1
|
Huang Y, Wang Y, Zheng T, Nie S, Wang Y, Shen H, Mo F. Development of Dual Diagnostic-Therapeutic Nanoformulation Effective Against Pancreatic Cancer in Animal Model. Int J Nanomedicine 2024; 19:9121-9143. [PMID: 39258004 PMCID: PMC11386073 DOI: 10.2147/ijn.s464788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Purpose Erythrocytes and fibroblasts in the pancreatic cancer tumor microenvironment promote tumor cell growth and invasion by providing nutrients and promoting immunosuppression. Additionally, they form a barrier against the penetration of chemotherapeutic drugs. Therefore, the search for diversified tumor-targeting materials plays an essential role in solving the above problems. Methods Physicochemical characterization of Graphene fluorescent nanoparticles (GFNPs) and nanomedicines were analyzed by transmission electron microscopy (TEM), elemental analyzers and ultraviolet fluorescence (UV/FL) spectrophotometer. Localization of GFNPs in cell and tissue sections imaged with laser confocal microscope, fluorescence scanner and small animal in vivo imager. Qualitative detection and quantitative detection of GFNPs and GFNPs-GEM were performed using High performance liquid chromatography (HPLC). Results Based on the 3 nm average dimensions, GFNPs penetrate vascular endothelial cells and smooth muscle cells, achieve up to label 30% tumor cells and 60% cancer-associated fibroblasts (CAFs) cells, and accurately label mature red blood cells in the tumor microenvironment. In orthotopic transplanted pancreatic cancer models, the fluorescence intensity of GFNPs in tumors showed a positive correlation with the cycle size of tumor development. The differential spatial distribution of GFNPs in three typical clinical pancreatic cancer samples demonstrated their diagnostic potential. To mediate the excellent targeting properties of GFNPs, we synthesized a series of nanomedicines using popular chemotherapeutic drugs, in which complex of GFNPs and gemcitabine (GFNPs-GEM) possessed stability in vivo and exhibited effective reduction of tumor volume and fewer side effects. Conclusion GFNPs with multiple targeting tumor microenvironments in pancreatic cancer possess diagnostic efficiency and therapeutic potential.
Collapse
Affiliation(s)
- Yanan Huang
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Yunfeng Wang
- Department of Gastroenterology, Changhai Hospital, Shanghai, People's Republic of China
| | - Tianyu Zheng
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Shuang Nie
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Yanli Wang
- International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan, People's Republic of China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Alhussan A, Jackson N, Chow N, Gete E, Wretham N, Dos Santos N, Beckham W, Duzenli C, Chithrani DB. In Vitro and In Vivo Synergetic Radiotherapy with Gold Nanoparticles and Docetaxel for Pancreatic Cancer. Pharmaceutics 2024; 16:713. [PMID: 38931837 PMCID: PMC11206706 DOI: 10.3390/pharmaceutics16060713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
This research underscores the potential of combining nanotechnology with conventional therapies in cancer treatment, particularly for challenging cases like pancreatic cancer. We aimed to enhance pancreatic cancer treatment by investigating the synergistic effects of gold nanoparticles (GNPs) and docetaxel (DTX) as potential radiosensitizers in radiotherapy (RT) both in vitro and in vivo, utilizing a MIA PaCa-2 monoculture spheroid model and NRG mice subcutaneously implanted with MIA PaCa-2 cells, respectively. Spheroids were treated with GNPs (7.5 μg/mL), DTX (100 nM), and 2 Gy of RT using a 6 MV linear accelerator. In parallel, mice received treatments of GNPs (2 mg/kg), DTX (6 mg/kg), and 5 Gy of RT (6 MV linear accelerator). In vitro results showed that though RT and DTX reduced spheroid size and increased DNA DSBs, the triple combination of DTX/RT/GNPs led to a significant 48% (p = 0.05) decrease in spheroid size and a 45% (p = 0.05) increase in DNA DSBs. In vivo results showed a 20% (p = 0.05) reduction in tumor growth 20 days post-treatment with (GNPs/RT/DTX) and an increase in mice median survival. The triple combination exhibited a synergistic effect, enhancing anticancer efficacy beyond individual treatments, and thus could be employed to improve radiotherapy and potentially reduce adverse effects.
Collapse
Affiliation(s)
- Abdulaziz Alhussan
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Nolan Jackson
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Norman Chow
- Department of Experimental Therapeutics, British Columbia Cancer-Vancouver, Vancouver, BC V5Z IL3, Canada
| | - Ermias Gete
- Radiation Oncology, British Columbia Cancer-Vancouver, Vancouver, BC V5Z 4E6, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Nicole Wretham
- Department of Experimental Therapeutics, British Columbia Cancer-Vancouver, Vancouver, BC V5Z IL3, Canada
| | - Nancy Dos Santos
- Department of Experimental Therapeutics, British Columbia Cancer-Vancouver, Vancouver, BC V5Z IL3, Canada
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
- Radiation Oncology, British Columbia Cancer-Victoria, Victoria, BC V8R 6V5, Canada
| | - Cheryl Duzenli
- Radiation Oncology, British Columbia Cancer-Vancouver, Vancouver, BC V5Z 4E6, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Devika B. Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
- Radiation Oncology, British Columbia Cancer-Victoria, Victoria, BC V8R 6V5, Canada
- Center for Advanced Materials and Related Technologies, Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Computer Science, Mathematics, Physics and Statistics, Okanagan Campus, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
3
|
Jackson N, Cecchi D, Beckham W, Chithrani DB. Application of High-Z Nanoparticles to Enhance Current Radiotherapy Treatment. Molecules 2024; 29:2438. [PMID: 38893315 PMCID: PMC11173748 DOI: 10.3390/molecules29112438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Radiotherapy is an essential component of the treatment regimens for many cancer patients. Despite recent technological advancements to improve dose delivery techniques, the dose escalation required to enhance tumor control is limited due to the inevitable toxicity to the surrounding healthy tissue. Therefore, the local enhancement of dosing in tumor sites can provide the necessary means to improve the treatment modality. In recent years, the emergence of nanotechnology has facilitated a unique opportunity to increase the efficacy of radiotherapy treatment. The application of high-atomic-number (Z) nanoparticles (NPs) can augment the effects of radiotherapy by increasing the sensitivity of cells to radiation. High-Z NPs can inherently act as radiosensitizers as well as serve as targeted delivery vehicles for radiosensitizing agents. In this work, the therapeutic benefits of high-Z NPs as radiosensitizers, such as their tumor-targeting capabilities and their mechanisms of sensitization, are discussed. Preclinical data supporting their application in radiotherapy treatment as well as the status of their clinical translation will be presented.
