1
|
Salinas A, Rahman MS. Exposure to metoprolol and propranolol mixtures on biochemical, immunohistochemical, and molecular alterations in the American oyster, Crassostrea virginica. Toxicol Rep 2025; 14:101979. [PMID: 40125299 PMCID: PMC11930161 DOI: 10.1016/j.toxrep.2025.101979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Pharmaceutical drugs, particularly beta-blockers (e.g., metoprolol, propranolol, etc.), are extensively used to treat human cardiovascular conditions, yet pose significant risks to non-target aquatic organisms when introduced into coastal and marine environments via wastewater effluent. This study aimed to investigate the effects of short-term exposure (one week) to environmentally relevant concentrations of metoprolol and propranolol (MP) mixtures (low-dose: 50 ng/L propranolol and 250 ng/L metoprolol, and high-dose: 250 ng/L propranolol and 650 ng/L metoprolol) in the American oyster (Crassostrea virginica, a commercially and ecologically important marine bivalve mollusk) under controlled laboratory conditions. Histopathological assessments revealed structural damage to gills, connective tissues, and digestive glands in both low- and high-dose MP treatment groups. Additionally, glucose concentration and pH of the extrapallial fluid significantly declined in the high-dose MP treatment groups. Hemocyte density in the connective tissues increased proportionally with MP dosages. MP mixtures significantly reduced mucous secretion in the gills and digestive glands. Immunohistochemical results showed significant (P < 0.05) upregulation of 3-nitrotyrosine protein (NTP, a biomarker of protein nitration) expression in tissues of oysters exposed to MP mixtures. Alongside, exposure to MP significantly (P < 0.05) decreased acetylcholinesterase (AChE, a cholinergic enzyme) expression in oyster tissues. Our findings suggest that beta-blockers induce protein nitration, leading to altered tissue morphology, disrupting extrapallial fluid homeostasis, and downregulating AChE expression that may impair physiological functions in oysters.
Collapse
Affiliation(s)
- Andrew Salinas
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
2
|
Montes C, Guerrero S, Moreno M, Henao L. Tracing antibiotics in sewers: Concentrations, measurement techniques, and mathematical approaches. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:993-1009. [PMID: 40372174 DOI: 10.2166/wst.2025.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/04/2025] [Indexed: 05/16/2025]
Abstract
Antibiotic contamination in sewer networks has significant environmental and health concerns worldwide, primarily due to its role in promoting bacterial resistance. In this literature review, antibiotic concentrations reported in urban sewers and hospital effluents, techniques for antimicrobial compound detection and quantification, and current modeling strategies are analyzed and discussed based on 91 papers published between 2014 and 2024. One-hundred and nine antibiotic compounds were reported across 80 studies, with sulfonamides, fluoroquinolones, and macrolides being the most frequently detected classes, while amphenicols and aminocyclitols were the least monitored. Advanced analytical techniques such as liquid chromatography and mass spectrometry are the most common approaches used for antibiotic quantification. Modeling efforts remain limited, with kinetic models, Risk Quotient (RQ) assessments, and Wastewater-Based Epidemiology (WBE) representing the main approaches identified. This review compiles 992 reports into a comprehensive dataset intended to support future research, especially for global monitoring, the development of predictive models, and the formulation of regulatory frameworks for managing antibiotic pollution in sewer systems.
Collapse
Affiliation(s)
- Carlos Montes
- Department of Infrastructure and Sustainability, Universidad de La Sabana, Chía 250001, Colombia E-mail:
| | - Sofia Guerrero
- Department of Infrastructure and Sustainability, Universidad de La Sabana, Chía 250001, Colombia
| | - Maria Moreno
- Department of Infrastructure and Sustainability, Universidad de La Sabana, Chía 250001, Colombia
| | - Laura Henao
- Ciencia y Tecnología de Fagos Sciphage, Mosquera, Colombia
| |
Collapse
|
3
|
Montiel-Mora JR, Lizano-Fallas V, Méndez-Rivera M, Marín-González A, Cambronero-Heinrichs JC, Rodríguez-Rodríguez CE. Individual and mixture effect of selected high-hazard pharmaceuticals on aquatic primary producers. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02885-w. [PMID: 40287884 DOI: 10.1007/s10646-025-02885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/06/2025] [Indexed: 04/29/2025]
Abstract
The extensive use of pharmaceuticals has led to their occurrence in surface waters due to insufficient treatment processes for their removal. Their environmental impact remains largely unexplored for certain trophic levels, particularly plants and algae. Pharmaceuticals often occur in mixtures with other pollutants, highlighting the need for comprehensive toxicological assessments that evaluate their combined interactions. This study evaluated the acute toxicity of four high-hazard pharmaceuticals -diphenhydramine, fluoxetine, ketoprofen, and trimethoprim- and their binary mixtures, on the green microalgae Raphidocelis subcapitata and the aquatic macrophyte Lemna gibba. For individual compounds, R. subcapitata growth rate was inhibited in all cases, with fluoxetine, ketoprofen and diphenhydramine exhibiting moderate toxicity (EC50 = 0.34, 0.14, and 4.88 mg/L, respectively), while trimethoprim showed low toxicity (EC50 = 332.35 mg/L). Similar trends were observed in L. gibba, except for diphenhydramine, which also showed low toxicity (EC50 = 26.57 mg/L). Binary mixtures demonstrated a synergistic interaction towards the microalgae in the presence of ketoprofen, except ketoprofen-trimethoprim combination (antagonism, p < 0.0001). In contrast, most interactions in L. gibba exhibited antagonism, except ketoprofen-fluoxetine (synergism, p = 0.0042). Differences were observed between the two model organisms for individual compounds and mixtures. No correlation was found between L. gibba experimental data and QSAR predictions derived from R. subcapitata. Our results highlight the need for: i. further studies including mixtures of relevant pharmaceuticals; ii. caution in the use of predictive models or extrapolation between taxa; and iii. the inclusion of fluoxetine and ketoprofen as priority compounds in future risk assessments.
Collapse
Affiliation(s)
- José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, Costa Rica
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, Montes de Oca, San José, Costa Rica
| | - Verónica Lizano-Fallas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, Costa Rica
| | | | - Juan Carlos Cambronero-Heinrichs
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, Costa Rica
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, Legnaro (PD), Italy
- Centro Nacional De Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, Costa Rica.
| |
Collapse
|
4
|
Aladekoyi OJ, Hania P, Hamza R, Gilbride KA. Legislative and precautionary approaches to managing pharmaceutical contaminants in Canadian freshwaters. WATER RESEARCH 2025; 282:123714. [PMID: 40359824 DOI: 10.1016/j.watres.2025.123714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
Pharmaceuticals are increasingly recognized as contaminants of emerging concern in aquatic environments due to their potential ecological impacts. In Canada, pharmaceutical pollution remains an under-regulated issue within federal chemical management policy. This study critically examines the extent to which Canada's Chemicals Management Plan (CMP), under the Canadian Environmental Protection Act (CEPA), addresses the risks posed by pharmaceuticals in freshwater systems. Through a review of recent legislation and scientific information, the study identifies regulatory gaps, including limitations in current wastewater treatment practices and ecological risk assessments. The CMP sets out guidelines for assessing and managing chemicals under CEPA to minimize the risks posed by toxic substances. Despite scientific evidence of toxicity to aquatic ecosystems, relatively few pharmaceuticals have been assessed under the CMP. This article explores how Canada's multi-level governments can strengthen pharmaceutical pollution governance, particularly in light of the 2023 legislative amendments to CEPA. Drawing on comparative insights from the European Union, the study emphasizes the need to integrate expanded pharmaceutical screening criteria, enhanced monitoring, and revised persistence and bioaccumulation thresholds into the CMP framework. These improvements would enable Canada to adopt a more adaptive and precautionary approach to managing pharmaceutical pollution in aquatic ecosystems while contributing to global efforts that advance sustainable water management practices.
Collapse
Affiliation(s)
- Oluwatosin J Aladekoyi
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria Street, Toronto M5B 2K3, Canada
| | - Patricia Hania
- Department of Law & Business, Toronto Metropolitan University, 350 Victoria Street, Toronto M5B 2K3, Canada; Urban Water Research Centre, Toronto Metropolitan University, 350 Victoria Street, Toronto M5B 2K3, Canada
| | - Rania Hamza
- Department of Civil Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto M5B 2K3, Canada; Urban Water Research Centre, Toronto Metropolitan University, 350 Victoria Street, Toronto M5B 2K3, Canada
| | - Kimberley A Gilbride
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria Street, Toronto M5B 2K3, Canada; Urban Water Research Centre, Toronto Metropolitan University, 350 Victoria Street, Toronto M5B 2K3, Canada.
| |
Collapse
|
5
|
Meppelink SM, Kolpin DW, LeFevre GH, Cwiertny DM, Givens CE, Green LA, Hubbard LE, Iwanowicz LR, Lane RF, Mianecki AL, O'Shea PS, Raines CD, Scott JW, Thompson DA, Wilson MC, Gray JL. Assessing microplastics, per- and polyfluoroalkyl substances (PFAS), and other contaminants of global concern in wadable agricultural streams in Iowa. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025. [PMID: 40227795 DOI: 10.1039/d4em00753k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Microplastics, per- and polyfluoroalkyl substances (PFAS), antibiotic resistance genes (ARGs), pharmaceuticals and personal care products (PPCPs), and pesticides may lead to unintended environmental contamination through many pathways in multiple matrices. This statewide, multi-matrix study of contaminants of global concern (CGCs) in agricultural streams across Iowa (United States) is the first to examine multiple CGCs in water, bed sediment, and fish to understand their occurrence in small streams located in regions of intense agriculture activity. Iowa plays a pivotal role in agriculture, with more than 85% of Iowa's landscape devoted to agriculture, making it an ideal location for determining the prevalence of CGCs to provide critical baseline exposure data. Fifteen sites were sampled across a range of predominant land uses (e.g., poultry, swine); all sites had detections of microplastics in all matrices. Concentrations of PFAS varied but were detected in water and sediment; all fish had detections of perfluorooctanesulfonate (PFOS), a type of PFAS. More than 50% of water and bed sediment samples had detections of ARGs. The most frequently detected PPCP was metformin. No sites had a cumulative exposure activity ratio greater than 1.0 for chemical exposures; 13 sites were above the 0.001 precautionary threshold. Toxicity quotients calculated using Aquatic Life Benchmarks were below the 0.1 moderate risk threshold for chemical exposures for all but one site. For fish, all sites exceeded the moderate and high-risk thresholds proposed for microplastic particles for food dilution (both chronic and acute exposures) and all sites exceeded the microplastic moderate threshold proposed for chronic tissue translocation, and two sites exceeded the threshold for acute tissue translocation.
Collapse
Affiliation(s)
- Shannon M Meppelink
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, Iowa 52240, USA.
