1
|
Yuan L, Liao J, Qin Y, Cai L, Zhang M, Liao J, Li D, Hou T, Sheng R. Discovery of novel tetrahydroquinoline derivatives as potent, selective, and orally Available AR antagonists. Eur J Med Chem 2025; 291:117566. [PMID: 40188583 DOI: 10.1016/j.ejmech.2025.117566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/08/2025]
Abstract
Androgen receptor (AR) antagonists are the first-line medicine for the treatment of prostate cancer (PCa) in clinic. In our previous work, the tetrahydroquinoline derivative AT2 was identified as a novel scaffold AR antagonist via virtual screening and structural modifications, while its poor pharmacokinetic properties hindered further development. Herein, we report the systematic structural optimizations of AT2 and discover a novel tetrahydroquinoline derivative C2 as potent AR antagonist with an IC50 value of 0.019 μM, accompanied with excellent selectivity over other nuclear receptors (PR, GR, MR). Further biological assays revealed that C2 significantly inhibited LNCaP cell proliferation, and efficiently reduced PSA protein expression. Especially, C2 showed superior efficacy against ARF877L/T878A mutants compared to darolutamide and enzalutamide. Furthermore, C2 demonstrated excellent oral bioavailability, indicating the potential to enhance in vivo efficacy and to serve as a promising therapeutic option for PCa treatment.
Collapse
Affiliation(s)
- Leer Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianing Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiyang Qin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lvtao Cai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321036, China
| | - Minkui Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinbiao Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321036, China.
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321036, China
| | - Rong Sheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321036, China.
| |
Collapse
|
2
|
Gokbayrak B, Altintas UB, Lingadahalli S, Morova T, Huang CCF, Ersoy Fazlioglu B, Pak Lok Yu I, Kalkan BM, Cejas P, Kung SHY, Fazli L, Kawamura A, Long HW, Acilan C, Onder TT, Bagci-Onder T, Lynch JT, Lack NA. Identification of selective SWI/SNF dependencies in enzalutamide-resistant prostate cancer. Commun Biol 2025; 8:169. [PMID: 39905188 PMCID: PMC11794516 DOI: 10.1038/s42003-024-07413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/17/2024] [Indexed: 02/06/2025] Open
Abstract
Enzalutamide is a potent second-generation antiandrogen commonly used to treat hormone-sensitive and castration-resistant prostate cancer (CRPC) patients. While initially effective, the disease almost always develops resistance. Given that many enzalutamide-resistant tumors lack specific somatic mutations, there is strong evidence that epigenetic factors can cause enzalutamide resistance. To explore how resistance arises, we systematically test all epigenetic modifiers in several models of castration-resistant and enzalutamide-resistant prostate cancer with a custom epigenetic CRISPR library. From this, we identify and validate SMARCC2, a core component of the SWI/SNF complex, that is selectivity essential in enzalutamide-resistant models. We show that the chromatin occupancy of SMARCC2 and BRG1 is expanded in enzalutamide resistance at regions that overlap with CRPC-associated transcription factors that are accessible in CRPC clinical samples. Overall, our study reveals a regulatory role for SMARCC2 in enzalutamide-resistant prostate cancer and supports the feasibility of targeting the SWI/SNF complex in late-stage PCa.
Collapse
Affiliation(s)
- Bengul Gokbayrak
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
- Department of Clinical Pharmacology, School of Medicine, Koc University, Istanbul, Turkey
| | - Umut Berkay Altintas
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Shreyas Lingadahalli
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Tunc Morova
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Chia-Chi Flora Huang
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Betul Ersoy Fazlioglu
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
- Department of Clinical Pharmacology, School of Medicine, Koc University, Istanbul, Turkey
| | - Ivan Pak Lok Yu
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Batuhan M Kalkan
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, USA
- Translational Oncology Laboratory, Hospital La Paz Institute for Health Research (IdiPAZ) and CIBERONC, La Paz University Hospital, Madrid, Spain
| | - Sonia H Y Kung
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Akane Kawamura
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle, UK
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, USA
| | - Ceyda Acilan
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Tamer T Onder
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Tugba Bagci-Onder
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - James T Lynch
- Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Nathan A Lack
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey.
- Department of Clinical Pharmacology, School of Medicine, Koc University, Istanbul, Turkey.
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
3
|
Israel JS, Marcelin LM, Mehralivand S, Scholze J, Hofmann J, Stope MB, Puhr M, Thomas C, Erb HHH. The impact of androgen-induced translation in modulating androgen receptor activity. Biol Direct 2024; 19:111. [PMID: 39529201 PMCID: PMC11555926 DOI: 10.1186/s13062-024-00550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Dysregulated androgen receptor (AR) activity is central to various diseases, particularly prostate cancer (PCa), in which it drives tumour initiation and progression. Consequently, antagonising AR activity via anti-androgens is an indispensable treatment option for metastatic PCa. However, despite initial tumour remission, drug resistance occurs. Therefore, the AR signalling pathway has been intensively investigated. However, the role of AR protein stability in AR signalling and therapy resistance has not yet been deciphered. Therefore, this study aimed to investigate the role of AR protein changes in transactivity and assess its mechanism as a possible target in PCa. METHODS LNCaP, C4-2, and 22Rv1 cells were treated with R1881, enzalutamide, cycloheximide, and Rocaglamide. Mass spectrometry analyses were performed on LNCaP cells to identify the pathways enriched by the treatments. Western blotting was performed to investigate AR protein levels and localisation changes. Changes in AR transactivity were determined by qPCR. RESULTS Mass spectrometry analyses were performed on LNCaP cells to decipher the molecular mechanisms underlying androgen- and antiandrogen-induced alterations in the AR protein. Pathway analysis revealed the enrichment of proteins involved in different pathways that regulate translation. Translational and proteasome inhibitor experiments revealed that these AR protein changes were attributable to modifications in translational activity. Interestingly, the effects on AR protein levels in castration-resistant PCa (CRPC) cells C4-2 or enzalutamide-resistant cells 22Rv1 were less prominent and non-existent. This outcome was similarly observed in the alteration of AR transactivation, which was suppressed in hormone-sensitive prostate cancer (HSPC) LNCaP cells by translational inhibition, akin to the effect of enzalutamide. In contrast, treatment-resistant cell lines showed only a slight change in AR transcription. CONCLUSION This study suggests that in HSPC, AR activation triggers a signalling cascade that increases AR protein levels by enhancing its translation rate, thereby amplifying AR activity. However, this mechanism appears to be dysregulated in castration-resistant PCa cells.
Collapse
Affiliation(s)
- Justus S Israel
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Laura-Maria Marcelin
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Sherif Mehralivand
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Jana Scholze
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Jörg Hofmann
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Matthias B Stope
- German Society of Urology, UroFors Consortium (Natural Scientists in Urological Research), 14163, Berlin, Germany
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Christian Thomas
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany.
- Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Technischen Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Holger H H Erb
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany.
- German Society of Urology, UroFors Consortium (Natural Scientists in Urological Research), 14163, Berlin, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Technischen Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
4
|
Goode EA, Orozco-Moreno M, Hodgson K, Nabilah A, Murali M, Peng Z, Merx J, Rossing E, Pijnenborg JFA, Boltje TJ, Wang N, Elliott DJ, Munkley J. Sialylation Inhibition Can Partially Revert Acquired Resistance to Enzalutamide in Prostate Cancer Cells. Cancers (Basel) 2024; 16:2953. [PMID: 39272811 PMCID: PMC11393965 DOI: 10.3390/cancers16172953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer is a lethal solid malignancy and a leading cause of cancer-related deaths in males worldwide. Treatments, including radical prostatectomy, radiotherapy, and hormone therapy, are available and have improved patient survival; however, recurrence remains a huge clinical challenge. Enzalutamide is a second-generation androgen receptor antagonist that is used to treat castrate-resistant prostate cancer. Among patients who initially respond to enzalutamide, virtually all acquire secondary resistance, and an improved understanding of the mechanisms involved is urgently needed. Aberrant glycosylation, and, in particular, alterations to sialylated glycans, have been reported as mediators of therapy resistance in cancer, but a link between tumour-associated glycans and resistance to therapy in prostate cancer has not yet been investigated. Here, using cell line models, we show that prostate cancer cells with acquired resistance to enzalutamide therapy have an upregulation of the sialyltransferase ST6 beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) and increased levels of α2,6-sialylated N-glycans. Furthermore, using the sialyltransferase inhibitor P-SiaFNEtoc, we discover that acquired resistance to enzalutamide can be partially reversed by combining enzalutamide therapy with sialic acid blockade. Our findings identify a potential role for ST6GAL1-mediated aberrant sialylation in acquired resistance to enzalutamide therapy for prostate cancer and suggest that sialic acid blockade in combination with enzalutamide may represent a novel therapeutic approach in patients with advanced disease. Our study also highlights the potential to bridge the fields of cancer biology and glycobiology to develop novel combination therapies for prostate cancer.
Collapse
Affiliation(s)
- Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Margarita Orozco-Moreno
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Kirsty Hodgson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Amirah Nabilah
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Meera Murali
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Ziqian Peng
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Jona Merx
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Emiel Rossing
- GlycoTherapeutics B.V., 6511 AJ Nijmegen, The Netherlands
| | | | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands
- GlycoTherapeutics B.V., 6511 AJ Nijmegen, The Netherlands
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield S10 2TN, UK
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester LE2 7LX, UK
| | - David J Elliott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| |
Collapse
|
5
|
Saini S, Sreekumar A, Nathani S, Asante DM, Simmons MN. A novel exosome based therapeutic intervention against neuroendocrine prostate cancer. Sci Rep 2024; 14:2816. [PMID: 38307935 PMCID: PMC10837194 DOI: 10.1038/s41598-024-53269-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a highly lethal variant of castration-resistant prostate cancer (CRPC) with poor survival rates. Current treatment options for NEPC are limited to highly toxic platinum drugs highlighting the urgent need for new therapies. This study aimed to develop a novel therapeutic approach using engineered exosomes against NEPC. Exosomes were modified to target CEACAM5, an NEPC surface antigen, by attaching CEACAM5 antibodies to HEK293T exosomes. These exosomes were loaded with drugs inhibiting EZH2 and the androgen receptor (AR) as recent research shows a persistent role of AR in NEPC wherein it plays a concerted role with EZH2 in driving neuronal gene programs. In vitro experiments with NEPC cell lines demonstrated that CEACAM5-targeted exosomes were specifically taken up by NEPC cells, leading to reduced cellular viability and decreased expression of neuronal markers. Further in vivo tests using a NEPC patient-derived xenograft model (LuCaP145.1) showed significant tumor regression in mice treated with engineered exosomes compared to control mice receiving IgG-labeled exosomes. These results suggest that CEACAM5-engineered exosomes hold promise as a targeted therapy for NEPC. Importantly, our exosome engineering strategy is versatile and can be adapted to target various surface antigens in prostate cancer and other diseases.
