1
|
Jaiswal S, Fatima S, Velarde de la Cruz E, Kumar S. Unraveling the role of the immune landscape in tuberculosis granuloma. Tuberculosis (Edinb) 2025; 152:102615. [PMID: 40020281 DOI: 10.1016/j.tube.2025.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 03/03/2025]
Abstract
Despite significant advances in research over the past century, Tuberculosis (TB) remains a formidable global health concern. TB granulomas are organized structures composed of immune cells, that serve as the body's primary defense against the spread of Mycobacterium tuberculosis (Mtb). The immune landscape of TB granulomas involves a complex array of immune cells, including CD4+ and CD8+ T cells, B cells, NK cells, and others, which collectively influence the fate of the granuloma. B cells contribute to the formation of the granuloma's germinal center, while the functional state of T cells-particularly their ability to control infection-dictates whether the granuloma is controlling or proliferative. The intricate interplay between T cells and the dynamic microenvironment of the granuloma plays a pivotal role in determining the outcome of the infection. However, several aspects of the immunological basis of tuberculosis are still unknown. This review delves into the immunological landscape of TB granuloma, focusing on the dynamic cellular interplay within the granuloma and its profound influence on disease pathogenesis.
Collapse
|
2
|
Gao W, Wang T, Yang C, Guo Y, Xu H, Yin C, Zeng Y. Diffuse lymphadenopathy with significantly elevated standardized uptake values on positron emission tomography-computed tomography: a case description of lymph node tuberculosis without lung lesions. Quant Imaging Med Surg 2025; 15:1700-1704. [PMID: 39995705 PMCID: PMC11847193 DOI: 10.21037/qims-24-1722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/03/2024] [Indexed: 02/26/2025]
Affiliation(s)
- Weiwei Gao
- Department of Tuberculosis of Three, Nanjing Public Health Medical Center, Nanjing Second Hospital, Nanjing, China
| | - Tianzhen Wang
- Department of Tuberculosis of Three, Nanjing Public Health Medical Center, Nanjing Second Hospital, Nanjing, China
| | - Chen Yang
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yichen Guo
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hai Xu
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunyang Yin
- Department of Tuberculosis of Three, Nanjing Public Health Medical Center, Nanjing Second Hospital, Nanjing, China
| | - Yi Zeng
- Department of Tuberculosis of Three, Nanjing Public Health Medical Center, Nanjing Second Hospital, Nanjing, China
| |
Collapse
|
3
|
Yayan J, Rasche K, Franke KJ, Windisch W, Berger M. FDG-PET-CT as an early detection method for tuberculosis: a systematic review and meta-analysis. BMC Public Health 2024; 24:2022. [PMID: 39075378 PMCID: PMC11285570 DOI: 10.1186/s12889-024-19495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Tuberculosis (TB) causes major public health problems worldwide. Fighting TB requires sustained efforts in health prevention, diagnosis and treatment. Previous literature has shown that conventional diagnostic methods like X-ray and sputum microscopy often miss early or extrapulmonary TB due to their limited sensitivity. Blood tests, while useful, lack the anatomical detail needed for precise localization of TB lesions. A possible step forward in the fight against TB could be the use of Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) and Computed Tomography (CT). This meta-analysis discusses the current literature, including the methods, results and implications of using FDG-PET-CT in the early diagnosis of TB. Analysis of the studies showed that the sensitivity of FDG-PET-CT as a potential method for early detection of TB was 82.6%.
Collapse
Affiliation(s)
- Josef Yayan
- Department of Internal Medicine, Division of Pulmonary, Allergy and Sleep Medicine, Witten/Herdecke University, HELIOS Clinic Wuppertal, Heusnerstr. 40, 42283, Wuppertal, Germany.
| | - Kurt Rasche
- Department of Internal Medicine, Division of Pulmonary, Allergy and Sleep Medicine, Witten/Herdecke University, HELIOS Clinic Wuppertal, Heusnerstr. 40, 42283, Wuppertal, Germany
| | - Karl-Josef Franke
- University of Witten/Herdecke Chair of Internal Medicine I Department of Pulmonary Medicine, Clinical Center Siegen, Siegen, Germany
| | - Wolfram Windisch
- Department of Pneumology, Cologne Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Melanie Berger
- Department of Pneumology, Cologne Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| |
Collapse
|
4
|
Khan RMN, Ahn YM, Marriner GA, Via LE, D'Hooge F, Seo Lee S, Yang N, Basuli F, White AG, Tomko JA, Frye LJ, Scanga CA, Weiner DM, Sutphen ML, Schimel DM, Dayao E, Piazza MK, Gomez F, Dieckmann W, Herscovitch P, Mason NS, Swenson R, Kiesewetter DO, Backus KM, Geng Y, Raj R, Anthony DC, Flynn JL, Barry CE, Davis BG. Distributable, metabolic PET reporting of tuberculosis. Nat Commun 2024; 15:5239. [PMID: 38937448 PMCID: PMC11211441 DOI: 10.1038/s41467-024-48691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - is a mechanism-based reporter of Mycobacteria-selective enzyme activity in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-mediated processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-selective candidate for clinical evaluation. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either custom-made radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.
Collapse
Affiliation(s)
- R M Naseer Khan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
- Clinical Pharmacology Lab, Clinical Center, NIHBC, NIH, Bethesda, MD, USA
| | - Yong-Mo Ahn
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Gwendolyn A Marriner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, USA
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Francois D'Hooge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Seung Seo Lee
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
- School of Chemistry, University of Southampton, Southampton, UK
| | - Nan Yang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, UK
| | - Falguni Basuli
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, MD, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, USA
| | - Jaime A Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, USA
| | - L James Frye
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, USA
| | - Danielle M Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michelle L Sutphen
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel M Schimel
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Emmanuel Dayao
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Felipe Gomez
- Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, USA
| | - William Dieckmann
- Positron Emission Tomography Department, Clinical Center, NIH, Bethesda, MD, USA
| | - Peter Herscovitch
- Positron Emission Tomography Department, Clinical Center, NIH, Bethesda, MD, USA
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, USA
| | - Rolf Swenson
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, MD, USA
| | - Dale O Kiesewetter
- Molecular Tracer and Imaging Core Facility, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, USA
| | - Keriann M Backus
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Yiqun Geng
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Ritu Raj
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | | | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | - Benjamin G Davis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK.
- The Rosalind Franklin Institute, Oxfordshire, UK.
- Department of Pharmacology, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Jain TK, Malhotra H, Nepalia S, Saxena GN. Detection of Esophageal Tuberculosis, a Rare Cause of Abdominal Pain, on 18F-FDG PET/CT. J Nucl Med Technol 2024; 52:179-180. [PMID: 38839125 DOI: 10.2967/jnmt.123.266428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/18/2023] [Indexed: 06/07/2024] Open
Abstract
The esophagus is rarely affected by Mycobacterium A 75-y-old man presented with upper abdominal pain and significant weight loss for 2 mo. Contrast-enhanced CT, upper gastrointestinal endoscopy, and abdominal vessel angiography gave normal results. To clarify the facts, 18F-FDG PET/CT was performed, revealing an 18F-FDG-avid lesion in the posterior wall of the lower thoracic esophagus. On endoscopic ultrasound-guided fine-needle aspiration of this lesion, puslike material was released. On microscopic examination, acid-fast bacilli were noted. The patient then began receiving standard antitubercular therapy.
Collapse
Affiliation(s)
- Tarun Kumar Jain
- Department of Nuclear Medicine, Mahatma Gandhi Medical College and Hospital, Jaipur, India;
| | - Hemant Malhotra
- Department of Medical Oncology, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Subhash Nepalia
- Department of Gastroenterology, Mahatma Gandhi Medical College and Hospital, Jaipur, India; and
| | - Ganesh Narayan Saxena
- Department of Internal Medicine, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| |
Collapse
|
6
|
Hoornaert E, Yildiz H, Pothen L, De Greef J, Gheysens O, Kozyreff A, Castanares-Zapatero D, Yombi JC. A Comparison Study of Lymph Node Tuberculosis and Sarcoidosis Involvement to Facilitate Differential Diagnosis and to Establish a Predictive Score for Tuberculosis. Pathogens 2024; 13:398. [PMID: 38787250 PMCID: PMC11124455 DOI: 10.3390/pathogens13050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Background: Tuberculosis (TB) and sarcoidosis are two common granulomatous diseases involving lymph nodes. Differential diagnosis is not always easy because pathogen demonstration in tuberculosis is not always possible and both diseases share clinical, radiological and histological patterns. The aim of our study was to identify factors associated with each diagnosis and set up a predictive score for TB. Methods: All cases of lymph node tuberculosis and sarcoidosis were retrospectively reviewed. Demographics, clinical characteristics, laboratory and imaging data, and microbiological and histological results were collected and compared. Results: Among 441 patients screened, 192 patients were included in the final analysis. The multivariate analysis showed that weight loss, necrotic granuloma, normal serum lysozyme level and hypergammaglobulinemia were significantly associated with TB. A risk score of TB was built based on these variables and was able to discriminate TB versus sarcoidosis with an AUC of 0.85 (95% CI: 0.79-0.91). Using the Youden's J statistic, its most discriminant value (-0.36) was associated with a sensitivity of 80% and a specificity of 75%. Conclusions: We developed a score based on weight loss, necrotic granuloma, normal serum lysozyme level and hypergammaglobulinemia with an excellent capacity to discriminate TB versus sarcoidosis. This score needs still to be validated in a multicentric prospective study.
Collapse
Affiliation(s)
- Ellen Hoornaert
- Department of Internal Medicine and Infectious Diseases, Cliniques Universitaires Saint Luc, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Halil Yildiz
- Department of Internal Medicine and Infectious Diseases, Cliniques Universitaires Saint Luc, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Lucie Pothen
- Department of Internal Medicine and Infectious Diseases, Cliniques Universitaires Saint Luc, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Julien De Greef
- Department of Internal Medicine and Infectious Diseases, Cliniques Universitaires Saint Luc, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Olivier Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Alexandra Kozyreff
- Department of Ophthalmology, Cliniques Universitaires Saint Luc, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Diego Castanares-Zapatero
- Department of Intensive Care Medicine, Cliniques Universitaires Saint Luc, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Jean Cyr Yombi
- Department of Internal Medicine and Infectious Diseases, Cliniques Universitaires Saint Luc, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| |
Collapse
|
7
|
Chen D, Chen Y, Yang S, Liu K, Wang Z, Zhang T, Wang G, Zhao K, Su X. The additional value of 18F-FDG PET/CT imaging in guiding the treatment strategy of non-tuberculous mycobacterial patients. Respir Res 2024; 25:132. [PMID: 38500137 PMCID: PMC10949717 DOI: 10.1186/s12931-024-02757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVES Non-tuberculous mycobacteria (NTM) infection is an increasing health problem due to delaying an effective treatment. However, there are few data on 18F-FDG PET/CT for evaluating the status of NTM patients. The aim of this study was to investigate the potential value of 18F-FDG PET/CT in guiding the treatment strategy of NTM patients. METHODS We retrospectively analyzed the cases of 23 NTM patients who underwent 18F-FDG PET/CT. The clinical data, including immune status and severity of NTM pulmonary disease (NTM-PD), were reviewed. The metabolic parameters of 18F-FDG included maximum standardized uptake value (SUVmax), SUVmax of the most FDG-avid lesion (SUVTop), SUVTop/SUVmax of the liver (SURLiver), SUVTop/SUVmax of the blood (SURBlood), metabolic lesion volume (MLV), and total lesion glycolysis (TLG). The optimal cut-off values of these parameters were determined using receiver operating characteristic curves. RESULTS There were 6 patients (26.09%) with localized pulmonary diseases and 17 patients (73.91%) with disseminated diseases. The NTM lesions had high or moderate 18F-FDG uptake (median SUVTop: 8.2 ± 5.7). As for immune status, the median SUVTop in immunocompromised and immunocompetent patients were 5.2 ± 2.5 and 10.0 ± 6.4, respectively, with a significant difference (P = 0.038). As for extent of lesion involvement, SURLiver and SURBlood in localized pulmonary and disseminated diseases were 1.9 ± 1.1 vs. 3.8 ± 1.6, and 2.7 ± 1.8 vs. 5.5 ± 2.6, respectively, with a significant difference (P = 0.016 and 0.026). Moreover, for disease severity, SUVmax of the lung lesion (SUVI-lung) and SUVmax of the marrow (SUVMarrow) in the severe group were 7.7 ± 4.3 and 4.4 ± 2.7, respectively, significantly higher than those in the non-severe group (4.4 ± 2.0 and 2.4 ± 0.8, respectively) (P = 0.027 and 0.036). The ROC curves showed that SUVTop, SURLiver, SURBlood, SUVI-lung, and SUVMarrow had a high sensitivity and specificity for the identification of immune status, lesion extent, and severity of disease in NTM patients. CONCLUSION 18F-FDG PET/CT is a useful tool in the diagnosis, evaluation of disease activity, immune status, and extent of lesion involvement in NTM patients, and can contribute to planning the appropriate treatment for NTM.
