed in these relatively young previously preeclamptic women, indicating elevated cardiovascular risk. Our data suggest that with aging (and the gradual loss of vascular protection for women, as established by others), this risk will become exaggerated compared with women who have had normal pregnancies.
Collapse
Affiliation(s)
- Charlotte W. Usselman
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
- McGill Research Centre for Physical Activity and Health, McGill University, Montreal, Quebec, Canada
- The John B. Pierce Laboratory, Yale School of Medicine, New Haven, Connecticut
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Tessa E. Adler
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
- The John B. Pierce Laboratory, Yale School of Medicine, New Haven, Connecticut
| | - Yasmine Coovadia
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Cheryl Leone
- The John B. Pierce Laboratory, Yale School of Medicine, New Haven, Connecticut
| | - Michael J. Paidas
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Nina S. Stachenfeld
- The John B. Pierce Laboratory, Yale School of Medicine, New Haven, Connecticut
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
18
|
Halim J, Lycke M, Van der Heyden J. Endovascular baroreflex amplification for resistant hypertension: what you need to know. Future Cardiol 2020; 16:151-158. [PMID: 32048879 DOI: 10.2217/fca-2020-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endovascular baroreflex amplification is an alternative treatment strategy for patients with resistant hypertension. In endovascular baroreflex, the carotid baroreflex is activated by a MobiusHD® device (MD) which has been implanted in the internal carotid artery. This review will discuss the MD technology and mechanism of action and promising results in the first-in-human prospective study involving the use of the MD in patients with resistant hypertension.
Collapse
Affiliation(s)
- Jonathan Halim
- Department of Cardiology, AZ Sint-Jan Brugge-Oostende AV, Ruddershove 10, 8000 Bruges, Belgium
| | - Michelle Lycke
- Department of Cardiology, AZ Sint-Jan Brugge-Oostende AV, Ruddershove 10, 8000 Bruges, Belgium
| | - Jan Van der Heyden
- Department of Cardiology, AZ Sint-Jan Brugge-Oostende AV, Ruddershove 10, 8000 Bruges, Belgium
| |
Collapse
|
19
|
Dyrvig Kristensen AM, Pareek M, Olsen MH, Bhatt DL. Baroreflex Activation Therapy for Resistant Hypertension and Heart Failure. US CARDIOLOGY REVIEW 2020. [DOI: 10.15420/usc.2019.13.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Hypertension and heart failure are important contributors to global morbidity and mortality. Despite therapeutic lifestyle and pharmacological measures, a significant proportion of people with hypertension do not reach treatment targets. Patients with resistant or poorly controlled hypertension are at significantly increased risk of cardiovascular events, including heart failure. Since dysfunction of the sympathetic nervous system appears to play a key role in the development and progression of both hypertension and heart failure, these patients may benefit from treatment modalities aimed at reducing sympathetic function. The purpose of this paper is to provide an overview of baroreflex activation therapy as a potential treatment strategy in patients with resistant hypertension or heart failure.