Collapse
Affiliation(s)
- Nolan Jackson
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Daniel Cecchi
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
- British Columbia Cancer-Victoria, Victoria, BC V8R 6V5, Canada
| | - Devika B. Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
- Centre for Advanced Materials and Related Technologies, Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Computer Science, Mathematics, Physics and Statistics, Okanagan Campus, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
4
|
Kashkooli FM, Jakhmola A, A Ferrier G, Sathiyamoorthy K, Tavakkoli J(J, C Kolios M. Development of an ultrasound-mediated nano-sized drug-delivery system for cancer treatment: from theory to experiment. Nanomedicine (Lond) 2024; 19:1167-1189. [PMID: 38722104 PMCID: PMC11418290 DOI: 10.2217/nnm-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/06/2024] [Indexed: 09/21/2024] Open
Abstract
Aim: To establish a methodology for understanding how ultrasound (US) induces drug release from nano-sized drug-delivery systems (NSDDSs) and enhances drug penetration and uptake in tumors. This aims to advance cancer treatment strategies.Materials & methods: We developed a multi-physics mathematical model to elucidate and understand the intricate mechanisms governing drug release, transport and delivery. Unique in vitro models (monolayer, multilayer, spheroid) and a tailored US exposure setup were introduced to evaluate drug penetration and uptake.Results: The results highlight the potential advantages of US-mediated NSDDSs over conventional NSDDSs and chemotherapy, notably in enhancing drug release and inducing cell death.Conclusion: Our sophisticated numerical and experimental methods aid in determining and quantifying drug penetration and uptake into solid tumors.
Collapse
Affiliation(s)
| | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Graham A Ferrier
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | | | - Jahangir (Jahan) Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
5
|
Wu Y, Yu S, de Lázaro I. Advances in lipid nanoparticle mRNA therapeutics beyond COVID-19 vaccines. NANOSCALE 2024; 16:6820-6836. [PMID: 38502114 DOI: 10.1039/d4nr00019f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The remarkable success of two lipid nanoparticle-mRNA vaccines against coronavirus disease (COVID-19) has placed the therapeutic and prophylactic potential of messenger RNA (mRNA) in the spotlight. It has also drawn attention to the indispensable role of lipid nanoparticles in enabling the effects of this nucleic acid. To date, lipid nanoparticles are the most clinically advanced non-viral platforms for mRNA delivery. This is thanks to their favorable safety profile and efficiency in protecting the nucleic acid from degradation and allowing its cellular uptake and cytoplasmic release upon endosomal escape. Moreover, the development of lipid nanoparticle-mRNA therapeutics was already a very active area of research even before the COVID-19 pandemic, which has likely only begun to bear its fruits. In this Review, we first discuss key aspects of the development of lipid nanoparticles as mRNA carriers. We then highlight promising preclinical and clinical studies involving lipid nanoparticle-mRNA formulations against infectious diseases and cancer, and to enable protein replacement or supplementation and genome editing. Finally, we elaborate on the challenges in advancing lipid nanoparticle-mRNA technology to widespread therapeutic use.
Collapse
Affiliation(s)
- Yeung Wu
- Department of Biomedical Engineering, NYU Tandon School of Engineering, New York University, USA.
| | - Sinuo Yu
- Department of Biomedical Engineering, NYU Tandon School of Engineering, New York University, USA.
| | - Irene de Lázaro
- Department of Biomedical Engineering, NYU Tandon School of Engineering, New York University, USA.
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York University, USA
- Harvard John A. Paulson School of Engineering and Applied Science, Harvard University, USA
| |
Collapse
|
6
|
Hannachi E, Khan FA, Slimani Y, Rehman S, Trabelsi Z, Akhtar S, Al-Suhaimi EA. In Vitro Antimicrobial and Anticancer Peculiarities of Ytterbium and Cerium Co-Doped Zinc Oxide Nanoparticles. BIOLOGY 2022; 11:1836. [PMID: 36552345 PMCID: PMC9775757 DOI: 10.3390/biology11121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are a promising platform for their use in biomedical research, especially given their anticancer and antimicrobial activities. This work presents the synthesis of ZnO NPs doped with different amounts of rare-earth ions of ytterbium (Yb) and cerium (Ce) and the assessment of their anticancer and antimicrobial activities. The structural investigations indicated a hexagonal wurtzite structure for all prepared NPs. The particle size was reduced by raising the amount of Ce and Yb in ZnO. The anticancer capabilities of the samples were examined by the cell viability MTT assay. Post 48-h treatment showed a reduction in the cancer cell viability, which was x = 0.00 (68%), x = 0.01 (58.70%), x = 0.03 (80.94%) and x = 0.05 (64.91%), respectively. We found that samples doped with x = 0.01 and x = 0.05 of Yb and Ce showed a better inhibitory effect on HCT-116 cancer cells than unadded ZnO (x = 0.00). The IC50 for HCT-116 cells of Ce and Yb co-doped ZnO nanoparticles was calculated and the IC50 values were x = 0.01 (3.50 µg/mL), x = 0.05 (8.25 µg/mL), x = 0.00 (11.75 µg/mL), and x = 0.03 (21.50 µg/mL). The treatment-doped ZnO NPs caused apoptotic cell death in the HCT-116 cells. The nanoparticles showed inhibitory action on both C. albicans and E. coli. It can be concluded that doping ZnO NPs with Yb and Ce improves their apoptotic effects on cancer and microbial cells.
Collapse
Affiliation(s)
- Essia Hannachi
- Department of Nuclear Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Suriya Rehman
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Zayneb Trabelsi
- Department of Physics, Faculty of Science of Bizerte, University of Carthage, Bizerte 7021, Tunisia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ebtesam A. Al-Suhaimi
- Biology Department & Institute for Research and Medical Consultations (IRMC), College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
7
|
Repurposing Antimalarial Pyronaridine as a DNA Repair Inhibitor to Exploit the Full Potential of Gold-Nanoparticle-Mediated Radiation Response. Pharmaceutics 2022; 14:pharmaceutics14122795. [PMID: 36559288 PMCID: PMC9783290 DOI: 10.3390/pharmaceutics14122795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Radiation therapy (RT) is frequently used to locally treat tumors. One of the major issues in RT is normal tissue toxicity; thus, it is necessary to limit dose escalation for enhanced local control in patients that have locally advanced tumors. Integrating radiosensitizing agents such as gold nanoparticles (GNPs) into RT has been shown to greatly increase the cure rate of solid tumors. The objective of this study was to explore the repurposing of an antimalarial drug, pyronaridine (PYD), as a DNA repair inhibitor to further enhance RT/GNP-induced DNA damage in cancerous cell lines. We were able to achieve inhibitory effects of DNA repair due to PYD at 500 nM concentration. Our results show a significant enhancement in DNA double-strand breaks of 42% in HeLa cells treated with PYD/GNP/RT in comparison to GNP/RT alone when irradiated with a dose of 2 Gy. Furthermore, there was a significant reduction in cellular proliferation for both HeLa and HCT-116 irradiated cells with the combined treatment of PYD/GNP/RT. Therefore, the emergence of promising novel concepts introduced in this study could lay the foundation for the transition of this treatment modality into clinical environments.