Collapse
Affiliation(s)
- Donghe Chen
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuye Yang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Kanfeng Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Zhen Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Tingting Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Guolin Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Kui Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
8
|
Pattamapaspong N, Kanthawang T, Bouaziz MC, Ladeb MF, Hammami N, Peh WCG. Imaging of musculoskeletal tuberculosis. Br J Radiol 2024; 97:1-12. [PMID: 38263840 PMCID: PMC11027299 DOI: 10.1093/bjr/tqad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 01/25/2024] Open
Abstract
Extra-pulmonary tuberculosis (TB) of the musculoskeletal system usually manifests with non-specific clinical features, mimicking a variety of diseases. Diagnosis and treatment of spinal and extra-spinal musculoskeletal TB are often challenging. Imaging has an important role in detecting this disease, aiding diagnosis, identifying complications, and monitoring disease progression. Radiographs and magnetic resonance imaging are the key imaging modalities utilized. Radiologists should aim to be familiar with the spectrum of imaging features of TB affecting spinal and extra-spinal locations in the musculoskeletal system.
Collapse
Affiliation(s)
- Nuttaya Pattamapaspong
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thanat Kanthawang
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mouna Chelli Bouaziz
- Department of Radiology, MT Kassab Institute of Orthopaedics, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis-El Manar University, Tunis, Tunisia
| | - Mohamed Fethi Ladeb
- Department of Radiology, MT Kassab Institute of Orthopaedics, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis-El Manar University, Tunis, Tunisia
| | - Nadia Hammami
- Department of Neuroradiology, National Institute of Neurology Mongi Ben Hamida, Tunis, Tunisia
| | - Wilfred C G Peh
- Department of Diagnostic Radiology, Khoo Teck Puat Hospital, Singapore 768828, Republic of Singapore
| |
Collapse
|
9
|
Kim JW, Munavvar R, Kamil A, Haldar P. PET-CT for characterising TB infection (TBI) in immunocompetent subjects: a systematic review. J Med Microbiol 2023; 72. [PMID: 37750439 DOI: 10.1099/jmm.0.001749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Introduction. There is emerging evidence of a potential role for PET-CT scan as an imaging biomarker to characterise the spectrum of tuberculosis infection (TBI) in humans and animal models.Gap Statement. Synthesis of available evidence from current literature is needed to understand the utility of PET-CT for characterising TBI and how this may inform application of PET-CT in future TBI research.Aim. The aims of this review are to summarise the evidence of PET-CT scan use in immunocompetent hosts with TBI, and compare PET-CT features observed in humans and animal models.Methodology. MEDLINE, Embase and PubMed Central were searched to identify relevant publications. Studies were selected if they reported PET-CT features in human or animals with TBI. Studies were excluded if immune deficiency was present at the time of the initial PET-CT scan.Results. Six studies - four in humans and two in non-human primates (NHP) were included for analysis. All six studies used 2-deoxy-2-[18F]fluoro-d-glucose (2-[18F]FDG) PET-CT. Features of TBI were comparable between NHP and humans, with 2-[18F]FDG avid intrathoracic lymph nodes observed during early infection. Progressive TBI was characterised in NHP by increasing 2-[18F]FDG avidity and size of lesions. Two human studies suggested that PET-CT can discriminate between active TB and inactive TBI. However, data synthesis was generally limited by human studies including inconsistent and poorly characterised cohorts and the small number of eligible studies for review.Conclusion. Our review provides some evidence, limited primarily to non-human primate models, of PET-CT utility as a highly sensitive imaging modality to reveal and characterise meaningful metabolic and structural change in early TBI. The few human studies identified exhibit considerable heterogeneity. Larger prospective studies are needed recruiting well characterised cohorts with TBI and adopting a standardized PET-CT protocol, to better understand utility of this imaging biomarker to support future research.
Collapse
Affiliation(s)
- Jee Whang Kim
- Department of Respiratory Sciences, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | | | - Anver Kamil
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Pranabashis Haldar
- Department of Respiratory Sciences, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
10
|
Concepcion NDP, Laya BF, Andronikou S, Abdul Manaf Z, Atienza MIM, Sodhi KS. Imaging recommendations and algorithms for pediatric tuberculosis: part 1-thoracic tuberculosis. Pediatr Radiol 2023; 53:1773-1781. [PMID: 37081179 PMCID: PMC10119015 DOI: 10.1007/s00247-023-05654-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Tuberculosis (TB) remains a global health problem and is the second leading cause of death from a single infectious agent, behind the novel coronavirus disease of 2019. Children are amongst the most vulnerable groups affected by TB, and imaging manifestations are different in children when compared to adults. TB primarily involves the lungs and mediastinal lymph nodes. Clinical history, physical examination, laboratory examinations and various medical imaging tools are combined to establish the diagnosis. Even though chest radiography is the accepted initial radiological imaging modality for the evaluation of children with TB, this paper, the first of two parts, aims to discuss the advantages and limitations of the various medical imaging modalities and to provide recommendations on which is most appropriate for the initial diagnosis and assessment of possible complications of pulmonary TB in children. Practical, evidence-based imaging algorithms are also presented.
Collapse
Affiliation(s)
- Nathan David P. Concepcion
- Section of Pediatric Radiology, Institute of Radiology, St. Luke’s Medical Center – Global City, Rizal Drive cor. 32nd St. and 5th Ave., Taguig, 1634 Philippines
- Section of Pediatric Radiology, Institute of Radiology, St. Luke’s Medical Center – Quezon City, 279 E. Rodriguez Sr. Ave., Quezon City, 1112 Philippines
| | - Bernard F. Laya
- Section of Pediatric Radiology, Institute of Radiology, St. Luke’s Medical Center – Global City, Rizal Drive cor. 32nd St. and 5th Ave., Taguig, 1634 Philippines
- Section of Pediatric Radiology, Institute of Radiology, St. Luke’s Medical Center – Quezon City, 279 E. Rodriguez Sr. Ave., Quezon City, 1112 Philippines
- Department of Radiology, St. Luke’s Medical Center College of Medicine William H Quasha Memorial, Quezon City, Philippines
| | - Savvas Andronikou
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
- Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Zaleha Abdul Manaf
- Al Islam Specialist Hospital, Kuala Lumpur, Malaysia
- Faculty of Medicine, MAHSA University, Bioscience & Nursing, Kuala Lumpur, Malaysia
| | - Maria Isabel M. Atienza
- Institute of Pediatrics and Child Health, St Luke’s Medical Center, Quezon City, Philippines
- Department of Pediatrics, St. Luke’s Medical Center College of Medicine William H. Quasha Memorial, Quezon City, Philippines
| | - Kushaljit Singh Sodhi
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO USA
- Department of Radiodiagnosis, PGIMER, Chandigarh, India
| |
Collapse
|
11
|
Naseer Khan R, Ahn YM, Marriner GA, Via LE, D’Hooge F, Lee SS, Yang N, Basuli F, White AG, Tomko JA, Frye LJ, Scanga CA, Weiner DM, Sutphen ML, Schimel DM, Dayao E, Piazza MK, Gomez F, Dieckmann W, Herscovitch P, Mason NS, Swenson R, Kiesewetter DO, Backus KM, Geng Y, Raj R, Anthony DC, Flynn JL, Barry CE, Davis BG. Distributable, Metabolic PET Reporting of Tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535218. [PMID: 37333343 PMCID: PMC10274857 DOI: 10.1101/2023.04.03.535218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - can act as a mechanism-based enzyme reporter in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-specific processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-specific, clinical diagnostic candidate. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either bespoke radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.
Collapse
Affiliation(s)
- R.M. Naseer Khan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Yong-Mo Ahn
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD USA
| | - Gwendolyn A. Marriner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD USA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD USA
- Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD 20892
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Francois D’Hooge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Seung Seo Lee
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
- School of Chemistry, University of Southampton, Southampton, UK
| | - Nan Yang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, OX11 0FA, UK
| | - Falguni Basuli
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, MD USA
| | - Alexander G. White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh
| | - Jaime A. Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh
| | - L. James Frye
- Department of Microbiology and Molecular Genetics, University of Pittsburgh
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh
| | - Danielle M. Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD USA
| | - Michelle L. Sutphen
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD USA
| | - Daniel M. Schimel
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD USA
| | - Emmanuel Dayao
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD USA
| | | | - Felipe Gomez
- Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD 20892
| | - William Dieckmann
- Positron Emission Tomography Department, Clinical Center, NIH, Bethesda, MD USA 20892
| | - Peter Herscovitch
- Positron Emission Tomography Department, Clinical Center, NIH, Bethesda, MD USA 20892
| | | | - Rolf Swenson
- Chemistry and Synthesis Center, NHLBI, NIH, Bethesda, MD USA
| | - Dale O. Kiesewetter
- Molecular Tracer and Imaging Core Facility, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892
| | - Keriann M. Backus
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Yiqun Geng
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Ritu Raj
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Daniel C. Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD USA
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Benjamin G. Davis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
- The Rosalind Franklin Institute, Oxfordshire, OX11 0FA, UK
| |
Collapse
|
12
|
Lawal IO, Abubakar S, Ankrah AO, Sathekge MM. Molecular Imaging of Tuberculosis. Semin Nucl Med 2023; 53:37-56. [PMID: 35882621 DOI: 10.1053/j.semnuclmed.2022.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/05/2022] [Indexed: 01/28/2023]
Abstract
Despite the introduction of many novel diagnostic techniques and newer treatment agents, tuberculosis (TB) remains a major cause of death from an infectious disease worldwide. With about a quarter of humanity harboring Mycobacterium tuberculosis, the causative agent of TB, the current efforts geared towards reducing the scourge due to TB must be sustained. At the same time, newer alternative modalities for diagnosis and treatment response assessment are considered. Molecular imaging entails the use of radioactive probes that exploit molecular targets expressed by microbes or human cells for imaging using hybrid scanners that provide both anatomic and functional features of the disease being imaged. Fluorine-18 fluorodeoxyglucose (FDG) is the most investigated radioactive probe for TB imaging in research and clinical practice. When imaged with positron emission tomography interphase with computed tomography (PET/CT), FDG PET/CT performs better than sputum conversion for predicting treatment outcome. At the end of treatment, FDG PET/CT has demonstrated the unique ability to identify a subset of patients declared cured based on the current standard of care but who still harbor live bacilli capable of causing disease relapse after therapy discontinuation. Our understanding of the pathogenesis and evolution of TB has improved significantly in the last decade, owing to the introduction of FDG PET/CT in TB research. FDG is a non-specific probe as it targets the host inflammatory response to Mycobacterium tuberculosis, which is not specifically different in TB compared with other infectious conditions. Ongoing efforts are geared towards evaluating the utility of newer probes targeting different components of the TB granuloma, the hallmark of TB lesions, including hypoxia, neovascularization, and fibrosis, in TB management. The most exciting category of non-FDG PET probes developed for molecular imaging of TB appears to be radiolabeled anti-tuberculous drugs for use in studying the pharmacokinetic characteristics of the drugs. This allows for the non-invasive study of drug kinetics in different body compartments concurrently, providing an insight into the spatial heterogeneity of drug exposure in different TB lesions. The ability to repeat molecular imaging using radiolabeled anti-tuberculous agents also offers an opportunity to study the temporal changes in drug kinetics within the different lesions during treatment.