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, Iowa 52240, USA.
| | - Gregory H LeFevre
- Civil & Environmental Engineering, University of Iowa, Iowa City, Iowa 52240, USA.
| | - David M Cwiertny
- Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, Iowa 52240, USA
| | - Carrie E Givens
- U.S. Geological Survey, Upper Midwest Water Science Center, Lansing, Michigan 48911, USA
| | - Lee Ann Green
- Illinois Sustainable Technology Center, University of Illinois, Urbana, Illinois 61801, USA
| | - Laura E Hubbard
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin 53726, USA
| | - Luke R Iwanowicz
- U.S. Department of Agriculture, Agricultural Research Service, Kearneysville, West Virginia 25430, USA
| | - Rachael F Lane
- U.S. Geological Survey, Central Plains Water Science Center, Organic Geochemistry Research Laboratory, Lawrence, Kansas 66049, USA
| | - Alyssa L Mianecki
- Civil & Environmental Engineering, University of Iowa, Iowa City, Iowa 52240, USA.
| | - Padraic S O'Shea
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, Iowa 52240, USA.
| | - Clayton D Raines
- U.S. Geological Survey, Eastern Ecological Science Center, Kearneysville, West Virginia 25430, USA
| | - John W Scott
- Illinois Sustainable Technology Center, University of Illinois, Urbana, Illinois 61801, USA
| | - Darrin A Thompson
- Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, Iowa 52240, USA
| | - Michaelah C Wilson
- U.S. Geological Survey, Central Plains Water Science Center, Organic Geochemistry Research Laboratory, Lawrence, Kansas 66049, USA
| | - James L Gray
- U.S. Geological Survey, Laboratory and Analytical Services Division, Lakewood, Colorado 80225, USA
| |
Collapse
|
6
|
Teysseire FX, Cabana H, Huot Y, Segura PA. National scale assessment of the occurrence and risk of trace organic contaminants in Canadian Lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178569. [PMID: 39848152 DOI: 10.1016/j.scitotenv.2025.178569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
In Canada studies on the presence of trace organic contaminants (TrOCs) such as pharmaceuticals, personal care products, pesticides and flame retardants in lakes have primarily focused on the water column at localized scales. To address this gap, the occurrence of 44 TrOCs, representative of various types of human activities, was investigated in surface sediments (0-2 cm) from 193 lakes across Canada. A total of 28 targeted TrOCs were detected, with 99.5 % of the samples containing at least one detection, and one lake exhibiting up to 12 detections. The most frequently detected contaminants (> 20 % of samples) were the insect-repellent diethyltoluamide (DEET), the UV filter oxybenzone, the flame retardants tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP), and triphenyl phosphate (TPP), the stimulant caffeine, and cotinine, a metabolite of the stimulant nicotine. Median reported concentrations of the targeted TrOCs ranged from 0.017 pg g-1 to 359 ng g-1, with a maximum value of 23,700 ng g-1 observed for DEET in one lake. The geographic distribution of analyte concentrations varied by compound class: pharmaceuticals and consumer product additives were predominantly found in the more urbanized regions of Ontario and Quebec, whereas personal care products such as DEET and oxybenzone were more frequently detected in the western provinces of Canada. An environmental risk assessment based on an additive model conducted on three aquatic organisms (algae, cladocerans, and fish) revealed that 4 % and 6 % of the lakes posed a potentially high risk for cladocerans and algae, respectively. A geographical analysis indicated that lakes in the south of the eastern provinces of Canada presented the highest risks for all three species. These findings represent the first large-scale results detailing the extent of contamination caused by TrOCs on Canadian lake sediments. They establish reference levels that can guide future monitoring efforts and inform policy discussions aimed at protecting lake ecosystems.
Collapse
Affiliation(s)
- François-Xavier Teysseire
- Department of Chemistry, Université de Sherbrooke, Sherbrooke, QC, Canada; Université de Sherbrooke Water Research Group (GREAUS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hubert Cabana
- Department of Civil Engineering and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada; Université de Sherbrooke Water Research Group (GREAUS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Yannick Huot
- Department of Applied Geomatics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pedro A Segura
- Department of Chemistry, Université de Sherbrooke, Sherbrooke, QC, Canada; Université de Sherbrooke Water Research Group (GREAUS), Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
7
|
Manbohi A, Rahnama R, Taheri M, Hamzeh MA, Hamzehpour A. Antibiotics in surface waters of the south caspian sea: Occurrence, spatial distribution and ecological risks. ENVIRONMENTAL RESEARCH 2024; 261:119709. [PMID: 39084508 DOI: 10.1016/j.envres.2024.119709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Marine environments play a crucial role in absorbing land-based pollutants. While the presence of pharmaceuticals in various marine settings worldwide is well-documented, there is a lack of data regarding pharmaceutical occurrence in the south Caspian Sea. This study examined the presence and spatial distribution of 14 antibiotics in the surface waters of the south Caspian Sea during summer of 2020. Our findings revealed that antibiotics were widespread in this region, with total concentrations reaching up to 3499.9 ng/L. The detection frequencies of the studied antibiotics ranging from 22.0% to 67.0%. Trimethoprim, ofloxacin, and sulfamethoxazole were commonly detected, with detection frequencies exceeding 56.0%. Ofloxacin (235.8 ng/L) and Erythromycin-H2O (2.3 ng/L) had the highest and lowest detected concentrations among the studied antibiotics. Furthermore, fluoroquinolones exhibited notably higher concentrations compared to other antibiotic groups. The highest concentrations of most antibiotics were found in surface waters collected from Ramsar and Chalus stations, located in the middle section of the coastline. Across all transects, the distribution of antibiotics exhibited a decreasing trend towards the sea, indicating that coastal and inland aquaculture, as well as municipal wastewaters, were probably the primary sources of antibiotics in this area. Multivariate analysis revealed that antibiotics, phosphate, nitrate, and COD were all positively correlated with stations Ram-1, Ram-20, Cha-1, Cha-20, and Tor-1, where the highest antibiotic levels were recorded. Risk assessment indicated that clarithromycin, ofloxacin and enrofloxacin posed medium to high risks to aquatic organisms. These findings offer essential baseline information and valuable insights for the comparative assessment of future antibiotic data in the south Caspian Sea.
Collapse
Affiliation(s)
- Ahmad Manbohi
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran.
| | - Reza Rahnama
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran
| | - Mehrshad Taheri
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran
| | - Mohammad Ali Hamzeh
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran
| | - Ali Hamzehpour
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran
| |
Collapse
|
8
|
Montiel-Mora JR, Méndez-Rivera M, Ramírez-Morales D, Cambronero-Heinrichs JC, Rodríguez-Rodríguez CE. Toxicity of selected pharmaceuticals and their mixtures to the aquatic indicators Daphnia magna and Aliivibrio fischeri. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1047-1061. [PMID: 39264549 DOI: 10.1007/s10646-024-02798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
Despite the benefits derived from the use of pharmaceuticals, these compounds are currently considered contaminants of emerging concern because of their presence and persistence in the environment. This study aimed to determine the toxicity of 27 pharmaceuticals and the interaction effects of binary mixtures of selected compounds towards two model organisms: the microcrustacean Daphnia magna and the bacterium Aliivibrio fischeri (Microtox test). Six compounds, namely polymyxin B, polymyxin E, fluoxetine, diphenhydramine, clenbuterol and ketoprofen exhibited moderate toxicity towards D. magna. Additionally, three compounds (cefotaxime, polymyxin B, polymyxin E) also showed a moderate toxic effect on A. fischeri. The comparison of such results with model estimations showed inaccuracy in the predicted data, highlighting the relevance of experimental ecotoxicological assays. The assayed mixtures contained four selected drugs of high-hazard according to their reported concentrations in wastewater and surface water (diphenhydramine, trimethoprim, ketoprofen, and fluoxetine); data revealed interactions only in the fluoxetine-containing mixtures for D. magna, while all mixtures showed interactions (mostly synergistic) for Microtox. Chronic effects on the reproduction of D. magna were observed after exposure to fluoxetine and diphenhydramine, although higher sensitivity was determined for the latter, while the mixture of these compounds (which showed acute synergy in both models) also affected the reproduction patterns. Nonetheless, all the effects described at the acute or chronic level (for individual compounds or mixtures) were determined at concentrations higher than commonly reported at environmental levels. This work provides valuable ecotoxicological information for the risk assessment of pharmaceuticals and their mixtures in the environment.
Collapse
Affiliation(s)
- José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
| | - Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
| | - Juan Carlos Cambronero-Heinrichs
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, Legnaro, PD, 35020, Italy
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica.
| |
Collapse
|
9
|
Goodbred SL, Patiño R, Alvarez DA, Johnson D, Hannoun D, Echols KR, Jenkins JA. Fish Health Altered by Contaminants and Low Water Temperatures Compounded by Prolonged Regional Drought in the Lower Colorado River Basin, USA. TOXICS 2024; 12:708. [PMID: 39453128 PMCID: PMC11511253 DOI: 10.3390/toxics12100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
The goal of this study was to assess health of male Common Carp (carp, Cyprinus carpio) at four sites with a wide range in environmental organic contaminant (EOC) concentrations and water temperatures in Lake Mead National Recreation Area NV/AZ, US, and the potential influence of regional drought. Histological and reproductive biomarkers were measured in 17-30 carp at four sites and 130 EOCs in water per site were analyzed using passive samplers in 2010. Wide ranges among sites were noted in total EOC concentrations (>10Xs) and water temperature/degree days (10Xs). In 2007/08, total polychlorinated biphenyls (tPCBs) in fish whole bodies from Willow Beach (WB) in the free-flowing Colorado River below Hoover Dam were clearly higher than at the other sites. This was most likely due to longer exposures in colder water (12-14 °C) and fish there having the longest lifespan (up to 54 years) for carp reported in the Colorado River Basin. Calculated estrogenicity in water exceeded long-term, environmentally safe criteria of 0.1-0.4 ng/L by one to three orders of magnitude at all sites except the reference site. Low ecological screening values for four contaminants of emerging concern (CEC) in water were exceeded for one CEC in the reference site, two in WB and Las Vegas Bay and three in the most contaminated site LVW. Fish health biomarkers in WB carp had 25% lower liver glycogen, 10Xs higher testicular pigmented cell aggregates and higher sperm abnormalities than the reference site. Sperm from LVW fish also had significantly higher fragmentation of DNA, lower motility and testis had lower percent of spermatozoa, all of which can impair reproduction. Projections from a 3D water quality model performed for WB showed that EOC concentrations due to prolonged regional drought and reduced water levels could increase as high as 135%. Water temperatures by late 21st century are predicted to rise between 0.7 and 2.1 °C that could increase eutrophication, algal blooms, spread disease and decrease dissolved oxygen over 5%.
Collapse
Affiliation(s)
- Steven L. Goodbred
- U.S. Geological Survey, California Water Science Center, Sacramento, CA 95819, USA;
| | - Reynaldo Patiño
- U.S. Geological Survey, Texas Cooperative Fish & Wildlife Research Unit and Departments of Natural Resources Management and of Biological Sciences, Lubbock, TX 79409, USA;
| | - David A. Alvarez
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA; (D.A.A.); (K.R.E.)
| | - Darren Johnson
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA 70506, USA;
| | - Deena Hannoun
- Southern Nevada Water Authority, Las Vegas, NV 89106, USA;
| | - Kathy R. Echols
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA; (D.A.A.); (K.R.E.)
| | - Jill A. Jenkins
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA 70506, USA;
| |
Collapse
|
10
|
Mundi AP, Santoke H. Photodegradation of tylosin tartrate by advanced oxidation processes. Photochem Photobiol Sci 2024:10.1007/s43630-024-00621-7. [PMID: 39217268 DOI: 10.1007/s43630-024-00621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Tylosin tartrate, a macrolide antibiotic, is one of a class of emerging contaminants that have been detected in natural bodies of water since they are not easily removed by conventional treatment processes. In this study, the direct and indirect photodegradation of tylosin tartrate was analyzed to understand the role of reactive oxygen species and organic matter that may be present in surface waters. While direct photolysis caused negligible degradation (k = (9.4 ± 1.8) × 10-5 s-1), the addition of 0.4 M hydrogen peroxide (k = (2.18 ± 0.01) × 10-4 s-1) or usage of the photo-Fenton process (k = (2.96 ± 0.02) × 10-4 s-1) resulted in greater degradation. The degradation was maximized by combining tylosin tartrate with an experimentally determined optimal concentration of humic acid (15 mg/L), which readily produced singlet oxygen and increased the overall degradation (k = 1.31 ± 0.05) × 10-3 s-1) by means of indirect photolysis. Absolute pseudo-first-order bimolecular reaction rate constants for tylosin tartrate were measured with singlet oxygen [(4.7936 ± 0.0001) × 105 M-1 s-1] and hydroxyl radical [(5.2693 ± 0.0002) × 109 M-1 s-1] using competition kinetics, and when combined with data on concentration of the reactive oxygen species, showed that the hydroxyl radical makes a contribution to the degradation that is approximately eleven orders of magnitude greater than singlet oxygen.