Collapse
|
8
|
Size-Dependent Cytotoxic and Molecular Study of the Use of Gold Nanoparticles against Liver Cancer Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The size of nanomaterials influences physicochemical parameters, and variations in the size of nanomaterials can have a significant effect on their biological activities in cells. Due to the potential applicability of nanoparticles (NPs), the current work was designed to carry out a size-dependent study of gold nanoparticles (GNPs) in different dimensions, synthesized via a colloidal solution process. Three dissimilar-sized GNPs, GNPs-1 (10–15 nm), GNPs-2 (20–30 nm), and GNPs-3 (45 nm), were prepared and characterized via transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), hydrodynamic size, zeta potential, and UV-visible spectroscopy, and applied against liver cancer (HepG2) cells. Various concentrations of GNPs (1, 2, 5, 10, 50, and 100 µg/mL) were applied against the HepG2 cancer cells to assess the percentage of cell viability via MTT and NRU assays; reactive oxygen species (ROS) generation was also used. ROS generation was increased by 194%, 164%, and 153% for GNPs-1, GNPs-2, and GNPs-3, respectively, in the HepG2 cells. The quantitative polymerase chain reaction (qPCR) data for the HepG2 cells showed up-regulation in gene expression of apoptotic genes (Bax, p53, and caspase-3) when exposed to the different-sized GNPs, and defined their respective roles. Based on the results, it was concluded that GNPs of different sizes have the potential to induce cancer cell death.
Collapse
|
9
|
Alabresm A, Chandler SL, Benicewicz BC, Decho AW. Nanotargeting of Resistant Infections with a Special Emphasis on the Biofilm Landscape. Bioconjug Chem 2021; 32:1411-1430. [PMID: 34319073 PMCID: PMC8527872 DOI: 10.1021/acs.bioconjchem.1c00116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacterial resistance to antimicrobial compounds is a growing concern in medical and public health circles. Overcoming the adaptable and duplicative resistance mechanisms of bacteria requires chemistry-based approaches. Engineered nanoparticles (NPs) now offer unique advantages toward this effort. However, most in situ infections (in humans) occur as attached biofilms enveloped in a protective surrounding matrix of extracellular polymers, where survival of microbial cells is enhanced. This presents special considerations in the design and deployment of antimicrobials. Here, we review recent efforts to combat resistant bacterial strains using NPs and, then, explore how NP surfaces may be specifically engineered to enhance the potency and delivery of antimicrobial compounds. Special NP-engineering challenges in the design of NPs must be overcome to penetrate the inherent protective barriers of the biofilm and to successfully deliver antimicrobials to bacterial cells. Future challenges are discussed in the development of new antibiotics and their mechanisms of action and targeted delivery via NPs.
Collapse
Affiliation(s)
- Amjed Alabresm
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Biological Development of Shatt Al-Arab & N. Arabian Gulf, Marine Science Centre, University of Basrah, Basrah, Iraq
| | - Savannah L Chandler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- USC NanoCenter, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
10
|
Alhussan A, Bromma K, Perez MM, Beckham W, Alexander AS, Howard PL, Chithrani DB. Docetaxel-Mediated Uptake and Retention of Gold Nanoparticles in Tumor Cells and in Cancer-Associated Fibroblasts. Cancers (Basel) 2021; 13:cancers13133157. [PMID: 34202574 PMCID: PMC8269007 DOI: 10.3390/cancers13133157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Currently, radiotherapy and chemotherapy are the most commonly used options, in addition to surgery, to treat cancer. There has been tremendous progress in interfacing nanotechnology to current cancer therapeutic protocols. For example, nanoparticles are used as drug carriers in chemotherapy and as radiation dose enhancers in radiotherapy. However, most of the work to date has been focused on tumor cells. To make significant progress in this field, we need to consider the tumor microenvironment, especially cancer-associated fibroblast cells that promote tumor growth. Our study shows the potential of targeting both tumor cells and cancer-associated fibroblasts to reap the full benefits of cancer nanomedicine. Abstract Due to recent advances in nanotechnology, the application of nanoparticles (NPs) in cancer therapy has become a leading area in cancer research. Despite the importance of cancer-associated fibroblasts (CAFs) in creating an optimal niche for tumor cells to grow extensively, most of the work has been focused on tumor cells. Therefore, to effectively use NPs for therapeutic purposes, it is important to elucidate the extent of NP uptake and retention in tumor cells and CAFs. Three tumor cell lines and three CAF cell lines were studied using gold NPs (GNPs) as a model NP system. We found a seven-fold increase in NP uptake in CAFs compared to tumor cells. The retention percentage of NPs was three-fold higher in tumor cells as compared to CAFs. Furthermore, NP uptake and retention were significantly enhanced using a 50 nM concentration of docetaxel (DTX). NP uptake was improved by a factor of three in tumor cells and a factor of two in CAFs, while the retention of NPs was two-fold higher in tumor cells compared to CAFs, 72 h post-treatment with DTX. However, the quantity of NPs in CAFs was still three-fold higher compared to tumor cells. Our quantitative data were supported by qualitative imaging data. We believe that targeting of NPs in the presence of DTX is a very promising approach to accumulate a higher percentage of NPs and maintain a longer retention in both tumor cells and CAFs for achieving the full therapeutic potential of cancer nanotechnology.
Collapse
Affiliation(s)
- Abdulaziz Alhussan
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (K.B.); (W.B.)
| | - Kyle Bromma
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (K.B.); (W.B.)
| | - Monica Mesa Perez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.M.P.); (P.L.H.)
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (K.B.); (W.B.)
- Radiation Oncology, British Columbia Cancer-Victoria, Victoria, BC V8R 6V5, Canada;
| | - Abraham S Alexander
- Radiation Oncology, British Columbia Cancer-Victoria, Victoria, BC V8R 6V5, Canada;
| | - Perry L Howard
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.M.P.); (P.L.H.)
| | - Devika B Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (K.B.); (W.B.)
- Radiation Oncology, British Columbia Cancer-Victoria, Victoria, BC V8R 6V5, Canada;
- Centre for Advanced Materials and Related Technologies, Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Computer Science, Mathematics, Physics and Statistics, Okanagan Campus, University of British Columbia, Kelowna, BC V1V 1V7, Canada
- Correspondence:
| |
Collapse
|
11
|
Investigation of Nano-Bio Interactions within a Pancreatic Tumor Microenvironment for the Advancement of Nanomedicine in Cancer Treatment. ACTA ACUST UNITED AC 2021; 28:1962-1979. [PMID: 34073974 PMCID: PMC8161808 DOI: 10.3390/curroncol28030183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 01/29/2023]
Abstract
Pancreatic cancer is one of the deadliest types of cancer, with a five-year survival rate of only 10%. Nanotechnology offers a novel perspective to treat such deadly cancers through their incorporation into radiotherapy and chemotherapy. However, the interaction of nanoparticles (NPs) with cancer cells and with other major cell types within the pancreatic tumor microenvironment (TME) is yet to be understood. Therefore, our goal is to shed light on the dynamics of NPs within a TME of pancreatic origin. In addition to cancer cells, normal fibroblasts (NFs) and cancer-associated fibroblasts (CAFs) were examined in this study due to their important yet opposite roles of suppressing tumor growth and promoting tumor growth, respectively. Gold nanoparticles were used as the model NP system due to their biocompatibility and physical and chemical proprieties, and their dynamics were studied both quantitatively and qualitatively in vitro and in vivo. The in vitro studies revealed that both cancer cells and CAFs take up 50% more NPs compared to NFs. Most importantly, they all managed to retain 70–80% of NPs over a 24-h time period. Uptake and retention of NPs within an in vivo environment was also consistent with in vitro results. This study shows the paradigm-changing potential of NPs to combat the disease.