Collapse
Affiliation(s)
- Ismaheel O Lawal
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA; Department of Nuclear Medicine, University of Pretoria, Pretoria, Gauteng, South Africa.
| | - Sofiullah Abubakar
- Department of Radiology and Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat, Oman
| | - Alfred O Ankrah
- Department of Nuclear Medicine, University of Pretoria, Pretoria, Gauteng, South Africa; National Center for Radiotherapy Oncology and Nuclear Medicine, Korle Bu Teaching Hospital, Accra, Ghana; Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria, Gauteng, South Africa; Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| |
Collapse
|
13
|
PET-Computed Tomography in Bone and Joint Infections. PET Clin 2023; 18:49-69. [DOI: 10.1016/j.cpet.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Wells G, Glasgow JN, Nargan K, Lumamba K, Madansein R, Maharaj K, Perumal LY, Matthew M, Hunter RL, Pacl H, Peabody Lever JE, Stanford DD, Singh SP, Bajpai P, Manne U, Benson PV, Rowe SM, le Roux S, Sigal A, Tshibalanganda M, Wells C, du Plessis A, Msimang M, Naidoo T, Steyn AJC. A high-resolution 3D atlas of the spectrum of tuberculous and COVID-19 lung lesions. EMBO Mol Med 2022; 14:e16283. [PMID: 36285507 PMCID: PMC9641421 DOI: 10.15252/emmm.202216283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 02/01/2023] Open
Abstract
Our current understanding of the spectrum of TB and COVID-19 lesions in the human lung is limited by a reliance on low-resolution imaging platforms that cannot provide accurate 3D representations of lesion types within the context of the whole lung. To characterize TB and COVID-19 lesions in 3D, we applied micro/nanocomputed tomography to surgically resected, postmortem, and paraffin-embedded human lung tissue. We define a spectrum of TB pathologies, including cavitary lesions, calcium deposits outside and inside necrotic granulomas and mycetomas, and vascular rearrangement. We identified an unusual spatial arrangement of vasculature within an entire COVID-19 lobe, and 3D segmentation of blood vessels revealed microangiopathy associated with hemorrhage. Notably, segmentation of pathological anomalies reveals hidden pathological structures that might otherwise be disregarded, demonstrating a powerful method to visualize pathologies in 3D in TB lung tissue and whole COVID-19 lobes. These findings provide unexpected new insight into the spatial organization of the spectrum of TB and COVID-19 lesions within the framework of the entire lung.
Collapse
Affiliation(s)
- Gordon Wells
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Joel N Glasgow
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Kievershen Nargan
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Kapongo Lumamba
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Rajhmun Madansein
- Inkosi Albert Luthuli Central Hospital and University of KwaZulu‐NatalDurbanSouth Africa
| | - Kameel Maharaj
- Inkosi Albert Luthuli Central Hospital and University of KwaZulu‐NatalDurbanSouth Africa
| | - Leon Y Perumal
- Perumal & Partners RadiologistsAhmed Al‐Kadi Private HospitalDurbanSouth Africa
| | - Malcolm Matthew
- Perumal & Partners RadiologistsAhmed Al‐Kadi Private HospitalDurbanSouth Africa
| | - Robert L Hunter
- Department of Pathology and Laboratory MedicineUniversity of Texas Health Sciences Center at HoustonHoustonTXUSA
| | - Hayden Pacl
- Medical Scientist Training ProgramUniversity of Alabama at BirminghamBirminghamALUSA
| | | | - Denise D Stanford
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
- Cystic Fibrosis Research CenterUniversity of Alabama at BirminghamBirminghamALUSA
| | - Satinder P Singh
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
- Department of RadiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Prachi Bajpai
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Upender Manne
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Paul V Benson
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Steven M Rowe
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
- Cystic Fibrosis Research CenterUniversity of Alabama at BirminghamBirminghamALUSA
| | | | - Alex Sigal
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Muofhe Tshibalanganda
- Research Group 3D Innovation, Physics DepartmentStellenbosch UniversityStellenboschSouth Africa
| | - Carlyn Wells
- CT Scanner Facility, Central Analytical FacilitiesStellenbosch UniversityStellenboschSouth Africa
| | - Anton du Plessis
- Research Group 3D Innovation, Physics DepartmentStellenbosch UniversityStellenboschSouth Africa
- Object Research SystemsMontrealQCCanada
| | - Mpumelelo Msimang
- Department of Anatomical Pathology, National Health Laboratory ServiceInkosi Albert Luthuli Central HospitalDurbanSouth Africa
| | - Threnesan Naidoo
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
- Department of Anatomical Pathology, National Health Laboratory ServiceInkosi Albert Luthuli Central HospitalDurbanSouth Africa
- Department of Laboratory Medicine & PathologyWalter Sisulu UniversityEastern CapeSouth Africa
| | - Adrie J C Steyn
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamALUSA
- Centers for AIDS Research and Free Radical BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
15
|
Long K, Zhou H, Li Y, Liu L, Cai J. The value of chest computed tomography in evaluating lung cancer in a lobe affected by stable pulmonary tuberculosis in middle-aged and elderly patients: A preliminary study. Front Oncol 2022; 12:868107. [PMID: 36276086 PMCID: PMC9582123 DOI: 10.3389/fonc.2022.868107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionLung cancer can be masked by coexisting stable tuberculosis lesions, which may result in delayed lung cancer diagnosis and treatment. Information about pulmonary tuberculosis patients who are at high-risk of developing lung cancer is scarce. We aimed to examine the value of chest computed tomography (CT) in evaluating lung cancer in a lobe affected by stable pulmonary tuberculosis in middle-aged and elderly patients.MethodsIn this single-centered, retrospective, observational study, we enrolled 41 middle-aged and elderly patients with pulmonary tuberculosis who developed lung cancer in the same lobe from January 30, 2011 to December 30, 2020. Comparisons of the clinical and chest CT data were made with age-matched and sex-matched control groups of patients with stable pulmonary tuberculosis but no lung cancer diagnosis (n = 38).ResultsSeventeen patients in the lung cancer group (41%) were initially misdiagnosed. Compared to lesions in the control group, lesions in the lung cancer group were significantly more likely to demonstrate the following CT features: large size, vessel convergence, lobulation, spiculation, spinous protuberance, bronchial obstruction or stenosis, vacuolation, ground-glass opacification, heterogeneous or homogeneous enhancement, and gradual increase in size. Nodular enlargement showed the best diagnostic performance in the diagnosis of lung cancer in a lobe affected by tuberculosis (area under the receiver operating characteristic curve = 0.974; P <0.001; accuracy = 98.2%; sensitivity =94.7%; specificity = 100%).ConclusionChest CT might play an important role in early diagnosis of lung cancer in a lobe affected by tuberculosis. Regular CT re-examination is necessary in continuous controls monitoring of patients with stable pulmonary tuberculosis. The study indicates necessity of prospective study in this field.
Collapse
Affiliation(s)
- Kui Long
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Xiangya Changde Hospital, Changde, China
| | - Hui Zhou
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- *Correspondence: Hui Zhou,
| | - Yajuan Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Liu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Xiangya Changde Hospital, Changde, China
| | - Jiahui Cai
- Department of Radiology, Qingyuan people’s Hospital, Qingyuan, China
| |
Collapse
|
16
|
The Value of 18F-FDG PET/CT in the Diagnosis of Tuberculous Pleurisy and in the Differential Diagnosis between Tuberculous Pleurisy and Pleural Metastasis from Lung Adenocarcinoma. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4082291. [PMID: 35965614 PMCID: PMC9357728 DOI: 10.1155/2022/4082291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
Objectives This study aims to investigate the diagnostic value of 18F-FDG PET/CT in tuberculous pleurisy (TBP) and the differential diagnostic value of 18F-FDG PET/CT between TBP and pleural metastasis from lung adenocarcinoma (PMLAC). Materials and Methods The features of pleura on PET and hybrid CT were retrospectively studied in 20 patients with TBP and 32 patients with PMLAC. The ROC curve was used to evaluate the diagnostic effectiveness of these indices for TBP and PMLAC, and binary logistic regression analysis was conducted to identify independent predictors of TBP and PMLAC. Results There were significant differences in pleural 18F-FDG uptake pattern on PET (P=0.001), pleural morphology pattern on CT (P=0.002), the maximum diameter of the pleural nodule (P=0.001), and interlobular fissure nodule (P=0.001) between TBP and PMLAC groups. The diffused pleural FDG uptake type on PET (odds ratio (OR) = 6.0, 95% CI 2.216–16.248, P=0.001) and the lamellar pleural thickening type on CT (OR = 4.4, 95% CI 2.536–7.635, P=0.001) were independent predictors of TBP, with 60% and 55% sensitivity, 96.6% and 90.6% specificity, and 82.7% and 77.0% accuracy. The combined diagnostic sensitivity, specificity, and accuracy for TBP were 70%, 87.5%, and 80.8%. The mixed pleural FDG uptake type on PET (OR = 5.106, 95% CI 2.024–12.879, P=0.001), the mixed pleural thickening type on CT (OR = 2.289, 95% CI 1.442–3.634, P=0.001), and the maximum diameter of the pleural nodule (OR = 1.027, 95% CI 1.012–1.042, P=0.001) were independent predictors of PMLAC, with 78.1%, 71.9%, and 87.5% sensitivity, 85%, 80%, and 85% specificity, and 80.8%, 75%, and 86.5% accuracy. The combined diagnostic sensitivity, specificity, and accuracy for PMLAC were 96.9%, 85%, and 90.4%. Conclusions 18F-FDG PET/CT is of great clinical value in the diagnosis of TBP and in the differential diagnosis between TBP and PMLAC.
Collapse
|
17
|
Bresser PL, Sathekge MM, Vorster M. PET/CT features of a novel gallium-68 labelled hypoxia seeking agent in patients diagnosed with tuberculosis: a proof-of-concept study. Nucl Med Commun 2022; 43:787-793. [PMID: 35506285 DOI: 10.1097/mnm.0000000000001580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Positron emission tomography/computed tomography (PET/CT) in infection and inflammation has yielded promising results across a range of radiopharmaceuticals. In particular, PET/CT imaging of tuberculosis (TB) allows for a better understanding of this complex disease by providing insights into molecular processes within the TB microenvironment. TB lesions are hypoxic with research primarily focussed on cellular processes occurring under hypoxic stress. With the development of hypoxia seeking PET/CT radiopharmaceuticals, that can be labelled in-house using a germanium-68/gallium-68 (68Ge/68Ga) generator, a proof-of-concept for imaging hypoxia in TB is presented. METHODS Ten patients diagnosed with TB underwent whole-body PET/CT imaging, 60-90 min after intravenous administration of 74-185 MBq (2-5 mCi) 68Ga-nitroimidazole. No oral or intravenous contrast was administered. Images were visually and semiquantitatively assessed for abnormal 68Ga-uptake in the lungs. RESULTS A total of 28 lesions demonstrating hypoxic uptake were identified. Low- to moderate-uptake was seen in nodules, areas of consolidation and cavitation as well as effusions. The mean standard uptake value (SUVmean) of the lesions was 0.47 (IQR, 0.32-0.82) and SUVmax was 0.71 (IQR, 0.41-1.11). The lesion to muscle ratio (median, 1.70; IQR, 1.15-2.31) was higher than both the left ventricular and the aorta lesion to blood ratios. CONCLUSION Moving towards the development of unique host-directed therapies (HDT), modulation of oxygen levels may improve therapeutic outcome by reprogramming TB lesions to overcome hypoxia. This proof-of-concept study suggests that hypoxia in TB lesions can be imaged and quantified using 68Ga-nitroimidazole PET/CT. Subsequently, hypoxic load can be estimated to inform personalised treatment plans of patients diagnosed with TB.
