1
|
Ghiasvand T, Karimi J, Khodadadi I, Yazdi A, Khazaei S, Kichi ZA, Hosseini SK. Evaluating SORT1 and SESN1 genes expression in peripheral blood mononuclear cells and oxidative stress status in patients with coronary artery disease. BMC Genom Data 2024; 25:93. [PMID: 39488678 PMCID: PMC11531137 DOI: 10.1186/s12863-024-01275-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Coronary artery disease (CAD) significantly contributes to global fatalities. Recent studies have demonstrated the crucial roles of sortilin1 (SORT1) and sestrin1 (SESN1) in lipid metabolism, as well as their involvement in the development of CAD. The aberrant expression or activity of SORT1 can consequently lead to metabolic and vascular diseases. Sestrins, including SESN1, play a crucial role in helping cells survive by maintaining metabolic balance while also reducing oxidative stress (OS). OS contributes to the progression of atherosclerosis-related diseases, such as CAD. The study aimed to compare the gene expression of SORT1 and SESN1 in peripheral blood mononuclear cells (PBMCs), alongside serum OS markers, in CAD patients and controls. MATERIALS The case-control study included 49 CAD patients and 40 controls. The expression of the SORT1 and SESN1 genes was quantified using qRT-PCR, and the expression of the SORT1 protein was evaluated by western blotting. OS markers, including total oxidation status (TOS), total antioxidant capacity (TAC), and malondialdehyde (MDA), were measured using spectrophotometric and fluorometric methods. RESULTS SORT1 gene and protein expressions were similar between groups. CAD patients had a non-significant decrease in SESN1 gene expression. MDA levels were significantly higher in CAD patients, whereas TOS and TAC levels did not differ significantly. CONCLUSION For atherosclerosis-related disorders like CAD, MDA shows potential as a non-invasive, easy-to-use, affordable, and stable biomarker. Further research is needed to elucidate the precise roles of SORT1 and SESN1 in CAD pathogenesis.
Collapse
Affiliation(s)
- Tayebe Ghiasvand
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amirhossein Yazdi
- Department of Cardiology, Faculty of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salman Khazaei
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Abedi Kichi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Kianoosh Hosseini
- Department of Cardiology, Faculty of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran.
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Farshchian Heart Center, Fahmideh Blvd., 6517839131, Hamadan, Iran.
| |
Collapse
|
2
|
Rooban S, Senghor KA, Vinodhini V, Kumar J. Sestrin2 at the crossroads of cardiovascular disease and diabetes: A comprehensive review. OBESITY MEDICINE 2024; 51:100558. [DOI: 10.1016/j.obmed.2024.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Emara AM, El Bendary AS, Ahmed LM, Okda HI. Evaluation of serum levels of sestrin 2 and betatrophin in type 2 diabetic patients with diabetic nephropathy. BMC Nephrol 2024; 25:231. [PMID: 39030467 PMCID: PMC11264897 DOI: 10.1186/s12882-024-03663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/01/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is one of the most serious microvascular complications of diabetes mellitus (DM) and the leading cause of chronic kidney disease (CKD) worldwide. Since obesity and type 2 DM (T2DM) are considered as inflammatory conditions, thus reducing their accompanied systemic inflammation may lessen their complications. Sestrin 2 belongs to a group of stress induced proteins which are produced in response to oxidative stress, inflammation and DNA damage. Betatrophin; a hormone that stimulates the growth, proliferation and mass expansion of pancreatic beta-cells and improves glucose tolerance. The objective of the study was to evaluate levels of serum Sestrin 2 and betatrophin in patients with different stages of diabetic nephropathy (DN)) and compare results with healthy control. METHODS This cross sectional study was carried out on 60 patients above 18 years old, recruited from Tanta University hospitals out patients clinics and 20 apparently healthy individuals of matched sex and age as a control group. Participants were divided into two groups: group I: 20 normal subjects as control group and group II: 60 patients with type 2 DM,. further subdivided in to three equal groups: group 1IIA(20 patients) with normo-albuminuria (ACR < 30 mg/g), group IIB (20 patients) with micro albuminuria (ACR = 30 to 300 mg/g) and group IIC (20 patients) with macro albuminuria (ACR > 300 mg/g). They were subjected to detailed history taking, careful clinical examination and laboratory investigations including blood urea, serum creatinine, estimated glomerular filtration rate (eGFR), urinary albumin creatinine ratio, and specific laboratory tests for Sestrin 2 and Betatrophin by using ELISA technique. RESULTS Serum Sestrin 2 significantly decreased, while serum betatrophin level significantly increased in macroalbuminuric group compared to control and other 2 diabetic groups (P value < 0.05). The cut off value of serum sestrin 2 was 0.98 ng/ml with sensitivity 99%, specificity 66% while the cut off value of serum betatrophin was > 98.25 ng/ml with sensitivity 98%, specificity 82%. Serum betatrophin positively correlated with age, fasting, 2 h postprandial, BMI, triglyceride, total cholesterol, serum creatinine, blood urea, UACR, and negatively correlated with eGFR and serum albumin. Serum Sestrin 2 positively correlated with serum albumin. BMI, serum urea, UACR and serum albumin. Serum betatrophin are found to be risk factors or predictors for diabetic nephropathy. CONCLUSIONS Patients with DN, particularly the macroalbuminuria group, had a significant increase in betatrophin levels and a significant decrease in serum Sestrin 2 level. The function of Sestrin 2 is compromised in DN, and restoring it can reverse a series of molecular alterations with subsequent improvement of the renal functions, albuminuria and structural damage.