Collapse
Affiliation(s)
| | - Manan Pareek
- Department of Cardiology, North Zealand Hospital, Hilleroed, Denmark; Brigham and Women’s Hospital Heart and Vascular Center, Harvard Medical School, Boston, MA
| | - Michael Hecht Olsen
- Cardiology Section, Department of Internal Medicine, Holbaek Hospital, Holbaek, Denmark
| | - Deepak L Bhatt
- Brigham and Women’s Hospital Heart and Vascular Center, Harvard Medical School, Boston, MA
| | | |
Collapse
|
20
|
Seravalle G, Dell’Oro R, Grassi G. Baroreflex activation therapy systems: current status and future prospects. Expert Rev Med Devices 2019; 16:1025-1033. [DOI: 10.1080/17434440.2019.1697230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gino Seravalle
- Cardiology Department, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | | | - Guido Grassi
- Clinica Medica, University Milano-Bicocca, Milano-Monza, Italy
| |
Collapse
|
21
|
Szentesi A, Párniczky A, Vincze Á, Bajor J, Gódi S, Sarlós P, Gede N, Izbéki F, Halász A, Márta K, Dobszai D, Török I, Farkas H, Papp M, Varga M, Hamvas J, Novák J, Mickevicius A, Maldonado ER, Sallinen V, Illés D, Kui B, Erőss B, Czakó L, Takács T, Hegyi P. Multiple Hits in Acute Pancreatitis: Components of Metabolic Syndrome Synergize Each Other's Deteriorating Effects. Front Physiol 2019; 10:1202. [PMID: 31620021 PMCID: PMC6763590 DOI: 10.3389/fphys.2019.01202] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The incidence of acute pancreatitis (AP) and the prevalence of metabolic syndrome (MetS) are growing worldwide. Several studies have confirmed that obesity (OB), hyperlipidemia (HL), or diabetes mellitus (DM) can increase severity, mortality, and complications in AP. However, there is no comprehensive information on the independent or joint effect of MetS components on the outcome of AP. Our aims were (1) to understand whether the components of MetS have an independent effect on the outcome of AP and (2) to examine the joint effect of their combinations. METHODS From 2012 to 2017, 1435 AP cases from 28 centers were included in the prospective AP Registry. Patient groups were formed retrospectively based on the presence of OB, HL, DM, and hypertension (HT). The primary endpoints were mortality, severity, complications of AP, and length of hospital stay. Odds ratio (OR) with 95% confidence intervals (CIs) were calculated. RESULTS 1257 patients (55.7 ± 17.0 years) were included in the analysis. The presence of OB was an independent predictive factor for renal failure [OR: 2.98 (CI: 1.33-6.66)] and obese patients spent a longer time in hospital compared to non-obese patients (12.1 vs. 10.4 days, p = 0.008). HT increased the risk of severe AP [OR: 3.41 (CI: 1.39-8.37)], renal failure [OR: 7.46 (CI: 1.61-34.49)], and the length of hospitalization (11.8 vs. 10.5 days, p = 0.020). HL increased the risk of local complications [OR: 1.51 (CI: 1.10-2.07)], renal failure [OR: 6.4 (CI: 1.93-21.17)], and the incidence of newly diagnosed DM [OR: 2.55 (CI: 1.26-5.19)]. No relation was found between the presence of DM and the outcome of AP. 906 cases (mean age ± SD: 56.9 ± 16.7 years) had data on all four components of MetS available. The presence of two, three, or four MetS factors increased the incidence of an unfavorable outcome compared to patients with no MetS factors. CONCLUSION OB, HT, and HL are independent risk factors for a number of complications. HT is an independent risk factor for severity as well. Components of MetS strongly synergize each other's detrimental effect. It is important to search for and follow up on the components of MetS in AP.