Collapse
Affiliation(s)
- Philippa L Bresser
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Mike M Sathekge
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Nuclear Medicine, Inkosi Albert Luthuli Central Hospital, University of Kwazulu Natal, Durban, South Africa
| |
Collapse
|
18
|
Bresser PL, Reed J, Sathekge MM, Vorster M. 68 Ga-nitroimidazole PET/CT imaging of hypoxia in tuberculosis: A case series. J Med Radiat Sci 2022; 69:518-524. [PMID: 35760568 DOI: 10.1002/jmrs.603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB) lesions in humans have been proven to be severely hypoxic with hypoxia leading to latency and dormancy of disease. Dormant TB lesions become less susceptible to standard TB treatment regimens with varying responses to treatment but may have increased susceptibility to nitroimidazole drugs. This in turn implies that positron emission tomography / computed tomography (PET/CT) imaging with radiolabelled nitroimidazoles may identify patients who will benefit from treatment with antimicrobial agents that are active against anaerobic bacteria. This case series aims to highlight the hypoxic uptake and retention of a novel 68 Ga-labelled hypoxia-seeking agent in TB lesions at different time points during anti-TB therapy using PET/CT imaging. Patients with confirmed TB underwent whole-body PET/CT after administration of a 68 Ga-nitroimidazole derivative at baseline and follow-up. Images were analysed both qualitatively and semi-quantitatively. Hypoxic uptake and change in uptake over time were analysed using lesion-to-muscle ratio (LMR) and lesion-to-blood ratio (LBR). 68 Ga-nitroimidazole avid lesions were demonstrated most frequently in the upper lobes of the lung. Low-grade hypoxic uptake was visualised in areas of consolidation, cavitation, nodules and lymph nodes. From baseline to follow-up imaging, the LMR increased with persistent hypoxic load despite morphologic improvement. This case series highlights the dynamic hypoxic microenvironment in TB lesions. From these initial data, it appears that 68 Ga-nitroimidazole is a promising candidate for monitoring hypoxic load in patients diagnosed with TB. Such imaging could identify patients who would benefit from individualised therapy targeting other mechanisms in the TB microenvironment with the intention to predict or improve treatment response.
Collapse
Affiliation(s)
- Philippa L Bresser
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Janet Reed
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Nuclear Medicine, Inkosi Albert Luthuli Central Hospital, University of Kwazulu-Natal, Durban, South Africa
| |
Collapse
|
19
|
Rai A, Dahuja A, Choudhary R, Sharma A, Sankhla S. Sequential Imaging Characteristics and Potential Role of F18 Fluorodeoxyglucose Positron Emission Tomography/CT in the Evaluation of Treatment Response in Cases of Spinal Tuberculosis Without Neurological Involvement: Results From a Pilot Study. Cureus 2022; 14:e26065. [PMID: 35865423 PMCID: PMC9293271 DOI: 10.7759/cureus.26065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose In this non-randomized study, we prospectively studied the sequential imaging properties of fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and evaluated the role of FDG PET as a non-invasive imaging modality for identifying non-responders during anti-tubercular treatment (ATT) of spinal tuberculosis (TB). Methods Before starting anti-tubercular treatment, 25 patients with clinically and radiological suspected; pathologically confirmed spinal TB had a pretreatment contrast-enhanced whole-body FDG PET scan, followed by scans at six, 12, and 18 months. The maximum standardized uptake value (SUVmax) was computed, and the mean change in SUVmax was compared. The mean change in SUVmax was correlated with the clinicoradiological improvement. Result In cases of spinal tuberculosis, the FDG PET scan can help identify extra-spinal and non-contagious involvement. In our 25 cases of spinal TB, the baseline peak SUVmax of lesions ranged from 6.3 to 28.5 (mean 14.8). Despite treatment, the condition progressed in two patients, and they had neurological deficits; in both cases, the SUVmax levels increased. The fall in SUVmax during the treatment course was statistically significant (p-value <0.05) and correlated well with the clinical improvement. Conclusion The inflammatory cells show increased uptake of F18 FDG, so uptake of radioactive tracer localizes and quantifies the disease activity; thus, FDG PET/CT holds a promising role as a sensitive non-invasive modality for the detection, staging, assessing disease activity, and monitoring therapy and deciding end point treatment in spinal TB.
Collapse
|
20
|
Rosado-de-Castro PH, Pereira-de-Carvalho T, Menna Barreto M, Kritski AL, de Oliveira Souza R, Altino de Almeida S, Cavalcanti Rolla V, Araujo Zin W, Roncally Silva Carvalho A, Souza Rodrigues R. Comparison of 68Ga-DOTATOC and 18F-FDG Thoracic Lymph Node and Pulmonary Lesion Uptake Using PET/CT in Postprimary Tuberculosis. Am J Trop Med Hyg 2022; 106:tpmd210416. [PMID: 35378506 PMCID: PMC9128679 DOI: 10.4269/ajtmh.21-0416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/08/2022] [Indexed: 11/07/2022] Open
Abstract
Tuberculosis (TB) remains one of the world's leading infectious cause of morbidity and mortality. Positron emission tomography (PET) associated with computed tomography (CT) allows a structural and metabolic evaluation of TB lesions, being an excellent noninvasive alternative for understanding its pathogenesis. DOTATOC labeled with gallium-68 (68Ga-DOTATOC) can bind to somatostatin receptors present in activated macrophages and lymphocytes, cells with a fundamental role in TB pathogenesis. We describe 68Ga-DOTATOC uptake distribution and patterns in thoracic lymph nodes (LN) and pulmonary lesions (PL) in immunocompetent patients with active postprimary TB, analyze the relative LN/PL uptake, and compare this two tracer's uptake. High uptake of both radiotracers in PL and LN was demonstrated, with higher LN/PL ratio on 68Ga-DOTATOC (P < 0.05). Considering that LN in immunocompetent patients are poorly studied, 68Ga-DOTATOC can contribute to the understanding of the complex immunopathogenesis of TB.
Collapse
Affiliation(s)
- Paulo Henrique Rosado-de-Castro
- Department of Internal Medicine, D’Or Institute for Research and Education, Botafogo, Rio de Janeiro, Brazil
- Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago Pereira-de-Carvalho
- Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Internal Medicine, Petropolis School of Medicine/Arthur Sá Earp Neto Faculty, Petropolis, Brazil
| | - Miriam Menna Barreto
- Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Afrânio Lineu Kritski
- Academic Tuberculosis Program, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Sergio Altino de Almeida
- Department of Internal Medicine, D’Or Institute for Research and Education, Botafogo, Rio de Janeiro, Brazil
| | - Valéria Cavalcanti Rolla
- Clinical Research Laboratory on Mycobacteria, Evandro Chagas National Institute of Infectious Diseases, Fiocruz, Rio de Janeiro, Brazil
| | - Walter Araujo Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alysson Roncally Silva Carvalho
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Cardiovascular R&D Centre (UnIC), Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
- Laboratory of Pulmonary Engineering, Biomedical Engineering Program, Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosana Souza Rodrigues
- Department of Internal Medicine, D’Or Institute for Research and Education, Botafogo, Rio de Janeiro, Brazil
- Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Minamimoto R. 2-[18F]FDG PET Imaging of Infection and Inflammation. NUCLEAR MEDICINE AND IMMUNOLOGY 2022:179-207. [DOI: 10.1007/978-3-030-81261-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Signore A, Conserva M, Varani M, Galli F, Lauri C, Velikyan I, Roivainen A. PET imaging of bacteria. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Vorster M, Sathekge MM. Positron Emission Tomography (PET) Imaging in Tuberculosis. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Varshney K, Anaele B, Molaei M, Frasso R, Maio V. Risk Factors for Poor Outcomes Among Patients with Extensively Drug-Resistant Tuberculosis (XDR-TB): A Scoping Review. Infect Drug Resist 2021; 14:5429-5448. [PMID: 34938089 PMCID: PMC8687707 DOI: 10.2147/idr.s339972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
In recent years, there has been an upsurge in cases of drug-resistant TB, and strains of TB resistant to all forms of treatment have begun to emerge; the highest level of resistance is classified as extensively drug-resistant tuberculosis (XDR-TB). There is an urgent need to prevent poor outcomes (death/default/failed treatment) of XDR-TB, and knowing the risk factors can inform such efforts. The objective of this scoping review was to therefore identify risk factors for poor outcomes among XDR-TB patients. We searched three scientific databases, PubMed, Scopus, and ProQuest, and identified 25 articles that examined relevant risk factors. Across the included studies, the proportion of patients with poor outcomes ranged from 8.6 to 88.7%. We found that the most commonly reported risk factor for patients with XDR-TB developing poor outcomes was having a history of TB. Other risk factors were human immunodeficiency virus (HIV), a history of incarceration, low body mass, being a smoker, alcohol use, unemployment, being male, and being middle-aged. Knowledge and understanding of the risk factors associated with poor outcomes of XDR-TB can help policy makers and organizations in the process of designing and implementing effective programs.
Collapse
Affiliation(s)
- Karan Varshney
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Beverly Anaele
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew Molaei
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rosemary Frasso
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vittorio Maio
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
25
|
Lavalle M, Belmonte G, Pallavicini F, Manfredi R, Minordi LM. Usefulness of 18FDG-PET/CT and MRI in an immunocompetent patient with fever of unknown origin and following diagnosis of skeletal tuberculosis. J Med Imaging Radiat Sci 2021; 53:175-178. [PMID: 34903487 DOI: 10.1016/j.jmir.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/01/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Fever of unknown origin (FUO) is one of the most difficult diagnostic dilemmas in current medicine. The main causes of FUO in developed countries are non-infectious inflammatory diseases, while infections are predominant in developing countries. Among infections, Mycobacterium Tuberculosis (TB) is the most frequent cause and it can involve multiple tissues and organs. CASE AND OUTCOMES We report a case of FUO in an immunocompetent patient with fever of unknown origin, finally diagnosed with skeletal TB thanks to a multidisciplinary approach, using FDG-PET/CT, MRI, and biopsy. PET/CT findings were non-specific (infection or inflammation versus malignancy); therefore, hip Magnetic Resonance Imaging (MRI) was performed and infection was suspected on basis of MRI findings, so a bone biopsy was then performed and skeletal TB was diagnosed. DISCUSSION A successful diagnostic workup of FUO has to take into account detailed medical history, physical examination, laboratory tests, blood and urine cultures, and standard imaging (Ultrasonography, CT, or MRI). However, this combination of clinical evaluation, standardized laboratory tests and simple imaging procedures often do not lead to a definite diagnosis; 8F-FDG-PET-CT could be performed to help in diagnosis and also to guide additional diagnostic tests such as MRI and biopsy. CONCLUSION This case demonstrates the importance of the integration of different imaging modalities, in particular, MRI and FDG-PET/CT in patients with FUO. Skeletal TB should always be included in the diagnostic hypothesis of FUO, even in immunocompetent patients of non-endemic countries.