Collapse
Affiliation(s)
- Arsh P Mundi
- Department of Chemistry and Biochemistry, California State University, 9001 Stockdale Highway, Bakersfield, CA, 93311, USA
| | - Hanoz Santoke
- Department of Chemistry and Biochemistry, California State University, 9001 Stockdale Highway, Bakersfield, CA, 93311, USA.
| |
Collapse
|
11
|
Imiuwa ME, Baynes A, Kanda R, Routledge EJ. Environmentally relevant concentrations of the tricyclic antidepressant, amitriptyline, affect feeding and reproduction in a freshwater mollusc. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116656. [PMID: 38945099 DOI: 10.1016/j.ecoenv.2024.116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Antidepressant drugs (ADDs) are one of the most extensively used pharmaceuticals globally. They act at particularly low therapeutic concentrations to modulate monoamine neurotransmission, which is one of the most evolutionary conserved pathways in both humans and animal species including invertebrates. As ADDs are widely detected in the aquatic environment at low concentrations (ng/L to low µg/L), their potential to exert drug-target mediated effects in aquatic species has raised serious concerns. Amitriptyline (AMI) is the most widely used tricyclic ADD, while monoamines, the target of ADDs, are major bioregulators of multiple key physiological processes including feeding, reproduction and behaviour in molluscs. However, the effects of AMI on feeding, reproduction and mating behaviour are unknown in molluscs despite their ecological importance, diversity and reported sensitivity to ADDs. To address this knowledge gap, we investigated the effects of environmentally relevant concentrations of AMI (0, 10, 100, 500 and 1000 ng/L) on feeding, reproduction and key locomotor behaviours, including mating, in the freshwater gastropod, Biomphalaria glabrata over a period of 28 days. To further provide insight into the sensitivity of molluscs to ADDs, AMI concentrations (exposure water and hemolymph) were determined using a novel extraction method. The Fish Plasma Model (FPM), a critical tool for prioritization assessment of pharmaceuticals with potential to cause drug target-mediated effects in fish, was then evaluated for its applicability to molluscs for the first time. Disruption of food intake (1000 ng/L) and reproductive output (500 and 1000 ng/L) were observed at particularly low hemolymph levels of AMI, whereas locomotor behaviours were unaffected. Importantly, the predicted hemolymph levels of AMI using the FPM agreed closely with the measured levels. The findings suggest that hemolymph levels of AMI may be a useful indicator of feeding and reproductive disruptions in wild population of freshwater gastropods, and confirm the applicability of the FPM to molluscs for comparative pharmaceutical hazard identification.
Collapse
Affiliation(s)
- Maurice E Imiuwa
- Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK; Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, Nigeria.
| | - Alice Baynes
- Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
| | - Rakesh Kanda
- Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
| | - Edwin J Routledge
- Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK.
| |
Collapse
|
12
|
Matesun J, Petrik L, Musvoto E, Ayinde W, Ikumi D. Limitations of wastewater treatment plants in removing trace anthropogenic biomarkers and future directions: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116610. [PMID: 38909392 DOI: 10.1016/j.ecoenv.2024.116610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/31/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
This review highlights the limitations faced by conventional wastewater treatment plants (WWTPs) in effectively removing contaminants of emerging concern (CECs), heavy metals (HMs), and Escherichia coli (E. coli). This emphasises the limitations of current treatment methods and advocates for innovative approaches to enhance the removal efficiency. By following the PRISMA guidelines, the study systematically reviewed relevant literature on detecting and remedying these pollutants in wastewater treatment facilities. Conventional wastewater treatment plants struggle to eliminate CECs, HMs, and E. coli owing to their small size, persistence, and complex nature. The review suggests upgrading WWTPs with advanced tertiary processes to significantly improve contaminant removal. This calls for cost-effective treatment parameters and standardised assessment techniques to enhance the fate of MPs in WWTPs and WRRFs. It recommends integrating insights from mass-balance model studies on MPs in WWTP to overcome modelling challenges and ensure model reliability. In conclusion, this review underscores the urgent need for advancements in wastewater treatment processes to mitigate the environmental impact of trace anthropogenic biomarkers. Future efforts should focus on conducting comprehensive studies, implementing advanced treatment methods, and optimising management practices in WWTPs and WRRFs.
Collapse
Affiliation(s)
- Joshua Matesun
- Water Research Group, New Engineering Building, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| | - Leslie Petrik
- Environmental and NanoScience Research Group, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Eustina Musvoto
- TruSense Consulting Services (Pty) Ltd, 191 Hartley Street Pretoria, South Africa
| | - Wasiu Ayinde
- Water Research Group, New Engineering Building, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - David Ikumi
- Water Research Group, New Engineering Building, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| |
Collapse
|
13
|
Khan AU, Porta GM, Riva M, Guadagnini A. In-silico mechanistic analysis of adsorption of Iodinated Contrast Media agents on graphene surface. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116506. [PMID: 38875817 DOI: 10.1016/j.ecoenv.2024.116506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
The study aims at assessing the potential of graphene-based adsorbents to reduce environmental impacts of Iodinated Contrast Media Agents (ICMs). We analyze an extensive collection of ICMs. A modeling approach resting on molecular docking and Density Functional Theory simulations is employed to examine the adsorption process at the molecular level. The study also relies on a Quantitative Structure-Activity Relationship (QSAR) modeling framework to correlate molecular properties with the adsorption energy (Ead) of ICMs, thus enabling identification of the key mechanisms underpinning adsorption and of the key factors contributing to it. A collection of distinct QSAR-based models is developed upon relying on Multiple Linear Regression and a standard genetic algorithm method. Having at our disposal multiple models enables us to take into account the uncertainty associated with model formulation. Maximum Likelihood and formal model identification/discrimination criteria (such as Bayesian and/or information theoretic criteria) are then employed to complement the traditional QSAR modeling phase. This has the advantage of (a) providing a rigorous ranking of the alternative models included in the selected set and (b) quantifying the relative degree of likelihood of each of these models through a weight or posterior probability. The resulting workflow of analysis enables one to seamlessly embed DFT and QSAR studies within a theoretical framework of analysis that explicitly takes into account model and parameter uncertainty. Our results suggest that graphene-based surfaces constitute a promising adsorbent for ICMs removal, π-π stacking being the primary mechanism behind ICM adsorption. Furthermore, our findings offer valuable insights into the potential of graphene-based adsorbent materials for effectively removing ICMs from water systems. They contribute to ascertain the significance of various factors (such as, e.g., the distribution of atomic van der Waals volumes, overall molecular complexity, the presence and arrangement of Iodine atoms, and the presence of polar functional groups) on the adsorption process.
Collapse
Affiliation(s)
- Ashfeen Ubaid Khan
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. Da Vinci, 32, Milano 20133, Italy; TAUW GmbH, Michaelkirchstraße 17-18, Berlin 10179, Germany
| | - Giovanni Michele Porta
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. Da Vinci, 32, Milano 20133, Italy
| | - Monica Riva
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. Da Vinci, 32, Milano 20133, Italy
| | - Alberto Guadagnini
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. Da Vinci, 32, Milano 20133, Italy.
| |
Collapse
|
14
|
Le Gal AS, Georges JY, Sotin C, Charrière B, Verneau O. Morphological variations and demographic responses of the Mediterranean pond turtle Mauremys leprosa to heterogeneous aquatic habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172077. [PMID: 38569955 DOI: 10.1016/j.scitotenv.2024.172077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Human activities affect terrestrial and aquatic habitats leading to changes at both individual and population levels in wild animal species. In this study, we investigated the phenotype and demographics of the Mediterranean pond turtle Mauremys leprosa (Schweigger, 1812) in contrasted environments of Southern France: two peri-urban rivers receiving effluents from wastewater treatment plants (WWTP), and another one without sewage treatment plant. Our findings revealed the presence of pesticides and pharmaceuticals in the three rivers of investigation, the highest diversities and concentrations of pollutants being found in the river subsections impacted by WWTP effluents. Principal component analysis and hierarchical clustering identified three levels of habitat quality, with different pollutant concentrations, thermal conditions, nutrient, and organic matter levels. The highest turtle densities, growth rates, and body sizes were estimated in the most disturbed habitats, suggesting potential adult benefits derived from harsh environmental conditions induced by pollution and eutrophication. Conversely, juveniles were the most abundant in the least polluted habitats, suggesting adverse effects of pollution on juvenile survival or adult reproduction. This study suggests that turtles living in polluted habitats may benefit from enhanced growth and body size, at the expense of reproductive success.
Collapse
Affiliation(s)
- Anne-Sophie Le Gal
- Université de Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, F-66860 Perpignan cedex, France; CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, F-66860 Perpignan cedex, France; Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.
| | - Jean-Yves Georges
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Christine Sotin
- Université de Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, F-66860 Perpignan cedex, France; CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, F-66860 Perpignan cedex, France
| | - Bruno Charrière
- Université de Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, F-66860 Perpignan cedex, France; CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, F-66860 Perpignan cedex, France
| | - Olivier Verneau
- Université de Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, F-66860 Perpignan cedex, France; CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 52 Avenue Paul Alduy, F-66860 Perpignan cedex, France; Unit for Environmental Sciences and Management, North-West University, Potchefstroom campus, Private Bag X6001, 20520 Potchefstroom, South Africa
| |
Collapse
|
15
|
Lentz MP, Graham DJ, van Vliet MTH. Drought impact on pharmaceuticals in surface waters in Europe: Case study for the Rhine and Elbe basins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171186. [PMID: 38408670 DOI: 10.1016/j.scitotenv.2024.171186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/20/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Hydrological droughts are expected to increase in frequency and severity in many regions due to climate change. Over the last two decades, several droughts occurred in Europe, including the 2018-drought, which showed major adverse impacts for nature and different sectoral uses (e.g. irrigation, drinking water). While drought impacts on water quantity are well studied, little understanding exists on the impacts on water quality, particularly regarding pharmaceutical concentrations in surface waters. This study investigates the impact of the 2018-drought on concentrations of four selected pharmaceuticals (carbamazepine, sulfamethoxazole, diclofenac and metoprolol) in surface waters in Europe, with a major focus on the Elbe and Rhine rivers. Monitoring data were analysed for the period of 2010-2020 to estimate the spatiotemporal patterns of pharmaceuticals and assess the concentration responses in rivers during the 2018-drought compared to reference years. Our results indicate an overall deterioration in water quality, which can be attributed to the extremely low flow and higher water temperatures (∼ + 1.5 °C and + 2.0 °C in Elbe and Rhine, respectively) during the 2018-drought. Our results show an increase in the concentrations of carbamazepine, sulfamethoxazole, and metoprolol, but reduced concentrations of diclofenac during the 2018-drought. Significant increases in carbamazepine concentrations (+45 %) were observed at 3/6 monitoring stations in the upstream part of the Elbe, which was mainly attributed to less dilution of chemical loads from wastewater treatment plants under drought conditions. However, reduced diclofenac concentrations could be attributed to increased degradation processes under higher water temperatures (R2 = 0.60). Moreover, the rainfed-dominated Elbe exhibited more severe water quality deterioration than the snowmelt-dominated Rhine river, as the Elbe's reduction in dilution capacity was larger. Our findings highlight the need to account for the impacts of climate change and associated increases in droughts in water quality management plans, to improve the provision of water of good quality for ecosystems and sectoral needs.
Collapse
Affiliation(s)
- Mark P Lentz
- Department of Physical Geography, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands
| | - Duncan J Graham
- Department of Physical Geography, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands
| | - Michelle T H van Vliet
- Department of Physical Geography, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands.
| |
Collapse
|
16
|
Vaudreuil MA, Munoz G, Vo Duy S, Sauvé S. Tracking down pharmaceutical pollution in surface waters of the St. Lawrence River and its major tributaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168680. [PMID: 37996029 DOI: 10.1016/j.scitotenv.2023.168680] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
A reconnaissance survey was undertaken to evaluate the occurrence and risks of 27 pharmaceuticals and metabolites in the St. Lawrence watershed. Surface water samples were collected over a five-year period (2017-2021) along a 700-km reach of the St. Lawrence River as well as 55 tributary rivers (overall N = 406 samples). Additionally, depth water samples and sediments were collected near a major wastewater effluent. Caffeine, diclofenac, and venlafaxine were the most recurrent substances (detection rates >80 %), and extremely high levels were found near a municipal effluent (e.g., ibuprofen (860 ng/L), hydroxyibuprofen (1800 ng/L) and caffeine (7200 ng/L)). Geographical mapping and statistical analyses indicated that the St. Lawrence River water mass after the Montreal City effluent was significantly more contaminated than the other water masses, and that contamination could extend up to 70 km further downstream. This phenomenon was repeatedly observed over the five years of sampling, confirming that this is not a random trend. A slight increase in contamination was also observed near Quebec City, but concentrations rapidly declined in the estuarine transition zone. Tributaries with the highest pharmaceutical levels (ΣPharmas ∼400-900 ng/L) included the Mascouche, Saint-Régis, and Bertrand rivers, all located in the densely populated Greater Montreal area. When flowrate was factored in, the top five tributaries in terms of mass load (ΣPharmas ∼200-2000 kg/year) were the Des Prairies, Saint-François, Richelieu, Ottawa, and Yamaska rivers. All samples met the Canadian Water Quality Guideline for carbamazepine. Despite the large dilution effect of the St. Lawrence River, a risk quotient approach based on freshwater PNEC values suggested that four compounds (caffeine, carbamazepine, diclofenac, and ibuprofen) could present intermediate to high risks for aquatic organisms in terms of chronic exposure.