Collapse
Affiliation(s)
- Asmaa Mounir Emara
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Amal Said El Bendary
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Laila Mahmoud Ahmed
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hanaa Ibrahim Okda
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Bayoumy NMK, El-Shabrawi MM, Elsayed W, Kamal HA, Abdelmaogood AK, Ahmed-Maher S, Omar HH, Abdel-Rahman A. MicroRNA-29a and microRNA-122 expressions and other inflammatory markers among obese children with diabetes. J Pediatr Endocrinol Metab 2024; 37:21-26. [PMID: 37966142 DOI: 10.1515/jpem-2023-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVES This study was conducted to study the expression of both microRNA-29a and microRNA-122, and serum levels of sestrin-2, interleukin-6 (IL-6), and other inflammatory markers among obese children with/and without diabetes mellitus. METHODS One hundred obese children with diabetes in addition to 100 age- and sex-matched obese children without diabetes, and 100 age- and sex-matched apparently healthy children were included in the study. Expressions of both microRNA-29a and microRNA-122, and serum levels of sestrin-2, IL-6, tumor necrosis factor-α (TNF-α), and high sensitive-CRP (hsCRP) were measured for all included study populations. RESULTS Study results showed that the expressions of both microRNA-29a and microRNA-122, serum levels of IL-6, TNF-α, and hsCRP were significantly higher among obese children with diabetes in comparison to both obese children without diabetes and healthy children. In contrast, serum sestrin level was significantly low among obese children with diabetes in comparison to the other study populations. Expressions of both microRNA-29a and microRNA-122 were correlated with waist circumference, BMI, total cholesterol, triglycerides, LDL-cholesterol, HbA1c, c-peptide, glucose, insulin, homeostatic model assessment-insulin resistance (HOMA-IR), IL-6, hsCRP, and TNF-α among obese children with diabetes. However, serum sestrin-2 level was correlated inversely with these parameters. Higher expressions of both microRNA-29a and microRNA-122 among obese children either with or without diabetes mellitus (DM) can suggest their roles in the development of obesity among children. CONCLUSIONS The study results can hypothesize that down-regulation of these micro-RNAs may solve this health problem with its sequelae, a hypothesis that needs more studies.
Collapse
Affiliation(s)
- Nervana M K Bayoumy
- Physiology Department, College of Medicine, Center of Excellence in Thrombosis & Hemostasis, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohamed M El-Shabrawi
- Clinical and Chemical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Wafaa Elsayed
- Pediatric Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hagar A Kamal
- Clinical and Chemical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Asmaa K Abdelmaogood
- Clinical and Chemical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Shymaa Ahmed-Maher
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hamdy H Omar
- Internal Medicine Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed Abdel-Rahman
- Pediatric Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
Zhang X, Luo Z, Li J, Lin Y, Li Y, Li W. Sestrin2 in diabetes and diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1274686. [PMID: 37920252 PMCID: PMC10619741 DOI: 10.3389/fendo.2023.1274686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes is a global health problem which is accompanied with multi-systemic complications. It is of great significance to elucidate the pathogenesis and to identify novel therapies of diabetes and diabetic complications. Sestrin2, a stress-inducible protein, is primarily involved in cellular responses to various stresses. It plays critical roles in regulating a series of cellular events, such as oxidative stress, mitochondrial function and endoplasmic reticulum stress. Researches investigating the correlations between Sestrin2, diabetes and diabetic complications are increasing in recent years. This review incorporates recent findings, demonstrates the diverse functions and regulating mechanisms of Sestrin2, and discusses the potential roles of Sestrin2 in the pathogenesis of diabetes and diabetic complications, hoping to highlight a promising therapeutic direction.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zirui Luo
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Jiahong Li
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yaxuan Lin
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yu Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Sundararajan S, Jayachandran I, Pandey GK, Venkatesan S, Rajagopal A, Gokulakrishnan K, Balasubramanyam M, Mohan V, Manickam N. Metformin Reduces the Progression of Atherogenesis by Regulating the Sestrin2-mTOR Pathway in Obese and Diabetic Rats. J Lipid Atheroscler 2023; 12:290-306. [PMID: 37800110 PMCID: PMC10548184 DOI: 10.12997/jla.2023.12.3.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 10/07/2023] Open
Abstract
Objective In previous research, we found that Sestrin2 has a strong association with plasma atherogenicity and combats the progression of atherogenesis by regulating the AMPK-mTOR pathway. Metformin, an activator of AMPK, is widely used as a first-line therapy for diabetes, but its role in preventing atherosclerosis and cardiac outcomes is unclear. Hence, we aimed to assess the effect of metformin on preventing atherosclerosis and its regulatory role in the Sestrin2-AMPK -mTOR pathway in obese/diabetic rats. Methods Animals were fed a high-fat diet to induce obesity, administered streptozotocin to induce diabetes, and then treated with metformin (150 mg/kg body weight) for 14 weeks. Aorta and heart tissues were analyzed for Sestrin2 status by western blotting and immunohistochemistry, AMPK and mTOR activities were investigated using western blotting, and atherogenicity-related events were evaluated using reverse transcription quantitative polymerase chain reaction and histology. Results Obese and diabetic rats showed significant decrease in Sestrin2 levels and AMPK activity, accompanied by increased mTOR activity in the heart and aorta tissues. Metformin treatment significantly restored Sestrin2 and AMPK levels, reduced mTOR activity, and restored the altered expression of inflammatory markers and adhesion molecules in obese and diabetic rats to normal levels. A histological analysis of samples from obese and diabetic rats showed atherosclerotic lesions both in aorta and heart tissues. The metformin-treated rats showed a decrease in atherosclerotic lesions, cardiac hypertrophy, and cardiomyocyte degeneration. Conclusion This study presents further insights into the beneficial effects of metformin and its protective role against atherosclerosis through regulation of the Sestrin2-AMPK-mTOR pathway.