Collapse
Affiliation(s)
- Mariadea Lavalle
- Nuclear Medicine Unit, Ente Ecclesiastico Ospedale Generale Regionale "F.Miulli", Bari, Acquaviva delle Fonti, Italy
| | | | - Federico Pallavicini
- Istituto di Clinica delle malattie infettive, Università Cattolica del Sacro Cuore, Roma, Italy; Dipartimento di Scienze di laboratorio e infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC di Malattie infettive, Roma, Italy
| | - Riccardo Manfredi
- Dipartimento di Diagnostica per immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC di Radiologia Diagnostica e Interventistica Generale, Radioterapia oncologica ed ematologia, Roma, Italy
| | - Laura Maria Minordi
- Dipartimento di Diagnostica per immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC di Radiologia Diagnostica e Interventistica Generale, Radioterapia oncologica ed ematologia, Roma, Italy
| |
Collapse
|
26
|
More S, Marakalala MJ, Sathekge M. Tuberculosis: Role of Nuclear Medicine and Molecular Imaging With Potential Impact of Neutrophil-Specific Tracers. Front Med (Lausanne) 2021; 8:758636. [PMID: 34957144 PMCID: PMC8703031 DOI: 10.3389/fmed.2021.758636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
With Tuberculosis (TB) affecting millions of people worldwide, novel imaging modalities and tools, particularly nuclear medicine and molecular imaging, have grown with greater interest to assess the biology of the tuberculous granuloma and evolution thereof. Much early work has been performed at the pre-clinical level using gamma single photon emission computed tomography (SPECT) agents exploiting certain characteristics of Mycobacterium tuberculosis (MTb). Both antituberculous SPECT and positron emission tomography (PET) agents have been utilised to characterise MTb. Other PET tracers have been utilised to help to characterise the biology of MTb (including Gallium-68-labelled radiopharmaceuticals). Of all the tracers, 2-[18F]FDG has been studied extensively over the last two decades in many aspects of the treatment paradigm of TB: at diagnosis, staging, response assessment, restaging, and in potentially predicting the outcome of patients with latent TB infection. Its lower specificity in being able to distinguish different inflammatory cell types in the granuloma has garnered interest in reviewing more specific agents that can portend prognostic implications in the management of MTb. With the neutrophil being a cell type that portends this poorer prognosis, imaging this cell type may be able to answer more accurately questions relating to the tuberculous granuloma transmissivity and may help in characterising patients who may be at risk of developing active TB. The formyl peptide receptor 1(FPR1) expressed by neutrophils is a key marker in this process and is a potential target to characterise these areas. The pre-clinical work regarding the role of radiolabelled N-cinnamoyl –F-(D) L – F – (D) –L F (cFLFLF) (which is an antagonist for FPR1) using Technetium 99m-labelled conjugates and more recently radiolabelled with Gallium-68 and Copper 64 is discussed. It is the hope that further work with this tracer may accelerate its potential to be utilised in responding to many of the current diagnostic dilemmas and challenges in TB management, thereby making the tracer a translatable option in routine clinical care.
Collapse
Affiliation(s)
- Stuart More
- Division of Nuclear Medicine, Department of Radiation Medicine, University of Cape Town, Cape Town, South Africa
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Nuclear Medicine Research Infrastructure, Steve Biko Academic Hospital, Pretoria, South Africa
- *Correspondence: Stuart More
| | - Mohlopheni J. Marakalala
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Michael Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Nuclear Medicine Research Infrastructure, Steve Biko Academic Hospital, Pretoria, South Africa
| |
Collapse
|
27
|
Li X, Geng P, Hong X, Sun Z, Liu G. Detecting Mycobacterium Tuberculosis using a nitrofuranyl calanolide-trehalose probe based on nitroreductase Rv2466c. Chem Commun (Camb) 2021; 57:13174-13177. [PMID: 34812827 DOI: 10.1039/d1cc05187c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A new Mtb fluorescent probe, NFC-Tre-5, was reported that could label single cells of Mtb under various stress conditions via a unique fluorescence off-on feature by a Rv2466c-mediated reductive mechanism. This probe effectively facilitates the rapid and specific detection of Mtb in the host cell during infection and the detection of Mtb in sputum samples from patients.
Collapse
Affiliation(s)
- Xueyuan Li
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China. .,Tsinghua-Peking Center for Life Sciences, Handian Dist., Beijing 100084, P. R. China
| | - Pengfei Geng
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China.
| | - Xiaoqiao Hong
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China.
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China. .,Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing 101149, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing 100084, P. R. China.
| |
Collapse
|
28
|
Pu J, Leader JK, Zhang D, Beeche C, Sechrist J, Pennathur A, Villaruz LC, Wilson D. Macrovasculature and positron emission tomography (PET) standardized uptake value in patients with lung cancer. Med Phys 2021; 48:6237-6246. [PMID: 34382221 PMCID: PMC8590108 DOI: 10.1002/mp.15158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/04/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To investigate the relationship between macrovasculature features and the standardized uptake value (SUV) of positron emission tomography (PET), which is a surrogate for the metabolic activity of a lung tumor. METHODS We retrospectively analyzed a cohort of 90 lung cancer patients who had both chest CT and PET-CT examinations before receiving cancer treatment. The SUVs in the medical reports were used. We quantified three macrovasculature features depicted on CT images (i.e., vessel number, vessel volume, and vessel tortuosity) and several tumor features (i.e., volume, maximum diameter, mean diameter, surface area, and density). Tumor size (e.g., volume) was used as a covariate to adjust for possible confounding factors. Backward stepwise multiple regression analysis was performed to develop a model for predicting PET SUV from the relevant image features. The Bonferroni correction was used for multiple comparisons. RESULTS PET SUV was positively correlated with vessel volume (R = 0.44, p < 0.001) and vessel number (R = 0.44, p < 0.001) but not with vessel tortuosity (R = 0.124, p > 0.05). After adjusting for tumor size, PET SUV was significantly correlated with vessel tortuosity (R = 0.299, p = 0.004) and vessel number (R = 0.224, p = 0.035), but only marginally correlated with vessel volume (R = 0.187, p = 0.079). The multiple regression model showed a performance with an R-Squared of 0.391 and an adjusted R-Squared of 0.355 (p < 0.001). CONCLUSIONS Our investigations demonstrate the potential relationship between macrovasculature and PET SUV and suggest the possibility of inferring the metabolic activity of a lung tumor from chest CT images.
Collapse
Affiliation(s)
- Jiantao Pu
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joseph K. Leader
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dongning Zhang
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Cameron Beeche
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jacob Sechrist
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Arjun Pennathur
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Liza C. Villaruz
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, PA 15213, USA
| | - David Wilson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
29
|
Namuganga AR, Chegou NN, Mayanja-Kizza H. Past and Present Approaches to Diagnosis of Active Pulmonary Tuberculosis. Front Med (Lausanne) 2021; 8:709793. [PMID: 34631731 PMCID: PMC8495065 DOI: 10.3389/fmed.2021.709793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis disease continues to contribute to the mortality burden globally. Due to the several shortcomings of the available diagnostic methods, tuberculosis disease continues to spread. The difficulty to obtain sputum among the very ill patients and the children also affects the quick diagnosis of tuberculosis disease. These challenges warrant investigating different sample types that can provide results in a short time. Highlighted in this review are the approved pulmonary tuberculosis diagnostic methods and ongoing research to improve its diagnosis. We used the PRISMA guidelines for systematic reviews to search for studies that met the selection criteria for this review. In this review we found out that enormous biosignature research is ongoing to identify host biomarkers that can be used as predictors of active PTB disease. On top of this, more research was also being done to improve already existing diagnostic tests. Host markers required more optimization for use in different settings given their varying sensitivity and specificity in PTB endemic and non-endemic settings.
Collapse
Affiliation(s)
- Anna Ritah Namuganga
- Uganda–Case Western Research Collaboration-Mulago, Kampala, Uganda
- Joint Clinical Research Centre, Kampala, Uganda
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Novel N. Chegou
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Harriet Mayanja-Kizza
- Uganda–Case Western Research Collaboration-Mulago, Kampala, Uganda
- College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
30
|
Sarda-Mantel L, Kaoutar J, Alfaiate T, Lopes A, Paycha F, Benali K, Mikail N, Soussan M, Lemarignier C, Méchaï F, Nagat SL, Montravers F, Deradji O, Durand E, Goulenok T, Ponscarme D, Yéni P, Laouénan C, Rioux C. [ 18 F]FDG Positron Emission Tomography for Initial Staging and Healing Assessment at the End of Therapy in Lymph Nodes and Bone Tuberculosis. Front Med (Lausanne) 2021; 8:715115. [PMID: 34485345 PMCID: PMC8416085 DOI: 10.3389/fmed.2021.715115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
Objective: In extra-pulmonary tuberculosis, therapeutic management is difficult in the absence of reliable tool to affirm healing at the end of treatment. In this prospective multicenter study, we evaluated [18F]FDG-PET for this purpose. Methods: Forty-two patients out of 55 included patients could be analyzed. Additionally to usual biological, histological and morphological explorations, [18F]FDG-PET was performed at diagnosis (PET1), at the end of treatment (PET2), indeed 6 months later. Then patients were followed until 12 months after end of prescribed treatment. Results: PET1 was positive in 97.6% of patients and discovered unknown injured sites in 52.7% of cases. PET2 was positive in 83.3% of uncured patients, and in 82.3% of cured patients. The sum and mean value of SUVmax measured in PET/CT lesions decreased between PET1 and PET2 in all patients. Mean value of SUVmax (MSUV) and sum value of SUVmax on PET2 showed the highest AUC on ROC curves for the diagnosis of healing at the end of prescribed treatment; MSUV 3.5 on PET2 had a sensitivity of 76.5% and a specificity of 80.0% to affirm healing at the end of prescribed treatment. Conclusions: [18F]FDG-PET/CT was useful at diagnosis, discovering unknown lesions in 52.7% of cases. MSUV on PET2 was the best criteria to affirm healing at the end of prescribed treatment.