Collapse
Affiliation(s)
- Andrea Szentesi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- First Department of Medicine, University of Szeged, Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Andrea Párniczky
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Heim Pál National Institute of Pediatrics, Budapest, Hungary
| | - Áron Vincze
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Judit Bajor
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Szilárd Gódi
- Division of Translational Medicine, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Patricia Sarlós
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Noémi Gede
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Ferenc Izbéki
- Szent György Teaching Hospital of Fejér County, Székesfehérvár, Hungary
| | - Adrienn Halász
- Szent György Teaching Hospital of Fejér County, Székesfehérvár, Hungary
| | - Katalin Márta
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Dalma Dobszai
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Imola Török
- County Emergency Clinical Hospital – Gastroenterology and University of Medicine, Pharmacy, Sciences and Technology, Târgu Mureş, Romania
| | - Hunor Farkas
- County Emergency Clinical Hospital – Gastroenterology and University of Medicine, Pharmacy, Sciences and Technology, Târgu Mureş, Romania
| | - Mária Papp
- Division of Gastroenterology, Department of Internal Medicine, University of Debrecen, Debrecen, Hungary
| | - Márta Varga
- Dr. Réthy Pál Hospital of Békés County, Békéscsaba, Hungary
| | | | - János Novák
- Department of Gastroenterology, Pándy Kálmán Hospital of Békés County, Gyula, Hungary
| | - Artautas Mickevicius
- Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
- Clinics of Abdominal Surgery, Nephrourology and Gastroenterology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | - Ville Sallinen
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Dóra Illés
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Balázs Kui
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Bálint Erőss
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - László Czakó
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Takács
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- First Department of Medicine, University of Szeged, Szeged, Hungary
- Division of Translational Medicine, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
- Hungarian Academy of Sciences – University of Szeged, Momentum Gastroenterology Multidisciplinary Research Group, Szeged, Hungary
| |
Collapse
|
22
|
Ye C, Qiu Y, Zhang F, Chen AD, Zhou H, Wang JJ, Chen Q, Li YH, Kang YM, Zhu GQ. Chemical Stimulation of Renal Tissue Induces Sympathetic Activation and a Pressor Response via the Paraventricular Nucleus in Rats. Neurosci Bull 2019; 36:143-152. [PMID: 31392556 DOI: 10.1007/s12264-019-00417-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Sympathetic activation and the kidney play critical roles in hypertension and chronic heart failure. The role of the kidney in sympathetic activation is still not well known. In this study, we revealed an excitatory renal reflex (ERR) in rats induced by chemical stimulation of the kidney that regulated sympathetic activity and blood pressure. The ERR was induced by renal infusion of capsaicin, and evaluated by the changes in renal sympathetic outflow, blood pressure, and heart rate. Renal infusion of capsaicin dose-dependently increased the contralateral renal sympathetic nerve activity, mean arterial pressure, and heart rate. Capsaicin in the cortico-medullary border had greater effects than in the cortex or medulla. Intravenous infusion of capsaicin had no significant effects. The effects of renal infusion of capsaicin were abolished by ipsilateral renal denervation, but were not affected by bilateral sinoaortic denervation. Renal infusion of capsaicin increased the ipsilateral renal afferent activity. The ERR was also induced by renal infusion of bradykinin, adenosine, and angiotensin II, but not by ATP. Renal infusion of capsaicin increased c-Fos expression in the paraventricular nucleus (PVN) of hypothalamus. Lesion of neurons in the PVN with kainic acid abolished the capsaicin-induced ERR. These findings indicate that chemical stimulation of kidney causes an excitatory reflex, leading to sympathetic activation, pressor response, and accelerated heart rate. The PVN is an important central nucleus in the pathway of the ERR.
Collapse
Affiliation(s)
- Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Qiu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ai-Dong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Jue-Jin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Chen
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yue-Hua Li
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an, 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China. .,Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
23
|
Fouda MA, El-Gowelli HM, El-Gowilly SM, El-Mas MM. Hemin blunts the depressant effect of chronic nicotine on reflex tachycardia via activation of central NOS/PI3K pathway in female rats. Pharmacol Rep 2018; 70:455-462. [DOI: 10.1016/j.pharep.2017.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 09/08/2017] [Accepted: 09/29/2017] [Indexed: 12/25/2022]
|
24
|
Nirengi S, Sakane N, Amagasa S, Wakui S, Homma T, Kurosawa Y, Hamaoka T. Seasonal differences in brown adipose tissue density and pulse rate variability in a thermoneutral environment. J Physiol Anthropol 2018; 37:6. [PMID: 29467034 PMCID: PMC5822524 DOI: 10.1186/s40101-018-0166-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/14/2018] [Indexed: 01/21/2023] Open
Abstract
Background Brown adipose tissue (BAT) is sympathetically activated and induces thermogenesis during cold exposure, thereby influencing energy expenditure and body fat levels. The very low frequency (VLF) components of pulse rate variability could be a form of thermogenic sympathetic nervous activity, but no clear relationship has yet been reported between VLF activity and BAT density. We therefore aimed to evaluate the association between them. Methods We enrolled 20 adults in winter and 20 matched adults in summer. We assessed BAT densities based on total hemoglobin concentrations ([total-Hb]) measured with near-infrared time-resolved spectroscopy. We calculated VLF activity from pulse rate variability measurements. Results BAT density ([total-Hb]; winter 70.5 ± 17.0 μM, summer 57.8 ± 18.3 μM) and VLF activity (winter 6.7 ± 0.8, summer 6.1 ± 0.9) were significantly higher in winter than in summer (P < 0.05). However, there was no significant correlation between VLF activity and BAT density in either season. Conclusion Each parameter exhibited seasonal variation, but we failed to observe any significant correlations.
