1
|
Chen W, Fu G, Zhong Y, Liu Y, Yan H, Chen F. Antioxidant High-Fluorescent Silkworm Silk Development Based on Quercetin-Induced Luminescence. ACS Biomater Sci Eng 2025; 11:1402-1416. [PMID: 39936883 DOI: 10.1021/acsbiomaterials.4c02400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The fluorescent silk produced by feeding silkworms with traditional fluorescent dyes is limited in functionality and suffers from fluorescence quenching, rendering it unsuitable for long-term stable performance as a medical implant material in the human body. This work introduces an innovative strategy to develop a novel multifunctional fluorescent silk composite by incorporating quercetin (QR), a naturally occurring molecule with aggregation-induced emission (AIE) characteristics, into the diet of silkworms. Silk derived from QR-fed silkworms presents significant enhancements in fluorescence, antioxidant, and mechanical properties, with the QR-2.5% group presenting the best overall performance. The resulting silk exhibits superstrong blue fluorescence when exposed to 405 nm laser light, with a breaking strength of 4.26 ± 0.42 cN/D and a breaking energy of 5.96 ± 1.32 cN/cm, improvements of 15.76% and 18.25%, respectively, in comparison with regular silk. Fourier transform infrared spectroscopy (FTIR) analysis indicates that QR induces a structural transformation of fibroin protein from α-helix and random coil to β-sheet configuration, thereby increasing silk crystallinity. Additionally, compared with regular silk, the antioxidant properties of both sericin and silk fibroin increased by 88.66% and 17.25%, respectively. At the same time, this multifunctional silk has excellent biocompatibility and strong cell adhesion. The high-strength, uniformly luminescent silk developed in this study has outstanding antioxidant and mechanical properties. It effectively avoids the fluorescence quenching issue common in traditional fluorescent silk materials and introduces new functionalities. This advancement is significant for increasing the utility of functionally modified silk.
Collapse
Affiliation(s)
- Wenkai Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science, Ganzhou Polytechnic, Ganzhou 341008, China
| | - Gangrong Fu
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Yangsheng Zhong
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yanna Liu
- College of Animal Science, Ganzhou Polytechnic, Ganzhou 341008, China
| | - Huichao Yan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fangyan Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Lu H, Jian M, Liang X, Wang Y, Niu J, Zhang Y. Strong Silkworm Silk Fibers through CNT-Feeding and Forced Reeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408385. [PMID: 39400397 DOI: 10.1002/adma.202408385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Indexed: 10/15/2024]
Abstract
High-performance silk fibers, with their eco-friendly degradability and renewability, have long captivated researchers as an alternative to synthetic fibers. Spider dragline silk, renowned for its exceptional strength (>1 GPa), has an extremely low yield, hindering its widespread use. While domesticated silkworms (Bombyx mori) can produce silk fibers industrially, their moderate strength (≈0.5 GPa) pales in comparison to the formidable spider dragline silk. In this study, naturally produced strong silkworm silk fibers are reported with a tensile strength of ≈1.2 GPa achieved through combining feeding carbon nanotubes (CNTs) to silkworms and in situ forced reeling for alignment. Molecular dynamics simulations confirm the interaction between the CNTs and silk fibroin, while the forced reeling process aligns these reinforcing fillers and the silk fibroin β-sheet nanocrystals along the fiber axis. Structural analysis reveals a significant enhancement in the content and alignment of β-sheet nanocrystals within the silk fibers, accounting for their superior mechanical properties, including tensile strength of ≈1.2 GPa and Young's modulus of 24.4 GPa, surpassing various types of silkworm silk and spider silk. This advancement addresses the historical trade-off between the strength and scalability of silk, potentially paving the way for eco-friendly, biodegradable, and renewable alternatives to synthetic fibers in a variety of applications.