Collapse
Affiliation(s)
| | - Jidar Kaoutar
- Infectious Diseases Department, Bichat Hospital, APHP, Paris, France
| | - Toni Alfaiate
- Université de Paris, INSERM, IAME UMR 1137, Paris, France
| | - Amanda Lopes
- Internal Medicine Department, Lariboisière Hospital, APHP, Paris, France
| | - Frédéric Paycha
- Nuclear Medicine Department, Lariboisière Hospital, APHP, Paris, France
| | - Khadija Benali
- Nuclear Medicine Department, Bichat Hospital, APHP, Paris, France
| | - Nidaa Mikail
- Nuclear Medicine Department, Bichat Hospital, APHP, Paris, France
| | - Michael Soussan
- Nuclear Medicine Department, Avicenne Hospital, APHP, Bobigny, France
| | | | - Frédéric Méchaï
- Infectious Diseases Department, Avicenne Hospital, APHP, Bobigny, France
| | - Sophie Le Nagat
- Infectious Diseases Department, Tenon Hospital, APHP, Paris, France
| | | | - Ouda Deradji
- Internal Medicine Department, Bicêtre Hospital, APHP, Le Kremlin Bicêtre, France
| | - Emmanuel Durand
- Nuclear Medicine Department, Bicêtre Hospital, APHP, Le Kremlin Bicêtre, France
| | | | - Diane Ponscarme
- Infectious Diseases Department, Saint-Louis Hospital, APHP, Paris, France
| | - Patrick Yéni
- Infectious Diseases Department, Bichat Hospital, APHP, Paris, France
| | - Cédric Laouénan
- Université de Paris, INSERM, IAME UMR 1137, Paris, France.,Université de Paris, INSERM, IAME UMR 1137, Paris, France
| | - Christophe Rioux
- Infectious Diseases Department, Bichat Hospital, APHP, Paris, France
| |
Collapse
|
31
|
Singh R, Naranje P, Bhalla AS, Pandey S. Magnetic resonance imaging in response assessment of mediastinal tuberculous lymphadenopathy: Going beyond size. Lung India 2021; 38:431-437. [PMID: 34472520 PMCID: PMC8509167 DOI: 10.4103/lungindia.lungindia_481_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/28/2020] [Accepted: 06/24/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Assessment of response to antitubercular treatment (ATT) in mediastinal tuberculous lymph nodes (LNs) is challenging. Gold standard techniques such as biopsy and culture involve invasive procedures. Radiographic persistence of mediastinal LNs even after completion of ATT poses a treatment dilemma. In this study, we evaluated the changes in signal intensity (SI) and apparent diffusion coefficient (ADC) values of mediastinal LNs on magnetic resonance imaging (MRI), for response assessment to ATT. MATERIALS AND METHODS After institute ethics approval, a retrospective analysis of MRI images of 22 patients with 55 mediastinal tuberculous LNs was done. Clinically responsive patients of mediastinal tuberculous LNs who underwent chest MRI prior to ATT, or within 1 month of starting ATT, and second MRI performed at least after 2 months of start of the treatment were included. LN size, T1 and T2 signal characteristics (homogenously/heterogeneously and hyperintense or hypointense), T2 and T1 SI ratio, ADC values, and contrast enhancement characteristics were compared. Paired t-test and McNemar test were performed at a significance level of α =0.05. RESULTS Size of LN reduced, but 45 LNs measured >8 mm in second MRI. There was statistically significant decrease in the T2 and T1 SI ratios in second MRI, P = 0.026 and 0.008, respectively. No statistically significant difference was found in ADC values, P = 0.31. CONCLUSIONS Decrease in T2 and T1 SI ratios of mediastinal tuberculous LNs can be used as a noninvasive imaging parameter to suggest response to ATT. However, ADC value is not a useful indicator of treatment response.
Collapse
Affiliation(s)
- Rashmi Singh
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Naranje
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Ashu Seith Bhalla
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Shivam Pandey
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
32
|
Fang G, Cheng NC, Huang LL, Xie WP, Hu CM, Chen W. The first report of co-existence of pulmonary tuberculosis and lung malignancy in a kidney transplant recipient: a case report and literature review. BMC Infect Dis 2021; 21:629. [PMID: 34210287 PMCID: PMC8252204 DOI: 10.1186/s12879-021-06350-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Background Along with the medical development, organ transplant patients increase dramatically. Since these transplant patients take immunosuppressants for a long term, their immune functions are in a suppressed state, prone to all kinds of opportunistic infections and cancer. However, it is rarely reported that the kidney transplant recipients (KTRs) have pulmonary tuberculosis and lung cancer simultaneously. Case presentation A 60-year-old male was admitted because of persistent lung shadow for 2 years without any obvious symptom 8 years after renal transplant. T-SPOT test was positive but other etiological examinations for Mycobacterium tuberculosis were negative. Chest CT scan revealed two pulmonary lesions in the right upper and lower lobe respectively. 18F-fluorodesoxyglucose positron-emission tomography (FDG-PET) CT found FDG intake increased in both pulmonary consolidation lesions. CT-guided percutaneous transthoracic needle biopsy revealed lung adenocarcinoma and tuberculosis. The video-assisted thoracoscopic surgery was operated to resect the malignancy lesions. The patient received specific anti-tuberculosis therapy and was discharged. At the follow-up of 6 months post drug withdrawal, the patient was recovered very well. Conclusions We for the first time reported co-existence of smear-negative pulmonary TB and lung adenocarcinoma in a KTR, which highlighted the clinical awareness of co-occurrence of TB and malignancy after renal transplant and emphasized the value of biopsy and 18F-FDG-PET in early diagnosis of TB and cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06350-x.
Collapse
Affiliation(s)
- Gang Fang
- Department of Tuberculosis, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Ning-Chang Cheng
- Department of Respiratory, Xinglong Community Health Center, Nanjing, 210019, China
| | - Li-Li Huang
- Department of Tuberculosis, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Wei-Ping Xie
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chun-Mei Hu
- Department of Tuberculosis, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| | - Wei Chen
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| |
Collapse
|
33
|
Ahmed B, Rashid MM, Rahman MM, Lutfor Rahman SM, Saifur Rahman SM, Dey PK, Momen MA, Khan MSR. Myocardial tuberculosis and beyond: A rare form of extra pulmonary TB in a young boy. Indian J Tuberc 2021; 68:416-419. [PMID: 34099213 DOI: 10.1016/j.ijtb.2019.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/26/2019] [Indexed: 11/30/2022]
Abstract
Myocardial tuberculosis is an exceptionally rare form of extra-pulmonary TB. Few cases were reported world-wide. Here a young snake charmer who had skin tuberculosis 5 yrs back admitted into National institute of diseases of Chest and hospital (NIDCH), Dhaka with the complaints of cough, palpitation and breathlessness for 2 months. He had right axillary firm matted lymphadenopathy, left sided large pleural effusion, left ventricular and septal hypertrophy with band and mass inside the ventricle (evident on CT scan of heart and echocardiography). His ESR was 95 mm in1st hr, Mantaux test was 15mm, Pleural fluid was exudative lymphocyte predominant with adenosin deaminase (ADA) 68.6 U/L. Fine needle aspirates from right axillary LNs showed Mycobacterium tuberculosis on GeneXpert for MTB/RIF testing and caseous granuloma on cytopathological study. Whole Body F18 FDG PET-CT revealed numerous low FDG avid size significant lymph nodes in right side of neck, mediastinum and right axilla with cardiomegaly with focal FDG avid within the left ventricular cavity likely to be prominent papillary muscle. MRI of heart or Myocardial biopsy for histology was not done due to their cost and invasiveness and also for that there was sufficient evidence of having tuberculosis in lymph node, pleura nas myocardium. This patient was treated with anti tubercular medications (3HRZE2S/5HRE) with prednisolone for six months. After treatment, myocardial lesions, pleural effusion and lymphadenopathy were found resolved. Thus a case of fatal and serious tuberculosis was explored and managed successfully.
Collapse
Affiliation(s)
- Bashir Ahmed
- Pulmonology, National Institute of Diseases of Chest and Hospital (NIDCH), Dhaka, Bangladesh
| | - Md Mamunur Rashid
- Pulmonology, National Institute of Diseases of Chest and Hospital (NIDCH), Dhaka, Bangladesh.
| | | | - S M Lutfor Rahman
- Pulmonology, National Institute of Diseases of Chest and Hospital (NIDCH), Dhaka, Bangladesh
| | - Shah Md Saifur Rahman
- Pulmonology, National Institute of Diseases of Chest and Hospital (NIDCH), Dhaka, Bangladesh
| | - Pulok Kumar Dey
- Pulmonology, National Institute of Diseases of Chest and Hospital (NIDCH), Dhaka, Bangladesh
| | - Md Abdul Momen
- Cardiology, National Institute of cardiovascular Disease, Dhaka, Bangladesh
| | | |
Collapse
|
34
|
Goyal M, Murthy SI, Annum S. Retinal manifestations in patients following COVID-19 infection: A consecutive case series. Indian J Ophthalmol 2021; 69:1275-1282. [PMID: 33913876 PMCID: PMC8186578 DOI: 10.4103/ijo.ijo_403_21] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose To describe retinal manifestations seen in patients associated with COVID-19 infection at a multi-specialty tertiary care hospital in Southern India. Methods In this retrospective chart review, all consecutive cases presenting to the Retina-Uveitis service from May 2020 to January 2021 with retinal manifestations associated with COVID-19 infection or its sequelae or as a result of treatment given for COVID-19 were included. Results : Of the 7 patients, 3 were female, and 4 were male. Four patients had onset of symptoms during the active phase of COVID-19 infection. Four had bilateral and three had unilateral involvement. The manifestations ranged from mild to vision threatening. Vision threatening manifestations included infections: endogenous endophthalmitis, candida retinitis and tubercular choroidal abscess and bilateral pre-foveal hemorrhages. Milder manifestations included paracentral acute middle maculopathy, central serous chorio-retinopathy and voriconazole induced visual symptoms. Final visual acuity was 6/36 or better in the four severe cases and 6/9 or better in the mild cases. Conclusion This study highlights the retinal manifestations associated with COVID-19 infection and its sequelae. As these patients presented with an association with COVID-19 (either during or after recovery), ophthalmologists should be vigilant and screen for such entities in case of complaints of visual symptoms or in the presence of systemic sepsis. The outcomes can be good with prompt and aggressive management.
Collapse
Affiliation(s)
- Mallika Goyal
- Retina-Uveitis Service, Department of Ophthalmology, Apollo Health City, Hyderabad, Telangana, India
| | | | - Sridhar Annum
- Retina-Uveitis Service, Department of Ophthalmology, Apollo Health City, Hyderabad, Telangana, India
| |
Collapse
|
35
|
Bauckneht M, Raffa S, Leale G, Sambuceti V, De Cesari M, Donegani MI, Marini C, Drakonaki E, Orlandi D. Molecular imaging in MSK radiology: Where are we going? Eur J Radiol 2021; 140:109737. [PMID: 33951567 DOI: 10.1016/j.ejrad.2021.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/18/2021] [Accepted: 04/25/2021] [Indexed: 11/15/2022]
Abstract
Musculoskeletal (MSK) pathologies are one of the leading causes of disability worldwide. However, treatment options and understanding of pathogenetic processes are still partially unclear, mainly due to a limited ability in early disease detection and response to therapy assessment. In this scenario, thanks to a strong technological advancement, structural imaging is currently established as the gold-standard of diagnosis in many MSK disorders but each single diagnostic modality (plain films, high-resolution ultrasound, computed tomography and magnetic resonance) still suffer by a low specificity regarding the characterization of inflammatory processes, the quantification of inflammatory activity levels, and the degree of response to therapy. To overcome these limitations, molecular imaging techniques may play a promising role. Starting from the strengths and weaknesses of structural anatomical imaging, the present narrative review aims to highlight the promising role of molecular imaging in the assessment of non-neoplastic MSK diseases with a special focus on its role to monitor treatment response.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences (DISSAL), Genoa University, Genoa, Italy
| | - Stefano Raffa
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences (DISSAL), Genoa University, Genoa, Italy
| | - Giacomo Leale
- Private MSK Imaging Institution, Heraklion, Crete, Greece & European University of Cyprus Medical School, Nicosia, Cyprus
| | - Virginia Sambuceti
- Postgraduate School of Radiology, Genoa University, Via Alberti 4, 16132, Genoa, Italy
| | | | - Maria Isabella Donegani
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences (DISSAL), Genoa University, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate (MI), Italy
| | - Eleni Drakonaki
- Private MSK Imaging Institution, Heraklion, Crete, Greece & European University of Cyprus Medical School, Nicosia, Cyprus
| | - Davide Orlandi
- Department of Radiology, Ospedale Evangelico Internazionale, Corso Solferino, 1a, 16122, Genoa, Italy.
| |
Collapse
|
36
|
Ordonez AA, Tucker EW, Anderson CJ, Carter CL, Ganatra S, Kaushal D, Kramnik I, Lin PL, Madigan CA, Mendez S, Rao J, Savic RM, Tobin DM, Walzl G, Wilkinson RJ, Lacourciere KA, Via LE, Jain SK. Visualizing the dynamics of tuberculosis pathology using molecular imaging. J Clin Invest 2021; 131:145107. [PMID: 33645551 PMCID: PMC7919721 DOI: 10.1172/jci145107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nearly 140 years after Robert Koch discovered Mycobacterium tuberculosis, tuberculosis (TB) remains a global threat and a deadly human pathogen. M. tuberculosis is notable for complex host-pathogen interactions that lead to poorly understood disease states ranging from latent infection to active disease. Additionally, multiple pathologies with a distinct local milieu (bacterial burden, antibiotic exposure, and host response) can coexist simultaneously within the same subject and change independently over time. Current tools cannot optimally measure these distinct pathologies or the spatiotemporal changes. Next-generation molecular imaging affords unparalleled opportunities to visualize infection by providing holistic, 3D spatial characterization and noninvasive, temporal monitoring within the same subject. This rapidly evolving technology could powerfully augment TB research by advancing fundamental knowledge and accelerating the development of novel diagnostics, biomarkers, and therapeutics.