Collapse
Affiliation(s)
- Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA.
- Department of Urology, Augusta University, Augusta, GA, USA.
| | - Amritha Sreekumar
- Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | - Sandip Nathani
- Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | - Diana M Asante
- Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | | |
Collapse
|
6
|
Asante DM, Sreekumar A, Nathani S, Lee TJ, Sharma A, Patel N, Simmons MN, Saini S. miR-410 Is a Key Regulator of Epithelial-to-Mesenchymal Transition with Biphasic Role in Prostate Cancer. Cancers (Basel) 2023; 16:48. [PMID: 38201476 PMCID: PMC10777946 DOI: 10.3390/cancers16010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The molecular basis of prostate cancer (PCa) progression from the primary disease to metastatic castration-resistant prostate cancer (CRPC) followed by therapy-induced neuroendocrine prostate cancer is not fully understood. In this study, we elucidate the role of miR-410, a little-studied microRNA located on chromosome 14q32.31 within the DLK1-DIO3 cluster, in PCa. miR-410 expression analyses in primary and metastatic PCa tissues and cell lines show that its levels are decreased in initial stages and increased in advanced PCa. Functional studies were performed in a series of PCa cell lines. In LNCaP cells, miR-410 overexpression led to decreases in cellular viability, proliferation, invasiveness, and migration. On the other hand, miR-410 overexpression in PC3 and C42B cells led to increased viability, proliferation, and invasiveness. Our data suggest that miR-410 represses epithelial-to-mesenchymal transition (EMT) in LNCaP cells by directly repressing SNAIL. However, it promotes EMT and upregulates PI3K/Akt signaling in PC3 and C42B cells. In vivo studies with PC3 xenografts support an oncogenic role of miR-410. These data suggest that miR-410 acts as a tumor suppressor in the initial stages of PCa and play an oncogenic role in advanced PCa. Our findings have important implications in understanding the molecular basis of PCa progression with potential translational implications.
Collapse
Affiliation(s)
- Diana M. Asante
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (D.M.A.); (A.S.); (S.N.)
| | - Amritha Sreekumar
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (D.M.A.); (A.S.); (S.N.)
| | - Sandip Nathani
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (D.M.A.); (A.S.); (S.N.)
| | - Tae Jin Lee
- Department of Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (T.J.L.); (A.S.)
| | - Ashok Sharma
- Department of Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (T.J.L.); (A.S.)
| | - Nikhil Patel
- Department of Pathology, Augusta University, Augusta, GA 30912, USA;
| | | | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (D.M.A.); (A.S.); (S.N.)
| |
Collapse
|
7
|
Peřina M, Kiss A, Mernyák E, Mada L, Schneider G, Jorda R. Synthesis of hydrocortisone esters targeting androgen and glucocorticoid receptors in prostate cancer in vitro. J Steroid Biochem Mol Biol 2023; 229:106269. [PMID: 36773737 DOI: 10.1016/j.jsbmb.2023.106269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Androgen and glucocorticoid receptors have been recently described as key players in processes related to prostate cancer and mainly androgen receptor's inactivation was shown as an effective way for the prostate cancer treatment. Unfortunately, androgen deprivation therapy usually loses its effectivity and the disease frequently progresses into castration-resistant prostate cancer with poor prognosis. The role of the glucocorticoid receptor is associated with the mechanism of resistance; therefore, pharmacological targeting of glucocorticoid receptor in combination with antiandrogen treatment was shown as an alternative approach in the prostate cancer treatment. We introduce here the synthesis of novel 17α- and/or 21-ester or carbamate derivatives of hydrocortisone and evaluation of their biological activity towards androgen and glucocorticoid receptors in different prostate cancer cell lines. A 17α-butyryloxy-21-(alkyl)carbamoyloxy derivative 14 was found to diminish the transcriptional activity of both receptors (in single-digit micromolar range), with comparable potency to enzalutamide towards the androgen receptor, but weaker potency compared to mifepristone towards the glucocorticoid receptor. Lead compound inhibited proliferation and the formation of cell colonies in both androgen and glucocortiocid receptors-positive prostate cancer cell lines in low micromolar concentrations. Candidate compound 14 showed to interact with both receptors in cells and inhibited the translocation of receptors to nucleus and their activation phoshorylation. Moreover, binding to receptor's ligand binding domains was assessed by molecular modelling. Lead compound also induced the accumulation of cells in G1 phase and its combination with enzalutamide was shown to be more effective than enzalutamide alone.
Collapse
Affiliation(s)
- Miroslav Peřina
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Anita Kiss
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, 17720 Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, 17720 Szeged, Hungary
| | - Lukáš Mada
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, 17720 Szeged, Hungary.
| | - Radek Jorda
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| |
Collapse
|
8
|
Sreekumar A, Saini S. Role of transcription factors and chromatin modifiers in driving lineage reprogramming in treatment-induced neuroendocrine prostate cancer. Front Cell Dev Biol 2023; 11:1075707. [PMID: 36711033 PMCID: PMC9879360 DOI: 10.3389/fcell.2023.1075707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Therapy-induced neuroendocrine prostate cancer (NEPC) is a highly lethal variant of prostate cancer that is increasing in incidence with the increased use of next-generation of androgen receptor (AR) pathway inhibitors. It arises via a reversible trans-differentiation process, referred to as neuroendocrine differentiation (NED), wherein prostate cancer cells show decreased expression of AR and increased expression of neuroendocrine (NE) lineage markers including enolase 2 (ENO2), chromogranin A (CHGA) and synaptophysin (SYP). NEPC is associated with poor survival rates as these tumors are aggressive and often metastasize to soft tissues such as liver, lung and central nervous system despite low serum PSA levels relative to disease burden. It has been recognized that therapy-induced NED involves a series of genetic and epigenetic alterations that act in a highly concerted manner in orchestrating lineage switching. In the recent years, we have seen a spurt in research in this area that has implicated a host of transcription factors and epigenetic modifiers that play a role in driving this lineage switching. In this article, we review the role of important transcription factors and chromatin modifiers that are instrumental in lineage reprogramming of prostate adenocarcinomas to NEPC under the selective pressure of various AR-targeted therapies. With an increased understanding of the temporal and spatial interplay of transcription factors and chromatin modifiers and their associated gene expression programs in NEPC, better therapeutic strategies are being tested for targeting NEPC effectively.
Collapse
|
9
|
Hellsten R, Stiehm A, Palominos M, Persson M, Bjartell A. The STAT3 inhibitor GPB730 enhances the sensitivity to enzalutamide in prostate cancer cells. Transl Oncol 2022; 24:101495. [PMID: 35917644 PMCID: PMC9344336 DOI: 10.1016/j.tranon.2022.101495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 10/25/2022] Open
Abstract
Enzalutamide is a second-generation anti-androgen which has shown increased survival in patients with metastatic prostate cancer. However, some patients do not respond to this therapy or will develop resistance to treatment over time. Signal Transducer and Activator of Transcription 3 (STAT3) is known to be involved in castration-resistant prostate cancer and to interact with androgen receptor (AR)-signaling. This study aims to investigate the combination enzalutamide and the small molecule STAT3 inhibitor GPB730 for enhanced therapeutic effect in advanced prostate cancer in vitro. The prostate cancer cell lines LNCaP (androgen dependent) and C4-2 (androgen insensitive) were used. The effect of enzalutamide and GPB730, alone and in combination, was investigated on viability and IC50 values calculated. Enzalutamide and GPB730 treated LNCaP and C4-2 cells were subjected to western blot and QPCR analyses in order to investigate the expression of AR, STAT3 and down-stream targets. C4-2 were less sensitive to growth inhibition by enzalutamide than LNCaP cells. GPB730 enhanced the growth inhibitory effect of enzalutamide in LNCaP and C4-2 cells. The addition of GPB730 to enzalutamide decreased the IC50 values for enzalutamide by 3.3-fold for LNCaP and by 12-fold for C4-2. In C4-2 cells, GPB730 alone decreased PSA expression and enhanced the enzalutamide induced decrease in NKX3.1 expression. GPB730 and enzalutamide in combination enhanced inhibition of c-myc and survivin expression. This study suggests that enzalutamide may be combined with the STAT3 inhibitor GPB730 in order to enhance the efficacy of enzalutamide, offering a new therapeutic approach in advanced prostate cancer.