Collapse
Affiliation(s)
- Shinsuke Nirengi
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Kyoto, 612-8555, Japan
| | - Naoki Sakane
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Kyoto, 612-8555, Japan
| | - Shiho Amagasa
- Department of Preventive Medicine and Public Health, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Sawako Wakui
- Faculty of Health and Sports Science, Juntendo University, 1-1 Hiragagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Toshiyuki Homma
- Faculty of Sports and Health Science, Daito Bunka University, 560 Iwadono, Higashimatsuyama-shi, Saitama, 355-8501, Japan
| | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
25
|
Lu QB, Sun J, Kang Y, Sun HJ, Wang HS, Wang Y, Zhu GQ, Zhou YB. Superoxide Anions and NO in the Paraventricular Nucleus Modulate the Cardiac Sympathetic Afferent Reflex in Obese Rats. Int J Mol Sci 2017; 19:ijms19010059. [PMID: 29280941 PMCID: PMC5796009 DOI: 10.3390/ijms19010059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/03/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
This study was conducted to explore the hypothesis that the endogenous superoxide anions (O2−) and nitric oxide (NO) system of the paraventricular nucleus (PVN) regulates the cardiac sympathetic afferent reflex (CSAR) contributing to sympathoexcitation in obese rats induced by a high-fat diet (42% kcal as fat) for 12 weeks. CSAR was evaluated by monitoring the changes of renal sympathetic nerve activity (RSNA) and the mean arterial pressure (MAP) responses to the epicardial application of capsaicin (CAP) in anaesthetized rats. In obese rats with hypertension (OH group) or without hypertension (OB group), the levels of PVN O2−, angiotensinII (Ang II), Ang II type 1 receptor (AT1R), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were elevated, whereas neural NO synthase (nNOS) and NO were significantly reduced. Moreover, CSAR was markedly enhanced, which promoted the elevation of plasma norepinephrine levels. The enhanced CSAR was attenuated by PVN application of the superoxide scavenger polyethylene glycol-superoxide dismutase (PEG-SOD) and the NO donor sodium nitroprusside (SNP), and was strengthened by the superoxide dismutase inhibitor diethyldithiocarbamic acid (DETC) and the nNOS inhibitor N(ω)-propyl-l-arginine hydrochloride (PLA); conversely, there was a smaller CSAR response to PLA or SNP in rats that received a low-fat (12% kcal) diet. Furthermore, PVN pretreatment with the AT1R antagonist losartan or with PEG-SOD, but not SNP, abolished Ang II-induced CSAR enhancement. These findings suggest that obesity alters the PVN O2− and NO system that modulates CSAR and promotes sympathoexcitation.
Collapse
Affiliation(s)
- Qing-Bo Lu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China.
| | - Jing Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China.
| | - Ying Kang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China.
| | - Hai-Jian Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China.
| | - Hui-Shan Wang
- Department of Pediatrics, The Fourth Clinical Medical College of Nanjing Medical University, Nanjing 210029, China.
| | - Yuan Wang
- Department of Pediatrics, The Fourth Clinical Medical College of Nanjing Medical University, Nanjing 210029, China.