Collapse
Affiliation(s)
- Alvaro A. Ordonez
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Pediatrics, and
| | - Elizabeth W. Tucker
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Claire L. Carter
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Shashank Ganatra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusets, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Philana L. Lin
- Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cressida A. Madigan
- Department of Biological Sciences, UCSD, San Diego, La Jolla, California, USA
| | - Susana Mendez
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology and Chemistry, Stanford University, Stanford, California, USA
| | - Rada M. Savic
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy and Medicine, UCSF, San Francisco, California, USA
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Gerhard Walzl
- SAMRC Centre for Tuberculosis Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robert J. Wilkinson
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
- Wellcome Centre for Infectious Diseases Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- The Francis Crick Institute, London, United Kingdom
| | - Karen A. Lacourciere
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, and Tuberculosis Imaging Program, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| | - Sanjay K. Jain
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Pediatrics, and
| |
Collapse
|
37
|
Odia T, Malherbe ST, Meier S, Maasdorp E, Kleynhans L, du Plessis N, Loxton AG, Zak DE, Thompson E, Duffy FJ, Kuivaniemi H, Ronacher K, Winter J, Walzl G, Tromp G. The Peripheral Blood Transcriptome Is Correlated With PET Measures of Lung Inflammation During Successful Tuberculosis Treatment. Front Immunol 2021; 11:596173. [PMID: 33643286 PMCID: PMC7902901 DOI: 10.3389/fimmu.2020.596173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary tuberculosis (PTB) is characterized by lung granulomas, inflammation and tissue destruction. Here we used within-subject peripheral blood gene expression over time to correlate with the within-subject lung metabolic activity, as measured by positron emission tomography (PET) to identify biological processes and pathways underlying overall resolution of lung inflammation. We used next-generation RNA sequencing and [18F]FDG PET-CT data, collected at diagnosis, week 4, and week 24, from 75 successfully cured PTB patients, with the [18F]FDG activity as a surrogate for lung inflammation. Our linear mixed-effects models required that for each individual the slope of the line of [18F]FDG data in the outcome and the slope of the peripheral blood transcript expression data correlate, i.e., the slopes of the outcome and explanatory variables had to be similar. Of 10,295 genes that changed as a function of time, we identified 639 genes whose expression profiles correlated with decreasing [18F]FDG uptake levels in the lungs. Gene enrichment over-representation analysis revealed that numerous biological processes were significantly enriched in the 639 genes, including several well known in TB transcriptomics such as platelet degranulation and response to interferon gamma, thus validating our novel approach. Others not previously associated with TB pathobiology included smooth muscle contraction, a set of pathways related to mitochondrial function and cell death, as well as a set of pathways connecting transcription, translation and vesicle formation. We observed up-regulation in genes associated with B cells, and down-regulation in genes associated with platelet activation. We found 254 transcription factor binding sites to be enriched among the 639 gene promoters. In conclusion, we demonstrated that of the 10,295 gene expression changes in peripheral blood, only a subset of 639 genes correlated with inflammation in the lungs, and the enriched pathways provide a description of the biology of resolution of lung inflammation as detectable in peripheral blood. Surprisingly, resolution of PTB inflammation is positively correlated with smooth muscle contraction and, extending our previous observation on mitochondrial genes, shows the presence of mitochondrial stress. We focused on pathway analysis which can enable therapeutic target discovery and potential modulation of the host response to TB.
Collapse
Affiliation(s)
- Trust Odia
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.,DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa.,Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Stephanus T Malherbe
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.,DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Stuart Meier
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.,DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa.,Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Elizna Maasdorp
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.,DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa.,Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Léanie Kleynhans
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.,DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Nelita du Plessis
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.,DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Andre G Loxton
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.,DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Daniel E Zak
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Ethan Thompson
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Fergal J Duffy
- Center for Infectious Disease Research, Seattle, WA, United States.,Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.,DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Katharina Ronacher
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.,DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Translational Research Institute, Mater Research Institute - The University of Queensland, Brisbane, QLD, Australia
| | - Jill Winter
- Catalysis Foundation for Health, San Ramon, CA, United States
| | - Gerhard Walzl
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.,DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
| | - Gerard Tromp
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.,DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa.,Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
| | | |
Collapse
|
38
|
Bresser PL, Vorster M, Sathekge MM. An overview of the developments and potential applications of 68Ga-labelled PET/CT hypoxia imaging. Ann Nucl Med 2021; 35:148-158. [PMID: 33400147 DOI: 10.1007/s12149-020-01563-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022]
Abstract
Non-invasive imaging of hypoxia plays a role in monitoring the body's adaptive response or the development of pathology under hypoxic conditions. Various techniques to image hypoxia have been investigated with a shift towards the use of molecular imaging using PET/CT. The role of hypoxia-specific radiopharmaceuticals such as radiolabelled nitroimidazoles is well documented particularly in the oncologic setting. With the increasing utilisation of in-house labelling with a PET benchtop generator, such as the 68Ge/68Ga generator, the use of 68Ga-labelled hypoxic radiopharmaceuticals in the clinical setting is developing. Since hypoxia plays a role in various pathologic states including infectious disease such as TB, there is a need to explore the potential application of 68Ga-labelled hypoxia seeking radiopharmaceuticals beyond oncology. The purpose of this review is to describe the developments of 68Ga-labelled hypoxic radiopharmaceuticals including the various chelators that have been investigated. Further, the role of hypoxia imaging in various pathologies is discussed with particular emphasis on the potential clinical applications of hypoxia PET/CT in TB.
Collapse
Affiliation(s)
- Philippa L Bresser
- Department of Radiography, Faculty of Health Sciences, School of Healthcare Sciences, University of Pretoria, HW Snyman Building North, Room 4-33, Bophelo Road, Gezina, Pretoria, 0002, South Africa. .,Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Mariza Vorster
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
39
|
Reuter A, Seddon JA, Marais BJ, Furin J. Preventing tuberculosis in children: A global health emergency. Paediatr Respir Rev 2020; 36:44-51. [PMID: 32253128 DOI: 10.1016/j.prrv.2020.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
It is estimated that 20 million children are exposed to tuberculosis (TB) each year, making TB a global paediatric health emergency. TB preventative efforts have long been overlooked. With the view of achieving "TB elimination" in "our lifetime", this paper explores challenges and potential solutions in the TB prevention cascade, including identifying children who have been exposed to TB; detecting TB infection in these children; identifying those at highest risk of progressing to disease; implementing treatment of TB infection; and mobilizing multiple stakeholders support to successfully prevent TB.
Collapse
Affiliation(s)
- Anja Reuter
- Medecins Sans Frontieres, Khayelitsha, South Africa.
| | - James A Seddon
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa; Department of Infectious Diseases, Imperial College London, United Kingdom
| | - Ben J Marais
- The University of Sydney and the Children's Hospital at Westmead, Sydney, Australia
| | - Jennifer Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Singla V, Chumber S, Damle NA, Rathore YS, Singh KJ, Vyas S, Nayer J, Ranjan P. The Utility of Metabolic Imaging in Patients with Obscure Abdominal Pain: Is it Required? Indian J Surg 2020. [DOI: 10.1007/s12262-020-02111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
41
|
Kalera K, Stothard AI, Woodruff PJ, Swarts BM. The role of chemoenzymatic synthesis in advancing trehalose analogues as tools for combatting bacterial pathogens. Chem Commun (Camb) 2020; 56:11528-11547. [PMID: 32914793 PMCID: PMC7919099 DOI: 10.1039/d0cc04955g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trehalose, a disaccharide of glucose, is increasingly recognized as an important contributor to virulence in major bacterial pathogens, such as Mycobacterium tuberculosis, Clostridioides difficile, and Burkholderia pseudomallei. Accordingly, bacterial trehalose metabolic pathways that are not present in humans have gained traction as targets for antibiotic and diagnostic development. Toward this goal, trehalose can be modified through a combination of rational design and synthesis to produce functionalized trehalose analogues, which can be deployed to probe or inhibit bacterial trehalose metabolism. However, the unique α,α-1,1-glycosidic bond and C2 symmetry of trehalose make analogue synthesis via traditional chemical methods very challenging. We and others have turned to the creation of chemoenzymatic synthesis methods, which in principle allow the use of nature's trehalose-synthesizing enzymes to stereo- and regioselectively couple simple, unprotected substrates to efficiently and conveniently generate trehalose analogues. Here, we provide a contextual account of our team's development of a trehalose analogue synthesis method that employs a highly substrate-tolerant, thermostable trehalose synthase enzyme, TreT from Thermoproteus tenax. Then, in three vignettes, we highlight how chemoenzymatic synthesis has accelerated the development of trehalose-based imaging probes and inhibitors that target trehalose-utilizing bacterial pathogens. We describe the role of TreT catalysis and related methods in the development of (i) tools for in vitro and in vivo imaging of mycobacteria, (ii) anti-biofilm compounds that sensitize drug-tolerant mycobacteria to clinical anti-tubercular compounds, and (iii) degradation-resistant trehalose analogues that block trehalose metabolism in C. difficile and potentially other trehalose-utilizing bacteria. We conclude by recapping progress and discussing priorities for future research in this area, including improving the scope and scale of chemoenzymatic synthesis methods to support translational research and expanding the functionality and applicability of trehalose analogues to study and target diverse bacterial pathogens.
Collapse
Affiliation(s)
- Karishma Kalera
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| | - Alicyn I Stothard
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| | - Peter J Woodruff
- Department of Chemistry, University of Southern Maine, Portland, ME, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
42
|
Manika K, Kipourou M, Georga S, Faniadou E, Pilianidis G, Arsos G, Kioumis I. 18F-FDG PET/CT contribution to tuberculous vertebral osteomyelitis diagnosis: a case report. Oxf Med Case Reports 2020; 2020:omaa068. [PMID: 32995024 PMCID: PMC7507868 DOI: 10.1093/omcr/omaa068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/21/2020] [Indexed: 12/05/2022] Open
Abstract
Tuberculous vertebral osteomyelitis (TVO) is an extrapulmonary tuberculosis form characterized by difficulty and delay in diagnosis. PET/CT is a valuable, well-established tool in the diagnostic workup of cancer and fever of unknown origin, which is increasingly appreciated in the management of infectious diseases. We report a TVO case where PET/CT had a valuable contribution towards diagnosis and monitoring of treatment response, highlighting its advantages and future perspectives when dealing with infectious diseases.