Collapse
Affiliation(s)
- Rebecka Hellsten
- Department of Translational Medicine, Lund University, Scheelevägen 8, Building 404:A3, Lund SE-223 63, Sweden.
| | - Anna Stiehm
- Department of Translational Medicine, Lund University, Scheelevägen 8, Building 404:A3, Lund SE-223 63, Sweden
| | - Macarena Palominos
- Department of Translational Medicine, Lund University, Scheelevägen 8, Building 404:A3, Lund SE-223 63, Sweden
| | - Margareta Persson
- Department of Laboratory Medicine, Lund University, Scheelevägen 8, Building 404:A3, Lund SE-223 63, Sweden
| | - Anders Bjartell
- Department of Translational Medicine, Lund University, Scheelevägen 8, Building 404:A3, Lund SE-223 63, Sweden; Department of Urology, Skåne University Hospital, Jan Waldenströms gata 5, Malmö SE-205 02, Sweden
| |
Collapse
|
10
|
Kushwaha PP, Verma S, Kumar S, Gupta S. Role of prostate cancer stem-like cells in the development of antiandrogen resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:459-471. [PMID: 35800367 PMCID: PMC9255247 DOI: 10.20517/cdr.2022.07] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022]
Abstract
Androgen deprivation therapy (ADT) is the standard of care treatment for advance stage prostate cancer. Treatment with ADT develops resistance in multiple ways leading to the development of castration-resistant prostate cancer (CRPC). Present research establishes that prostate cancer stem-like cells (CSCs) play a central role in the development of treatment resistance followed by disease progression. Prostate CSCs are capable of self-renewal, differentiation, and regenerating tumor heterogeneity. The stemness properties in prostate CSCs arise due to various factors such as androgen receptor mutation and variants, epigenetic and genetic modifications leading to alteration in the tumor microenvironment, changes in ATP-binding cassette (ABC) transporters, and adaptations in molecular signaling pathways. ADT reprograms prostate tumor cellular machinery leading to the expression of various stem cell markers such as Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1), Prominin 1 (PROM1/CD133), Indian blood group (CD44), SRY-Box Transcription Factor 2 (Sox2), POU Class 5 Homeobox 1(POU5F1/Oct4), Nanog and ABC transporters. These markers indicate enhanced self-renewal and stemness stimulating CRPC evolution, metastatic colonization, and resistance to antiandrogens. In this review, we discuss the role of ADT in prostate CSCs differentiation and acquisition of CRPC, their isolation, identification and characterization, as well as the factors and pathways contributing to CSCs expansion and therapeutic opportunities.
Collapse
Affiliation(s)
- Prem Prakash Kushwaha
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Shiv Verma
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Shashank Kumar
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda 151401, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Su S, Cao J, Meng X, Liu R, Vander Ark A, Woodford E, Zhang R, Stiver I, Zhang X, Madaj ZB, Bowman MJ, Wu Y, Xu HE, Chen B, Yu H, Li X. Enzalutamide-induced and PTH1R-mediated TGFBR2 degradation in osteoblasts confers resistance in prostate cancer bone metastases. Cancer Lett 2022; 525:170-178. [PMID: 34752846 PMCID: PMC9669895 DOI: 10.1016/j.canlet.2021.10.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/30/2023]
Abstract
Enzalutamide resistance has been observed in approximately 50% of patients with prostate cancer (PCa) bone metastases. Therefore, there is an urgent need to investigate the mechanisms and develop strategies to overcome resistance. We observed enzalutamide resistance in bone lesion development induced by PCa cells in mouse models. We found that the bone microenvironment was indispensable for enzalutamide resistance because enzalutamide significantly inhibited the growth of subcutaneous C4-2B tumors and the proliferation of C4-2B cells isolated from the bone lesions, and the resistance was recapitulated only when C4-2B cells were co-cultured with osteoblasts. In revealing how osteoblasts contribute to enzalutamide resistance, we found that enzalutamide decreased TGFBR2 protein expression in osteoblasts, which was supported by clinical data. This decrease was possibly through PTH1R-mediated endocytosis. We showed that PTH1R blockade rescued enzalutamide-mediated decrease in TGFBR2 levels and enzalutamide responses in C4-2B cells that were co-cultured with osteoblasts. This is the first study to reveal the contribution of the bone microenvironment to enzalutamide resistance and identify PTH1R as a feasible target to overcome the resistance in PCa bone metastases.
Collapse
Affiliation(s)
- Shang Su
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503;,Current address: Department of Cancer Biology, the University of Toledo, Toledo, OH, 43614
| | - Jingchen Cao
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503
| | - Xiangqi Meng
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503;,Current address: The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Ruihua Liu
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503;,Current address: Department of Cancer Biology, the University of Toledo, Toledo, OH, 43614;,Inner Mongolia University, Hohhot, 010021, China
| | - Alexandra Vander Ark
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503
| | - Erica Woodford
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503
| | - Reian Zhang
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503;,University of Michigan, Ann Arbor, MI, 48109
| | - Isabelle Stiver
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503;,University of Michigan, Ann Arbor, MI, 48109
| | - Xiaotun Zhang
- Anatomic/Clinical Pathology, Mayo Clinic, Rochester, MN, 55905
| | - Zachary B. Madaj
- Bioinformatics & Biostatistics Core, Van Andel Institute, Grand Rapids, MI, 49503
| | - Megan J. Bowman
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503;,Current address: Ball Horticultural Company, West Chicago, IL, 60185
| | - Yingying Wu
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503;,Current address: Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138
| | - H. Eric Xu
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503;,Current address: Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bin Chen
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503
| | - Haiquan Yu
- Inner Mongolia University, Hohhot, 010021, China
| | - Xiaohong Li
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503;,Current address: Department of Cancer Biology, the University of Toledo, Toledo, OH, 43614;,Corresponding author: Xiaohong Li, the University of Toledo, 3000 Transverse Drive, Toledo, OH 43614. Phone: +1-419-383-3982;
| |
Collapse
|
12
|
Cole RN, Chen W, Pascal LE, Nelson JB, Wipf P, Wang Z. (+)-JJ-74-138 is a novel non-competitive androgen receptor antagonist. Mol Cancer Ther 2022; 21:483-492. [DOI: 10.1158/1535-7163.mct-21-0432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/13/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
|
13
|
Farah E, Zhang Z, Utturkar SM, Liu J, Ratliff TL, Liu X. Targeting DNMTs to Overcome Enzalutamide Resistance in Prostate Cancer. Mol Cancer Ther 2022; 21:193-205. [PMID: 34728570 PMCID: PMC8742787 DOI: 10.1158/1535-7163.mct-21-0581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/22/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Prostate cancer is the second leading cause of cancer death among men in the United States. The androgen receptor (AR) antagonist enzalutamide is an FDA-approved drug for treatment of patients with late-stage prostate cancer and is currently under clinical study for early-stage prostate cancer treatment. After a short positive response period to enzalutamide, tumors will develop drug resistance. In this study, we uncovered that DNA methylation was deregulated in enzalutamide-resistant cells. DNMT activity and DNMT3B expression were upregulated in resistant cell lines. Enzalutamide induced the expression of DNMT3A and DNMT3B in prostate cancer cells with a potential role of p53 and pRB in this process. The overexpression of DNMT3B3, a DNMT3B variant, promoted an enzalutamide-resistant phenotype in C4-2B cell lines. Inhibition of DNA methylation and DNMT3B knockdown induced a resensitization to enzalutamide. Decitabine treatment in enzalutamide-resistant cells induced a decrease of the expression of AR-V7 and changes of genes for apoptosis, DNA repair, and mRNA splicing. Combination treatment of decitabine and enzalutamide induced a decrease of tumor weight, Ki-67 and AR-V7 expression and an increase of cleaved-caspase3 levels in 22Rv1 xenografts. The collective results suggest that DNA methylation pathway is deregulated after enzalutamide resistance onset and that targeting DNA methyltransferases restores the sensitivity to enzalutamide in prostate cancer cells.
Collapse
Affiliation(s)
- Elia Farah
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Zhuangzhuang Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Sagar M Utturkar
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Timothy L Ratliff
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky.
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
14
|
Chen D, Wang Y, Yang F, Keranmu A, Zhao Q, Wu L, Han S, Xing N. The circRAB3IP Mediated by eIF4A3 and LEF1 Contributes to Enzalutamide Resistance in Prostate Cancer by Targeting miR-133a-3p/miR-133b/SGK1 Pathway. Front Oncol 2021; 11:752573. [PMID: 34868959 PMCID: PMC8634431 DOI: 10.3389/fonc.2021.752573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
An increasing number of studies have shown that circRNAs are closely related to the carcinogenesis and development of prostate cancer (PCa). However, little is known about the effect of the biological functions of circRNAs on the enzalutamide resistance of PCa. Through bioinformatic analysis and experiments, we investigated the expression pattern of circRNAs in enzalutamide-resistant PCa cells. Quantitative real-time PCR was used to detect the expression of circRAB3IP, and plasmids that knock down or overexpress circRAB3IP were used to evaluate its effect on the enzalutamide sensitivity of PCa cells. Mechanistically, we explored the potential regulatory effects of eIF4A3 and LEF1 on the biogenesis of circRAB3IP. Our in vivo and in vitro data indicated that increased expression of circRAB3IP was found in enzalutamide-resistant PCa, and knockdown of circRAB3IP significantly enhanced enzalutamide sensitivity in PCa cells. However, upregulation of circRAB3IP resulted in the opposite effects. Further mechanistic research demonstrated that circRAB3IP could regulate the expression of serum and glucocorticoid-regulated kinase 1 (SGK1) by serving as a sponge that directly targets miR-133a-3p/miR-133b. Then, we showed that circRAB3IP partially exerted its biological functions via SGK1 signaling. Furthermore, we discovered that eIF4A3 and LEF1 might increase circRAB3IP expression in PCa.
Collapse
Affiliation(s)
- Dong Chen
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaqin Wang
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Adili Keranmu
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingxin Zhao
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyuan Wu
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sujun Han
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Maltais R, Roy J, Perreault M, Sato S, Lévesque JC, Poirier D. Induction of Endoplasmic Reticulum Stress-Mediated Apoptosis by Aminosteroid RM-581 Efficiently Blocks the Growth of PC-3 Cancer Cells and Tumors Resistant or Not to Docetaxel. Int J Mol Sci 2021; 22:ijms222011181. [PMID: 34681843 PMCID: PMC8537847 DOI: 10.3390/ijms222011181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Aminosteroid derivative RM-581 was previously identified as an endoplasmic-reticulum (ER) stress inducer with potent in vitro and in vivo anticancer activities. We report its evaluation in androgen-independent prostate cancer (PC-3) cells. RM-581 efficiently blocks PC-3 cell proliferation with stronger activity than that of a selection of known antineoplastic agents. This later also showed a synergistic effect with docetaxel, able to block the proliferation of docetaxel-resistant PC-3 cells and, contrary to docetaxel, did not induce cell resistance. RM-581 induced an increase in the expression level of ER stress-related markers of apoptosis, potentially triggered by the presence of RM-581 in the ER of PC-3 cells. These in vitro results were then successfully translated in vivo in a PC-3 xenograft tumor model in nude mice, showing superior blockade than that of docetaxel. RM-581 was also able to stop the progression of PC-3 cells when they had become resistant to docetaxel treatment. Concomitantly, we observed a decrease in gene markers of mevalonate and fatty acid pathways, and intratumoral levels of cholesterol by 19% and fatty acids by 22%. Overall, this work demonstrates the potential of an ER stress inducer as an anticancer agent for the treatment of prostate cancers that are refractory to commonly used chemotherapy treatments.