Collapse
Affiliation(s)
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
17
|
Cangola J, Abagale FK, Cobbina SJ. A systematic review of pharmaceutical and personal care products as emerging contaminants in waters: The panorama of West Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168633. [PMID: 37981152 DOI: 10.1016/j.scitotenv.2023.168633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Pharmaceutical and Personal Care Products (PPCPs) are widely used to prevent or treat human and animal diseases, thereby improving the quality of daily life. Poor management of post-consumer products is recognized worldwide, as they negatively affect the ecosystems where they are discharged. The first action to prevent negative impacts is the state of knowledge regarding their occurrence. This paper critically reports the panorama of West Africa in terms of PPCPs occurrence in different water sources. To achieve this objective, a systematic review was conducted on PPCPs in West Africa following the PRISMA guidelines. Databases, including African Journals Online, PubMed, Google Scholar, Scopus, and Dimensions, were used for this search. Thirty-five articles, representing 58 % of West African countries, were selected according to the inclusion and exclusion criteria. Of these articles, one included data from multiple West African countries, while the remaining 34 exclusively focused on Benin, Cameroon, Ghana, and Nigeria. The results revealed a variety of PPCPs investigated, about 27 groups and 112 compounds, with greater emphasis on antibiotics, analgesics and PSHXEs. HPLC was the predominant analytical method used, resulting in total concentrations of PPCPs in the range of 200,000 to 3,200,000 ng/L in drinking water, 12 to 700,000 ng/L in groundwater, 0.42 to 107,800,000 ng/L in surface water, 8.5 to 121,310,000 ng/L in wastewater, and 440 to 421,700 ng/L in tap water. Ghana, Nigeria and Cameroon reported the highest number of PPCPs investigated and consequently the highest concentration of cases. These compounds present a high potential ecological risk, with >50 % exceeding the risk quotient limit. Therefore, West Africa as a community needs integrated approaches and strategies to monitor water, especially transboundary resources. This review is timely and provides pertinent information to policymakers and researchers on PPCPs in water.
Collapse
Affiliation(s)
- Jenita Cangola
- West African Centre for Water, Irrigation and Sustainable Agriculture (WACWISA), University for Development Studies, P. O. Box TL 1882, Tamale, Ghana; Department of Environment and Sustainability Sciences, University for Development Studies, Tamale, Ghana.
| | - Felix K Abagale
- West African Centre for Water, Irrigation and Sustainable Agriculture (WACWISA), University for Development Studies, P. O. Box TL 1882, Tamale, Ghana; Department of Agricultural Engineering, University for Development Studies, P. O. Box TL 1882, Tamale, Ghana
| | - Samuel J Cobbina
- West African Centre for Water, Irrigation and Sustainable Agriculture (WACWISA), University for Development Studies, P. O. Box TL 1882, Tamale, Ghana; Department of Environment and Sustainability Sciences, University for Development Studies, Tamale, Ghana
| |
Collapse
|
18
|
Yabalak E, Aminzai MT, Gizir AM, Yang Y. A Review: Subcritical Water Extraction of Organic Pollutants from Environmental Matrices. Molecules 2024; 29:258. [PMID: 38202840 PMCID: PMC10780272 DOI: 10.3390/molecules29010258] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Most organic pollutants are serious environmental concerns globally due to their resistance to biological, chemical, and photolytic degradation. The vast array of uses of organic compounds in daily life causes a massive annual release of these substances into the air, water, and soil. Typical examples of these substances include pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Since they are persistent and hazardous in the environment, as well as bio-accumulative, sensitive and efficient extraction and detection techniques are required to estimate the level of pollution and assess the ecological consequences. A wide variety of extraction methods, including pressurized liquid extraction, microwave-assisted extraction, supercritical fluid extraction, and subcritical water extraction, have been recently used for the extraction of organic pollutants from the environment. However, subcritical water has proven to be the most effective approach for the extraction of a wide range of organic pollutants from the environment. In this review article, we provide a brief overview of the subcritical water extraction technique and its application to the extraction of PAHs, PCBs, pesticides, pharmaceuticals, and others form environmental matrices. Furthermore, we briefly discuss the influence of key extraction parameters, such as extraction time, pressure, and temperature, on extraction efficiency and recovery.
Collapse
Affiliation(s)
- Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, TR-33343 Mersin, Türkiye
| | - Mohammad Tahir Aminzai
- Department of Organic Chemistry, Faculty of Chemistry, Kabul University, Kabul 1006, Afghanistan;
| | - Ahmet Murat Gizir
- Department of Chemistry, Faculty of Science, Mersin University, TR-33343 Mersin, Türkiye;
| | - Yu Yang
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
19
|
Loganathan P, Vigneswaran S, Kandasamy J, Cuprys AK, Maletskyi Z, Ratnaweera H. Treatment Trends and Combined Methods in Removing Pharmaceuticals and Personal Care Products from Wastewater-A Review. MEMBRANES 2023; 13:158. [PMID: 36837661 PMCID: PMC9960457 DOI: 10.3390/membranes13020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
When discharged into wastewater, pharmaceuticals and personal care products (PPCPs) become microorganic contaminants and are among the largest groups of emerging pollutants. Human, animal, and aquatic organisms' exposures to PPCPs have linked them to an array of carcinogenic, mutagenic, and reproductive toxicity risks. For this reason, various methods are being implemented to remove them from water bodies. This report critically reviews these methods and suggests improvements to removal strategies. Biological, physical, and chemical methods such as biological degradation, adsorption, membrane filtration, and advanced electrical and chemical oxidation are the common methods used. However, these processes were not integrated into most studies to take advantage of the different mechanisms specific to each process and are synergistic in the removal of the PPCPs that differ in their physical and chemical characteristics (charge, molecular weight, hydrophobicity, hydrogen bonding, structure). In the review articles published to date, very little information is available on the use of such integrated methods for removing PPCPs. This report attempts to fill this gap with our knowledge.
Collapse
Affiliation(s)
- Paripurnanda Loganathan
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007, Australia
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007, Australia
- Faculty of Sciences and Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Jaya Kandasamy
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007, Australia
| | - Agnieszka Katarzyna Cuprys
- Faculty of Sciences and Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Zakhar Maletskyi
- Faculty of Sciences and Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Harsha Ratnaweera
- Faculty of Sciences and Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| |
Collapse
|
20
|
Nanusha MY, Frøkjær EE, Liigand J, Christensen MR, Hansen HR, Hansen M. Unravelling the occurrence of trace contaminants in surface waters using semi-quantitative suspected non-target screening analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120346. [PMID: 36202272 DOI: 10.1016/j.envpol.2022.120346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Several classes of anthropogenic chemicals such as pesticides and pharmaceuticals are frequently used in human-related life activities and are discharged into the aquatic environment. These compounds can exert an unknown effect on aquatic life and humans if the water is used for human consumption. Thus, unravelling their occurrence in the aquatic system is crucial for the well-being of life and monitoring purposes. To this end, we used nanoflow-liquid and ion-exchange chromatography hyphenated with orbitrap high-resolution tandem mass spectrometry to detect several thousands of features (chemical entities) in surface water. Later, the features were narrowed down to a few focused lists using a stepwise filtering strategy, for which the structural elucidation was made. Accordingly, the chemical structure was confirmed for 83 compounds from different application areas, mainly being pharmaceuticals, pesticides, and other multiple application industrial compounds and xenobiotic degradation products. The compounds with the highest concentration were lamotrigine (27.6 μg/L), valsartan (14.4 μg/L), and ibuprofen (12.7 μg/L). Some compounds such as prosulfocarb, fluopyram, and tris(3-chloropropyl) phosphate were found to be the most abundant and widespread contaminants. Of the 32 sampling sites, nearly half of the sites (47%) contained more than 30 different compounds. Two sampling sites were far more contaminated than other sites based on the estimated concentration and the number of identified contaminants they contained. Our triplicate analysis revealed a low relative standard deviation between replicates, advocating for the added value in analysing more sampling sites instead of sample repetition. Overall, our study elucidated the occurrence of organic contaminants from a variety of sources in the aquatic environment. Furthermore, our findings highlighted the role of suspected non-target screening in exposing a snapshot of the chemical composition of surface water and the localized possible contamination sources.
Collapse
Affiliation(s)
- Mulatu Yohannes Nanusha
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Emil Egede Frøkjær
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Jaanus Liigand
- Quantem Analytics OÜ, Narva mnt 149-8, Tartu, 51008, Estonia
| | | | - Helle Rüsz Hansen
- Danish Environmental Protection Agency, Tolderlundsvej 5, 5000, Odense C, Denmark
| | - Martin Hansen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| |
Collapse
|
21
|
Foster G, Leahigh A, Huff T. Surface Water Processes Influencing Alterations in Pharmaceutical Chemical Composition following Wastewater Discharge into a Freshwater Estuary. TOXICS 2022; 10:toxics10110702. [PMID: 36422910 PMCID: PMC9696070 DOI: 10.3390/toxics10110702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 06/02/2023]
Abstract
The tidal freshwater Potomac River (TFPR) in the metropolitan Washington, DC region receives wastewater discharge from eight major wastewater treatment plants with the potential to impact water quality. A total of 85 pharmaceutical chemicals and personal care products (PPCPs) were analyzed in surface water and sediments using solid-phase extraction and QuEChERS, respectively, in conjunction with liquid-chromatography tandem mass spectrometry-multiple reaction monitoring quantitation (LC-MS/MS-MRM). A total of 52 PPCPs were quantified in both surface water and sediment. The most frequently quantified PPCPs in water included caffeine, fexofenadine, nicotine, sulfamethoxazole, hydrochlorothiazide, MDA, desvenlafaxine, and metoprolol ranging from 10 to 360 ng/L, and in sediment included diphenhydramine, escitalopram, desvenlafaxine, fexofenadine, sertraline and triclocarban ranging from 20 to 120 ng/g (dry weight). Comparisons of PPCP constituents in WTP discharge and adjacent surface water showed altered compositions reflecting dispersal and transformation processes acted quickly following contact of effluent with surface water. Although the PPCPs were present at their greatest concentrations in surface water near the WTP discharge zones, PPCP concentrations rapidly attenuated yielding mainstem TFPR concentrations relatively consistent along the freshwater reach of the tidal range in the estuary. The PPCP concentrations in sediment maximized in the tributary shoals, but also decreased in the mainstem TFPR similarly to surface water. Compositional analysis showed sorption to geosolids was the most important factor in the loss of PPCPs following WTP discharge in the tributary embayments.
Collapse
Affiliation(s)
- Gregory Foster
- Department of Chemistry and Biochemistry, Potomac Environmental Education and Research Center at the Potomac Science Center, George Mason University, Woodbridge, VA 22191, USA
| | - Arion Leahigh
- Department of Chemistry and Biochemistry, Potomac Environmental Education and Research Center at the Potomac Science Center, George Mason University, Woodbridge, VA 22191, USA
| | - Thomas Huff
- Shared Research Instrumentation Facility, George Mason University, Manassas, VA 20110, USA
| |
Collapse
|
22
|
Ojo BO, Arotiba OA, Mabuba N. Evaluation of FTO-BaTiO3/NiTiO3 electrode towards sonoelectrochemical degradation of emerging pharmaceutical contaminants in water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Ramírez-Morales D, Fajardo-Romero D, Rodríguez-Rodríguez CE, Cedergreen N. Single and mixture toxicity of selected pharmaceuticals to the aquatic macrophyte Lemna minor. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:714-724. [PMID: 35348978 DOI: 10.1007/s10646-022-02537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Plants represent uncommon targets to evaluate pharmaceuticals toxicity. In this work, Lemna minor was employed as a plant model to determine the toxicity of selected pharmaceuticals, and to assay if such toxicity could be predicted by QSAR models based on green algae. Among eight compounds, measurable toxicity was determined for ketoprofen (EC50 = 11.8 ± 1.9 mg/L), fluoxetine (EC50 = 27.0 ± 8.7 mg/L) and clindamycin 2-phosphate (EC50 = 57.7 ± 1.7 mg/L). Even though a correlation of r2 = 0.87 was observed between experimental toxicity towards algae and L. minor, QSAR estimations based on algae data poorly predicted the toxicity of pharmaceuticals on the plant. More experimental data for L. minor are necessary to determine the applicability of these predictions; nonetheless, these results remark the importance of measuring experimental ecotoxicological parameters for individual taxa. The toxicity of pharmaceutical binary mixtures (ketoprofen, fluoxetine and clindamycin) revealed in some cases deviations from the concentration addition model; nonetheless these deviations were small, thus the interactions are unlikely to be of severe biological significance. Moreover, the EC50 concentrations determined for these pharmaceuticals are significantly higher than those detected in the environment, suggesting that acute effects on L. minor would not take place at ecosystem level.