Collapse
Affiliation(s)
- Katerina Manika
- Respiratory Infections Unit, Pulmonary Department, Aristotle University of Thessaloniki, “G. Papanikolaou” Hospital, Thessaloniki, Greece
| | - Maria Kipourou
- Pulmonary Department, 424 General Military Hospital, Thessaloniki, Greece
| | - Stamata Georga
- Nuclear Medicine Department, Aristotle University of Thessaloniki, “Papageorgiou” Hospital, Thessaloniki, Greece
| | - Eleni Faniadou
- Respiratory Infections Unit, Pulmonary Department, Aristotle University of Thessaloniki, “G. Papanikolaou” Hospital, Thessaloniki, Greece
| | - Georgios Pilianidis
- Department of Internal Medicine, “G. Papanikolaou” Hospital, Thessaloniki, Greece
| | - Georgios Arsos
- Nuclear Medicine Department, Aristotle University of Thessaloniki, “Papageorgiou” Hospital, Thessaloniki, Greece
| | - Ioannis Kioumis
- Respiratory Infections Unit, Pulmonary Department, Aristotle University of Thessaloniki, “G. Papanikolaou” Hospital, Thessaloniki, Greece
| |
Collapse
|
43
|
Signore A, Artiko V, Conserva M, Ferro-Flores G, Welling MM, Jain SK, Hess S, Sathekge M. Imaging Bacteria with Radiolabelled Probes: Is It Feasible? J Clin Med 2020; 9:2372. [PMID: 32722355 PMCID: PMC7464306 DOI: 10.3390/jcm9082372] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
Bacterial infections are the main cause of patient morbidity and mortality worldwide. Diagnosis can be difficult and delayed as well as the identification of the etiological pathogen, necessary for a tailored antibiotic therapy. Several non-invasive diagnostic procedures are available, all with pros and cons. Molecular nuclear medicine has highly contributed in this field by proposing several different radiopharmaceuticals (antimicrobial peptides, leukocytes, cytokines, antibiotics, sugars, etc.) but none proved to be highly specific for bacteria, although many agents in development look promising. Indeed, factors including the number and strain of bacteria, the infection site, and the host condition, may affect the specificity of the tested radiopharmaceuticals. At the Third European Congress on Infection/Inflammation Imaging, a round table discussion was dedicated to debate the pros and cons of different radiopharmaceuticals for imaging bacteria with the final goal to find a consensus on the most relevant research steps that should be fulfilled when testing a new probe, based on experience and cumulative published evidence.
Collapse
Affiliation(s)
- Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy;
| | - Vera Artiko
- Center for Nuclear Medicine, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 101801 Beograd, Serbia;
| | - Martina Conserva
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy;
| | - Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac 52750, Estado de Mexico, Mexico;
| | - Mick M. Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Sanjay K. Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Søren Hess
- Department of Radiology and Nuclear Medicine, Hospital South West Jutland, University Hospital of Southern Denmark, 6700 Esbjerg, Denmark;
| | - Mike Sathekge
- Nuclear Medicine Department, University of Pretoria, Pretoria 0001, South Africa;
| |
Collapse
|
44
|
Jain SK, Andronikou S, Goussard P, Antani S, Gomez-Pastrana D, Delacourt C, Starke JR, Ordonez AA, Jean-Philippe P, Browning RS, Perez-Velez CM. Advanced imaging tools for childhood tuberculosis: potential applications and research needs. THE LANCET. INFECTIOUS DISEASES 2020; 20:e289-e297. [PMID: 32589869 DOI: 10.1016/s1473-3099(20)30177-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
Tuberculosis is the leading cause of death globally that is due to a single pathogen, and up to a fifth of patients with tuberculosis in high-incidence countries are children younger than 16 years. Unfortunately, the diagnosis of childhood tuberculosis is challenging because the disease is often paucibacillary and it is difficult to obtain suitable specimens, causing poor sensitivity of currently available pathogen-based tests. Chest radiography is important for diagnostic evaluations because it detects abnormalities consistent with childhood tuberculosis, but several limitations exist in the interpretation of such results. Therefore, other imaging methods need to be systematically evaluated in children with tuberculosis, although current data suggest that when available, cross-sectional imaging, such as CT, should be considered in the diagnostic evaluation for tuberculosis in a symptomatic child. Additionally, much of the understanding of childhood tuberculosis stems from clinical specimens that might not accurately represent the lesional biology at infection sites. By providing non-invasive measures of lesional biology, advanced imaging tools could enhance the understanding of basic biology and improve on the poor sensitivity of current pathogen detection systems. Finally, there are key knowledge gaps regarding the use of imaging tools for childhood tuberculosis that we outlined in this Personal View, in conjunction with a proposed roadmap for future research.
Collapse
Affiliation(s)
- Sanjay K Jain
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Savvas Andronikou
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | - Pierre Goussard
- Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
| | - Sameer Antani
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David Gomez-Pastrana
- Unidad de Neumología Infantil, Hospital Universitario Materno-Infantil de Jerez, Jerez de la Frontera, Spain; Departamento de Pediatría, Universidad de Cádiz, Cádiz, Spain
| | - Christophe Delacourt
- Service de Pneumologie et Allergologie Pédiatriques, AP-HP, Hôpital Necker-Enfants-Malades, Paris, France; Université Paris Descartes, Université de Paris, Paris, France
| | - Jeffrey R Starke
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Alvaro A Ordonez
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Jean-Philippe
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Renee S Browning
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carlos M Perez-Velez
- Tuberculosis Clinic, Pima County Health Department, Tucson, AZ, USA; Division of Infectious Diseases, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
45
|
Abstract
A 71-year-old man with a history of high-risk prostate adenocarcinoma (Gleason score 4 + 5 = 9) treated with brachytherapy in 2016 was referred for a Ga-prostate-specific membrane antigen (PSMA)-HBED-CC PET/CT scan for suspected cancer recurrence on a background of slowly rising serum prostate-specific antigen (0.95 ng/mL; reference, <0.2 ng/mL). This revealed PSMA-avid dura-based hyperdense lesions in the brain, suggestive of cerebral metastases. Biopsy demonstrated the presence of acid-fast bacilli, and with further clinical and microbiological testing, a diagnosis of PSMA-avid cerebral tuberculous mycobacterium infection was made.
Collapse
|
46
|
Lawal IO, Stoltz AC, Sathekge MM. Molecular imaging of cardiovascular inflammation and infection in people living with HIV infection. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00370-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Foss CA, Kulik L, Ordonez AA, Jain SK, Michael Holers V, Thurman JM, Pomper MG. SPECT/CT Imaging of Mycobacterium tuberculosis Infection with [ 125I]anti-C3d mAb. Mol Imaging Biol 2020; 21:473-481. [PMID: 29998399 DOI: 10.1007/s11307-018-1228-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Diagnosis and therapeutic monitoring of chronic bacterial infection requires methods to detect and localize sites of infection accurately. Complement C3 activation fragments are generated and covalently bound to selective bacterial pathogens during the immune response and can serve as biomarkers of ongoing bacterial infection. We have developed several probes for detecting tissue-bound C3 deposits, including a monoclonal antibody (mAb 3d29) that recognizes the tissue-bound terminal processing fragments iC3b and C3d but does not recognize native circulating C3 or tissue-bound C3b. PROCEDURES To determine whether mAb 3d29 could be used to detect chronic Mycobacterium tuberculosis infection non-invasively, aerosol-infected female C3HeB/FeJ mice were injected with [125I]3d29 mAb and either imaged using single-photon emission computed tomography (SPECT)/X-ray computed tomography (CT) imaging at 24 and 48 h after radiotracer injection or being subjected to biodistribution analysis. RESULTS Discrete lesions were detected by SPECT/CT imaging in the lungs and spleens of infected mice, consistent with the location of granulomas in the infected animals as detected by CT. Low-level signal was seen in the spleens of uninfected mice and no signal was seen in the lungs of healthy mice. Immunofluorescence microscopy revealed that 3d29 in the lungs of infected mice co-localized with aggregates of macrophages (detected with anti-CD68 antibodies). 3d29 was detected in the cytoplasm of macrophages, consistent with the location of internalized M. tuberculosis. 3d29 was also present within alveolar epithelial cells, indicating that it detected M. tuberculosis phagocytosed by other CD68-positive cells. Healthy controls showed very little retention of fluorescent or radiolabeled antibody across tissues. Radiolabeled 3d29 compared with radiolabeled isotype control showed a 3.5:1 ratio of increased uptake in infected lungs, indicating specific uptake by 3d29. CONCLUSION 3d29 can be used to detect and localize areas of infection with M. tuberculosis non-invasively by 24 h after radiotracer injection and with high contrast.
Collapse
Affiliation(s)
- Catherine A Foss
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 1550 Orleans St. CRB2 493, Baltimore, MD, 21228, USA. .,Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, 21228, USA.
| | - Liudmila Kulik
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, 21228, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, 21228, USA
| | - V Michael Holers
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Joshua M Thurman
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 1550 Orleans St. CRB2 493, Baltimore, MD, 21228, USA.,Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, 21228, USA
| |
Collapse
|
48
|
Saini A, Yadav G, Gothwal M, Singh P, Kathuria P, Elhence P. Tuberculosis and ovarian malignancy: Sometimes mimics, sometimes coexists. J Obstet Gynaecol Res 2020; 46:945-949. [PMID: 32246574 DOI: 10.1111/jog.14223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/08/2020] [Indexed: 11/25/2022]
Abstract
Tuberculosis is a disease prevalent all over the world with India contributing to a larger share. Pulmonary tuberculosis presents with generalized symptoms of malaise, low grade fever and cough. On the other hand, genital tuberculosis presents with a variety of symptoms in each age group and is often underdiagnosed and missed. In an unmarried female, the usual presentations are menstrual complaints or presence of a solid cystic mass and ascites. In reproductive age group, patients may present with primary or secondary infertility or rarely with tubo-ovarian masses with peritoneal deposits, omental thickening and lymph node enlargement, hence mimicking ovarian carcinoma. In postmenopausal females, it can present as postmenopausal bleeding, leucorrhea or pyometra giving suspicion of endometrial carcinoma. We hereby report two cases operated with provisional diagnosis of ovarian malignancy but final histopathology ruled out malignancy in first and confirmed coexistence of malignancy and tuberculosis in another.
Collapse
Affiliation(s)
- Arunima Saini
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, Jodhpur, India
| | - Garima Yadav
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, Jodhpur, India
| | - Meenakshi Gothwal
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, Jodhpur, India
| | - Pratibha Singh
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, Jodhpur, India
| | - Priyanka Kathuria
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, Jodhpur, India
| | - Poonam Elhence
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
49
|
Abstract
The role of fluorodeoxyglucose (FDG)-PET/computed tomography (CT) in tuberculosis (TB) continues to expand in disease detection, assessment of the extent of the disease, and treatment response monitoring. This article reviews available data regarding the use of FDG-PET/CT in patients with TB. A new method of quantification for patients with TB is introduced. This method produces robust parameters that represent the total disease burden.
Collapse
|
50
|
Targeting immunometabolism as an anti-inflammatory strategy. Cell Res 2020; 30:300-314. [PMID: 32132672 PMCID: PMC7118080 DOI: 10.1038/s41422-020-0291-z] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
The growing field of immunometabolism has taught us how metabolic cellular reactions and processes not only provide a means to generate ATP and biosynthetic precursors, but are also a way of controlling immunity and inflammation. Metabolic reprogramming of immune cells is essential for both inflammatory as well as anti-inflammatory responses. Four anti-inflammatory therapies, DMF, Metformin, Methotrexate and Rapamycin all work by affecting metabolism and/or regulating or mimicking endogenous metabolites with anti-inflammatory effects. Evidence is emerging for the targeting of specific metabolic events as a strategy to limit inflammation in different contexts. Here we discuss these recent developments and speculate on the prospect of targeting immunometabolism in the effort to develop novel anti-inflammatory therapeutics. As accumulating evidence for roles of an intricate and elaborate network of metabolic processes, including lipid, amino acid and nucleotide metabolism provides key focal points for developing new therapies, we here turn our attention to glycolysis and the TCA cycle to provide examples of how metabolic intermediates and enzymes can provide potential novel therapeutic targets.
Collapse
|