Collapse
Affiliation(s)
- René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, QC G1V 4G2, Canada; (R.M.); (J.R.); (M.P.)
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, QC G1V 4G2, Canada; (R.M.); (J.R.); (M.P.)
| | - Martin Perreault
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, QC G1V 4G2, Canada; (R.M.); (J.R.); (M.P.)
| | - Sachiko Sato
- Bioimaging Platform, CHU de Québec—Research Center, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada; (S.S.); (J.-C.L.)
| | - Julie-Christine Lévesque
- Bioimaging Platform, CHU de Québec—Research Center, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada; (S.S.); (J.-C.L.)
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, QC G1V 4G2, Canada; (R.M.); (J.R.); (M.P.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-654-2296; Fax: +1-418-654-2298
| |
Collapse
|
16
|
Matheux A, Gassiot M, Fromont G, Leenhardt F, Boulahtouf A, Fabbrizio E, Marchive C, Garcin A, Agherbi H, Combès E, Evrard A, Houédé N, Balaguer P, Gongora C, Mbatchi LC, Pourquier P. PXR Modulates the Prostate Cancer Cell Response to Afatinib by Regulating the Expression of the Monocarboxylate Transporter SLC16A1. Cancers (Basel) 2021; 13:cancers13143635. [PMID: 34298852 PMCID: PMC8305337 DOI: 10.3390/cancers13143635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Many kinase inhibitors have been tested as potential alternatives for the treatment of castration-resistant prostate cancers. However, none of these clinical trials led to drug approval despite interesting responses. Our study reveals that genes involved in drug metabolism and their master regulator PXR (Pregnane X Receptor) could be responsible, at least in part, for these disappointing results as they can modulate tumor cell response to specific kinase inhibitors. We found that stable expression of PXR sensitized prostate cancer cells to erlotinib, dabrafenib, and afatinib, while it rendered cells resistant to dasatinib and had no effect for other inhibitors tested. We also report for the first time that sensitization to afatinib is due to an alteration in drug transport that involves the SLC16A1 monocarboxylate transporter. Together, our results further indicate that PXR might be considered as a biomarker of response to kinase inhibitors in castration-resistant prostate cancers. Abstract Resistance to castration is a crucial issue in the treatment of metastatic prostate cancer. Kinase inhibitors (KIs) have been tested as potential alternatives, but none of them are approved yet. KIs are subject of extensive metabolism at both the hepatic and the tumor level. Here, we studied the role of PXR (Pregnane X Receptor), a master regulator of metabolism, in the resistance to KIs in a prostate cancer setting. We confirmed that PXR is expressed in prostate tumors and is more frequently detected in advanced forms of the disease. We showed that stable expression of PXR in 22Rv1 prostate cancer cells conferred a resistance to dasatinib and a higher sensitivity to erlotinib, dabrafenib, and afatinib. Higher sensitivity to afatinib was due to a ~ 2-fold increase in its intracellular accumulation and involved the SLC16A1 transporter as its pharmacological inhibition by BAY-8002 suppressed sensitization of 22Rv1 cells to afatinib and was accompanied with reduced intracellular concentration of the drug. We found that PXR could bind to the SLC16A1 promoter and induced its transcription in the presence of PXR agonists. Together, our results suggest that PXR could be a biomarker of response to kinase inhibitors in castration-resistant prostate cancers.
Collapse
Affiliation(s)
- Alice Matheux
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Carémeau, F-30029 Nîmes, France
| | - Matthieu Gassiot
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Gaëlle Fromont
- Département de Pathologie, CHU de Tours, Université François Rabelais, Inserm UMR 1069, F-37044 Tours, France;
| | - Fanny Leenhardt
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, F-34090 Montpellier, France
| | - Abdelhay Boulahtouf
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Eric Fabbrizio
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Candice Marchive
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Aurélie Garcin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Hanane Agherbi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Eve Combès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Alexandre Evrard
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Carémeau, F-30029 Nîmes, France
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, F-34090 Montpellier, France
| | - Nadine Houédé
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Département d’Oncologie Médicale, Institut de Cancérologie du Gard—CHU Carémeau, F-30029 Nîmes, France
| | - Patrick Balaguer
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Céline Gongora
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Litaty C. Mbatchi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Carémeau, F-30029 Nîmes, France
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, F-34090 Montpellier, France
| | - Philippe Pourquier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Correspondence: ; Tel.: +33-4-66-68-32-31
| |
Collapse
|
17
|
Cone EB, Reese S, Marchese M, Nabi J, McKay RR, Kilbridge KL, Trinh QD. Cardiovascular toxicities associated with abiraterone compared to enzalutamide-A pharmacovigilance study. EClinicalMedicine 2021; 36:100887. [PMID: 34308305 PMCID: PMC8257986 DOI: 10.1016/j.eclinm.2021.100887] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/16/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Androgen deprivation therapy (ADT) is standard-of-care for advanced prostate cancer. Studies have generally found increased cardiovascular risks associated with ADT, but the comparative risk of newer agents is under-characterized. We defined the cardiac risks of abiraterone and enzalutamide, using gonadotropic releasing hormone (GnRH) agonists to establish baseline ADT risk. METHODS We used VigiBase, the World Health Organization pharmacovigilance database, to identify cardiac adverse drug reactions (ADRs) in a cohort taking GnRH agonists, abiraterone, or enzalutamide therapy for prostate cancer, comparing them to all other patients. To examine the relationship, we used an empirical Bayes estimator to screen for significance, then calculated the reporting odds ratio (ROR), a surrogate measure of association. A lower bound of a 95% confidence interval (CI) of ROR > 1 reflects a disproportionality signal that more ADRs are observed than expected due to chance. FINDINGS We identified 2,433 cardiac ADRs, with higher odds for abiraterone compared to all other VigiBase drugs for overall cardiac events (ROR 1•59, 95% CI 1•48-1•71), myocardial infarction (1•35, 1•16-1•58), arrythmia (2•04, 1•82-2•30), and heart failure (3•02, 2•60-3•51), but found no signal for enzalutamide. Patients on GnRH agonists also had increased risk of cardiac events (ROR 1•21, 95% CI 1•12-1•30), myocardial infarction (1•80, 1•61-2•03) and heart failure (2•06, 1•76-2•41). INTERPRETATION We found higher reported odds of cardiac events for abiraterone but not enzalutamide. Our data may suggest that patients with significant cardiac comorbidities may be better-suited for therapy with enzalutamide over abiraterone. FUNDING None.
Collapse
Affiliation(s)
- Eugene B. Cone
- Division of Urological Surgery and Center for Surgery and Public Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Corresponding author.
| | - Stephen Reese
- Division of Urological Surgery and Center for Surgery and Public Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Maya Marchese
- Division of Urological Surgery and Center for Surgery and Public Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Junaid Nabi
- Division of Urological Surgery and Center for Surgery and Public Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Rana R. McKay
- Division of Hematology/Oncology, University of California, San Diego, CA, United States
| | - Kerry L. Kilbridge
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Quoc-Dien Trinh
- Division of Urological Surgery and Center for Surgery and Public Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Novel, non-invasive markers for detecting therapy induced neuroendocrine differentiation in castration-resistant prostate cancer patients. Sci Rep 2021; 11:8279. [PMID: 33859239 PMCID: PMC8050049 DOI: 10.1038/s41598-021-87441-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/30/2021] [Indexed: 12/25/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC), a highly aggressive variant of castration-resistant prostate cancer (CRPC), often emerges upon treatment with androgen pathway inhibitors, via neuroendocrine differentiation. Currently, NEPC diagnosis is challenging as available markers are not sufficiently specific. Our objective was to identify novel, extracellular vesicles (EV)-based biomarkers for diagnosing NEPC. Towards this, we performed small RNA next generation sequencing in serum EVs isolated from a cohort of CRPC patients with adenocarcinoma characteristics (CRPC-Adeno) vs CRPC-NE and identified significant dysregulation of 182 known and 4 novel miRNAs. We employed machine learning algorithms to develop an 'EV-miRNA classifier' that could robustly stratify 'CRPC-NE' from 'CRPC-Adeno'. Examination of protein repertoire of exosomes from NEPC cellular models by mass spectrometry identified thrombospondin 1 (TSP1) as a specific biomarker. In view of our results, we propose that a miRNA panel and TSP1 can be used as novel, non-invasive tools to identify NEPC and guide treatment decisions. In conclusion, our study identifies for the first time, novel non-invasive exosomal/extracellular vesicle based biomarkers for detecting neuroendocrine differentiation in advanced castration resistant prostate cancer patients with important translational implications in clinical management of these patients that is currently extremely challenging.
Collapse
|
19
|
Fischer A, Häuptli F, Lill MA, Smieško M. Computational Assessment of Combination Therapy of Androgen Receptor-Targeting Compounds. J Chem Inf Model 2021; 61:1001-1009. [PMID: 33523669 DOI: 10.1021/acs.jcim.0c01194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ligand-binding domain of the androgen receptor (AR) is a target for drugs against prostate cancer and offers three distinct binding sites for small molecules. Drugs acting on the orthosteric hormone binding site suffer from resistance mechanisms that can, in the worst case, reverse their therapeutic effect. While many allosteric ligands targeting either the activation function-2 (AF-2) or the binding function-3 (BF-3) have been reported, their potential for simultaneous administration with currently prescribed antiandrogens was disregarded. Here, we report results of 60 μs molecular dynamics simulations to investigate combinations of orthosteric and allosteric AR antagonists. Our results suggest BF-3 inhibitors to be more suitable in combination with classical antiandrogens as opposed to AF-2 inhibitors based on binding free energies and binding modes. As a mechanistic explanation for these observations, we deduced a structural adaptation of helix-12 involved in the formation of the AF-2 site by classical AR antagonists. Additionally, the changes were accompanied by an expansion of the orthosteric binding site. Considering our predictions, the selective combination of AR-targeting compounds may improve the treatment of prostate cancer.