Collapse
|
12
|
Wang W, Wang J, Ding Y. Gold nanoparticle-conjugated nanomedicine: design, construction, and structure-efficacy relationship studies. J Mater Chem B 2021; 8:4813-4830. [PMID: 32227036 DOI: 10.1039/c9tb02924a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In comparison with conventional therapies, nanomedicine shows prominent clinical performance, with better therapeutic efficacy and less off-target toxicity. As an important component of nanomedicine, gold nanoparticle (GNP)-based nanodrugs have attracted considerable interest because of their excellent performance given by the unique structure. Although no pharmaceutical formulations of GNP-associated nanodrugs have been officially marketed yet, a substantial amount of research on this aspect is being carried out, producing numerous GNP-based drug delivery systems with potential clinical applications. In this review, we present an overview of our progress on GNP-based nanodrugs combined with other achievements in biomedical applications, including drug-conjugated GNPs prepared for disease treatments and specific tumour targeting, structure-efficacy relationship (SER) studies on GNP-conjugated nanodrugs, and therapeutic hybrid nanosystems composed of GNPs. In addition, we also put forward some proposals to guide future work in developing GNP-based nanomedicine. We hope that this review will offer some useful experience for our peers and GNP-based nanodrugs will be utilized in the clinic with further persistent efforts.
Collapse
Affiliation(s)
- Wenjie Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jing Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Yang Y, Han Y, Sun Q, Cheng J, Yue C, Liu Y, Song J, Jin W, Ding X, de la Fuente JM, Ni J, Wang X, Cui D. Au-siRNA@ aptamer nanocages as a high-efficiency drug and gene delivery system for targeted lung cancer therapy. J Nanobiotechnology 2021; 19:54. [PMID: 33627152 PMCID: PMC7905599 DOI: 10.1186/s12951-020-00759-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gene and chemical therapy has become one of the rising stars in the field of molecular medicine during the last two decades. However, there are still numerous challenges in the development of efficient, targeted, and safe delivery systems that can avoid siRNA degradation and reduce the toxicity and adverse effects of chemotherapy medicine. RESULTS In this paper, a highly efficient AS1411 aptamer modified, dsDNA and MMP-2 cleavable peptide-fabricated gold nanocage vehicle, which could load doxorubicin hydrochloride (DOX) and siRNAs to achieve a combination of tumor responsive genetic therapy, chemotherapy, and photothermal treatment is presented. Our results show that this combined treatment achieved targeted gene silencing and tumor inhibition. After nearly one month of treatment with DOX-loaded Au-siRNA-PAA-AS1411 nanoparticles with one dose every three days in mice, a synergistic effect promoting the eradication of long-lived tumors was observed along with an increased survival rate of mice. The combined genetic, chemotherapeutic, and photothermal treatment group exhibited more than 90% tumor inhibition ratio (tumor signal) and a ~ 67% survival rate compared with a 30% tumor inhibition ratio and a 0% survival rate in the passive genetic treatment group. CONCLUSIONS The development of nanocarriers with double-stranded DNA and MMP-2 cleavable peptides provides a new strategy for the combined delivery of gene and chemotherapy medicine. Au-siRNA-PAA-AS1411 exerts high anticancer activities on lung cancer, indicating immense potentials for clinical application.
Collapse
Affiliation(s)
- Yuming Yang
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
| | - Yu Han
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Qiuyang Sun
- Pediatric Neurological Disease Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Number 1665, Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Caixia Yue
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
| | - Xianting Ding
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Jesús M de la Fuente
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
- Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Jian Ni
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiaoqiang Wang
- Pediatric Neurological Disease Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Number 1665, Kongjiang Road, Shanghai, 200092, People's Republic of China.
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
14
|
Sabourian P, Yazdani G, Ashraf SS, Frounchi M, Mashayekhan S, Kiani S, Kakkar A. Effect of Physico-Chemical Properties of Nanoparticles on Their Intracellular Uptake. Int J Mol Sci 2020; 21:ijms21218019. [PMID: 33126533 PMCID: PMC7662525 DOI: 10.3390/ijms21218019] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular internalization of inorganic, lipidic and polymeric nanoparticles is of great significance in the quest to develop effective formulations for the treatment of high morbidity rate diseases. Understanding nanoparticle–cell interactions plays a key role in therapeutic interventions, and it continues to be a topic of great interest to both chemists and biologists. The mechanistic evaluation of cellular uptake is quite complex and is continuously being aided by the design of nanocarriers with desired physico-chemical properties. The progress in biomedicine, including enhancing the rate of uptake by the cells, is being made through the development of structure–property relationships in nanoparticles. We summarize here investigations related to transport pathways through active and passive mechanisms, and the role played by physico-chemical properties of nanoparticles, including size, geometry or shape, core-corona structure, surface chemistry, ligand binding and mechanical effects, in influencing intracellular delivery. It is becoming clear that designing nanoparticles with specific surface composition, and engineered physical and mechanical characteristics, can facilitate their internalization more efficiently into the targeted cells, as well as enhance the rate of cellular uptake.
Collapse
Affiliation(s)
- Parinaz Sabourian
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9465, Iran; (P.S.); (G.Y.); (S.S.A.); (S.M.)
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
| | - Ghazaleh Yazdani
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9465, Iran; (P.S.); (G.Y.); (S.S.A.); (S.M.)
| | - Seyed Sajad Ashraf
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9465, Iran; (P.S.); (G.Y.); (S.S.A.); (S.M.)
| | - Masoud Frounchi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9465, Iran; (P.S.); (G.Y.); (S.S.A.); (S.M.)
- Correspondence: (M.F.); (A.K.)
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9465, Iran; (P.S.); (G.Y.); (S.S.A.); (S.M.)
| | - Sahar Kiani
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran;
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
- Correspondence: (M.F.); (A.K.)
| |
Collapse
|
15
|
Schuemann J, Bagley AF, Berbeco R, Bromma K, Butterworth KT, Byrne HL, Chithrani BD, Cho SH, Cook JR, Favaudon V, Gholami YH, Gargioni E, Hainfeld JF, Hespeels F, Heuskin AC, Ibeh UM, Kuncic Z, Kunjachan S, Lacombe S, Lucas S, Lux F, McMahon S, Nevozhay D, Ngwa W, Payne JD, Penninckx S, Porcel E, Prise KM, Rabus H, Ridwan SM, Rudek B, Sanche L, Singh B, Smilowitz HM, Sokolov KV, Sridhar S, Stanishevskiy Y, Sung W, Tillement O, Virani N, Yantasee W, Krishnan S. Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Phys Med Biol 2020; 65:21RM02. [PMID: 32380492 DOI: 10.1088/1361-6560/ab9159] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This roadmap outlines the potential roles of metallic nanoparticles (MNPs) in the field of radiation therapy. MNPs made up of a wide range of materials (from Titanium, Z = 22, to Bismuth, Z = 83) and a similarly wide spectrum of potential clinical applications, including diagnostic, therapeutic (radiation dose enhancers, hyperthermia inducers, drug delivery vehicles, vaccine adjuvants, photosensitizers, enhancers of immunotherapy) and theranostic (combining both diagnostic and therapeutic), are being fabricated and evaluated. This roadmap covers contributions from experts in these topics summarizing their view of the current status and challenges, as well as expected advancements in technology to address these challenges.