Collapse
Affiliation(s)
- Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental, Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Daniela Fajardo-Romero
- Centro de Investigación en Contaminación Ambiental, Universidad de Costa Rica, 2060, San José, Costa Rica
| | | | - Nina Cedergreen
- University of Copenhagen, Department of Plant and Environmental Science, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| |
Collapse
|
24
|
Bavumiragira JP, Ge J, Yin H. Fate and transport of pharmaceuticals in water systems: A processes review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153635. [PMID: 35124044 DOI: 10.1016/j.scitotenv.2022.153635] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals are globally consumed by humans and animals to support daily health and to treat disease. Following consumption, they may reach the aquatic environment either directly through the discharge of untreated wastewater to water bodies, or indirectly via treated wastewater as a result of their incomplete removal from wastewater treatment plants. This paper reviews the processes that control the occurrence and fate of pharmaceuticals in water systems, including sorption, photodegradation, hydrolysis and biodegradation. The degree to which these four processes occur is influenced by pharmaceutical types and their chemical structure as well as environmental factors such as sunlight, water depth, organic matter content, water chemistry, sediment properties, and type and abundance of microorganisms. Depending on the complex interactions of these factors, pharmaceutical compounds may be mineralized, partially degraded, or remain intact because they are resistant to degradation. Kinetic rate parameters and the half-life of a variety of pharmaceutical products are provided herein for the above processes under different environmental conditions. Usually, photodegradation and biodegradation represent dominant reaction processes, while hydrolysis only affects some pharmaceuticals, particularly antibiotics. The identified sorption and reaction rate parameters can be incorporated into a concise modeling framework to assess and predict longitudinal concentration profiles of pharmaceutical products in the manmade and natural systems, particularly when large amounts of pharmaceuticals are discharged during abnormal events such as a virus outbreak. Finally, future research is suggested, including the fate of transformed products (intermediates) in water systems.
Collapse
Affiliation(s)
- Jean Pierre Bavumiragira
- UNEP-Tongji Institute of Environment for Sustainable Development, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Jia'ning Ge
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Hailong Yin
- UNEP-Tongji Institute of Environment for Sustainable Development, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China.
| |
Collapse
|
25
|
Moreira DG, Aires A, de Lourdes Pereira M, Oliveira M. Levels and effects of antidepressant drugs to aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109322. [PMID: 35272041 DOI: 10.1016/j.cbpc.2022.109322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/18/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022]
Abstract
The use of antidepressants has been increasing globally, resulting in their presence in the aquatic environment, mainly by municipal wastewaters. This fact has aroused concern in the scientific community since these biologically active compounds can affect non-target organisms that have physiological systems regulated by these pharmaceuticals. However, the current knowledge on the toxicological effects of antidepressants on aquatic ecosystems is limited. Considering the increasing consumption pattern, quantification studies and toxicity studies, the present work aimed to review the available literature, published in the last seven years, addressing levels of antidepressants and their metabolites in rivers, surface waters, tap water, and wastewater treatment plants, as well, the effects reported in fish and invertebrates. Overall, the available laboratory studies showed that antidepressants can act at different levels of biological organisation, with detrimental effects at the individual level (e.g., survival, growth, and morphology, behaviour, and reproduction). However, the effects of prolonged exposures to environmentally relevant concentrations of these substances, a more realistic scenario, are unknown. Based on short-term studies, the long-term effects of pharmaceuticals at environmentally relevant concentrations (alone and in the presence of other environmental contaminants) should be studied.
Collapse
Affiliation(s)
| | - Ana Aires
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria de Lourdes Pereira
- CICECO - Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Oliveira
- Centre for Marine and Environmental Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
26
|
Ortúzar M, Esterhuizen M, Olicón-Hernández DR, González-López J, Aranda E. Pharmaceutical Pollution in Aquatic Environments: A Concise Review of Environmental Impacts and Bioremediation Systems. Front Microbiol 2022; 13:869332. [PMID: 35558129 PMCID: PMC9087044 DOI: 10.3389/fmicb.2022.869332] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of emerging contaminants in the environment, such as pharmaceuticals, is a growing global concern. The excessive use of medication globally, together with the recalcitrance of pharmaceuticals in traditional wastewater treatment systems, has caused these compounds to present a severe environmental problem. In recent years, the increase in their availability, access and use of drugs has caused concentrations in water bodies to rise substantially. Considered as emerging contaminants, pharmaceuticals represent a challenge in the field of environmental remediation; therefore, alternative add-on systems for traditional wastewater treatment plants are continuously being developed to mitigate their impact and reduce their effects on the environment and human health. In this review, we describe the current status and impact of pharmaceutical compounds as emerging contaminants, focusing on their presence in water bodies, and analyzing the development of bioremediation systems, especially mycoremediation, for the removal of these pharmaceutical compounds with a special focus on fungal technologies.
Collapse
Affiliation(s)
- Maite Ortúzar
- Department of Microbiology and Genetics, Edificio Departamental, University of Salamanca, Salamanca, Spain
| | - Maranda Esterhuizen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Finland and Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland.,Joint Laboratory of Applied Ecotoxicology, Korea Institute of Science and Technology Europe, Saarbrücken, Germany.,University of Manitoba, Clayton H. Riddell Faculty of Environment, Earth, and Resources, Winnipeg, MB, Canada
| | - Darío Rafael Olicón-Hernández
- Instituto Politécnico Nacional, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Jesús González-López
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Elisabet Aranda
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
27
|
Adeleye AS, Xue J, Zhao Y, Taylor AA, Zenobio JE, Sun Y, Han Z, Salawu OA, Zhu Y. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127284. [PMID: 34655870 DOI: 10.1016/j.jhazmat.2021.127284] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are found in wastewater, and thus, the environment. In this study, current knowledge about the occurrence and fate of PPCPs in aquatic systems-including wastewater treatment plants (WWTPs) and natural waters around the world-is critically reviewed to inform the state of the science and highlight existing knowledge gaps. Excretion by humans is the primary route of PPCPs entry into municipal wastewater systems, but significant contributions also occur through emissions from hospitals, PPCPs manufacturers, and agriculture. Abundance of PPCPs in raw wastewater is influenced by several factors, including the population density and demography served by WWTPs, presence of hospitals and drugs manufacturers in the sewershed, disease burden of the population served, local regulations, and climatic conditions. Based on the data obtained from WWTPs, analgesics, antibiotics, and stimulants (e.g., caffeine) are the most abundant PPCPs in raw wastewater. In conventional WWTPs, most removal of PPCPs occurs during secondary treatment, and overall removal exceeds 90% for treatable PPCPs. Regardless, the total PPCP mass discharged with effluent by an average WWTP into receiving waters (7.35-20,160 g/day) is still considerable, because potential adverse effects of some PPCPs (such as ibuprofen) on aquatic organisms occur within measured concentrations found in surface waters.
Collapse
Affiliation(s)
- Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA.
| | - Jie Xue
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yixin Zhao
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Alicia A Taylor
- Ecological and Biological Sciences Practice, Exponent, Inc., Oakland, CA 94612, USA
| | - Jenny E Zenobio
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yian Sun
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA
| | - Ziwei Han
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Omobayo A Salawu
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yurong Zhu
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697-2580, USA
| |
Collapse
|
28
|
Gray A. The use of non-target high-resolution mass spectrometry screening to detect the presence of antibiotic residues in urban streams of Greensboro North Carolina. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1313-1321. [PMID: 34900268 PMCID: PMC8617101 DOI: 10.1007/s40201-021-00688-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/03/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED Antibiotic pollution in aquatic systems is a concern for human and environmental health. The concern is largely due to the global occurrence of antibiotic-resistant bacteria. From 2017 to 2018 in the NC Piedmont, 15 ion masses associated with antibiotics were detected in rural streams and groundwater. Four of these masses were confirmed to be antibiotics through target analysis (sulfamethoxazole, sulfamerazine, erythromycin, danofloxacin). Concentrations of antibiotics were as high as 1.8 μg/L. As a follow-up, antibiotic residues in urban streams sites in Greensboro, NC, USA, were investigated. Urban streams are heavily influenced by the dense populations surrounding them. In the fall, winter, and spring seasons, surface water was collected from eight sites along two urban streams. Sampling was conducted at streams sites above and below municipal hospitals and wastewater treatment facilities in the study area. At the conclusion of the survey, nine ion masses associated with antibiotics used in both human and veterinary medicine were detected from surface water collected. Three of the four antibiotics targeted in rural stream samples were detected and confirmed in urban stream samples (sulfamerazine, danofloxacin, and erythromycin). Detection frequencies of the three antibiotics ranged from 0 to 46%. Concentrations of each target antibiotic was as followed: SMX (0 to <10 ng/L), SMR (0 to <11 ng/L), DAN (0 to <20 ng/L), and ETM (0 to <15 ng/L). Each target antibiotic concentration was below our methods quantification limits. Our risk assessment analysis showed that the target antibiotics posed no risk to fish, daphnia, and green algae within this region of NC (RQ < 0.1). Compared to rural streams in this region of NC, antibiotic pollution is less prevalent in urban streams. The differences between urban and rural streams may be driven by the varying land use and suggest more research should be dedicated to monitoring these contaminants in rural areas of the United States. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-021-00688-9.
Collapse
Affiliation(s)
- Austin Gray
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC USA
- Department of Biology, Duke University, Durham, NC USA
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| |
Collapse
|
29
|
Efficiency in Ofloxacin Antibiotic Water Remediation by Magnetic Zeolites Formed Combining Pure Sources and Wastes. Processes (Basel) 2021. [DOI: 10.3390/pr9122137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this work, red mud (RM) and spinel iron oxide nanoparticles (SPIONs) were added to pure silica/alumina sources (SAs) and fly ash (FA) with the aim of synthesizing and investigating the magnetic behavior of different zeolites. SAs were used to synthesize zeolite with LTA topology (zeolite A) with the addition of both red mud and spinel iron oxide nanoparticles. FA and RM were mixed to synthesize sodalite whereas only FA with the addition of SPIONs was used to form zeolite with FAU-topology (zeolite X). All the synthetic products showed magnetic properties. However, zeolites with spinel iron oxide nanoparticles (zeolites A and X) showed ferromagnetic-like behavior. Sodalite was characterized by a reduction in saturation magnetization, whereas zeolite A with red mud displayed antiferromagnetic behavior. For the first time, all the synthetic products were tested for polluted water remediation by a persistent emerging contaminant, ofloxacin (OFL) antibiotic. The four zeolite types showed good adsorption affinity towards OFL under actual conditions (tap water, natural pH). All materials were also tested for OFL removal in real waters spiked with OFL 10 µg L−1. Satisfactory recoveries (90–92% in tap water, 83–87% in river water) were obtained for the two zeolites synthesized from industrial waste materials.
Collapse
|
30
|
Molnar E, Maasz G, Pirger Z. Environmental risk assessment of pharmaceuticals at a seasonal holiday destination in the largest freshwater shallow lake in Central Europe. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59233-59243. [PMID: 32666449 PMCID: PMC8541981 DOI: 10.1007/s11356-020-09747-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/15/2020] [Indexed: 05/19/2023]
Abstract
The presence of pharmacologically active compounds (PhACs) in surface waters poses an environmental risk of chronic exposure to nontarget organisms, which is a well-established and serious concern worldwide. Our aim was to determine the temporal changes in ecological risk quotient (RQ) based on the concentrations of 42 PhACs from six sampling sites on seven sampling dates in the water of a freshwater lake in Central Europe preferentially visited by tourists. Our hypothesis was that the environmental risk increases during the summer holiday season due to the influence of tourists. Different experimental toxicological threshold concentrations and seasonal measured environmental concentrations of 16 PhACs were applied to ecological risk assessment. RQs of 4 dominant PhACs (diclofenac, estrone [E1], estradiol [E2], and caffeine) indicated high ecological risk (RQ > 1) for freshwater ecosystems. Additionally, our results confirmed the assumptions that the high tourist season had a significant impact on the calculated RQ; however, these results are mainly due to the concentration and temporal change of particular PhACs, including diclofenac (5.3-419.4 ng/L), E1 (0.1-5.5 ng/L), and E2 (0.1-19.6 ng/L). The seasonal dependent highest RQs changed as follows: 9.80 (June 2017; E2), 1.23 (August 2017; E1), 0.43 (November 2017; E1), 0.51 (April 2018; E1), 5.58 (June 2018, diclofenac), 39.50 (August 2018; diclofenac), and 30.60 (October 2018; diclofenac).