Collapse
Affiliation(s)
- André Fischer
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| | - Florian Häuptli
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| | - Markus A Lill
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| | - Martin Smieško
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| |
Collapse
|
20
|
Conteduca V, Mosca A, Brighi N, de Giorgi U, Rescigno P. New Prognostic Biomarkers in Metastatic Castration-Resistant Prostate Cancer. Cells 2021; 10:193. [PMID: 33478015 PMCID: PMC7835961 DOI: 10.3390/cells10010193] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is one of the most frequent cancers in men and is a common cause of cancer-related death. Despite significant progress in the diagnosis and treatment of this tumor, patients who relapse after radical treatments inevitably develop metastatic disease. Patient stratification is therefore key in this type of cancer, and there is an urgent need for prognostic biomarkers that can define patients' risk of cancer-related death. In the last 10 years, multiple prognostic factors have been identified and studied. Here, we review the literature available and discuss the most common aberrant genomic pathways in metastatic castration-resistant prostate cancer shown to have a prognostic relevance in this setting.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.C.); (N.B.); (U.d.G.)
| | - Alessandra Mosca
- Multidisciplinary Outpatient Oncology Clinic, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy;
| | - Nicole Brighi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.C.); (N.B.); (U.d.G.)
| | - Ugo de Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.C.); (N.B.); (U.d.G.)
| | - Pasquale Rescigno
- Interdisciplinary Group for Translational Research and Clinical Trials, Urological Cancers (GIRT-Uro), Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| |
Collapse
|
21
|
Maitland NJ. Resistance to Antiandrogens in Prostate Cancer: Is It Inevitable, Intrinsic or Induced? Cancers (Basel) 2021; 13:327. [PMID: 33477370 PMCID: PMC7829888 DOI: 10.3390/cancers13020327] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Increasingly sophisticated therapies for chemical castration dominate first-line treatments for locally advanced prostate cancer. However, androgen deprivation therapy (ADT) offers little prospect of a cure, as resistant tumors emerge rather rapidly, normally within 30 months. Cells have multiple mechanisms of resistance to even the most sophisticated drug regimes, and both tumor cell heterogeneity in prostate cancer and the multiple salvage pathways result in castration-resistant disease related genetically to the original hormone-naive cancer. The timing and mechanisms of cell death after ADT for prostate cancer are not well understood, and off-target effects after long-term ADT due to functional extra-prostatic expression of the androgen receptor protein are now increasingly being recorded. Our knowledge of how these widely used treatments fail at a biological level in patients is deficient. In this review, I will discuss whether there are pre-existing drug-resistant cells in a tumor mass, or whether resistance is induced/selected by the ADT. Equally, what is the cell of origin of this resistance, and does it differ from the treatment-naïve tumor cells by differentiation or dedifferentiation? Conflicting evidence also emerges from studies in the range of biological systems and species employed to answer this key question. It is only by improving our understanding of this aspect of treatment and not simply devising another new means of androgen inhibition that we can improve patient outcomes.
Collapse
Affiliation(s)
- Norman J Maitland
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
22
|
Lounis MA, Péant B, Leclerc-Desaulniers K, Ganguli D, Daneault C, Ruiz M, Zoubeidi A, Mes-Masson AM, Saad F. Modulation of de Novo Lipogenesis Improves Response to Enzalutamide Treatment in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12113339. [PMID: 33187317 PMCID: PMC7698241 DOI: 10.3390/cancers12113339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Prostate cancer cells produce lipids via the activation of a specific pathway called fatty acid synthesis, also known as De novo lipogenesis. This pathway is essential for the survival and growth of most types of cancer cells, including prostate cancer. In our study, we showed that prostate cancer cells activate this lipid synthesis pathway to become more aggressive and develop resistance to commonly used therapeutic agents for advanced prostate cancer such as enzalutamide, an effective and commonly used androgen receptor (AR) targeted agent. Interestingly, by combining enzalutamide with a lipid synthesis pathway inhibitor, we were able to show that growth of prostate cancer tumors was more effectively reduced than with either agent alone. We also showed that this combination led to cell stress and death by changing the lipid content in the cell. These important findings could lead to new therapeutic strategies combining effective AR targeted therapies with lipid synthesis inhibitors for the treatment of advanced prostate cancer. Abstract De novo lipogenesis (DNL) is now considered as a hallmark of cancer. The overexpression of key enzymes of DNL is characteristic of both primary and advanced disease and may play an important role in resistance to therapies. Here, we showed that DNL is highly enhanced in castrate resistant prostate cancer (CRPC) cells compared to hormone sensitive and enzalutamide resistant cells. This observation suggests that this pathway plays an important role in the initiation of aggressive prostate cancer and in the development of enzalutamide resistance. Importantly, here we show that both prostate cancer cells sensitive and resistant to enzalutamide are dependent on DNL to proliferate. We next combined enzalutamide with an inhibitor of Stearoyl CoA Desaturase 1 (SCD1), an important enzyme in DNL, and observed significantly reduced tumor growth caused by the important change in tumoral lipid desaturation. Our findings suggest that the equilibrium between monounsaturated fatty acids and saturated fatty acids is essential in the establishment of the more aggressive prostate cancer phenotype and that the combination therapy induces a disruption of this equilibrium leading to an important decrease of cell proliferation. These findings provide new insights into the role of DNL in the progression of prostate cancer cells. The study also provides the rationale for the use of an inhibitor of SCD1 in combination with enzalutamide to improve response, delay enzalutamide resistance and improve disease free progression.
Collapse
Affiliation(s)
- Mohamed Amine Lounis
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Benjamin Péant
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Kim Leclerc-Desaulniers
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Dwaipayan Ganguli
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (D.G.); (A.Z.)
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Caroline Daneault
- Institut de Cardiologie de Montréal, Montreal, QC H1T 1C8, Canada; (C.D.); (M.R.)
| | - Matthieu Ruiz
- Institut de Cardiologie de Montréal, Montreal, QC H1T 1C8, Canada; (C.D.); (M.R.)
- Département de Nutrition, Université de Montréal (UdeM), Montreal, QC H3C 3J7, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (D.G.); (A.Z.)
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anne-Marie Mes-Masson
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
- Département de Médecine, Université de Montréal (UdeM), Montreal, QC H3C 3J7, Canada
| | - Fred Saad
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
- Département de Chirurgie, Université de Montréal (UdeM), Montreal, QC H3C 3J7, Canada
- Correspondence:
| |
Collapse
|
23
|
Verma S, Prajapati KS, Kushwaha PP, Shuaib M, Kumar Singh A, Kumar S, Gupta S. Resistance to second generation antiandrogens in prostate cancer: pathways and mechanisms. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:742-761. [PMID: 35582225 PMCID: PMC8992566 DOI: 10.20517/cdr.2020.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/05/2023]
Abstract
Androgen deprivation therapy targeting the androgens/androgen receptor (AR) signaling continues to be the mainstay treatment of advanced-stage prostate cancer. The use of second-generation antiandrogens, such as abiraterone acetate and enzalutamide, has improved the survival of prostate cancer patients; however, a majority of these patients progress to castration-resistant prostate cancer (CRPC). The mechanisms of resistance to antiandrogen treatments are complex, including specific mutations, alternative splicing, and amplification of oncogenic proteins resulting in dysregulation of various signaling pathways. In this review, we focus on the major mechanisms of acquired resistance to second generation antiandrogens, including AR-dependent and AR-independent resistance mechanisms as well as other resistance mechanisms leading to CRPC emergence. Evolving knowledge of resistance mechanisms to AR targeted treatments will lead to additional research on designing more effective therapies for advanced-stage prostate cancer.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Kumari Sunita Prajapati
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Prem Prakash Kushwaha
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Mohd Shuaib
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Atul Kumar Singh
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Shashank Kumar
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
24
|
Erb HHH, Bodenbender J, Handle F, Diehl T, Donix L, Tsaur I, Gleave M, Haferkamp A, Huber J, Fuessel S, Juengel E, Culig Z, Thomas C. Assessment of STAT5 as a potential therapy target in enzalutamide-resistant prostate cancer. PLoS One 2020; 15:e0237248. [PMID: 32790723 PMCID: PMC7425943 DOI: 10.1371/journal.pone.0237248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
Despite enzalutamide's efficacy in delaying the progression of metastatic castration-resistant prostate cancer (CRPC), resistance to this anti-androgen inevitably occurs. Several studies have revealed that the signal transducer and activator of transcription (STAT) 5 plays a role in tumour progression and development of drug resistance such as enzalutamide. Data mining revealed heterogeneous expression of STAT5 in enzalutamide-treated mCRPC patients and enzalutamide-resistant prostate cancer (PCa). Isobologram analysis revealed that the STAT5 inhibitor pimozide combined with enzalutamide has? additive and synergistic inhibitory effects on cell viability in the used models. Functional analysis with siRNA-mediated STAT5 knockdown yielded divergent results. The LNCaP-derived cell line MR49F could be resensitised to enzalutamide by siRNA-mediated STAT5b-knock-down. In contrast, neither STAT5a nor STAT5b knockdown resensitised enzalutamide-resistant LAPC4-EnzaR cells to enzalutamide. In conclusion, our results indicate that STAT5 may be a possible target in a subgroup of enzalutamide-resistant PCa. However, based on the data presented here, a general role of STAT5 in enzalutamide-resistance and its potential as a therapeutic target could not be shown.