Collapse
Affiliation(s)
- Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bromma K, Bannister A, Kowalewski A, Cicon L, Chithrani DB. Elucidating the fate of nanoparticles among key cell components of the tumor microenvironment for promoting cancer nanotechnology. Cancer Nanotechnol 2020; 11:8. [PMID: 32849921 PMCID: PMC7437649 DOI: 10.1186/s12645-020-00064-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Successful integration of nanotechnology into the current paradigm of cancer therapy requires proper understanding of the interface between nanoparticles (NPs) and cancer cells, as well as other key components within the tumor microenvironment (TME), such as normal fibroblasts (FBs) and cancer-associated FBs (CAFs). So far, much focus has been on cancer cells, but FBs and CAFs also play a critical role: FBs suppress the tumor growth while CAFs promote it. It is not yet known how NPs interact with FBs and CAFs compared to cancer cells. Hence, our goal was to elucidate the extent of NP uptake, retention, and toxicity in cancer cells, FBs, and CAFs to further understand the fate of NPs in a real tumor-like environment. The outcome of this would guide designing of NP-based delivery systems to fully exploit the TME for a better therapeutic outcome. We used gold nanoparticles as our model NP system due to their numerous applications in cancer therapy, including radiotherapy and chemotherapy. A cervical cancer cell line, HeLa, and a triple-negative breast cancer cell line, MDA-MB-231 were chosen as cancer cell lines. For this study, a clinically feasible 0.2 nM concentration of GNPs was employed. According to our results, the cancer cells and CAFs had over 25- and 10-fold higher NP uptake per unit cell volume compared to FBs, respectively. Further, the cancer cells and CAFs had over 30% higher NP retention compared to FBs. There was no observed significant toxicity due to GNPs in all the cell lines studied. Higher uptake and retention of NPs in cancer cells and CAFs vs FBs is very important in promoting NP-based applications in cancer therapy. Our results show potential in modulating uptake and retention of GNPs among key components of TME, in an effort to develop NP-based strategies to suppress the tumor growth. An ideal NP-based platform would eradicate tumor cells, protect FBs, and deactivate CAFs. Therefore, this study lays a road map to exploit the TME for the advancement of "smart" nanomedicines that would constitute the next generation of cancer therapeutics.
Collapse
Affiliation(s)
- Kyle Bromma
- Department of Physics and Astronomy, University of Victoria, Victoria, BC Canada
| | - Aaron Bannister
- Department of Physics and Astronomy, University of Victoria, Victoria, BC Canada
| | | | - Leah Cicon
- Department of Physics and Astronomy, University of Victoria, Victoria, BC Canada
| | - Devika B. Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), Victoria, BC Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC Canada
| |
Collapse
|
17
|
Martinez S, Brandl A, Leary D. Monte Carlo Evaluation of Dose Enhancement Due to CuATSM or GNP Uptake in Hypoxic Environments with External Beam Radiation. Int J Nanomedicine 2020; 15:3719-3727. [PMID: 32547024 PMCID: PMC7261688 DOI: 10.2147/ijn.s241756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Most solid tumors contain areas of chronic hypoxia. Gold nanoparticles (GNP) have been extensively explored as enhancers of external beam radiation; however, GNP have lower cellular uptake in hypoxic conditions than under normoxic conditions. Conversely, the chelator diacetyl-bis (N(4)-methylthiosemicarbazonato) copper II (CuATSM) deposits copper in hypoxic regions, allowing for dose enhancement in previously inaccessible regions. Methods External beam sources with different spectra were modeled using a Monte Carlo code (EGSnrc) to evaluate radioenhancement in a layered model with metal solutions. Also considered was a simple concentric layered tumor model containing a hypoxic core with each layer varying in concentrations of either copper or gold according to hypoxic conditions. Low energy external photon beams were then projected onto the tumor to determine the regional dose enhancement dependent on hypoxic conditions. Results Dose enhancement was more pronounced for beam spectra with low energy photons (225 kVp) and was highly dependent on metal concentrations from 0.1 g/kg to 100 g/kg. Increasing the depth of the metallic solution layer from 1 cm to 6 cm decreased dose enhancement. A small increase in the dose enhancement factor (DEF) of 1.01 was predicted in the hypoxic regions of the tumor model with commonly used diagnostic concentrations of CuATSM. At threshold concentrations of toxic subcutaneous injection levels, the DEF increases to 1.02, and in simulation of a high concentration of CuATSM, the DEF increased to 1.07. High concentration treatments are also considered, as well as synergistic combinations of GNP/CuATSM treatments. Conclusion The research presented is novel utilization of CuATSM to target hypoxic regions and act as a radiosensitizer by the nature of its ability to deposit copper metal in reduced tissue. We demonstrate CuATSM at high concentrations with low energy photons can increase dose deposition in hypoxic tumor regions.