Collapse
Affiliation(s)
- Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Muqiang Jian
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Beijing Graphene Institute, Beijing, 100095, China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yida Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiali Niu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Zhang Y, Zhang M, Li W, Hu T, Liu Y, Huang H, Kang Z. Improving the mechanical property of silk by feeding silkworm with chiral carbon dots. Int J Biol Macromol 2024; 281:136644. [PMID: 39423973 DOI: 10.1016/j.ijbiomac.2024.136644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The influence of chiral materials on organisms is crucial. However, there is little research on the impact of chiral carbon dots (CDs), a kind of typical chiral materials, on biology. Herein, chiral CDs (L-/D-CDs) were synthesized using the thermal polymerization method from citric acid and chiral cysteine. The effect of chiral CDs on silkworms was explored through feeding silkworms with chiral CDs. The breaking strength of silk fibers (667.9 MPa) in D-CDs group exhibit a 71.4 % increase compared with control-silk (389.5 MPa), while the breaking strength of silk fibers in L-CDs group increases by 51.6 %. In addition, Fourier transform infrared spectra display CDs can prevent the transformation from random coil/α-helix structures to β-sheet structures. Furthermore, D-CDs group exhibit the highest percentage of four primary amino acids (glycine, alanine, serine, and tyrosine) relative to the total amino acids in silkworm hemolymph. This percentage is elevated by 70.5 % compared to the control group, thereby furnishing an ample supply of raw materials for the synthesis of silk proteins. In contrast, L-CDs group exhibit increase by 39.3 %. Our work provides new ideas and approaches for studying the effects of chiral materials on living organisms.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Mengling Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao.
| | - Wenwen Li
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Tao Hu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Hui Huang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao.
| |
Collapse
|
4
|
Wen K, Zhang C, Zhang G, Wang M, Mei G, Zhang Z, Zhao W, Guo W, Zhou Q, Liu E, Zhu Y, Bai J, Zhu M, Wang W, Liu Z, Zhou X. Jellyfish-Inspired Artificial Spider Silk for Luminous Surgical Sutures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314158. [PMID: 39081084 DOI: 10.1002/adma.202314158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/08/2024] [Indexed: 09/19/2024]
Abstract
The development of functional surgical sutures with excellent mechanical properties, good fluorescence, and high cytocompatibility is highly required in the field of medical surgeries. Achieving fibers that simultaneously exhibit high mechanical robustness, good spinnability, and durable fluorescence emission has remained challenging up to now. Taking inspiration from the spinning process of spider silk and the luminescence mechanism of jellyfish, this work reports a luminous artificial spider silk prepared with the aim of balancing the fiber spinnability and mechanical robustness. This is realized by employing highly hydrated segments with aggregation-induced luminescence for enhancing the fiber spinnability and polyhydroxyl segments for increasing the fiber mechanical robustness. Twist insertion during fiber spinning improves the fiber strength, toughness, and fluorescence emission. Furthermore, coating the fiber with an additional polymer layer results in a "sheath-core" architecture with improved mechanical properties and capacity to withstand water. This work provides a new design strategy for performing luminescent and robust surgical sutures.
Collapse
Affiliation(s)
- Kai Wen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao Zhang
- Department of Science, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Guanghao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Meilin Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guangkai Mei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenzhen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Weiqiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenjin Guo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiang Zhou
- Department of Orthopaedics, Tianjin First Central Hospital, Nankai University, Tianjin, 300071, China
| | - Enzhao Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yutian Zhu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiang Zhou
- Department of Science, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| |
Collapse
|
5
|
Wu ZF, Wang BJ, Ni JW, Sun ZN, Zhang XR, Xiong HM. Green Fluorescent Carbon Dots with Critically Controlled Surface States: Make Silk Shine via Feeding Silkworms. NANO LETTERS 2024; 24:9675-9682. [PMID: 39058271 DOI: 10.1021/acs.nanolett.4c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Feeding silkworms with functional materials as additives to produce naturally modified silk is a facile, diverse, controllable, and environmentally friendly method with a low cost of time and investment. Among various additives, carbon dots (CDs) show unique advantages due to their excellent biocompatibility and fluorescence stability. Here, a new type of green fluorescent carbon dots (G-CDs) is synthesized with a high oil-water partition ratio of 147, a low isoelectric point of 5.16, an absolute quantum yield of 71%, and critically controlled surface states. After feeding with G-CDs, the silkworms weave light yellow cocoons whose green fluorescence is visible to the naked eye under UV light. The luminous silk is sewn onto the cloth to create striking patterns with beautiful fluorescence. Such G-CDs have no adverse effect on the survival rate and the life cycle of silkworms and enable their whole bodies to glow under UV light. Based on the strong fluorescence, chemical stability, and biological safety, G-CDs are found in the digestive tracts, silk glands, feces, cocoons, and even moth bodies. G-CDs accumulate in the posterior silk glands where fibroin protein is secreted, indicating its stronger combination with fibroin than sericin, which meets the requirements for practical applications.