Collapse
Affiliation(s)
- Saravanakumar Sundararajan
- Department of Vascular Biology, Madras Diabetes Research Foundation & ICMR Centre for Advanced Research on Diabetes, Chennai, India
| | - Isaivani Jayachandran
- Department of Vascular Biology, Madras Diabetes Research Foundation & ICMR Centre for Advanced Research on Diabetes, Chennai, India
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, India
| | - Gautam Kumar Pandey
- Department of Vascular Biology, Madras Diabetes Research Foundation & ICMR Centre for Advanced Research on Diabetes, Chennai, India
| | - Saravanakumar Venkatesan
- Department of Vascular Biology, Madras Diabetes Research Foundation & ICMR Centre for Advanced Research on Diabetes, Chennai, India
| | - Anusha Rajagopal
- Department of Vascular Biology, Madras Diabetes Research Foundation & ICMR Centre for Advanced Research on Diabetes, Chennai, India
| | - Kuppan Gokulakrishnan
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - Muthuswamy Balasubramanyam
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation & ICMR Centre for Advanced Research on Diabetes, Chennai, India
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation and Dr. Mohan’s Diabetes Specialities Centre, Chennai, India
| | - Nagaraj Manickam
- Department of Vascular Biology, Madras Diabetes Research Foundation & ICMR Centre for Advanced Research on Diabetes, Chennai, India
| |
Collapse
|
7
|
Blagov AV, Orekhova VA, Sukhorukov VN, Melnichenko AA, Orekhov AN. Potential Use of Antioxidant Compounds for the Treatment of Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2023; 16:1150. [PMID: 37631065 PMCID: PMC10458684 DOI: 10.3390/ph16081150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Since inflammatory bowel diseases (IBDs) are chronic, the development of new effective therapeutics to combat them does not lose relevance. Oxidative stress is one of the main pathological processes that determines the progression of IBD. In this regard, antioxidant therapy seems to be a promising approach. The role of oxidative stress in the development and progression of IBD is considered in detail in this review. The main cause of oxidative stress in IBD is an inadequate response of leukocytes to dysbiosis and food components in the intestine. Passage of immune cells through the intestinal barrier leads to increased ROS concentration and the pathological consequences of exposure to oxidative stress based on the development of inflammation and impaired intestinal permeability. To combat oxidative stress in IBD, several promising natural (curcumin, resveratrol, quercetin, and melatonin) and artificial antioxidants (N-acetylcysteine (NAC) and artificial superoxide dismutase (aSOD)) that had been shown to be effective in a number of clinical trials have been proposed. Their mechanisms of action on pathological events in IBD and clinical manifestations from their impact have been determined. The prospects for the use of other antioxidants that have not yet been tested in the treatment of IBD, but have the properties of potential therapeutic candidates, have been also considered.
Collapse
Affiliation(s)
- Alexander V. Blagov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
| | - Varvara A. Orekhova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| | - Vasily N. Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| | - Alexandra A. Melnichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| |
Collapse
|
8
|
Watany MM, El-Horany HE, Elhosary MM, Elhadidy AA. Clinical application of RUBCN/SESN2 mediated inhibition of autophagy as biomarkers of diabetic kidney disease. Mol Med 2022; 28:147. [PMID: 36476132 PMCID: PMC9730641 DOI: 10.1186/s10020-022-00580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Deregulated autophagy in diabetes has been a field of many experimental studies recently. Impaired autophagy in diabetic kidneys orchestrates every step of diabetic nephropathy (DN) pathogenesis. This study aimed to evaluate three autophagy regulators; RUBCN, mTOR, and SESN2 as clinically applicable indicators of DN progression and as early predictors of DN. METHODS This retrospective study included 120 participants in 4 groups; G1: diabetic patients without albuminuria, G2: diabetic patients with microalbuminuria, G3: diabetic patients with macroalbuminuria and G4: healthy controls. RUBCN and SESN2 genes expression were tested by RT-qPCR. RUBCN, mTOR, and SESN2 serum proteins were quantitated by ELISA. RESULTS RUBCN mRNA was over-expressed in diabetic patients relative to controls with the highest level found in G3 followed by G2 then G1; (9.04 ± 0.64, 5.18 ± 0.73, 1.94 ± 0.41 respectively. P < 0.001). SESN2 mRNA expression was at its lowest level in G3 followed by G2 then G1 (0.1 ± 0.06, 0.48 ± 0.11, 0.78 ± 0.13 respectively. P < 0.001). Similar parallel reduction in serum SENS2 was observed. Serum RUBCN and mTOR were significantly elevated in diabetic patients compared to controls, with the increase parallel to albuminuria degree. RUBCN expression, serum RUBCN and mTOR strongly correlated with albuminuria (r = 0.912, 0.925 and 0.867 respectively). SESN2 expression and serum level negatively correlated with albuminuria (r = - 0.897 and -0.828 respectively); (All p < 0.001). Regression analysis showed that serum RUBCN, mTOR, RUBCN and SESN2 mRNAs could successfully predict DN. CONCLUSIONS The study proves the overexpression of RUBCN and mTOR in DN and the down-expression of SESN2. The three markers can be clinically used to predict DN and to monitor disease progression.