Collapse
Affiliation(s)
- Stephen Martinez
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Alexander Brandl
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Del Leary
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
18
|
Boyadzhiev A, Trevithick-Sutton C, Wu D, Decan N, Bazin M, Shah GM, Halappanavar S. Enhanced Dark-Field Hyperspectral Imaging and Spectral Angle Mapping for Nanomaterial Detection in Consumer Care Products and in Skin Following Dermal Exposure. Chem Res Toxicol 2020; 33:1266-1278. [DOI: 10.1021/acs.chemrestox.0c00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andrey Boyadzhiev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Marc Bazin
- Laboratory for Skin Cancer Research, CHU de Quebec Laval University (CHUL), Quebec City, Canada
| | - Girish M. Shah
- Laboratory for Skin Cancer Research, CHU de Quebec Laval University (CHUL), Quebec City, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
19
|
Modulated Protein Binding Ability of Anti-Diabetic Drugs in Presence of Monodispersed Gold Nanoparticles and its Inhibitory Potential towards Advanced Glycated End (AGE) Product Formation. J Fluoresc 2020; 30:193-204. [DOI: 10.1007/s10895-019-02485-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/26/2019] [Indexed: 12/31/2022]
|
20
|
Rieck K, Bromma K, Sung W, Bannister A, Schuemann J, Chithrani DB. Modulation of gold nanoparticle mediated radiation dose enhancement through synchronization of breast tumor cell population. Br J Radiol 2019; 92:20190283. [PMID: 31219711 PMCID: PMC6724617 DOI: 10.1259/bjr.20190283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/23/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The incorporation of high atomic number materials such as gold nanoparticles (GNPs) into tumor cells is being tested to enhance the local radiotherapy (RT) dose. It is also known that the radiosensitivity of tumor cells depends on the phase of their cell cycle. Triple combination of GNPs, phase of tumor cell population, and RT for improved outcomes in cancer treatment. METHODS We used a double-thymidine block method for synchronization of the tumor cell population. GNPs of diameters 17 and 46 nm were used to capture the size dependent effects. A radiation dose of 2 Gy with 6 MV linear accelerator was used to assess the efficacy of this proposed combined treatment. A triple negative breast cancer cell line, MDA-MB-231 was chosen as the model cell line. Monte Carlo (MC) calculations were done to predict the GNP-mediated cell death using the experimental GNP uptake data. RESULTS There was a 1.5- and 2- fold increase in uptake of 17 and 46 nm GNPs in the synchronized cell population, respectively. A radiation dose of 2 Gy with clinically relevant 6 MV photons resulted in a 62 and 38 % enhancement in cell death in the synchronized cell population with the incorporation of 17 and 46 nm GNPs, respectively. MC data supported the experimental data, but to a lesser extent. CONCLUSION A triple combination of GNPs, cell cycle synchronization, and RT could pave the way to enhance the local radiation dose while minimizing side effects to the surrounding healthy tissue. ADVANCES IN KNOWLEDGE This is the first study to show that the combined use of GNPs, phase of tumor cell population, and RT could enhance tumor cell death.
Collapse
Affiliation(s)
- Kristy Rieck
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Kyle Bromma
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Wonmo Sung
- Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Aaron Bannister
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Jan Schuemann
- Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
21
|
Venditti I. Engineered Gold-Based Nanomaterials: Morphologies and Functionalities in Biomedical Applications. A Mini Review. Bioengineering (Basel) 2019; 6:bioengineering6020053. [PMID: 31185667 PMCID: PMC6630817 DOI: 10.3390/bioengineering6020053] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022] Open
Abstract
In the last decade, several engineered gold-based nanomaterials, such as spheres, rods, stars, cubes, hollow particles, and nanocapsules have been widely explored in biomedical fields, in particular in therapy and diagnostics. As well as different shapes and dimensions, these materials may, on their surfaces, have specific functionalizations to improve their capability as sensors or in drug loading and controlled release, and/or particular cell receptors ligands, in order to get a definite targeting. In this review, the up-to-date progress will be illustrated regarding morphologies, sizes and functionalizations, mostly used to obtain an improved performance of nanomaterials in biomedicine. Many suggestions are presented to organize and compare the numerous and heterogeneous experimental data, such as the most important chemical-physical parameters, which guide and control the interaction between the gold surface and biological environment. The purpose of all this is to offer the readers an overview of the most noteworthy progress and challenges in this research field.
Collapse
Affiliation(s)
- Iole Venditti
- Department of Sciences, University of Roma Tre, via della Vasca Navale 79, 00146 Rome, Italy.
| |
Collapse
|
22
|
Sun Y, Li Z, Wu J, Wang Z, Dong Y, Wang H, Brash JL, Yuan L, Chen H. Gold nanoparticle–protein conjugate dually-responsive to pH and temperature for modulation of enzyme activity. J Mater Chem B 2019. [DOI: 10.1039/c9tb00325h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The enzymatic activity of the dual-responsive gold nanoparticle–protein–polymer conjugate can be modulated almost in a full range under different pH and temperature conditions.
Collapse
Affiliation(s)
- Ya Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Zhenhua Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Jingxian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Zhiqiang Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yishi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hongwei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - John L. Brash
- School of Biomedical Engineering
- Department of Chemical Engineering
- McMaster University
- Hamilton
- Canada
| | - Lin Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
23
|
Hussein RM, Saleh H. Promising therapeutic effect of gold nanoparticles against dinitrobenzene sulfonic acid-induced colitis in rats. Nanomedicine (Lond) 2018; 13:1657-1679. [PMID: 30085904 DOI: 10.2217/nnm-2018-0009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: The aim of this study is to evaluate the therapeutic effect of two different doses of naked gold nanoparticles (AuNPs) in the experimental colitis in rats. Materials & methods: Colitis was induced in rats by single intracolonic instillation of dinitro-benzene sulfonic acid (250 μl DNBS-25 mg/rat). 4 days later the rats were intravenously injected with a single dose of AuNPs 40 and 400 μg/kg of size 16-25 nm. Results: In comparison with dinitro-benzene sulfonic acid-colitis group, the exposure to AuNPs for 72 h ameliorated the liver and kidney functions, increased the regenerative capacity of damaged colon tissues, suppressed the inflammatory cytokine response and diminished the colonic malondialdehyde and myeloperoxidase activities. In addition, there was a remarkable improvement in the antioxidant defense system. Conclusion: Our study suggested a new therapy for experimental colitis without noticeable drawbacks.
Collapse
Affiliation(s)
- Rehab M Hussein
- Department of Zoology, Faculty of Science, Cairo University, PO Box 12613, Giza, Egypt
| | - Hanan Saleh
- Department of Zoology, Faculty of Science, Cairo University, PO Box 12613, Giza, Egypt
| |
Collapse
|
24
|
Bera K, Maiti S, Maity M, Mandal C, Maiti NC. Porphyrin-Gold Nanomaterial for Efficient Drug Delivery to Cancerous Cells. ACS OMEGA 2018; 3:4602-4619. [PMID: 30023896 PMCID: PMC6045359 DOI: 10.1021/acsomega.8b00419] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/17/2018] [Indexed: 05/11/2023]
Abstract
With an aim to overcome multidrug resistance (MDR), nontargeted delivery, and drug toxicity, we developed a new nanochemotherapeutic system with tetrasodium salt of meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) armored on gold nanoparticles (TPPS-AuNPs). The nanocarrier is able to be selectively internalized within tumor cells than in normal cells followed by endocytosis and therefore delivers the antitumor drug doxorubicin (DOX) particularly to the nucleus of diseased cells. The embedment of TPPS on the gold nanosurface provides excellent stability and biocompatibility to the nanoparticles. Porphyrin interacts with the gold nanosurface through the coordination interaction between gold and pyrrolic nitrogen atoms of the porphyrin and forms a strong association complex. DOX-loaded nanocomposite (DOX@TPPS-AuNPs) demonstrated enhanced cellular uptake with significantly reduced drug efflux in MDR brain cancer cells, thereby increasing the retention time of the drug within tumor cells. It exhibited about 9 times greater potency for cellular apoptosis via triggered release commenced by acidic pH. DOX has been successfully loaded on the porphyrin-modified gold nanosurface noncovalently with high encapsulation efficacy (∼90%) and tightly associated under normal physiological conditions but capable of releasing ∼81% of drug in a low-pH environment. Subsequently, DOX-loaded TPPS-AuNPs exhibited higher inhibition of cellular metastasis, invasion, and angiogenesis, suggesting that TPPS-modified AuNPs could improve the therapeutic efficacy of the drug molecule. Unlike free DOX, drug-loaded TPPS-AuNPs did not show toxicity toward normal cells. Therefore, higher drug encapsulation efficacy with selective targeting potential and acidic-pH-mediated intracellular release of DOX at the nucleus make TPPS-AuNPs a "magic bullet" for implication in nanomedicine.