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China.
| | - Ye-Bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
26
|
Mckenzie KM, Dissanayake HU, McMullan R, Caterson ID, Celermajer DS, Gordon A, Hyett J, Meroni A, Phang M, Raynes-Greenow C, Polson JW, Skilton MR. Quantity and Quality of Carbohydrate Intake during Pregnancy, Newborn Body Fatness and Cardiac Autonomic Control: Conferred Cardiovascular Risk? Nutrients 2017; 9:nu9121375. [PMID: 29257088 PMCID: PMC5748825 DOI: 10.3390/nu9121375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022] Open
Abstract
The fetal environment has an important influence on health and disease over the life course. Maternal nutritional status during pregnancy is potentially a powerful contributor to the intrauterine environment, and may alter offspring physiology and later life cardio-metabolic risk. Putative early life markers of cardio-metabolic risk include newborn body fatness and cardiac autonomic control. We sought to determine whether maternal dietary carbohydrate quantity and/or quality during pregnancy are associated with newborn body composition and cardiac autonomic function. Maternal diet during pregnancy was assessed in 142 mother-infant pairs using a validated food frequency questionnaire. Infant adiposity and body composition were assessed at birth using air-displacement plethysmography. Cardiac autonomic function was assessed as heart rate variability. The quantity of carbohydrates consumed during pregnancy, as a percentage of total energy intake, was not associated with meaningful differences in offspring birth weight, adiposity or heart rate variability (p > 0.05). There was some evidence that maternal carbohydrate quality, specifically higher fibre and lower glycemic index, is associated with higher heart rate variability in the newborn offspring (p = 0.06). This suggests that poor maternal carbohydrate quality may be an important population-level inter-generational risk factor for later cardiac and hemodynamic risk of their offspring.
Collapse
Affiliation(s)
- Kirsty M Mckenzie
- Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, D17-Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
- Sydney Medical School, D17-Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
| | - Hasthi U Dissanayake
- Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, D17-Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
- Sydney Medical School, D17-Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
| | - Rowena McMullan
- Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, D17-Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
- Sydney Medical School, D17-Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia.
| | - Ian D Caterson
- Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, D17-Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
| | - David S Celermajer
- Sydney Medical School, D17-Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia.
| | - Adrienne Gordon
- Sydney Medical School, D17-Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
- Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia.
| | - Jonathan Hyett
- Sydney Medical School, D17-Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
| | - Alice Meroni
- Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, D17-Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
| | - Melinda Phang
- Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, D17-Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
| | - Camille Raynes-Greenow
- Sydney School of Public Health, Edward Ford Building, Fisher Road, University of Sydney, Sydney, NSW 2006, Australia.
| | - Jaimie W Polson
- Sydney Medical School, D17-Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
- School of Medical Science & Bosch Institute, Anderson Stuart Building (F13), University of Sydney, Sydney, NSW 2006, Australia.
| | - Michael R Skilton
- Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, D17-Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
- Sydney Medical School, D17-Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
27
|
Simpson NJ, Ferguson AV. The proinflammatory cytokine tumor necrosis factor-α excites subfornical organ neurons. J Neurophysiol 2017. [PMID: 28637815 DOI: 10.1152/jn.00238.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine implicated in cardiovascular and autonomic regulation via actions in the central nervous system. TNF-α-/- mice do not develop angiotensin II (ANG II)-induced hypertension, and administration of TNF-α into the bloodstream of rats increases blood pressure and sympathetic tone. Recent studies have shown that lesion of the subfornical organ (SFO) attenuates the hypertensive and autonomic effects of TNF-α, while direct administration of TNF-α into the SFO increases blood pressure, suggesting the SFO to be a key site for the actions of TNF-α. Therefore, we used patch-clamp techniques to examine both acute and long-term effects of TNF-α on the excitability of Sprague-Dawley rat SFO neurons. It was observed that acute bath application of TNF-α depolarized SFO neurons and subsequently increased action potential firing rate. Furthermore, the magnitude of depolarization and the proportion of depolarized SFO neurons were concentration dependent. Interestingly, following 24-h incubation with TNF-α, the basal firing rate of the SFO neurons was increased and the rheobase was decreased, suggesting that TNF-α elevates SFO neuron excitability. This effect was likely mediated by the transient sodium current, as TNF-α increased the magnitude of the current and lowered its threshold of activation. In contrast, TNF-α did not appear to modulate either the delayed rectifier potassium current or the transient potassium current. These data suggest that acute and long-term TNF-α exposure elevates SFO neuron activity, providing a basis for TNF-α hypertensive and sympathetic effects.NEW & NOTEWORTHY Considerable recent evidence has suggested important links between inflammation and the pathological mechanisms underlying hypertension. The present study describes cellular mechanisms through which acute and long-term exposure of tumor necrosis factor-α (TNF-α) influences the activity of subfornical organ neurons by modulating the voltage-gated transient Na+ current. This provides critical new information regarding the specific pathological mechanisms through which inflammation and TNF-α in particular may result in the development of hypertension.