Collapse
Affiliation(s)
- Mona M. Watany
- grid.412258.80000 0000 9477 7793Clinical Pathology Department, Faculty of Medicine, Tanta University, El Geish Street, Tanta, 31527 El-Gharbia Governorate Egypt
| | - Hemat E. El-Horany
- grid.412258.80000 0000 9477 7793Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, 31527 Egypt ,grid.443320.20000 0004 0608 0056Biochemistry Department, College of Medicine, Ha’il University, Ha’il, 55211 Saudi Arabia
| | - Marwa M. Elhosary
- grid.412258.80000 0000 9477 7793Msc Immunology from Tanta Faculty of Science, Tanta, 31527 Egypt
| | - Ahmed A. Elhadidy
- grid.412258.80000 0000 9477 7793Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
9
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
10
|
Serum Sestrin2 Was Lower in Septic Shock Patients with Cardiomyopathy. DISEASE MARKERS 2022; 2022:1390373. [PMID: 36092963 PMCID: PMC9458382 DOI: 10.1155/2022/1390373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
Background To determine the clinical significance of variations in serum sestrin2 protein levels in the development of septic cardiomyopathy in septic shock patients. Methods The serum sestrin2 concentrations of each sample were determined using ELISA in a total of 67 control persons and 188 patients with septic shock. Furthermore, using transthoracic echocardiography, septic shock patients were split into two groups based on whether or not cardiomyopathy had developed, and the differences in each index between the two groups were analyzed. We looked at the relationship between serum sestrin2 levels, norepinephrine dosage, and NTproBNP levels. The influencing variables for the prediction of septic cardiomyopathy linked with the development of septic cardiomyopathy and clinical prognosis in septic cardiomyopathy were determined using multivariate binary logistic regression. Results Assessment of left ventricular systolic function by measurement of LVEF revealed that 61/188 (32.4%) of the 188 patients with septic shock included in the research satisfied the diagnostic criteria for septic cardiomyopathy. (1) Sestrin2 protein levels showed a significant difference between septic shock and healthy controls (p < 0.01). (2) Compared to the group without septic cardiomyopathy, the group with combined septic cardiomyopathy had lower serum sestrin2 protein levels (p < 0.05), lower systolic blood pressure (p < 0.05), and higher plasma NTproBNP levels (p < 0.01) and used greater norepinephrine dosages (p < 0.01). The levels of serum sestrin2 protein revealed a little negative relationship with NTproBNP and norepinephrine dose. However, a binary logistic regression analysis revealed that none of these factors was an independent predictor of septic shock. (3) Age, lactate level, SOFA score, positive bacteremia, and sestrin2 protein were shown to be substantial discrepancies in clinical outcomes in patients with septic cardiomyopathy, becoming variables that impact clinical outcomes. Positive bacteremia (p = 0.031, OR = 5.084), SOFA score (p = 0.021, OR = 1.304), and sestrin2 protein (p = 0.039, OR = 0.897) were revealed to have independent influences in predicting clinical mortality outcome in septic cardiomyopathy using multivariate binary logistic regression. Conclusion High serum sestrin2 levels clearly distinguish septic shock patients from healthy controls, whereas low serum sestrin2 levels are related with cardiac dysfunction to some extent but are not an independent influence factor for septic cardiomyopathy. Low serum sestrin2 levels were shown to be useful in predicting clinical outcome in patients with septic cardiomyopathy.
Collapse
|
11
|
Oxidative Stress-Induced Protein of SESTRIN2 in Cardioprotection Effect. DISEASE MARKERS 2022; 2022:7439878. [PMID: 35937943 PMCID: PMC9355779 DOI: 10.1155/2022/7439878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/12/2022] [Accepted: 07/16/2022] [Indexed: 12/02/2022]
Abstract
Because of the rich mitochondria and high energy metabolic requirements, excessive oxidative stress generated by ROS is a key pathogenic mechanism in heart disease. SESTRIN2, the well-known antioxidant protein, plays a vital role in diminishing the production and accumulation of ROS, thus sparing cells from oxidative damage. From this new perspective, we first examine SESTRIN2 structure-function relationships; then, we describe how SESTRIN2 expression is regulated under oxidative stress conditions, emphasizing SESTRIN2's antioxidant mechanism via multiple signal transductions; and finally, we discuss SESTRIN2's role in a variety of oxidative stress-related cardiac diseases, including age-related heart disease, diabetic cardiomyopathy, ischemia-reperfusion myocardial injury, septic cardiomyopathy, and chronic cardiac insufficiency. The goal of this review is to identify the SESTRIN2 protein as a potential biomarker and new therapy target for oxidative stress-related cardiac diseases.
Collapse
|
12
|
González-Martos R, Aparicio-Ugarriza R, Alcazar J, Ramirez-Castillejo C, Reihmane D, Menéndez-Rey A, González-Gross M, Guadalupe-Grau A. Circulating Sestrins and Force Velocity Profiling in Older Adults with Type 2 Diabetes. Eur J Sport Sci 2022:1-10. [PMID: 35876123 DOI: 10.1080/17461391.2022.2106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
ABSTRACTType 2 diabetes mellitus (T2DM) in old age affects the musculoskeletal system causing loss of muscle mass, strength, and physical function. Stress-inducible proteins named sestrins are potential novel biomarkers of muscle function due to their ability to suppress oxidative stress and prevent muscle degeneration. Our aim was to determine the association between different force-velocity (F-V) profiles with body composition, physical performance, and glucose control in older adults with T2DM. We also intended to determine the potential utility of sestrin 1 (Sesn1) and 2 (Sesn2) as biomarkers of physical functionality. Fifty-nine participants (69-79 years) were classified in 3 groups according to their F-V profile based on the leg press exercise: nondeficit (NDEF = 40.7%), force deficit (FDEF = 28.8%), and velocity deficit (VDEF = 30.5%). Both VDEF and FDEF groups showed lower muscle power than NDEF (Cohen's d 0.87 and 0.75 for effect size, respectively). Serum Sesn2 levels, maximal dynamic strength, arms and legs fat-free mass were reduced in FDEF compared to the NDEF group (p < 0.05), whereas glycated hemoglobin (HbA1c) and fasting glucose levels were similar among groups. ROC analysis revealed the distinction between the NDEF and FDEF group based on Sesn2 concentrations (<0.72 ng/mL), suggesting their potential use as functional biomarkers for early intervention through exercise. Older adults with T2DM show different F-V profiles, related to low levels of Sesn2, impaired body composition and physical performance, and may be taken into consideration to target exercise training in this specific population.