Collapse
Affiliation(s)
- Kaushik Bera
- Structural
Biology and Bioinformatics Division and Cancer Biology & Inflammatory
Disorder Division, CSIR-Indian Institute
of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Samarpan Maiti
- Structural
Biology and Bioinformatics Division and Cancer Biology & Inflammatory
Disorder Division, CSIR-Indian Institute
of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Mritunjoy Maity
- Structural
Biology and Bioinformatics Division and Cancer Biology & Inflammatory
Disorder Division, CSIR-Indian Institute
of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Chitra Mandal
- Structural
Biology and Bioinformatics Division and Cancer Biology & Inflammatory
Disorder Division, CSIR-Indian Institute
of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Nakul C. Maiti
- Structural
Biology and Bioinformatics Division and Cancer Biology & Inflammatory
Disorder Division, CSIR-Indian Institute
of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
25
|
Chen X, Li G, Han Q, Li X, Li L, Wang T, Wang C. Rational Design of Branched Au-Fe 3 O 4 Janus Nanoparticles for Simultaneous Trimodal Imaging and Photothermal Therapy of Cancer Cells. Chemistry 2017; 23:17204-17208. [PMID: 29072345 DOI: 10.1002/chem.201704514] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Indexed: 12/23/2022]
Abstract
We report a facile and simple hydrogen reduction method to fabricate PEGylated branched gold (Au)-iron oxide (Fe3 O4 ) Janus nanoparticles (JNPs). Note that the hydrogen induces the formation of Fe3 O4 during the synthesis process. Due to the strong absorption in the near-infrared range, branched Au-Fe3 O4 JNPs showed a significant photothermal effect with a 40 % calculated photothermal transduction efficiency under a laser irradiation of 808 nm in vitro. Owing to their excellent optical and magnetic properties, branched Au-Fe3 O4 JNPs were demonstrated to be advantageous agents for triple-modal magnetic resonance imaging (MRI)/photoacoustic imaging (PAI)/computed tomography (CT) in vitro. Therefore, the synthetic approach could be extended to prepare Au-metallic oxide JNPs for specific applications.
Collapse
Affiliation(s)
- Xiangjun Chen
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guilan Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Qinghe Han
- Radiology, The Second Hospital of Jilin University, Changchun, 130022, P. R. China
| | - Xiliang Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Lu Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Tingting Wang
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Chungang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
26
|
Li Z, Liu F, Yuan Y, Wu J, Wang H, Yuan L, Chen H. Multifunctional gold nanoparticle layers for controllable capture and release of proteins. NANOSCALE 2017; 9:15407-15415. [PMID: 28975944 DOI: 10.1039/c7nr05276f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Protein modified functional surfaces have been applied extensively in the field of biomaterials and medicine. Regulation of the amount and activity of proteins on the material surface is always a challenge and a key research issue. A multifunctional micro/nano-composite based surface system for efficient controllable capture and release of proteins is proposed and studied in the present paper. This novel system contains (1) gold nanoparticles (AuNPs) co-modified with an enzyme and poly(methacrylic acid) (PMAA), e.g., AuNP-pyrophosphatase (PPase)-PMAA, as nanostructured protein carriers; (2) gold nanoparticle layers (GNPLs) modified with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), i.e., GNPL-PDMAEMA, as a micro/nano-structured support platform for surface bioactivity regulation. The capture-release of proteins and the regulation of surface bioactivity in this composite surface system were investigated under different conditions. The results showed that the proposed system is capable of protein capture and release with simple adjustment of the pH value from neutral pH to basic pH. When the pH of the system is stabilized at 7.0, the GNPL-PDMAEMA surface could adsorb plenty of AuNP-PPase-PMAA conjugates and maximum surface bioactivity occurred, but when the pH of the system is adjusted to 10.0, the GNPL-PDMAEMA surface could liberate almost all the AuNP-PPase-PMAA conjugates and thus surface bioactivity disappeared. Meanwhile, by cyclical variations between pH 7.0 and pH 10.0, this surface protein capture/release system could realize recycling and reuse of one certain protein multiple times, a series of proteins acting sequentially in accordance with pre-designed procedures, and a functional combination of multiple proteins. This recyclable multifunctional surface with the capability of protein capture/release has great potential in many applications, such as biomonitoring and biomolecule immobilization.
Collapse
Affiliation(s)
- Zhenhua Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhang Q, Zhang L, Li S, Chen X, Zhang M, Wang T, Li L, Wang C. Designed Synthesis of Au/Fe 3 O 4 @C Janus Nanoparticles for Dual-Modal Imaging and Actively Targeted Chemo-Photothermal Synergistic Therapy of Cancer Cells. Chemistry 2017; 23:17242-17248. [PMID: 28845884 DOI: 10.1002/chem.201703498] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Indexed: 01/27/2023]
Abstract
Elaborately designed novel multifunctional Janus nanoparticles (JNPs) have attracted considerable attention owing to their anisotropic surface properties and various functionalities that allow them to house several components for the detection and targeting of cancer cells. In this work, we report a novel and facile approach to synthesize Au/Fe3 O4 @C JNPs, which were further selectively functionalized with amino-poly(ethylene glycol)thiol (NH2 -PEG-SH) and folic acid (FA) on the exposed Au domains to achieve high contrast for X-ray computed tomography (CT) imaging, excellent stability, good biocompatibility, as well as cancer cell-specific targeting. Meanwhile, the other Fe3 O4 @C sides with mesoporous structure served as a drug delivery vehicle for doxorubicin (DOX), an efficient photothermal therapy (PTT) agent, and a magnetic resonance (MR) imaging contrast agent. Taking these features together, these unique multifunctional JNPs provide an intriguing nanoplatform for dual-modal CT and MR imaging-guided actively targeted chemo-photothermal synergistic cancer therapy.