Collapse
Affiliation(s)
- Holger H. H. Erb
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Julia Bodenbender
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Florian Handle
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Tamara Diehl
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Lukas Donix
- Department of Urology, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Martin Gleave
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Johannes Huber
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Susanne Fuessel
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Zoran Culig
- Experimental Urology, Department of Urology, University of Innsbruck, Innsbruck, Austria
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
25
|
Shorning BY, Dass MS, Smalley MJ, Pearson HB. The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int J Mol Sci 2020; 21:E4507. [PMID: 32630372 PMCID: PMC7350257 DOI: 10.3390/ijms21124507] [Citation(s) in RCA: 374] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Oncogenic activation of the phosphatidylinositol-3-kinase (PI3K), protein kinase B (PKB/AKT), and mammalian target of rapamycin (mTOR) pathway is a frequent event in prostate cancer that facilitates tumor formation, disease progression and therapeutic resistance. Recent discoveries indicate that the complex crosstalk between the PI3K-AKT-mTOR pathway and multiple interacting cell signaling cascades can further promote prostate cancer progression and influence the sensitivity of prostate cancer cells to PI3K-AKT-mTOR-targeted therapies being explored in the clinic, as well as standard treatment approaches such as androgen-deprivation therapy (ADT). However, the full extent of the PI3K-AKT-mTOR signaling network during prostate tumorigenesis, invasive progression and disease recurrence remains to be determined. In this review, we outline the emerging diversity of the genetic alterations that lead to activated PI3K-AKT-mTOR signaling in prostate cancer, and discuss new mechanistic insights into the interplay between the PI3K-AKT-mTOR pathway and several key interacting oncogenic signaling cascades that can cooperate to facilitate prostate cancer growth and drug-resistance, specifically the androgen receptor (AR), mitogen-activated protein kinase (MAPK), and WNT signaling cascades. Ultimately, deepening our understanding of the broader PI3K-AKT-mTOR signaling network is crucial to aid patient stratification for PI3K-AKT-mTOR pathway-directed therapies, and to discover new therapeutic approaches for prostate cancer that improve patient outcome.
Collapse
Affiliation(s)
| | | | | | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, Wales, UK; (B.Y.S.); (M.S.D.); (M.J.S.)
| |
Collapse
|
26
|
Dellal H, Boulahtouf A, Alaterre E, Cuenant A, Grimaldi M, Bourguet W, Gongora C, Balaguer P, Pourquier P. High Content Screening Using New U2OS Reporter Cell Models Identifies Harmol Hydrochloride as a Selective and Competitive Antagonist of the Androgen Receptor. Cells 2020; 9:cells9061469. [PMID: 32560058 PMCID: PMC7349874 DOI: 10.3390/cells9061469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men. Its growth mainly relies on the activity of the androgen receptor (AR), justifying the use of androgen deprivation therapy as a gold standard treatment for the metastatic disease. Inhibition of the androgen axis using second generation antagonists has improved patients’ survival, but is systematically confronted to resistance mechanisms, leading to a median survival that does not exceed 5 years. Counteracting this resistance has been the object of a large number of investigations, with a particular emphasis towards the identification of new AR inhibitors, whether they antagonize the receptor by a competitive or a non-competitive binding. To this end, many high content screens have been performed, to identify new non-steroidal AR antagonists, using a variety of approaches, but reported somewhat controversial results, depending on the approach and on the cell model that was used for screening. In our study, we used the U2OS osteosarcoma cells stably transfected with AR or ARv7 and a luciferase reporter as a previously validated model to screen the Prestwick Phytochemical library. The results of our screen identified ellipticine, harmol, and harmine hydrochloride as confirmed hits. Surprisingly, we could demonstrate that harmol hydrochloride, previously identified as a non-competitive inhibitor of AR or a weak inhibitor of androgen signaling, was actually a competitive antagonist of AR, which inhibits the growth of VCaP prostate cancer line, at concentrations for which it did not affect the growth of the AR negative DU145 and PC3 cells. Interestingly, we also report for the first time that harmol hydrochloride was selective for AR, as it could not alter the activity of other nuclear receptors, such as the glucocorticoid receptor (GR), the progesterone receptor (PR), or the mineralocorticoid receptor (MR). Additionally, we demonstrate that, conversely to enzalutamide, harmol hydrochloride did not show any agonistic activity towards the pregnane X receptor (PXR), a master regulator of drug metabolism. Together, our results shed light on the importance of the cellular context for the screening of new AR antagonists. They further indicate that some of the potential hits that were previously identified may have been overlooked.
Collapse
Affiliation(s)
- Hadjer Dellal
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298 Montpellier, France; (H.D.); (A.B.); (E.A.); (A.C.); (M.G.); (C.G.)
- Université de Montpellier, F-34298 Montpellier, France;
| | - Abdelhay Boulahtouf
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298 Montpellier, France; (H.D.); (A.B.); (E.A.); (A.C.); (M.G.); (C.G.)
- Université de Montpellier, F-34298 Montpellier, France;
- Institut régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - Elina Alaterre
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298 Montpellier, France; (H.D.); (A.B.); (E.A.); (A.C.); (M.G.); (C.G.)
- Université de Montpellier, F-34298 Montpellier, France;
| | - Alice Cuenant
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298 Montpellier, France; (H.D.); (A.B.); (E.A.); (A.C.); (M.G.); (C.G.)
- Université de Montpellier, F-34298 Montpellier, France;
| | - Marina Grimaldi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298 Montpellier, France; (H.D.); (A.B.); (E.A.); (A.C.); (M.G.); (C.G.)
- Université de Montpellier, F-34298 Montpellier, France;
| | - William Bourguet
- Université de Montpellier, F-34298 Montpellier, France;
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, F-34298 Montpellier, France
| | - Céline Gongora
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298 Montpellier, France; (H.D.); (A.B.); (E.A.); (A.C.); (M.G.); (C.G.)
- Université de Montpellier, F-34298 Montpellier, France;
| | - Patrick Balaguer
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298 Montpellier, France; (H.D.); (A.B.); (E.A.); (A.C.); (M.G.); (C.G.)
- Université de Montpellier, F-34298 Montpellier, France;
- Correspondence: (P.B.); (P.P.); Tel.: +33-4-67-61-24-09 (P.B.); +33-4-66-68-32-31 (P.P.); Fax: +33-4-67-61-23-37 (P.B.); +33-4-66-68-37-02 (P.P.)
| | - Philippe Pourquier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298 Montpellier, France; (H.D.); (A.B.); (E.A.); (A.C.); (M.G.); (C.G.)
- Université de Montpellier, F-34298 Montpellier, France;
- Correspondence: (P.B.); (P.P.); Tel.: +33-4-67-61-24-09 (P.B.); +33-4-66-68-32-31 (P.P.); Fax: +33-4-67-61-23-37 (P.B.); +33-4-66-68-37-02 (P.P.)
| |
Collapse
|
27
|
Chaturvedi AP, Dehm SM. Androgen Receptor Dependence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1210:333-350. [PMID: 31900916 DOI: 10.1007/978-3-030-32656-2_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Androgens and the androgen receptor (AR) play crucial roles in the biology of normal and diseased prostate tissue, including prostate cancer (PCa). This dependence is evidenced by the use of androgen depletion therapy (ADT) as the primary treatment for locally advanced, metastatic, or relapsed PCa. This dependence is further evidenced by the various mechanisms employed by PCa cells to re-activate the AR to circumvent the growth-inhibitory effects of ADT. Re-activation of the AR during ADT is central to the disease evolving into the lethal castration resistant PCa (CRPC) phenotype, which is responsible for nearly all PCa mortality. Thus, understanding the regulation of AR and AR signaling is important for understanding the development and progression of PCa. This understanding provides the foundation for development of newer approaches for targeting CRPC therapeutically.
Collapse
Affiliation(s)
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
28
|
Cerasuolo M, Maccarinelli F, Coltrini D, Mahmoud AM, Marolda V, Ghedini GC, Rezzola S, Giacomini A, Triggiani L, Kostrzewa M, Verde R, Paris D, Melck D, Presta M, Ligresti A, Ronca R. Modeling Acquired Resistance to the Second-Generation Androgen Receptor Antagonist Enzalutamide in the TRAMP Model of Prostate Cancer. Cancer Res 2020; 80:1564-1577. [PMID: 32029552 DOI: 10.1158/0008-5472.can-18-3637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 10/28/2019] [Accepted: 01/30/2020] [Indexed: 11/16/2022]
Abstract
Enzalutamide (MDV3100) is a potent second-generation androgen receptor antagonist approved for the treatment of castration-resistant prostate cancer (CRPC) in chemotherapy-naïve as well as in patients previously exposed to chemotherapy. However, resistance to enzalutamide and enzalutamide withdrawal syndrome have been reported. Thus, reliable and integrated preclinical models are required to elucidate the mechanisms of resistance and to assess therapeutic settings that may delay or prevent the onset of resistance. In this study, the prostate cancer multistage murine model TRAMP and TRAMP-derived cells have been used to extensively characterize in vitro and in vivo the response and resistance to enzalutamide. The therapeutic profile as well as the resistance onset were characterized and a multiscale stochastic mathematical model was proposed to link the in vitro and in vivo evolution of prostate cancer. The model showed that all therapeutic strategies that use enzalutamide result in the onset of resistance. The model also showed that combination therapies can delay the onset of resistance to enzalutamide, and in the best scenario, can eliminate the disease. These results set the basis for the exploitation of this "TRAMP-based platform" to test novel therapeutic approaches and build further mathematical models of combination therapies to treat prostate cancer and CRPC.Significance: Merging mathematical modeling with experimental data, this study presents the "TRAMP-based platform" as a novel experimental tool to study the in vitro and in vivo evolution of prostate cancer resistance to enzalutamide.
Collapse
Affiliation(s)
- Marianna Cerasuolo
- School of Mathematics and Physics, University of Portsmouth, Hampshire, United Kingdom
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ali Mokhtar Mahmoud
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Viviana Marolda
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Gaia Cristina Ghedini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca Triggiani
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Roberta Verde
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Dominique Melck
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy.