Collapse
Affiliation(s)
- Raquel González-Martos
- ImFINE Research Group. Department of Health and Human Performance. Universidad Politécnica de Madrid. Madrid, 28040, Spain.,Cancer Stem Cell Research Group. Department of Biotechnology-Vegetal Biology. Centro de Tecnología Biomédica. Universidad Politécnica de Madrid. Madrid, 28223, Spain.,GENUD Toledo Research Group, Universidad Castilla-La Mancha. Toledo, 45071, Spain
| | - Raquel Aparicio-Ugarriza
- ImFINE Research Group. Department of Health and Human Performance. Universidad Politécnica de Madrid. Madrid, 28040, Spain.,CIBER of Biomedical Research Networking Center on Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII). Madrid, 28222, Spain
| | - Julian Alcazar
- GENUD Toledo Research Group, Universidad Castilla-La Mancha. Toledo, 45071, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, ISCIII. Madrid, 28222, Spain
| | - Carmen Ramirez-Castillejo
- Cancer Stem Cell Research Group. Department of Biotechnology-Vegetal Biology. Centro de Tecnología Biomédica. Universidad Politécnica de Madrid. Madrid, 28223, Spain
| | - Dace Reihmane
- Department of Human Physiology and Biochemistry, Riga Stradiņš University. Riga, LV-1007, Latvia
| | - Adrian Menéndez-Rey
- Cancer Stem Cell Research Group. Department of Biotechnology-Vegetal Biology. Centro de Tecnología Biomédica. Universidad Politécnica de Madrid. Madrid, 28223, Spain
| | - Marcela González-Gross
- ImFINE Research Group. Department of Health and Human Performance. Universidad Politécnica de Madrid. Madrid, 28040, Spain.,CIBER of Biomedical Research Networking Center on Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII). Madrid, 28222, Spain
| | - Amelia Guadalupe-Grau
- ImFINE Research Group. Department of Health and Human Performance. Universidad Politécnica de Madrid. Madrid, 28040, Spain.,GENUD Toledo Research Group, Universidad Castilla-La Mancha. Toledo, 45071, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, ISCIII. Madrid, 28222, Spain
| |
Collapse
|
13
|
Tian X, Gao Y, Zhong M, Kong M, Zhao L, Feng Z, Sun Q, He J, Liu X. The association between serum Sestrin2 and the risk of coronary heart disease in patients with type 2 diabetes mellitus. BMC Cardiovasc Disord 2022; 22:281. [PMID: 35729499 PMCID: PMC9215095 DOI: 10.1186/s12872-022-02727-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Coronary heart disease (CHD) is one of the most common causes of morbidity and mortality in type 2 diabetes mellitus (T2DM). Oxidative stress is one of the important contributors to the pathogenesis of CHD. Sestrin2 is a stress-induced antioxidant protein that plays a important role in T2DM and CHD. However, the relationship between serum Sestrin2 levels and T2DM with CHD remains unclear. AIM This study aimed to investigate the relationship between serum Sestrin2 levels and CHD in patients with type 2 diabetes. METHODS A total of 70 T2DM patients with CHD and 69 T2DM patients were enrolled in this study. Clinical features and metabolic indices were identified. Serum Sestrin2 was measured by ELISA. RESULTS Serum Sestrin2 levels in T2DM-CHD groups were significantly lower compared with the T2DM group (11.17 (9.79, 13.14) ng/mL vs 9.46 (8.34, 10.91) ng/mL). Bivariate correlation analysis revealed that serum Sestrin2 levels were negatively correlated with age (r = - 0.256, P = 0.002), BMI (r = - 0.206, P = 0.015), FBG (r = - 0.261, P = 0.002) and Tyg index (r = - 0.207, P < 0.014). Binary logistic regression suggested that low serum Sestrin2 levels were related to the increased risk of T2DM-CHD (P < 0.05). In addition, the receiver operating characteristic analysis revealed that the area under the curve of Sestrin2 was 0.724 (95% CI 0.641-0.808, P < 0.001) to predict T2DM-CHD patients (P < 0.001). CONCLUSION The Sestrin2 levels were highly associated with CHD in diabetes patients. Serum Sestrin2 may be involved in the occurrence and development of diabetic with CHD.
Collapse
Affiliation(s)
- Xue Tian
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yu Gao
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China.