Collapse
Affiliation(s)
- Eva Molnar
- Adaptive Neuroethology Research Group, Department of Experimental Zoology, MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, 8237, Hungary
| | - Gabor Maasz
- Adaptive Neuroethology Research Group, Department of Experimental Zoology, MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, 8237, Hungary.
| | - Zsolt Pirger
- Adaptive Neuroethology Research Group, Department of Experimental Zoology, MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, 8237, Hungary
| |
Collapse
|
31
|
Zhi H, Mianecki AL, Kolpin DW, Klaper RD, Iwanowicz LR, LeFevre GH. Tandem field and laboratory approaches to quantify attenuation mechanisms of pharmaceutical and pharmaceutical transformation products in a wastewater effluent-dominated stream. WATER RESEARCH 2021; 203:117537. [PMID: 34416647 DOI: 10.1016/j.watres.2021.117537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Evolving complex mixtures of pharmaceuticals and transformation products in effluent-dominated streams pose potential impacts to aquatic species; thus, understanding the attenuation dynamics in the field and characterizing the prominent attenuation mechanisms of pharmaceuticals and their transformation products (TPs) is critical for hazard assessments. Herein, we determined the attenuation dynamics and the associated prominent mechanisms of pharmaceuticals and their corresponding TPs via a combined long-term field study and controlled laboratory experiments. For the field study, we quantified spatiotemporal exposure concentrations of five pharmaceuticals and six associated TPs in a small, temperate-region effluent-dominated stream during baseflow conditions where the wastewater plant was the main source of pharmaceuticals. We selected four sites (upstream, at, and two progressively downstream from effluent discharge) and collected water samples at 16 time points (64 samples in total, approximately twice monthly, depending on flows) for 1 year. Concurrently, we conducted photolysis, sorption, and biodegradation batch tests under controlled conditions to determine the major attenuation mechanisms. We observed 10-fold greater attenuation rates in the field compared to batch tests, demonstrating that connecting laboratory batch tests with field measurements to enhance predictive power is a critical need. Batch systems alone, often used for assessment, are useful for determining fate processes but poorly approximate in-stream attenuation kinetics. Sorption was the dominant attenuation process (t1/2<7.7 d) for 5 of 11 compounds in the batch tests, while the other compounds (n = 6) persisted in the batch tests and along the 5.1 km stream reach. In-stream parent-to-product transformation was minimal. Differential attenuation contributed to the evolving pharmaceutical mixture and created changing exposure conditions with concomitant implications for aquatic and terrestrial biota. Tandem field and laboratory characterization can better inform modeling efforts for transport and risk assessments.
Collapse
Affiliation(s)
- Hui Zhi
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States; IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States
| | - Alyssa L Mianecki
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States; IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton St, Rm 269 Federal Building, Iowa City, IA 52240, United States
| | - Rebecca D Klaper
- University of Wisconsin-Milwaukee, Great Lakes Water Institute, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Luke R Iwanowicz
- U.S. Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road, Kearneysville, WV 25430, United States
| | - Gregory H LeFevre
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, United States; IIHR-Hydroscience & Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, United States.
| |
Collapse
|
32
|
Occurrence of Pharmaceuticals and Personal Care Products in the Water Environment of Poland: A Review. WATER 2021. [DOI: 10.3390/w13162283] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The issue of pharmaceuticals and personal care products (PPCPs) in the water environment has gained increasing interest worldwide. To determine the nature and extent of this problem for Poland, this paper presents a review of research on the presence of PPCPs in Poland, looking at results for different water samples, including wastewater (before and after treatment), landfill leachate, surface water (standing water bodies and rivers), seawater, groundwater and drinking water. The review is based on over 50 scientific articles and dissertations referring to studies of PPCPs. It also briefly outlines possible sources and the fate of PPCPs in the aquatic environment. The review of Polish research has revealed that studies have previously covered at least 39 PPCP groups (270 compounds in total). These studies focused mainly on wastewater and rivers, and only a few concerned landfill leachate and seawater. They most often reported on nonsteroidal anti-inflammatory drugs and antibiotics. The highest concentrations of the analysed PPCPs were found mainly in raw wastewater (e.g., naproxen, up to 551,960 ng/L), but they were also occasionally found in surface water (e.g., azithromycin, erythromycin, irbesartan and metoprolol) and in groundwater (e.g., N,N-diethyl-meta-toluamide, known as DEET, up to 17,280 ng/L). Extremely high concentrations of bisphenol A (up to 2,202,000 ng/L) and diclofenac (up to 108,340 ng/L) were found in landfill leachate. Although numerous substances have been detected, PPCPs are still not monitored regularly, which makes it difficult to obtain a clear understanding of their incidence in the water environment.
Collapse
|
33
|
Pereira KL, Ward MW, Wilkinson JL, Sallach JB, Bryant DJ, Dixon WJ, Hamilton JF, Lewis AC. An Automated Methodology for Non-targeted Compositional Analysis of Small Molecules in High Complexity Environmental Matrices Using Coupled Ultra Performance Liquid Chromatography Orbitrap Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7365-7375. [PMID: 34006107 PMCID: PMC8277131 DOI: 10.1021/acs.est.0c08208] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The life-critical matrices of air and water are among the most complex chemical mixtures that are ever encountered. Ultrahigh-resolution mass spectrometers, such as the Orbitrap, provide unprecedented analytical capabilities to probe the molecular composition of such matrices, but the extraction of non-targeted chemical information is impractical to perform via manual data processing. Automated non-targeted tools rapidly extract the chemical information of all detected compounds within a sample dataset. However, these methods have not been exploited in the environmental sciences. Here, we provide an automated and (for the first time) rigorously tested methodology for the non-targeted compositional analysis of environmental matrices using coupled liquid chromatography-mass spectrometric data. First, the robustness and reproducibility was tested using authentic standards, evaluating performance as a function of concentration, ionization potential, and sample complexity. The method was then used for the compositional analysis of particulate matter and surface waters collected from worldwide locations. The method detected >9600 compounds in the individual environmental samples, arising from critical pollutant sources, including carcinogenic industrial chemicals, pesticides, and pharmaceuticals among others. This methodology offers considerable advances in the environmental sciences, providing a more complete assessment of sample compositions while significantly increasing throughput.
Collapse
Affiliation(s)
- Kelly L. Pereira
- Wolfson
Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K.
- . Tel.: +44 (0)1904 321220
| | - Martyn W. Ward
- Wolfson
Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - John L. Wilkinson
- Department
of Environment and Geography, University
of York, York YO10 5NG, U.K.
| | | | - Daniel J. Bryant
- Wolfson
Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - William J. Dixon
- Wolfson
Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Jacqueline F. Hamilton
- Wolfson
Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Alastair C. Lewis
- Wolfson
Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K.
| |
Collapse
|
34
|
Xin X, Huang G, Zhang B. Review of aquatic toxicity of pharmaceuticals and personal care products to algae. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124619. [PMID: 33248823 DOI: 10.1016/j.jhazmat.2020.124619] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals and Personal Care Products (PPCPs) have been frequently detected in the environment around the world. Algae play a significant role in aquatic ecosystem, thus the influence on algae may affect the life of higher trophic organisms. This review provides a state-of-the-art overview of current research on the toxicity of PPCPs to algae. Nanoparticles, contained in personal care products, also have been considered as the ingredients of PPCPs. PPCPs could cause unexpected effects on algae and their communities. Chlorophyta and diatoms are more accessible and sensitive to PPCPs. Multiple algal endpoints should be considered to provide a complete evaluation on PPCPs toxicity. The toxicity of organic ingredients in PPCPs could be predicted through quantitative structure-activity relationship model, whereas the toxicity of nanoparticles could be predicted with limitations. Light irradiation can change the toxicity through affecting algae and PPCPs. pH and natural organic matter can affect the toxicity through changing the existence of PPCPs. For joint and tertiary toxicity, experiments could be conducted to reveal the toxic mechanism. For multiple compound mixture toxicity, concentration addition and independent addition models are preferred. However, there has no empirical models to study nanoparticle-contained mixture toxicity. Algae-based remediation is an emerging technology to prevent the release of PPCPs from water treatment plants. Although many individual algal species are identified for removing a few compounds from PPCPs, algal-bacterial photobioreactor is a preferable alternative, with higher chances for industrial applications.
Collapse
Affiliation(s)
- Xiaying Xin
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Civil Engineering, Memorial University, NL A1B 3X5, St. John's Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, SK S4S 0A2 Regina, Canada
| | - Gordon Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, SK S4S 0A2 Regina, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Civil Engineering, Memorial University, NL A1B 3X5, St. John's Canada.
| |
Collapse
|
35
|
Maasz G, Molnar E, Mayer M, Kuzma M, Takács P, Zrinyi Z, Pirger Z, Kiss T. Illicit Drugs as a Potential Risk to the Aquatic Environment of a Large Freshwater Lake after a Major Music Festival. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1491-1498. [PMID: 33502775 DOI: 10.1002/etc.4998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/15/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
The present study strengthens the view that residues of drugs of abuse may become widespread surface water contaminants following a local music festival. Overall, 10 illicit drugs were detected from the aquatic environment after the festival; cocaine and 3,4-methylenedioxymethamphetamine were present in the highest concentrations. The presence of illicit drugs and their metabolites over 3 monitored festival yr suggested that consumption of these drugs was temporally linked with events. Weather conditions seriously influenced detection of contaminants deriving from events at the lakeshore. Most of the illicit drugs retained their pharmacological activities, with a potentially adverse impact on wildlife. Environ Toxicol Chem 2021;40:1491-1498. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Gabor Maasz
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
- Soós Ernő Research and Development Center, University of Pannonia, Nagykanizsa, Hungary
| | - Eva Molnar
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
| | - Matyas Mayer
- Department of Forensic Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Monika Kuzma
- Department of Forensic Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Péter Takács
- Department of Hydrozoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
| | - Zita Zrinyi
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
- Soós Ernő Research and Development Center, University of Pannonia, Nagykanizsa, Hungary
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
| | - Tibor Kiss
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
| |
Collapse
|
36
|
Lin CH, Chen WH. Influence of water, H2O2, H2SO4, and NaOH filtration on the surface characteristics of a graphene oxide-iron (GO-Fe) membrane. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Chia MA, Lorenzi AS, Ameh I, Dauda S, Cordeiro-Araújo MK, Agee JT, Okpanachi IY, Adesalu AT. Susceptibility of phytoplankton to the increasing presence of active pharmaceutical ingredients (APIs) in the aquatic environment: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105809. [PMID: 33780670 DOI: 10.1016/j.aquatox.2021.105809] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Human and veterinary pharmaceuticals either in the form of un-metabolized, incompletely metabolized, and metabolized drugs are increasingly present in aquatic ecosystems. These active pharmaceutical ingredients from pharmaceutical industries, hospitals, agricultural, and domestic discharges find their way into water systems - where they adversely affect non-target organisms like phytoplankton. Different aspects of phytoplankton life; ranging from growth, reproduction, morphology, physiology, biochemical composition, oxidative response, proteomics, and transcriptomics are altered by pharmaceuticals. This review discusses the currently available information on the susceptibility of phytoplankton to the ever-increasing presence of pharmaceutical products in the aquatic environment by focusing on the effect of APIs on the physiology, metabolome, and proteome profiles of phytoplankton. We also highlight gaps in literature concerning the salient underlining biochemical interactions between phytoplankton communities and pharmaceuticals that require an in-depth investigation. This is all in a bid to understand the imminent dangers of the contamination of water bodies with pharmaceutical products and how this process unfavorably affects aquatic food webs.