Collapse
Affiliation(s)
- Nick J Simpson
- Department of Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
28
|
Sympathetic neurons are a powerful driver of myocyte function in cardiovascular disease. Sci Rep 2016; 6:38898. [PMID: 27966588 PMCID: PMC5155272 DOI: 10.1038/srep38898] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/15/2016] [Indexed: 01/23/2023] Open
Abstract
Many therapeutic interventions in disease states of heightened cardiac sympathetic activity are targeted to the myocytes. However, emerging clinical data highlights a dominant role in disease progression by the neurons themselves. Here we describe a novel experimental model of the peripheral neuro-cardiac axis to study the neuron’s ability to drive a myocyte cAMP phenotype. We employed a co-culture of neonatal ventricular myocytes and sympathetic stellate neurons from normal (WKY) and pro-hypertensive (SHR) rats that are sympathetically hyper-responsive and measured nicotine evoked cAMP responses in the myocytes using a fourth generation FRET cAMP sensor. We demonstrated the dominant role of neurons in driving the myocyte ß-adrenergic phenotype, where SHR cultures elicited heightened myocyte cAMP responses during neural activation. Moreover, cross-culturing healthy neurons onto diseased myocytes rescued the diseased cAMP response of the myocyte. Conversely, healthy myocytes developed a diseased cAMP response if diseased neurons were introduced. Our results provide evidence for a dominant role played by the neuron in driving the adrenergic phenotype seen in cardiovascular disease. We also highlight the potential of using healthy neurons to turn down the gain of neurotransmission, akin to a smart pre-synaptic ß-blocker.
Collapse
|
29
|
Bilateral Renal Denervation Ameliorates Isoproterenol-Induced Heart Failure through Downregulation of the Brain Renin-Angiotensin System and Inflammation in Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3562634. [PMID: 27746855 PMCID: PMC5056308 DOI: 10.1155/2016/3562634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 11/21/2022]
Abstract
Heart failure (HF) is characterized by cardiac dysfunction along with autonomic unbalance that is associated with increased renin-angiotensin system (RAS) activity and elevated levels of proinflammatory cytokines (PICs). Renal denervation (RD) has been shown to improve cardiac function in HF, but the protective mechanisms remain unclear. The present study tested the hypothesis that RD ameliorates isoproterenol- (ISO-) induced HF through regulation of brain RAS and PICs. Chronic ISO infusion resulted in remarked decrease in blood pressure (BP) and increase in heart rate and cardiac dysfunction, which was accompanied by increased BP variability and decreased baroreflex sensitivity and HR variability. Most of these adverse effects of ISO on cardiac and autonomic function were reversed by RD. Furthermore, ISO upregulated mRNA and protein expressions of several components of the RAS and PICs in the lamina terminalis and hypothalamic paraventricular nucleus, two forebrain nuclei involved in cardiovascular regulations. RD significantly inhibited the upregulation of these genes. Either intracerebroventricular AT1-R antagonist, irbesartan, or TNF-α inhibitor, etanercept, mimicked the beneficial actions of RD in the ISO-induced HF. The results suggest that the RD restores autonomic balance and ameliorates ISO-induced HF and that the downregulated RAS and PICs in the brain contribute to these beneficial effects of RD.