| | - Min Zhong
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Mowei Kong
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Lihua Zhao
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zengbin Feng
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Qitian Sun
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Jianqiu He
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xiaoyan Liu
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
14
|
Zhang X, Deng X, Ye H, Chen Z, Li W. Inhibition of Sestrin2 overexpression in diabetic cardiomyopathy ameliorates cardiac injury via restoration of mitochondrial function. Exp Ther Med 2022; 23:265. [PMID: 35251331 PMCID: PMC8892608 DOI: 10.3892/etm.2022.11191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/21/2022] [Indexed: 11/05/2022] Open
Abstract
Mitochondrial dysfunction-induced apoptosis plays a crucial role in the progression of diabetic cardiomyopathy (DCM). Sestrin2 is an important oxidative stress response protein and is involved in the maintenance of mitochondrial function, especially under stress. The aim of the present study was to investigate the role of Sestrin2 in DCM and to explore the underlying mechanisms. H9c2 cardiomyocytes were induced with high glucose (HG) medium (33 mmol/l glucose) for an in vitro DCM model. C57BL/6 mice were induced for the in vivo DCM model by intraperitoneal streptozotocin injection. H9c2 cardiomyocytes were exposed to HG and infected with lentiviruses to express Sestrin2 short hairpin RNA (shRNA). The study found that cell viability and mitochondrial function were impaired while cell apoptosis and oxidative stress were increased in DCM. Sestrin2 was significantly upregulated in myocardial tissues of DCM mice and H9c2 cardiomyocytes in HG conditions. Downregulation of Sestrin2 increased cell viability, decreased cell apoptosis, and attenuated oxidative stress in H9c2 cells exposed to HG. Moreover, HG-induced mitochondrial injury was alleviated by Sestrin2 silencing. In conclusion, our finding indicated that the inhibition of enhanced Sestrin2 expression ameliorates cardiac injury in DCM, which might be largely attributed to the restoration of mitochondrial function.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Xiaoyi Deng
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Huiyu Ye
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Zhishan Chen
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| |
Collapse
|
15
|
Gao F, Zhao Y, Zhang B, Xiao C, Sun Z, Gao Y, Dou X. Forkhead box protein 1 transcriptionally activates sestrin1 to alleviate oxidized low-density lipoprotein-induced inflammation and lipid accumulation in macrophages. Bioengineered 2022; 13:2917-2926. [PMID: 35043753 PMCID: PMC8974195 DOI: 10.1080/21655979.2021.2000228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transcription factor forkhead box protein 1 (FOXP1) has been shown cardiovascular protection. We aimed to analyze the role of FOXP1 in oxidized low-density lipoprotein (ox-LDL)-induced macrophages and its possible regulatory effect on sestrin1 (SESN1) expression. After stimulation with ox-LDL, FOXP1 expression in RAW264.7 cells was evaluated with RT-qPCR and Western blotting. Then, FOXP1 was overexpressed, followed by detection of inflammatory mediator levels using ELISA kits and RT-qPCR. Lipid accumulation was detected with oil red O staining. Additionally, the JASPAR database was used to predict the potential genes that could be transcriptionally regulated by FOXP1. ChIP and luciferase reporter assays were used to verify this combination. To further clarify the regulatory effects of FOXP1 on SESN1 in damage of macrophages triggered by ox-LDL, SESN1 was silenced to determine the inflammation and lipid accumulation under the condition of FOXP1 overexpression. Results indicated that ox-LDL stimulation led to a significant decrease in FOXP1 expression. FOXP1 overexpression notably reduced the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, accompanied by a decreased in phosphorylated NF-κB p65 expression. Besides, FOXP1-upregulation inhibited lipid accumulation and reduced CD36 expression level in RAW264.7 cells upon ox-LDL stimulation. Moreover, results of ChIP and luciferase reporter assays suggested that FOXP1 could transcriptionally regulate SESN1 expression. Further experiments supported that SESN1 silencing restored the inhibitory effects of FOXP1 overexpression on the inflammation and lipid accumulation in RAW264.7 cells exposed to ox-LDL. Collectively, FOXP1 transcriptionally activates SESN1 for the alleviation of ox-LDL-induced inflammation and lipid accumulation in macrophages.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, People's Republic of China
| | - Yongcheng Zhao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, People's Republic of China
| | - Bin Zhang
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, People's Republic of China
| | - Chunwei Xiao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, People's Republic of China
| | - Zhanfa Sun
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, People's Republic of China
| | - Yuan Gao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, People's Republic of China
| | - Xueyong Dou
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, People's Republic of China
| |
Collapse
|
16
|
Mao EW, Cheng XB, Li WC, Kan CX, Huang N, Wang HS, Hou NN, Sun XD. Association between serum Sestrin2 level and diabetic peripheral neuropathy in type 2 diabetic patients. World J Clin Cases 2021; 9:11156-11164. [PMID: 35071546 PMCID: PMC8717510 DOI: 10.12998/wjcc.v9.i36.11156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a chronic and serious microvascular complication of diabetes linked to redox imbalance. Sestrin2, a novel inducible stress protein, participates in glucose metabolic regulation and redox homeostasis. However, the association between serum Sestrin2 and DPN is unknown. AIM To explore the association between serum Sestrin2 and DPN in patients with type 2 diabetes mellitus (T2DM). METHODS A total of 96 T2DM patients and 39 healthy volunteers, matched by age and sex, participated in this cross-sectional study. Clinical features and metabolic indices were identified. Serum Sestrin2 was measured by ELISA. The association between Sestrin2 and DPN was studied. Correlation and logistic regression analyses were used to evaluate the associations of different metabolic indices with Sestrin2 and DPN. RESULTS The 96 patients with T2DM were divided into DPN (n = 47) and patients without DPN (n = 49). Serum Sestrin2 was significantly lower in healthy volunteers than in all T2DM patients combined [9.10 (5.41-13.53) ng/mL vs 12.75 (7.44-23.80) ng/mL, P < 0.01]. T2DM patients without DPN also had significantly higher levels of Sestrin2 than healthy volunteers [14.58 (7.93-26.62) ng/mL vs 9.10 (5.41-13.53) ng/mL, P < 0.01]. However, T2DM patients with DPN had lower circulating Sestrin2 levels compared to T2DM patients without DPN [9.86 (6.72-21.71) ng/mL vs 14.58 (7.93-26.62) ng/mL, respectively, P < 0.01]. Bivariate correlation analysis revealed that serum Sestrin2 was positively correlated with body mass index (r = 0.672, P = 0.000), hemoglobin A1c (HbA1c) (r = 0.292, P = 0.000), serum creatinine (r = 0.206, P = 0.016), triglycerides (r = 0.731, P = 0.000), and fasting glucose (r = 0.202, P = 0.040), and negatively associated with estimated glomerular filtration rate (r = -0.230, P = 0.007). After adjustment for sex, age, HbA1c, and diabetes duration, multiple regression analysis revealed that Sestrin2 was independently correlated with body mass index and triglyceride levels (P = 0.000). Logistic regression analyses indicated that Sestrin2, diabetes duration, and high-density lipoprotein were strongly associated with DPN (odds ratio = 0.855, 1.411, and 0.041, respectively). CONCLUSION Our results show Sestrin2 is decreased in T2DM patients with DNP. As lower Sestrin2 is independently associated with DPN, Sestrin2 may contribute to progression of DPN in T2DM patients.