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
29
|
Metabolomic profiling to evaluate the efficacy of proxalutamide, a novel androgen receptor antagonist, in prostate cancer cells. Invest New Drugs 2020; 38:1292-1302. [DOI: 10.1007/s10637-020-00901-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/17/2020] [Indexed: 01/19/2023]
|
30
|
Neuwirt H, Bouchal J, Kharaishvili G, Ploner C, Jöhrer K, Pitterl F, Weber A, Klocker H, Eder IE. Cancer-associated fibroblasts promote prostate tumor growth and progression through upregulation of cholesterol and steroid biosynthesis. Cell Commun Signal 2020; 18:11. [PMID: 31980029 PMCID: PMC6979368 DOI: 10.1186/s12964-019-0505-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background Androgen receptor targeted therapies have emerged as an effective tool to manage advanced prostate cancer (PCa). Nevertheless, frequent occurrence of therapy resistance represents a major challenge in the clinical management of patients, also because the molecular mechanisms behind therapy resistance are not yet fully understood. In the present study, we therefore aimed to identify novel targets to intervene with therapy resistance using gene expression analysis of PCa co-culture spheroids where PCa cells are grown in the presence of cancer-associated fibroblasts (CAFs) and which have been previously shown to be a reliable model for antiandrogen resistance. Methods Gene expression changes of co-culture spheroids (LNCaP and DuCaP seeded together with CAFs) were identified by Illumina microarray profiling. Real-time PCR, Western blotting, immunohistochemistry and cell viability assays in 2D and 3D culture were performed to validate the expression of selected targets in vitro and in vivo. Cytokine profiling was conducted to analyze CAF-conditioned medium. Results Gene expression analysis of co-culture spheroids revealed that CAFs induced a significant upregulation of cholesterol and steroid biosynthesis pathways in PCa cells. Cytokine profiling revealed high amounts of pro-inflammatory, pro-migratory and pro-angiogenic factors in the CAF supernatant. In particular, two genes, 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 (HMGCS2) and aldo-keto reductase family 1 member C3 (AKR1C3), were significantly upregulated in PCa cells upon co-culture with CAFs. Both enzymes were also significantly increased in human PCa compared to benign tissue with AKR1C3 expression even being associated with Gleason score and metastatic status. Inhibiting HMGCS2 and AKR1C3 resulted in significant growth retardation of co-culture spheroids as well as of various castration and enzalutamide resistant cell lines in 2D and 3D culture, underscoring their putative role in PCa. Importantly, dual targeting of cholesterol and steroid biosynthesis with simvastatin, a commonly prescribed cholesterol synthesis inhibitor, and an inhibitor against AKR1C3 had the strongest growth inhibitory effect. Conclusions From our results we conclude that CAFs induce an upregulation of cholesterol and steroid biosynthesis in PCa cells, driving them into AR targeted therapy resistance. Blocking both pathways with simvastatin and an AKR1C3 inhibitor may therefore be a promising approach to overcome resistances to AR targeted therapies in PCa. Video abstract
Collapse
Affiliation(s)
- Hannes Neuwirt
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University of Innsbruck, Innsbruck, Austria
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Gvantsa Kharaishvili
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Karin Jöhrer
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Salzburg Cancer Research Institute, Laboratory for Immunological and Molecular Cancer Research, Salzburg, Austria
| | - Florian Pitterl
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Anja Weber
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Iris E Eder
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
31
|
Palit SAL, Vis D, Stelloo S, Lieftink C, Prekovic S, Bekers E, Hofland I, Šuštić T, Wolters L, Beijersbergen R, Bergman AM, Győrffy B, Wessels LFA, Zwart W, van der Heijden MS. TLE3 loss confers AR inhibitor resistance by facilitating GR-mediated human prostate cancer cell growth. eLife 2019; 8:e47430. [PMID: 31855178 PMCID: PMC6968917 DOI: 10.7554/elife.47430] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Androgen receptor (AR) inhibitors represent the mainstay of prostate cancer treatment. In a genome-wide CRISPR-Cas9 screen using LNCaP prostate cancer cells, loss of co-repressor TLE3 conferred resistance to AR antagonists apalutamide and enzalutamide. Genes differentially expressed upon TLE3 loss share AR as the top transcriptional regulator, and TLE3 loss rescued the expression of a subset of androgen-responsive genes upon enzalutamide treatment. GR expression was strongly upregulated upon AR inhibition in a TLE3-negative background. This was consistent with binding of TLE3 and AR at the GR locus. Furthermore, GR binding was observed proximal to TLE3/AR-shared genes. GR inhibition resensitized TLE3KO cells to enzalutamide. Analyses of patient samples revealed an association between TLE3 and GR levels that reflected our findings in LNCaP cells, of which the clinical relevance is yet to be determined. Together, our findings reveal a mechanistic link between TLE3 and GR-mediated resistance to AR inhibitors in human prostate cancer.
Collapse
Affiliation(s)
- Sander AL Palit
- Division of Molecular CarcinogenesisNetherlands Cancer InstituteAmsterdamNetherlands
| | - Daniel Vis
- Division of Molecular CarcinogenesisNetherlands Cancer InstituteAmsterdamNetherlands
- Division of Molecular Carcinogenesis, Oncode InstituteNetherlands Cancer InstituteAmsterdamNetherlands
| | - Suzan Stelloo
- Division of Oncogenomics, Oncode InstituteNetherlands Cancer InstituteAmsterdamNetherlands
| | - Cor Lieftink
- Division of Molecular CarcinogenesisNetherlands Cancer InstituteAmsterdamNetherlands
| | - Stefan Prekovic
- Division of Oncogenomics, Oncode InstituteNetherlands Cancer InstituteAmsterdamNetherlands
| | - Elise Bekers
- Division of PathologyNetherlands Cancer InstituteAmsterdamNetherlands
| | - Ingrid Hofland
- Core Facility Molecular Pathology & BiobankingNetherlands Cancer InstituteAmsterdamNetherlands
| | - Tonći Šuštić
- Division of Molecular CarcinogenesisNetherlands Cancer InstituteAmsterdamNetherlands
- Division of Molecular Carcinogenesis, Oncode InstituteNetherlands Cancer InstituteAmsterdamNetherlands
| | - Liesanne Wolters
- Division of Molecular CarcinogenesisNetherlands Cancer InstituteAmsterdamNetherlands
| | | | - Andries M Bergman
- Department of Medical OncologyNetherlands Cancer InstituteAmsterdamNetherlands
| | - Balázs Győrffy
- Department of BioinformaticsSemmelweis UniversityBudapestHungary
- TTK Cancer Biomarker Research GroupInstitute of EnzymologyBudapestHungary
- Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Lodewyk FA Wessels
- Division of Molecular CarcinogenesisNetherlands Cancer InstituteAmsterdamNetherlands
- Division of Molecular Carcinogenesis, Oncode InstituteNetherlands Cancer InstituteAmsterdamNetherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode InstituteNetherlands Cancer InstituteAmsterdamNetherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenNetherlands
| | - Michiel S van der Heijden
- Division of Molecular CarcinogenesisNetherlands Cancer InstituteAmsterdamNetherlands
- Department of Medical OncologyNetherlands Cancer InstituteAmsterdamNetherlands
| |
Collapse
|
32
|
Singam ERA, Tachachartvanich P, Merrill MAL, Smith MT, Durkin KA. Structural Dynamics of Agonist and Antagonist Binding to the Androgen Receptor. J Phys Chem B 2019; 123:7657-7666. [PMID: 31431014 PMCID: PMC6742532 DOI: 10.1021/acs.jpcb.9b05654] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Androgen receptor (AR) is a steroid hormone nuclear receptor which upon binding its endogenous androgenic ligands (agonists), testosterone and dihydrotestosterone (DHT), alters gene transcription, producing a diverse range of biological effects. Antiandrogens, such as the pharmaceuticals bicalutamide and hydroxyflutamide, act as agonists in the absence of androgens and as antagonists in their presence or in high concentration. The atomic level mechanism of action by agonists and antagonists of AR is less well characterized. Therefore, in this study, multiple 1 μs molecular dynamics (MD), docking simulations, and perturbation-response analyses were performed to more fully explore the nature of interaction between agonist or antagonist and AR and the conformational changes induced in the AR upon interaction with different ligands. We characterized the mechanism of the ligand entry/exit and found that helix-12 and nearby structural motifs respond dynamically in that process. Modeling showed that the agonist and antagonist/agonist form a hydrogen bond with Thr877/Asn705 and that this interaction is absent for antagonists. Agonist binding to AR increases the mobility of residues at allosteric sites and coactivator binding sites, while antagonist binding decreases mobility at these important sites. A new site was also identified as a potential surface for allosteric binding. These results shed light on the effect of agonists and antagonists on the structure and dynamics of AR.
Collapse
Affiliation(s)
| | | | | | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Kathleen A. Durkin
- Molecular Graphics and Computation Facility, College of Chemistry, University of California, Berkeley, CA, USA
| |
Collapse
|
33
|
Lao K, Xun G, Gou X, Xiang H. Design, synthesis, and biological evaluation of novel androst-17β-amide structurally related compounds as dual 5α-reductase inhibitors and androgen receptor antagonists. J Enzyme Inhib Med Chem 2019; 34:1597-1606. [PMID: 31469015 PMCID: PMC6735293 DOI: 10.1080/14756366.2019.1654469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of death in men. Apart from androgen receptor, 5α-reductase has also been recognized as a potential target. In this study, a series of androst-17β-amide compounds have been designed and synthesized targeting both AR and 5α-reductase. Their anti-proliferation activities were evaluated in AR + cell line 22RV1 and AR - cell line PC-3. The results indicated that most of the synthesized compounds inhibited the testosterone-stimulated cell proliferation with good selectivity and safety. Among all the compounds, androst[3,2-c]pyrazole derivatives (9a-9d) displayed the best inhibition activity comparable with flutamide. Moreover, most of the synthesized compounds displayed good 5α-reductase inhibitory activities with IC50 lower than 1 μM. The docking result of 9d-AR indicated that AR was forced to expands its binding cavity and maintain an antagonistic conformation since the steric hindrance of 9d impeded H12 transposition. Overall, compound 9d can be identified as a potential dual 5α-reductase inhibitor and AR antagonist, which might be of therapeutic importance for PCa treatment.