Collapse
Affiliation(s)
| | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, DF, Brazil
| | - Ilu Ameh
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Suleiman Dauda
- Department of Botany, Ahmadu Bello University, Zaria, Nigeria; Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235. Zip Code 13.565-905, São Carlos, SP, Brazil
| | - Micheline Kézia Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Zip Code 13.418-900, Piracicaba, SP, Brazil
| | - Jerry Tersoo Agee
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | | | | |
Collapse
|
38
|
Vatovec C, Kolodinsky J, Callas P, Hart C, Gallagher K. Pharmaceutical pollution sources and solutions: Survey of human and veterinary medication purchasing, use, and disposal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112106. [PMID: 33588165 DOI: 10.1016/j.jenvman.2021.112106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/13/2021] [Accepted: 01/31/2021] [Indexed: 05/26/2023]
Abstract
Human and veterinary pharmaceuticals offer many benefits, but they also pose risks to both the environment and public health. Life-cycle stewardship of medications offers multiple strategies for minimizing the risks posed by pharmaceuticals, and further insight is required for developing best practices for pharmaceutical management. The goal of this study was to clarify points of intervention for minimizing environmental and public health risks associated with pharmaceuticals. Specifically, our objectives were to provide insight on purchasing, use, and disposal behaviors associated with human and veterinary medications. This study used a state-wide representative sample of Vermont adults (n = 421) to survey both human and veterinary pharmaceuticals as potential sources of the unintended consequences of prescribed and over-the-counter (OTC) medications. The majority (93%) of respondents had purchased some form of medication within the past twelve months, including OTC (85%), prescription (74%), and veterinary (41%) drugs. Leftover drugs of any kind were reported by 59% of respondents. While 56% of people were aware of drug take-back programs, the majority reported never being told what to do with leftover medications by their physician (78%), pharmacist (76%), or veterinarian (53%). Among all respondents, take-back programs were the most common disposal method (22%), followed by trash (19%), and flushing (9%), while 26% of respondents reported keeping unused drugs. Awareness of pharmaceutical pollution in the environment and having received information about proper disposal were both significantly associated with participation in take-back programs. These findings indicate that a large volume of drugs are going unused annually, and that only a portion of leftover medications are returned to take-back programs where they can be appropriately disposed. Our results warrant further investigation of clinical interventions that support lower dose prescribing and dispensing practices in order to reduce the unintended environmental and public health consequences of pharmaceuticals within the consumer sphere. In addition, our findings suggest that directed efforts to raise awareness of proper disposal may be more effective than broad awareness campaigns, and we recommend research on the efficacy of providing disposal instructions on drug packaging.
Collapse
Affiliation(s)
- Christine Vatovec
- Gund Institute for Environment & Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| | - Jane Kolodinsky
- Community Development and Applied Economics, University of Vermont, Burlington, VT, USA
| | - Peter Callas
- Department of Mathematics & Statistics, University of Vermont, Burlington, VT, USA
| | - Christine Hart
- Rubenstein School of Environment & Natural Resources, University of Vermont, Burlington, VT, USA
| | - Kati Gallagher
- Community Development and Applied Economics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
39
|
Ouda M, Kadadou D, Swaidan B, Al-Othman A, Al-Asheh S, Banat F, Hasan SW. Emerging contaminants in the water bodies of the Middle East and North Africa (MENA): A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142177. [PMID: 33254914 DOI: 10.1016/j.scitotenv.2020.142177] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 05/22/2023]
Abstract
Many emerging contaminants (ECs) are not currently removed by conventional water treatment methods and consequently, often reach the aquatic environment. In the absence of proper management strategies, ECs can accumulate in water bodies, which poses potential environmental and health risks. This paper critically reviews, for the first time, the reported occurrence and treatment of ECs in the Middle Eastern and North Africa (MENA) region. The paper also provides recommendations to properly manage EC risks. In the MENA region, pharmaceuticals and personal care products (PPCPs) have been detected in surface water, seawater, groundwater, and wastewater treatment plants. A focus on surface water in the published literature suggests that studies are skewed towards worldwide trends, whereas studies on ECs in seawater are of great importance in the study region. The types of PPCPs detected in the MENA region vary, but anti-inflammatories and antibiotics dominate. In comparison, microplastics have mainly been studied in surface waters and seawater with much less focus on drinking water. The majority of microplastics in the region are secondary types resulting from the degradation of larger plastic debris; polyethylene (PE) and polypropylene (PP) fibers are the most frequently detected polymers, which are indicative of local anthropogenic sources. Research progress on ECs varies between countries, having received more attention in Iran and Tunisia. Most MENA countries have now begun monitoring water bodies for ECs; however, studies are still lacking in some countries including Sudan, Djibouti, Syria, Ethiopia, and Bahrain. Based on this review, critical knowledge gaps and research needs are identified. Countries in the MENA region require further research on a broader range of EC types. Overall, water pollution due to the use and release of ECs can be tackled by improving public awareness, public campaigns, government intervention, and advanced monitoring and treatment methods.
Collapse
Affiliation(s)
- Mariam Ouda
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Dana Kadadou
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Balsam Swaidan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Sameer Al-Asheh
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
40
|
Vrana B, Urík J, Fedorova G, Švecová H, Grabicová K, Golovko O, Randák T, Grabic R. In situ calibration of polar organic chemical integrative sampler (POCIS) for monitoring of pharmaceuticals in surface waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116121. [PMID: 33272798 DOI: 10.1016/j.envpol.2020.116121] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
POCIS is the most widely applied passive sampler of polar organic substances, because it was one of the first commercially available samplers for that purpose on the market, but also for its applicability for a wide range of substances and conditions. Its main weakness is the variability of sampling performance with exposure conditions. In our study we took a pragmatic approach and performed in situ calibration for a set of 76 pharmaceuticals and their metabolites in five sampling campaigns in surface water, covering various temperature and flow conditions. In individual campaigns, RS were calculated for up to 47 compounds ranging from 0.01 to 0.63 L d-1, with the overall median value of 0.10 L d-1. No clear changes of RS with water temperature or discharge could be found for any of the investigated substances. The absence of correlation of experimental RS with physical-chemical properties in combination with the lack of mechanistic understanding of compound uptake to POCIS implies that practical estimation of aqueous concentrations from uptake in POCIS depends on compound-specific experimental calibration data. Performance of POCIS was compared with grab sampling of water in seven field campaigns comprising multiple sampling sites, where sampling by both methods was done in parallel. The comparison showed that for 25 of 36 tested compounds more than 50% of POCIS-derived aqueous concentrations did not differ from median of grab sampling values more than by a factor of 2. Further, for 30 of 36 compounds, more than 80% of POCIS data did not differ from grab sampling data more than by a factor of 5. When accepting this level of accuracy, in situ derived sampling rates are sufficiently robust for application of POCIS for identification of spatial and temporal contamination trends in surface waters.
Collapse
Affiliation(s)
- Branislav Vrana
- Masaryk University, Faculty of Science, Centre RECETOX, Kamenice 753/5, 625 00, Brno, Czech Republic.
| | - Jakub Urík
- Masaryk University, Faculty of Science, Centre RECETOX, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Oksana Golovko
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| |
Collapse
|
41
|
Richie C. Can United States Healthcare Become Environmentally Sustainable? Towards Green Healthcare Reform. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2020; 48:643-652. [PMID: 33404336 DOI: 10.1177/1073110520979371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In 2014, the United States health care industry produced an estimated 480 million metric tons of carbon dioxide (CO2); nearly 8% of the country's total emissions. The importance of sustainability in health care - as a business reliant on fossil fuels for transportation, energy, and operational functioning - is slowly being recognized. These efforts to green health care are incomplete, since they only focus on health care structures. The therapeutic relationship is the essence of health care - not the buildings that contain the practice. As such, this article will first postulate reasons for a lack of environmental sustainability in US health care. Second, the article will focus on current green health care initiatives in the United States in which patients and physicians participate. Third, the rationale for participation in green initiatives will be explained. Fourth, the article will propose that, based on the environmental values of patients and physicians, health care insurance plans and health care insurance companies can be targeted for green health care reform, thereby closing the loop of sustainable health care delivery.
Collapse
Affiliation(s)
- Cristina Richie
- Cristina Richie, Ph.D., is a Fellow at the Institute for Advanced Studies in the Humanities at the University of Edinburgh and a Lecturer in Philosophy and Ethics of Technology at Delft University of Technology
| |
Collapse
|
42
|
Pratama D, Hsieh WC, Elmaamoun A, Lee HL, Lee T. Recovery of Active Pharmaceutical Ingredients from Unused Solid Dosage-Form Drugs. ACS OMEGA 2020; 5:29147-29157. [PMID: 33225146 PMCID: PMC7675532 DOI: 10.1021/acsomega.0c03878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/28/2020] [Indexed: 05/06/2023]
Abstract
The concept of drug recycle by recovering active pharmaceutical ingredients (APIs) from unused tablets and capsules was demonstrated using acetaminophen, tetracycline HCl, and (R,S)-(±)-ibuprofen as case examples. The recovery process comprised three core unit operations: solid-liquid extraction, filtration, and crystallization. Recovery yields of 58.7 wt %, 73.1 wt %, and 67.6 wt % for acetaminophen, tetracycline HCl, and (R,S)-(±)-ibuprofen were achieved, respectively. More importantly, all of the APIs were of high purity based on high-performance liquid chromatography assay. The crystal forms of the recovered APIs were in conformity with the standards.
Collapse
Affiliation(s)
- Dhanang
Edy Pratama
- Department
of Chemical and Materials Engineering, National
Central University, 300 Zhongda Road, Zhongli District, Taoyuan
City 32001, Taiwan, Republic of China
| | - Wen-Chen Hsieh
- Department
of Chemical and Materials Engineering, National
Central University, 300 Zhongda Road, Zhongli District, Taoyuan
City 32001, Taiwan, Republic of China
| | - Ahmed Elmaamoun
- International
Master Program in Applied Material Science, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan
City 32001, Taiwan, Republic of China
| | - Hung Lin Lee
- Department
of Chemical and Materials Engineering, National
Central University, 300 Zhongda Road, Zhongli District, Taoyuan
City 32001, Taiwan, Republic of China
| | - Tu Lee
- Department
of Chemical and Materials Engineering, National
Central University, 300 Zhongda Road, Zhongli District, Taoyuan
City 32001, Taiwan, Republic of China
- . Phone: +886-3-4227151
ext. 34204. Fax: +886-3-4252296
| |
Collapse
|
43
|
Korekar G, Kumar A, Ugale C. Occurrence, fate, persistence and remediation of caffeine: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34715-34733. [PMID: 31811612 DOI: 10.1007/s11356-019-06998-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) have gained attention in recent years due to their continuous discharge in natural waters. Their persistence in the environment has impacted flora, fauna and human being worldwide. One of the most common PPCPs is caffeine (1, 3, 7-trimethylxanthine) which acts as a stimulant to the central nervous system in humans and is found in nature in about 60 plant species, especially in coffee, tea and cacao plants. Here we discuss the evidence with respect to caffeine occurrence, its persistence and remediation in light of increasing knowledge and the impact of caffeine on the environment. Daily intake of caffeine around the world is found to increase due to the frequent introduction of new caffeinated beverages as well as increased consumption of coffee, tea and carbonated soft drinks, which has led to increase in its concentration in water bodies including agricultural soil. The caffeine concentration in different water system, studied by various authors is also described. Diverse effects of the use of caffeine on several organisms including humans are also briefly presented. Therefore, urgent attention for the removal of caffeine and its derivatives is the need of the hour. Various methods described in literature for caffeine degradation/removal is also presented. Another widely used technique in environmental remediation is molecular imprinting (MIP); however, only few MIPs have been demonstrated for caffeine which is also discussed. Regular monitoring can be useful to control toxic effects of caffeine. Graphical abstract.