Collapse
Affiliation(s)
- En-Wen Mao
- Department of Endocrinology and Metabolism, Clinical Research Center, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Xue-Bing Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Wen-Chao Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Cheng-Xia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Na Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Hong-Sheng Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Ning-Ning Hou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Xiao-Dong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| |
Collapse
|
17
|
Potential Roles of Sestrin2 in Alzheimer's Disease: Antioxidation, Autophagy Promotion, and Beyond. Biomedicines 2021; 9:biomedicines9101308. [PMID: 34680426 PMCID: PMC8533411 DOI: 10.3390/biomedicines9101308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disease. It presents with progressive memory loss, worsens cognitive functions to the point of disability, and causes heavy socioeconomic burdens to patients, their families, and society as a whole. The underlying pathogenic mechanisms of AD are complex and may involve excitotoxicity, excessive generation of reactive oxygen species (ROS), aberrant cell cycle reentry, impaired mitochondrial function, and DNA damage. Up to now, there is no effective treatment available for AD, and it is therefore urgent to develop an effective therapeutic regimen for this devastating disease. Sestrin2, belonging to the sestrin family, can counteract oxidative stress, reduce activity of the mammalian/mechanistic target of rapamycin (mTOR), and improve cell survival. It may therefore play a crucial role in neurodegenerative diseases like AD. However, only limited studies of sestrin2 and AD have been conducted up to now. In this article, we discuss current experimental evidence to demonstrate the potential roles of sestrin2 in treating neurodegenerative diseases, focusing specifically on AD. Strategies for augmenting sestrin2 expression may strengthen neurons, adapting them to stressful conditions through counteracting oxidative stress, and may also adjust the autophagy process, these two effects together conferring neuronal resistance in cases of AD.
Collapse
|
18
|
Mohany KM, Al Rugaie O, Al-Wutayd O, Al-Nafeesah A. Investigation of the levels of circulating miR-29a, miR-122, sestrin 2 and inflammatory markers in obese children with/without type 2 diabetes: a case control study. BMC Endocr Disord 2021; 21:152. [PMID: 34344352 PMCID: PMC8330040 DOI: 10.1186/s12902-021-00829-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
AIM The present work investigated serum levels of miR-29a, miR-122 and sestrin2 in obese children with/without type-2-diabetes mellitus (T2DM), and their correlations with inflammatory, metabolic and anthropometric parameters. METHODS The study included 298 children, divided into: G1 (control, n = 136), G2 (obese without diabetes, n = 90) and G3 (obese with T2DM, n = 72). Metabolic and anthropometric parameters, miR-29a, miR-122 relative expressions, and sestrin2, high sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels were measured by their specific methods. The data was processed and analyzed by SPSS V.26 using the corresponding tests. After testing the variables' normality, Kruskal-Wallis one-way-ANOVA, Spearman correlations coefficient were used. RESULTS Significant higher serum miR-29a, miR-122, IL-6, hsCRP and TNF-α and lower sestrin2 levels were found in G2 and G3 than G1 and in G3 than G2 (p= > 0.001 for all). Especially in G3, miR-29a and miR-122 levels correlated positively while sestrin2 levels correlated negatively with waist circumference and BMI percentiles, serum levels of LDL-cholesterol, triacylglycerol, total cholesterol, HbA1c%, glucose, insulin, c-peptide, homeostatic model assessment-insulin resistance (HOMA-IR), IL-6, hsCRP and TNF-α. CONCLUSION The change in the serum miR-29a, miR-122 and sestrin2 levels in obese children with/without T2DM may suggest a possible role of these biomarkers in the pathogenesis of childhood obesity and their accompanied complications e.g. inflammations and T2DM. Also, further studies are required to test drugs that antagonize the action miR-29a and miR-122 or upregulate sestrin2 in the management of these cases.
Collapse
Affiliation(s)
- Khalid M Mohany
- Department of Medical Biochemistry, College of Medicine, Assiut University, P.O. Box, Assiut, 71515, Egypt.
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia.
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Osama Al-Wutayd
- Department of Family and Community Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Abdullah Al-Nafeesah
- Department of Pediatrics, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
19
|
Che X, Chai J, Fang Y, Zhang X, Zu A, Li L, Sun S, Yang W. Sestrin2 in hypoxia and hypoxia-related diseases. Redox Rep 2021; 26:111-116. [PMID: 34225572 PMCID: PMC8259815 DOI: 10.1080/13510002.2021.1948774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objectives: Sestrin2 is a stress-inducible protein and play an important role in adapting stress states of cells. This article reviewed the role of Sestrin2 in hypoxia and hypoxia-related diseases to provide new perspectives for future research and new therapeutic targets for hypoxia-related diseases. Methods: A review was conducted through an electronic search of PubMed and Medline databases. Keywords included Sestrin2, ROS, hypoxia, and hypoxia-related disease. Articles from 2008 to 2021 were mostly included and older ones were not excluded. Results: Sestrin2 is upregulated under various stress conditions, especially hypoxia. Under hypoxic condition, Sestrin2 plays a protective role by reducing the generation of ROS through various pathways, such as adenosine monophosphatea-ctivated protein kinase (AMPK) / mammalian target of rapamycin (mTOR) pathway and nuclear factor-E2-related factor2 (Nrf2) pathway. In addition, Sestrin2 is involved in various hypoxia-related diseases, such as cerebral hypoxic disease, myocardial hypoxic disease, hypoxia-related respiratory disease, and diabetes. Discussion: Sestrin2 is involved in various hypoxia-related diseases and maybe a therapeutic target. Furthermore, most studies focus on cerebral and myocardial ischemia reperfusion. More researches on hypoxia-related respiratory diseases, kidney injury, and diabetes are needed in future.