Collapse
Affiliation(s)
- Qi Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Lingyu Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Shengnan Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiangjun Chen
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Manjie Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Tingting Wang
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Lu Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Chungang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
28
|
Sengani M, V DR. Identification of potential antioxidant indices by biogenic gold nanoparticles in hyperglycemic Wistar rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 50:11-19. [PMID: 28110133 DOI: 10.1016/j.etap.2017.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/15/2016] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Oxidative stress is a crucial factor in diabetes, where the abnormal metabolic ambience leads to hyperglycemia resulting in the onset of several vascular complications. Under homeostasis, innate antioxidants efficiently inhibit the oxidative stress, thereby restrain further progression of diabetes. In the present study, a potential antioxidant marker was identified from hepatic tissue of diabetic Wistar rats after oral administration of biogenic gold nanoparticles (GNPs). Diabetic animals treated with GNPs showed increase in insulin level and subsequently reduced the concentration of blood glucose level to normal. Further, GNPs favoured to retain the hepatic enzymatic markers, serum lipid levels and followed by renal biochemical profile in the rats. In addition, GNPs treated rats displayed an elevated level of lipid peroxidation, superoxide dismutase, glutathione peroxidase, and catalase enzymatic activity. Consequently, GNPs treated rats showed diminished level of histological injury in the hepatic, renal, and pancreatic tissues. Taken together, these results suggested that among the several antioxidant enzymes, catalase elucidated the highest area under curve (AUC) with 0.80 accomplished by receiver operating characteristic (ROC) curve. Collectively, our findings enlighten that GNPs treated rat able to alleviate the hyperglycemic condition due to the enzymatic activity of catalase.
Collapse
Affiliation(s)
- Manimegalai Sengani
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT University, Vellore 632014, India
| | - Devi Rajeswari V
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT University, Vellore 632014, India.
| |
Collapse
|
29
|
Yang Z, Li Z, Lu X, He F, Zhu X, Ma Y, He R, Gao F, Ni W, Yi Y. Controllable Biosynthesis and Properties of Gold Nanoplates Using Yeast Extract. NANO-MICRO LETTERS 2017; 9:5. [PMID: 30460302 PMCID: PMC6223771 DOI: 10.1007/s40820-016-0102-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/05/2016] [Indexed: 05/22/2023]
Abstract
ABSTRACT Biosynthesis of gold nanostructures has drawn increasing concerns because of its green and sustainable synthetic process. However, biosynthesis of gold nanoplates is still a challenge because of the expensive source and difficulties of controllable formation of morphology and size. Herein, one-pot biosynthesis of gold nanoplates is proposed, in which cheap yeast was extracted as a green precursor. The morphologies and sizes of the gold nanostructures can be controlled via varying the pH value of the biomedium. In acid condition, gold nanoplates with side length from 1300 ± 200 to 300 ± 100 nm and height from 18 to 15 nm were obtained by increasing the pH value. Whereas, in neutral or basic condition, only gold nanoflowers and nanoparticles were obtained. It was determined that organic molecules, such as succinic acid, lactic acid, malic acid, and glutathione, which are generated in metabolism process, played important role in the reduction of gold ions. Besides, it was found that the gold nanoplates exhibited plasmonic property with prominent dipole infrared resonance in near-infrared region, indicating their potential in surface plasmon-enhanced applications, such as bioimaging and photothermal therapy.
Collapse
Affiliation(s)
- Zhi Yang
- Key Laboratory for Thin Film and Micro Fabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Zhaohui Li
- Key Laboratory for Thin Film and Micro Fabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Xuxing Lu
- Division of i-Lab, Key Laboratory of Nano-Bio Interface and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Fengjiao He
- Key Laboratory for Thin Film and Micro Fabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Xingzhong Zhu
- Key Laboratory for Thin Film and Micro Fabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Yujie Ma
- Key Laboratory for Thin Film and Micro Fabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Rong He
- Key Laboratory for Thin Film and Micro Fabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Feng Gao
- Key Laboratory for Thin Film and Micro Fabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Weihai Ni
- Division of i-Lab, Key Laboratory of Nano-Bio Interface and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Yasha Yi
- Integrated Nano Optoelectronics Laboratory, Department of Electrical and Computer Engineering, University of Michigan, Dearborn, MI 48128 USA
- Energy Institute, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
30
|
Rau LR, Huang WY, Liaw JW, Tsai SW. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells. Int J Nanomedicine 2016; 11:3461-73. [PMID: 27555768 PMCID: PMC4968862 DOI: 10.2147/ijn.s108152] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The specific properties of gold nanoparticles (AuNPs) make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical–thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm2 and 80 mW/cm2 by a Nd:YAG laser (532 nm wavelength). We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control) or were treated with AuNPs or the laser alone. There were no significant differences between the AuNPs plus laser treatment group and the other groups in terms of cell viability, death program analysis results, or alkaline phosphatase and calcium accumulation during culture for up to 21 days. However, the calcium deposit areas in the cells treated with AuNPs plus laser were larger than those in other groups during the early culture period.
Collapse
Affiliation(s)
- Lih-Rou Rau
- Graduate Institute of Biochemical and Biomedical Engineering
| | - Wan-Yu Huang
- Graduate Institute of Biochemical and Biomedical Engineering
| | - Jiunn-Woei Liaw
- Department of Mechanical Engineering; Center for Biomedical Engineering, Chang Gung University; Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan; Center for Advanced Molecular Imaging and Translation
| | - Shiao-Wen Tsai
- Graduate Institute of Biochemical and Biomedical Engineering; Center for Biomedical Engineering, Chang Gung University; Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan, Republic of China
| |
Collapse
|
31
|
Rau LR, Tsao SW, Liaw JW, Tsai SW. Selective Targeting and Restrictive Damage for Nonspecific Cells by Pulsed Laser-Activated Hyaluronan-Gold Nanoparticles. Biomacromolecules 2016; 17:2514-21. [DOI: 10.1021/acs.biomac.6b00386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lih-Rou Rau
- Graduate
Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | - Shu-Wei Tsao
- Graduate
Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | - Jiunn-Woei Liaw
- Department
of Mechanical Engineering, Chang Gung University, Taoyuan 333, Taiwan
- Center
for Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan
- Institute
for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Center
for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Shiao-Wen Tsai
- Graduate
Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan
- Center
for Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan
- Department
of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| |
Collapse
|
32
|
Colloidal Gold-Mediated Delivery of Bleomycin for Improved Outcome in Chemotherapy. NANOMATERIALS 2016; 6:nano6030048. [PMID: 28344305 PMCID: PMC5302526 DOI: 10.3390/nano6030048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 12/14/2022]
Abstract
Nanoparticles (NPs) can be used to overcome the side effects of poor distribution of anticancer drugs. Among other NPs, colloidal gold nanoparticles (GNPs) offer the possibility of transporting major quantities of drugs due to their large surface-to-volume ratio. This is while confining these anticancer drugs as closely as possible to their biological targets through passive and active targeting, thus ensuring limited harmful systemic distribution. In this study, we chose to use bleomycin (BLM) as the anticancer drug due to its limited therapeutic efficiency (harmful side effects). BLM was conjugated onto GNPs through a thiol bond. The effectiveness of the chemotherapeutic drug, BLM, is observed by visualizing DNA double strand breaks and by calculating the survival fraction. The action of the drug (where the drug takes effect) is known to be in the nucleus, and our experiments have shown that some of the GNPs carrying BLM were present in the nucleus. The use of GNPs to deliver BLM increased the delivery and therapeutic efficacy of the drug. Having a better control over delivery of anticancer drugs using GNPs will establish a more successful NP-based platform for a combined therapeutic approach. This is due to the fact that GNPs can also be used as radiation dose enhancers in cancer research.
Collapse
|