Collapse
|
30
|
Exercise Training Improves the Altered Renin-Angiotensin System in the Rostral Ventrolateral Medulla of Hypertensive Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7413963. [PMID: 26881037 PMCID: PMC4736418 DOI: 10.1155/2016/7413963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 11/10/2015] [Accepted: 11/17/2015] [Indexed: 01/25/2023]
Abstract
The imbalance between angiotensin II (Ang II) and angiotensin 1-7 (Ang 1-7) in the brain has been reported to contribute to cardiovascular dysfunction in hypertension. Exercise training (ExT) is beneficial to hypertension and the mechanism is unclear. This study was aimed to determine if ExT improves hypertension via adjusting renin angiotensin system in cardiovascular centers including the rostral ventrolateral medulla (RVLM). Spontaneously hypertensive rats (SHR, 8 weeks old) were subjected to low-intensity ExT or kept sedentary (Sed) for 12 weeks. Blood pressure elevation coupled with increase in age was significantly decreased in SHR received ExT compared with Sed. The results in vivo showed that ExT significantly reduced or increased the cardiovascular responses to central application of sarthran (antagonist of Ang II) or A779 (antagonist of Ang 1-7), respectively. The protein expression of the Ang II acting receptor AT1R and the Ang 1-7 acting receptor Mas in the RVLM was significantly reduced and elevated in SHR following ExT, respectively. Moreover, production of reactive oxygen species in the RVLM was significantly decreased in SHR following ExT. The current data suggest that ExT improves hypertension via improving the balance of Ang II and Ang 1-7 and antioxidative stress at the level of RVLM.
Collapse
|
31
|
Case AJ, Zimmerman MC. Sympathetic-mediated activation versus suppression of the immune system: consequences for hypertension. J Physiol 2015; 594:527-36. [PMID: 26830047 DOI: 10.1113/jp271516] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023] Open
Abstract
It is generally well-accepted that the immune system is a significant contributor in the pathogenesis of hypertension. Specifically, activated and pro-inflammatory T-lymphocytes located primarily in the vasculature and kidneys appear to have a causal role in exacerbating elevated blood pressure. It has been proposed that increased sympathetic nerve activity and noradrenaline outflow associated with hypertension may be primary contributors to the initial activation of the immune system early in the disease progression. However, it has been repeatedly demonstrated in many different human and experimental diseases that sympathoexcitation is immunosuppressive in nature. Moreover, human hypertensive patients have demonstrated increased susceptibility to secondary immune insults like infections. Thus, it is plausible, and perhaps even likely, that in diseases like hypertension, specific immune cells are activated by increased noradrenaline, while others are in fact suppressed. We propose a model in which this differential regulation is based upon activation status of the immune cell as well as the resident organ. With this, the concept of global immunosuppression is obfuscated as a viable target for hypertension treatment, and we put forth the concept of focused organ-specific immunotherapy as an alternative option.