Collapse
Affiliation(s)
- Girish Korekar
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra, 440010, India
| | - Anupama Kumar
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra, 440010, India.
| | - Chetna Ugale
- Department of Botany, Indira Mahavidyalaya Kalamb, Dist. Yavatmal, Maharashtra, 445401, India
| |
Collapse
|
44
|
Krzykwa JC, Sellin Jeffries MK. Comparison of behavioral assays for assessing toxicant-induced alterations in neurological function in larval fathead minnows. CHEMOSPHERE 2020; 257:126825. [PMID: 32381281 DOI: 10.1016/j.chemosphere.2020.126825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Neuroactive compounds are routinely detected in surface waters at concentrations that pose potential threats to wildlife. Exposure to neurotoxicants can adversely affect exposed organism by altering ecologically-important behaviors (e.g., feeding and predator response) that are likely to have important repercussions for populations. These compounds can elicit behavioral effects at concentrations lower than those that induce overt toxicity as indicated by mortality or decreased growth. Though a wide variety of methods have been employed to assess the behavior of early life stage fish, it is unclear which assays are best suited for identifying ecologically-relevant behavioral changes following exposures to neurotoxicants. The goal of the present study was to promote the use of behavioral assays for assessing the behavioral impacts of exposure to neurotoxic compounds by comparing the performance of different behavioral assays in larval fish. To achieve this goal, the sensitivity and practicality of three behavioral assays (i.e., feeding, optomotor response, and C-start assays) were compared in larval fathead minnows exposed to a known neurotoxicant, chlorpyrifos. There were significant alterations in the performance of fathead minnow larvae in all three behavioral assays in response to a 12-d embryo-larval exposure to chlorpyrifos. However, feeding and C-start were the most practical of the selected assays, as they took less time and allowed for larger samples sizes. Further work to standardize behavioral testing methods, and to link alterations to ecologically-relevant behaviors, will help promote the use of these assays when investigating the potential environmental impacts of neurotoxic compounds.
Collapse
Affiliation(s)
- Julie C Krzykwa
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | | |
Collapse
|
45
|
Abstract
Health promotion involves social and environmental interventions designed to benefit and protect health. It often harmfully impacts the environment through air and water pollution, medical waste, greenhouse gas emissions, and other externalities. We consider potential conflicts between health promotion and environmental protection and why and how the healthcare industry might promote health while protecting environments. After probing conflicts between promoting health and protecting the environment we highlight the essential role that environmental resources play in health and healthcare to show that environmental protection is a form of health promotion. We then explore relationships between three radical forms of health promotion and the environment: (1) lowering the human birth rate; (2) transforming the food system; and (3) genetically modifying mosquitos. We conclude that healthcare and other industries and their institutions and leaders have responsibilities to re-consider and modify their priorities, policies, and practices.
Collapse
Affiliation(s)
- Cheryl C Macpherson
- Bioethics Division, Department of Clinical Skills, St George's University, and the Windward Islands Research and Education Foundation (WINDREF), St George's, Grenada
| | - Elise Smith
- The Centre de recherche en éthique (CRÉ), and the Department of Social and Preventative Medicine, University of Montreal, Canada
| | - Travis N Rieder
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
46
|
Feng L, Li X, Chen X, Huang Y, Peng K, Huang Y, Yan Y, Chen Y. Pig manure-derived nitrogen-doped mesoporous carbon for adsorption and catalytic oxidation of tetracycline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135071. [PMID: 31796287 DOI: 10.1016/j.scitotenv.2019.135071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/01/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Ordered nitrogen-doped mesoporous carbon (NMC) was successfully synthesized with pig manure as the precursor. The resulting NMC materials exhibited excellent capacity of adsorption and potassium persulfate (PS) activation when used as catalysts for the oxidative degradation of tetracycline antibiotics (tetracycline hydrochloride (TH) as the target). For an initial TH concentration of 35 mg/L, the maximum adsorption capacity of NMC material prepared at 700 °C (NMC700) was 122.0 mg/g, and the degradation efficiency in the PS reaction system was 94.8% within 120 min. Investigation of the mechanism indicated that the NMC700 material with specific surface area (SSA) of 275.5 m2/g and 0.7% graphitic N content, provided a large amount of active sites for adsorption and catalytic oxidation of TH. Based on the results of selective degradation and electron paramagnetic resonance (EPR) experiments, a non-radical pathway for the degradation of pollutants was proposed. Chronoamperometry evaluation also supported the conclusion that the NMC material enhanced electron transfer to activate persulfate, accelerating the removal of TH.
Collapse
Affiliation(s)
- Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xuyao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xutao Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yujun Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Kangshou Peng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yuxuan Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yuanyuan Yan
- College of Chemistry and Environment Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province 224002, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
47
|
Madikizela LM, Ncube S, Chimuka L. Analysis, occurrence and removal of pharmaceuticals in African water resources: A current status. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 253:109741. [PMID: 31665691 DOI: 10.1016/j.jenvman.2019.109741] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 05/27/2023]
Abstract
Pharmaceuticals are organic compounds used in medicines for alleviation of pain. Since 2017, there has been a steady increase on the availability of information on contamination of water resources caused by pharmaceuticals in some African countries. Thus far, most environmental monitoring studies of pharmaceuticals are conducted in South Africa while there is still no available data in majority of the African countries. Therefore, the knowledge on the presence of pharmaceuticals in African water resources is still lacking. In an attempt to provide more information in this aspect, this review article seeks to critically evaluate the progress made thus far by the African scientists in the environmental monitoring and assessment of pharmaceuticals. The most studied groups of pharmaceuticals in Africa are non-steroidal anti-inflammatory drugs, antibiotics, antiretroviral drugs and steroid hormones. Various remediation studies for selected pharmaceuticals in Africa are documented in literature. In the present review, the challenges facing the African researchers or countries on providing more scientific data on the occurrence of pharmaceuticals in water are discussed. Furthermore, the gaps and recommendations for future work are given.
Collapse
Affiliation(s)
| | - Somandla Ncube
- Department of Chemistry, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| |
Collapse
|
48
|
Sathishkumar P, Meena RAA, Palanisami T, Ashokkumar V, Palvannan T, Gu FL. Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota - a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134057. [PMID: 31783460 DOI: 10.1016/j.scitotenv.2019.134057] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 05/17/2023]
Abstract
Diclofenac, a nonsteroidal anti-inflammatory drug has turned into a contaminant of emerging concern; hence, it was included in the previous Watch List of the EU Water Framework Directive. This review paper aims to highlight the metabolism of diclofenac at different trophic levels, its occurrence, ecological risks, and interactive effects in the water cycle and biota over the past two decades. Increased exposure to diclofenac not only raises health concerns for vultures, aquatic organisms, and higher plants but also causes serious threats to mammals. The ubiquitous nature of diclofenac in surface water (river, lake canal, estuary, and sea) is compared with drinking water, groundwater, and wastewater effluent in the environment. This comprehensive survey from previous studies suggests the fate of diclofenac in wastewater treatment plants (WWTPs) and may predict its persistence in the environment. This review offers evidence of fragmentary available data for the water environment, soil, sediment, and biota worldwide and supports the need for further data to address the risks associated with the presence of diclofenac in the environment. Finally, we suggest that the presence of diclofenac and its metabolites in the environment may represent a high risk because of their synergistic interactions with existing contaminants, leading to the development of drug-resistant strains and the formation of newly emerging pollutants.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China
| | | | - Thavamani Palanisami
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thayumanavan Palvannan
- Laboratory of Bioprocess and Engineering, Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
49
|
Jakab G, Szalai Z, Michalkó G, Ringer M, Filep T, Szabó L, Maász G, Pirger Z, Ferincz Á, Staszny Á, Dobosy P, Kondor AC. Thermal baths as sources of pharmaceutical and illicit drug contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:399-410. [PMID: 31792791 PMCID: PMC6974506 DOI: 10.1007/s11356-019-06633-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Despite the fact that there are tens of thousands of thermal baths in existence, knowledge about the occurrence of pharmaceutically active compounds (PhACs) in untreated thermal wastewater is very limited. Because used thermal water is typically legally discharged into surface waters without any treatment, the effluent poses environmental risks for the receiving water bodies. The aim of this study was to show the occurrence patterns and spatiotemporal characteristics of 111 PhACs in thermal wastewater. Six thermal water outflows of different thermal baths were tested in different seasons in the Budapest metropolitan region (Hungary), and diurnal analysis was performed. After solid-phase extraction, the samples were analysed and quantified by coupling supercritical fluid chromatography and mass spectrometry to perform simultaneous multi-residue drug analysis. The results confirm that water discharge pipes directly transport pharmaceuticals into surface water bodies; 34 PhACs were measured to be over the limit of quantification at least once, and 21 of them were found in more than one water sample. The local anaesthetic drug lidocaine, antiepileptic carbamazepine, analgesic derivative tramadol and illicit drug cocaine were detected in more than half of the samples. Caffeine, metoprolol and bisoprolol (cardiovascular drugs), benzoylecgonine (cocaine metabolite), diclofenac (NSAID), citalopram (antidepressant) and certain types of hormones also have a significant frequency of 30-50%. However, the occurrence and concentrations of PhACs vary according to the season and number/types of visitors. As demonstrated by the diurnal fluctuation, drug contamination of thermal waters can significantly vary, even for similar types of baths; furthermore, the quantity and types of some pollutants rapidly change in the discharged thermal wastewater.
Collapse
Affiliation(s)
- Gergely Jakab
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budaörsi út 45, Budapest, H-1112, Hungary
- Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
- Institute of Geography and Geoinformatics, University of Miskolc, Egyetemváros, Miskolc, H-3515, Hungary
| | - Zoltán Szalai
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budaörsi út 45, Budapest, H-1112, Hungary
- Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Gábor Michalkó
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budaörsi út 45, Budapest, H-1112, Hungary
- Corvinus University of Budapest, Fővám tér 8, Budapest, H-1093, Hungary
| | - Marianna Ringer
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budaörsi út 45, Budapest, H-1112, Hungary
| | - Tibor Filep
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budaörsi út 45, Budapest, H-1112, Hungary
| | - Lili Szabó
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budaörsi út 45, Budapest, H-1112, Hungary
- Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Gábor Maász
- MTA-Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kuno u. 3., Tihany, H-8237, Hungary
| | - Zsolt Pirger
- MTA-Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kuno u. 3., Tihany, H-8237, Hungary
| | - Árpád Ferincz
- Department of Aquaculture, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| | - Ádám Staszny
- Department of Aquaculture, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| | - Péter Dobosy
- MTA-Centre for Ecological Research, Danube Research Institute, Karolina út 29, Budapest, H-1113, Hungary
| | - Attila Csaba Kondor
- Geographical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budaörsi út 45, Budapest, H-1112, Hungary.
| |
Collapse
|
50
|
Guruge KS, Goswami P, Tanoue R, Nomiyama K, Wijesekara RGS, Dharmaratne TS. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:683-695. [PMID: 31301508 DOI: 10.1016/j.scitotenv.2019.07.042] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 05/24/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are known as an emerging class of water contaminants due to their potential adverse effects on aquatic ecosystems. In this study, we conducted the first nationwide survey to understand the distribution and environmental risk of 72 PPCPs in surface waterways of Sri Lanka. Forty-one out of 72 targeted compounds were detected with total concentrations ranging between 5.49 and 993 ng/L in surface waterways in Sri Lanka. The highest level of PPCP contamination was detected in an ornamental fish farm. Sulfamethoxazole was found with the highest concentration (934 ng/L) followed by N,N-diethyl-meta-toluamide (202 ng/L) and clarithromycin (119 ng/L). Diclofenac, mefenamic acid, ibuprofen, trimethoprim, and erythromycin were detected ubiquitously throughout the country. Our data revealed that hospital and domestic wastewater, and aquaculture activities potentially contribute to the presence of PPCPs in Sri Lankan waterways. The calculated risk quotients indicated that several locations face medium to high ecological risk to aquatic organisms from ibuprofen, sulfamethoxazole, diclofenac, mefenamic acid, tramadol, clarithromycin, ciprofloxacin, triclocarban, and triclosan. The aforementioned compounds could affect aquatic organisms from different trophic levels like algae, crustacean and fish, and also influence the emergence of antibiotic resistant bacteria. These findings emphasize that a wide variety of pharmaceuticals have become pervasive environmental contaminants in the country. This data will serve to expand the inventory of global PPCP pollution. Further monitoring of PPCPs is needed in Sri Lanka in order to identify PPCP point sources and to implement strategies for contaminant reduction in wastewater to protect the aquatic ecosystem, wildlife, and human health.
Collapse
Affiliation(s)
- Keerthi S Guruge
- Toxicology Unit, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, 305-0856, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan; Centre for Crop Health, University of Southern Queensland, Toowoomba Campus, QLD4350, Australia.
| | - Prasun Goswami
- Atal Centre for Ocean Science and Technology for Islands, ESSO - National Institute of Ocean Technology, Dollygunj, Port Blair, 744103, Andaman and Nicobar Islands, India
| | - Rumi Tanoue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - R G S Wijesekara
- Department of Aquaculture & Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Sri Lanka
| | - Tilak S Dharmaratne
- Ocean University of Sri Lanka, Crow Island, Mattakkuliya, Colombo 15, Sri Lanka
| |
Collapse
|