Collapse
Affiliation(s)
- Xiaojing Che
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China.,Innovation Class & Second Class, 2017 Clinical Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Jiagui Chai
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China.,Innovation Class & Second Class, 2017 Clinical Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Yan Fang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China
| | - Xifeng Zhang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China
| | - Anju Zu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China
| | - Lin Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People's Republic of China.,School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People's Republic of China
| | - Weimin Yang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
20
|
Veenstra JP, Vemu B, Tocmo R, Nauman MC, Johnson JJ. Pharmacokinetic Analysis of Carnosic Acid and Carnosol in Standardized Rosemary Extract and the Effect on the Disease Activity Index of DSS-Induced Colitis. Nutrients 2021; 13:nu13030773. [PMID: 33673488 PMCID: PMC7997407 DOI: 10.3390/nu13030773] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Rosemary extract (RE) is an approved food preservative in the European Union and contains dietary phytochemicals that are beneficial for gastrointestinal health. This study investigated the effects of RE on dextran sodium sulfate (DSS)-induced colitis and also determined the pharmacokinetics of dietary phytochemicals administered to mice via oral gavage. Individual components of rosemary extract were separated and identified by LC–MS/MS. The pharmacokinetics of two major diterpenes from RE, carnosic acid (CA) and carnosol (CL), administered to mice via oral gavage were determined. Then, the effect of RE pre-treatment on the disease activity index (DAI) of DSS-induced colitis in mice was investigated. The study determined that 100 mg/kg RE significantly improved DAI in DSS-induced colitis compared to negative control. Sestrin 2 protein expression, which increased with DSS exposure, was reduced with RE treatment. Intestinal barrier integrity was also shown to improve via fluorescein isothiocyanate (FITC)–dextran administration and Western blot of zonula occludens-1 (ZO-1), a tight junction protein. Rosemary extract was able to improve the DAI of DSS-induced colitis in mice at a daily dose of 100 mg/kg and showed improvement in the intestinal barrier integrity. This study suggests that RE can be an effective preventative agent against IBD.
Collapse
|
21
|
Kishimoto Y, Kondo K, Momiyama Y. The Protective Role of Sestrin2 in Atherosclerotic and Cardiac Diseases. Int J Mol Sci 2021; 22:ijms22031200. [PMID: 33530433 PMCID: PMC7865804 DOI: 10.3390/ijms22031200] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 01/22/2023] Open
Abstract
Atherosclerotic disease, such as coronary artery disease (CAD), is known to be a chronic inflammatory disease, as well as an age-related disease. Excessive oxidative stress produced by reactive oxygen species (ROS) contributes to the pathogenesis of atherosclerosis. Sestrin2 is an anti-oxidant protein that is induced by various stresses such as hypoxia, DNA damage, and oxidative stress. Sestrin2 is also suggested to be associated with aging. Sestrin2 is expressed and secreted mainly by macrophages, endothelial cells, and cardiomyocytes. Sestrin2 plays an important role in suppressing the production and accumulation of ROS, thus protecting cells from oxidative damage. Since sestrin2 is reported to have anti-oxidant and anti-inflammatory properties, it may play a protective role against the progression of atherosclerosis and may be a potential therapeutic target for the amelioration of atherosclerosis. Regarding the association between blood sestrin2 levels and atherosclerotic disease, the blood sestrin2 levels in patients with CAD or carotid atherosclerosis were reported to be high. High blood sestrin2 levels in patients with such atherosclerotic disease may reflect a compensatory response to increased oxidative stress and may help protect against the progression of atherosclerosis. This review describes the protective role of sestrin2 against the progression of atherosclerotic and cardiac diseases.
Collapse
Affiliation(s)
- Yoshimi Kishimoto
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, Osaka 573-0101, Japan
- Correspondence: ; Tel.: +81-72-896-6352
| | - Kazuo Kondo
- Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan;
| | - Yukihiko Momiyama
- Department of Cardiology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan;
| |
Collapse
|
22
|
Ro SH, Fay J, Cyuzuzo CI, Jang Y, Lee N, Song HS, Harris EN. SESTRINs: Emerging Dynamic Stress-Sensors in Metabolic and Environmental Health. Front Cell Dev Biol 2020; 8:603421. [PMID: 33425907 PMCID: PMC7794007 DOI: 10.3389/fcell.2020.603421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
Proper timely management of various external and internal stresses is critical for metabolic and redox homeostasis in mammals. In particular, dysregulation of mechanistic target of rapamycin complex (mTORC) triggered from metabolic stress and accumulation of reactive oxygen species (ROS) generated from environmental and genotoxic stress are well-known culprits leading to chronic metabolic disease conditions in humans. Sestrins are one of the metabolic and environmental stress-responsive groups of proteins, which solely have the ability to regulate both mTORC activity and ROS levels in cells, tissues and organs. While Sestrins are originally reported as one of several p53 target genes, recent studies have further delineated the roles of this group of stress-sensing proteins in the regulation of insulin sensitivity, glucose and fat metabolism, and redox-function in metabolic disease and aging. In this review, we discuss recent studies that investigated and manipulated Sestrins-mediated stress signaling pathways in metabolic and environmental health. Sestrins as an emerging dynamic group of stress-sensor proteins are drawing a spotlight as a preventive or therapeutic mechanism in both metabolic stress-associated pathologies and aging processes at the same time.
Collapse
Affiliation(s)
- Seung-Hyun Ro
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Julianne Fay
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Cesar I Cyuzuzo
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Yura Jang
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Naeun Lee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hyun-Seob Song
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|