Collapse
Affiliation(s)
- Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, NE, USA
| |
Collapse
|
32
|
Autonomic dysfunction, immune regulation, and multiple sclerosis. Clin Auton Res 2015; 26:23-31. [DOI: 10.1007/s10286-015-0325-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/01/2015] [Indexed: 01/28/2023]
|
33
|
Fouda MA, El-Gowelli HM, El-Gowilly SM, El-Mas MM. The estrogen-dependent baroreflex dysfunction caused by nicotine in female rats is mediated via NOS/HO inhibition: Role of sGC/PI3K/MAPKERK. Toxicol Appl Pharmacol 2015; 289:466-73. [DOI: 10.1016/j.taap.2015.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/07/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022]
|
34
|
Gerdes L, Tegeler CH, Lee SW. A groundwork for allostatic neuro-education. Front Psychol 2015; 6:1224. [PMID: 26347688 PMCID: PMC4538224 DOI: 10.3389/fpsyg.2015.01224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 08/03/2015] [Indexed: 12/31/2022] Open
Abstract
We propose to enliven educational practice by marrying a conception of education as guided human development, to an advanced scientific understanding of the brain known as allostasis (stability through change). The result is a groundwork for allostatic neuro-education (GANE). Education as development encompasses practices including the organic (homeschooling and related traditions), cognitive acquisition (emphasis on standards and testing), and the constructivist (aimed to support adaptive creativity for both learner and society). Allostasis views change to be the norm in biology, defines success in contexts of complex natural environments rather than controlled settings, and identifies the brain as the organ of central command. Allostatic neuro-education contrasts with education focused dominantly on testing, or neuroscience based on homeostasis (stability through constancy). The GANE perspective is to view learners in terms of their neurodevelopmental trajectories; its objective is to support authentic freedom, mediated by competent, integrated, and expansive executive functionality (concordant with the philosophy of freedom of Rudolf Steiner); and its strategy is to be attuned to rhythms in various forms (including those of autonomic arousal described in polyvagal theory) so as to enable experiential excitement for learning. The GANE presents a variety of testable hypotheses, and studies that explore prevention or mitigation of the effects of early life adversity or toxic stress on learning and development may be of particular importance. Case studies are presented illustrating use of allostatic neurotechnology by an adolescent male carrying diagnoses of Asperger’s syndrome and attention-deficit hyperactivity disorder, and a grade school girl with reading difficulties. The GANE is intended as a re-visioning of education that may serve both learners and society to be better prepared for the accelerating changes of the 21st century.
Collapse
Affiliation(s)
- Lee Gerdes
- Brain State Technologies LLC Scottsdale, AZ, USA
| | - Charles H Tegeler
- Department of Neurology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Sung W Lee
- Brain State Technologies LLC Scottsdale, AZ, USA ; Running River School Sedona, AZ, USA
| |
Collapse
|
35
|
Diogo LN, Monteiro EC. The efficacy of antihypertensive drugs in chronic intermittent hypoxia conditions. Front Physiol 2014; 5:361. [PMID: 25295010 PMCID: PMC4170135 DOI: 10.3389/fphys.2014.00361] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/03/2014] [Indexed: 12/22/2022] Open
Abstract
Sleep apnea/hypopnea disorders include centrally originated diseases and obstructive sleep apnea (OSA). This last condition is renowned as a frequent secondary cause of hypertension (HT). The mechanisms involved in the pathogenesis of HT can be summarized in relation to two main pathways: sympathetic nervous system stimulation mediated mainly by activation of carotid body (CB) chemoreflexes and/or asphyxia, and, by no means the least important, the systemic effects of chronic intermittent hypoxia (CIH). The use of animal models has revealed that CIH is the critical stimulus underlying sympathetic activity and hypertension, and that this effect requires the presence of functional arterial chemoreceptors, which are hyperactive in CIH. These models of CIH mimic the HT observed in humans and allow the study of CIH independently without the mechanical obstruction component. The effect of continuous positive airway pressure (CPAP), the gold standard treatment for OSA patients, to reduce blood pressure seems to be modest and concomitant antihypertensive therapy is still required. We focus this review on the efficacy of pharmacological interventions to revert HT associated with CIH conditions in both animal models and humans. First, we explore the experimental animal models, developed to mimic HT related to CIH, which have been used to investigate the effect of antihypertensive drugs (AHDs). Second, we review what is known about drug efficacy to reverse HT induced by CIH in animals. Moreover, findings in humans with OSA are cited to demonstrate the lack of strong evidence for the establishment of a first-line antihypertensive regimen for these patients. Indeed, specific therapeutic guidelines for the pharmacological treatment of HT in these patients are still lacking. Finally, we discuss the future perspectives concerning the non-pharmacological and pharmacological management of this particular type of HT.
Collapse
Affiliation(s)
- Lucilia N Diogo
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| | - Emília C Monteiro
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| |
Collapse
|