Collapse
Affiliation(s)
- Kejing Lao
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University , Xi'an , PR China.,Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University , Nanjing , PR China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , Nanjing , PR China
| | - Guoliang Xun
- Abbisko Therapeutics Co Ltd , Shanghai , PR China
| | - Xingchun Gou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University , Xi'an , PR China
| | - Hua Xiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University , Nanjing , PR China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , Nanjing , PR China
| |
Collapse
|
34
|
Bhagirath D, Yang TL, Tabatabai ZL, Majid S, Dahiya R, Tanaka Y, Saini S. BRN4 Is a Novel Driver of Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer and Is Selectively Released in Extracellular Vesicles with BRN2. Clin Cancer Res 2019; 25:6532-6545. [PMID: 31371344 DOI: 10.1158/1078-0432.ccr-19-0498] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/21/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE Neuroendocrine prostate cancer (NEPC), an aggressive variant of castration-resistant prostate cancer (CRPC), often emerges after androgen receptor-targeted therapies such as enzalutamide or de novo, via trans-differentiation process of neuroendocrine differentiation. The mechanistic basis of neuroendocrine differentiation is poorly understood, contributing to lack of effective predictive biomarkers and late disease recognition. The purpose of this study was to examine the role of novel proneural Pit-Oct-Unc-domain transcription factors (TF) in NEPC and examine their potential as noninvasive predictive biomarkers.Experimental Design: Prostate cancer patient-derived xenograft models, clinical samples, and cellular neuroendocrine differentiation models were employed to determine the expression of TFs BRN1 and BRN4. BRN4 levels were modulated in prostate cancer cell lines followed by functional assays. Furthermore, extracellular vesicles (EV) were isolated from patient samples and cell culture models, characterized by nanoparticle tracking analyses, Western blotting, and real-time PCR. RESULTS We identify for the first time that: (i) BRN4 is amplified and overexpressed in NEPC clinical samples and that BRN4 overexpression drives neuroendocrine differentiation via its interplay with BRN2, a TF that was previously implicated in NEPC; (ii) BRN4 and BRN2 mRNA are actively released in prostate cancer EVs upon neuroendocrine differentiation induction; and (iii) enzalutamide treatment augments release of BRN4 and BRN2 in prostate cancer EVs, promoting neuroendocrine differentiation induction. CONCLUSIONS Our study identifies a novel TF that drives NEPC and suggests that as adaptive mechanism to enzalutamide treatment, prostate cancer cells express and secrete BRN4 and BRN2 in EVs that drive oncogenic reprogramming of prostate cancer cells to NEPC. Importantly, EV-associated BRN4 and BRN2 are potential novel noninvasive biomarkers to predict neuroendocrine differentiation in CRPC.
Collapse
Affiliation(s)
- Divya Bhagirath
- Department of Urology, Veterans Affairs Medical Center San Francisco and University of California San Francisco, San Francisco, California
| | - Thao Ly Yang
- Department of Urology, Veterans Affairs Medical Center San Francisco and University of California San Francisco, San Francisco, California
| | - Z Laura Tabatabai
- Department of Urology, Veterans Affairs Medical Center San Francisco and University of California San Francisco, San Francisco, California
| | - Shahana Majid
- Department of Urology, Veterans Affairs Medical Center San Francisco and University of California San Francisco, San Francisco, California
| | - Rajvir Dahiya
- Department of Urology, Veterans Affairs Medical Center San Francisco and University of California San Francisco, San Francisco, California
| | - Yuichiro Tanaka
- Department of Urology, Veterans Affairs Medical Center San Francisco and University of California San Francisco, San Francisco, California
| | - Sharanjot Saini
- Department of Urology, Veterans Affairs Medical Center San Francisco and University of California San Francisco, San Francisco, California.
| |
Collapse
|
35
|
Braadland PR, Urbanucci A. Chromatin reprogramming as an adaptation mechanism in advanced prostate cancer. Endocr Relat Cancer 2019; 26:R211-R235. [PMID: 30844748 DOI: 10.1530/erc-18-0579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Tumor evolution is based on the ability to constantly mutate and activate different pathways under the selective pressure of targeted therapies. Epigenetic alterations including those of the chromatin structure are associated with tumor initiation, progression and drug resistance. Many cancers, including prostate cancer, present enlarged nuclei, and chromatin appears altered and irregular. These phenotypic changes are likely to result from epigenetic dysregulation. High-throughput sequencing applied to bulk samples and now to single cells has made it possible to study these processes in unprecedented detail. It is therefore timely to review the impact of chromatin relaxation and increased DNA accessibility on prostate cancer growth and drug resistance, and their effects on gene expression. In particular, we focus on the contribution of chromatin-associated proteins such as the bromodomain-containing proteins to chromatin relaxation. We discuss the consequence of this for androgen receptor transcriptional activity and briefly summarize wider gain-of-function effects on other oncogenic transcription factors and implications for more effective prostate cancer treatment.
Collapse
Affiliation(s)
- Peder Rustøen Braadland
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, Oslo, Norway
| |
Collapse
|
36
|
Hwang DJ, He Y, Ponnusamy S, Mohler ML, Thiyagarajan T, McEwan IJ, Narayanan R, Miller DD. New Generation of Selective Androgen Receptor Degraders: Our Initial Design, Synthesis, and Biological Evaluation of New Compounds with Enzalutamide-Resistant Prostate Cancer Activity. J Med Chem 2018; 62:491-511. [DOI: 10.1021/acs.jmedchem.8b00973] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dong-Jin Hwang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Yali He
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Suriyan Ponnusamy
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Michael L. Mohler
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- GTx, Inc., Memphis, Tennessee 38103, United States
| | - Thirumagal Thiyagarajan
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Iain J. McEwan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Ramesh Narayanan
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D. Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
37
|
Tucci M, Zichi C, Buttigliero C, Vignani F, Scagliotti GV, Di Maio M. Enzalutamide-resistant castration-resistant prostate cancer: challenges and solutions. Onco Targets Ther 2018; 11:7353-7368. [PMID: 30425524 PMCID: PMC6204864 DOI: 10.2147/ott.s153764] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The new-generation hormonal agent enzalutamide has been approved for the treatment of metastatic castration-resistant prostate cancer (CRPC), in both post- and predocetaxel setting, due to the significant improvement in overall survival. More recently, enzalutamide also showed impressive results in the treatment of men with nonmetastatic CRPC. Unfortunately, not all patients with CRPC are responsive to enzalutamide, and even in responders, benefits are limited by the development of drug resistance. Adaptive resistance of metastatic prostate cancer to enzalutamide treatment can be due to the activation of both androgen receptor (AR)-dependent pathways (expression of constitutively active AR splice variants, AR point mutations, gene amplification and overexpression) and mechanisms independent of AR signaling pathway (altered steroidogenesis, upregulation of the glucocorticoid receptor, epithelial–mesenchymal transition, neuroendocrine transformation, autophagy and activation of the immune system). In this review, we focus on resistance mechanisms to enzalutamide, exploring how we could overcome them through novel therapeutic options.
Collapse
Affiliation(s)
- Marcello Tucci
- Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy,
| | - Clizia Zichi
- Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy,
| | - Consuelo Buttigliero
- Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy,
| | - Francesca Vignani
- Division of Medical Oncology, Ordine Mauriziano Hospital, Torino, Italy
| | - Giorgio V Scagliotti
- Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy,
| | - Massimo Di Maio
- Division of Medical Oncology, Ordine Mauriziano Hospital, Torino, Italy
| |
Collapse
|
38
|
Alterations of tumor microenvironment by nitric oxide impedes castration-resistant prostate cancer growth. Proc Natl Acad Sci U S A 2018; 115:11298-11303. [PMID: 30322928 DOI: 10.1073/pnas.1812704115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immune targeted therapy of nitric oxide (NO) synthases are being considered as a potential frontline therapeutic to treat patients diagnosed with locally advanced and metastatic prostate cancer. However, the role of NO in castration-resistant prostate cancer (CRPC) is controversial because NO can increase in nitrosative stress while simultaneously possessing antiinflammatory properties. Accordingly, we tested the hypothesis that increased NO will lead to tumor suppression of CRPC through tumor microenvironment. S-nitrosoglutathione (GSNO), an NO donor, decreased the tumor burden in murine model of CRPC by targeting tumors in a cell nonautonomous manner. GSNO inhibited both the abundance of antiinflammatory (M2) macrophages and expression of pERK, indicating that tumor-associated macrophages activity is influenced by NO. Additionally, GSNO decreased IL-34, indicating suppression of tumor-associated macrophage differentiation. Cytokine profiling of CRPC tumor grafts exposed to GSNO revealed a significant decrease in expression of G-CSF and M-CSF compared with grafts not exposed to GSNO. We verified the durability of NO on CRPC tumor suppression by using secondary xenograft murine models. This study validates the significance of NO on inhibition of CRPC tumors through tumor microenvironment (TME). These findings may facilitate the development of previously unidentified NO-based therapy for CRPC.
Collapse
|
39
|
Vander Ark A, Cao J, Li X. Mechanisms and Approaches for Overcoming Enzalutamide Resistance in Prostate Cancer. Front Oncol 2018; 8:180. [PMID: 29911070 PMCID: PMC5992404 DOI: 10.3389/fonc.2018.00180] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/08/2018] [Indexed: 12/31/2022] Open
Abstract
Enzalutamide, a second-generation small-molecule inhibitor of the androgen receptor (AR), has been approved for patients who failed with androgen deprivation therapy and have developed castration-resistant prostate cancer. More than 80% of these patients develop bone metastases. The binding of enzalutamide to the AR prevents the nuclear translocation of the receptor, thus inactivating androgen signaling. However, prostate cancer cells eventually develop resistance to enzalutamide treatment. Studies have found resistance both in patients and in laboratory models. The mechanisms of and approaches to overcoming such resistance are significant issues that need to be addressed. In this review, we focus on the major mechanisms of acquired enzalutamide resistance, including genetic mutations and splice variants of the AR, signaling pathways that bypass androgen signaling, intratumoral androgen biosynthesis by prostate tumor cells, lineage plasticity, and contributions from the tumor microenvironment. Approaches for overcoming these mechanisms to enzalutamide resistance along with the associated problems and solutions are discussed. Emerging questions, concerns, and new opportunities in studying enzalutamide resistance will be addressed as well.
Collapse
Affiliation(s)
- Alexandra Vander Ark
- Program for Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Jingchen Cao
- Program for Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Xiaohong Li
- Program for Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| |
Collapse
|