Collapse
Affiliation(s)
- Zhao-Fan Wu
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Bao-Juan Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jia-Wen Ni
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Zhao-Nan Sun
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xi-Rong Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Huan-Ming Xiong
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
6
|
Li J, Zhao X, Gong X. The Emerging Star of Carbon Luminescent Materials: Exploring the Mysteries of the Nanolight of Carbon Dots for Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400107. [PMID: 38461525 DOI: 10.1002/smll.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Carbon dots (CDs), a class of carbon-based nanomaterials with dimensions less than 10 nm, have attracted significant interest since their discovery. They possess numerous excellent properties, such as tunability of photoluminescence, environmental friendliness, low cost, and multifunctional applications. Recently, a large number of reviews have emerged that provide overviews of their synthesis, properties, applications, and their composite functionalization. The application of CDs in the field of optoelectronics has also seen unprecedented development due to their excellent optical properties, but reviews of them in this field are relatively rare. With the idea of deepening and broadening the understanding of the applications of CDs in the field of optoelectronics, this review for the first time provides a detailed summary of their applications in the field of luminescent solar concentrators (LSCs), light-emitting diodes (LEDs), solar cells, and photodetectors. In addition, the definition, categories, and synthesis methods of CDs are briefly introduced. It is hoped that this review can bring scholars more and deeper understanding in the field of optoelectronic applications of CDs to further promote the practical applications of CDs.
Collapse
Affiliation(s)
- Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
7
|
Wang F, Pan H, Mao W, Wang D. Optimizations of luminescent materials for white light emitting diodes toward healthy lighting. Heliyon 2024; 10:e34795. [PMID: 39149032 PMCID: PMC11325363 DOI: 10.1016/j.heliyon.2024.e34795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
White light emitting diodes (wLEDs) have been widely used as the green lighting sources. The commercial wLEDs devices are mainly achieved through the combination of blue emission chips and yellow phosphors, which offer advantages of high efficiency and long lifetime. However, the color rendering index (CRI) of traditional wLEDs is low due to the lack of red components. In recent years, with the improvement of the quality of life, a lot of efforts have been paid to improve the performance of wLEDs devices related to CRI, correlated color temperature, light uniformity, luminous flux, etc. In this article, we summarize the recent advances on the optimization of wLEDs toward healthy lighting. Brief introductions on the fundamentals of healthy effect of lighting are presented, followed by discussions of current methods to realize wLEDs devices. Special overviews on strategies for luminescent materials of wLEDs in recent years are presented. The opportunities and challenges in the future development of wLEDs lighting devices are also discussed.
Collapse
Affiliation(s)
- Fen Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Pan
- Shandong Best Integrated Housing Co., Ltd, Weifang, 262600, China
| | - Wei Mao
- Quzhou Innovation Institute for Chemical Engineering and Materials, Quzhou, 324000, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
Sun H, Yang H, Yang M, Li Q, Xue W, Qi J. Follow-up and histocompatibility observation of urethral reconstruction with different materials. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2024; 12:36-45. [PMID: 38500866 PMCID: PMC10944369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/25/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE Our objective is to observe the long-term surgical results of urethral reconstruction using either pedicled penile flaps or lingual mucosa grafts. We also assess the histocompatibility of the reconstructed urethra. MATERIALS AND METHODS Clinical data of patients with anterior urethral stenosis undergoing urethra reconstruction by applying different materials were collected from 2014 to 2022 in the Second Hospital of Hebei Medical University. We assessed their efficacy and the occurrence of complications. Patients who required reoperation due to complications were selected. Sections of the reconstructed urethra created with various materials were excised during repair procedures. The excised tissues underwent hematoxylin-eosin staining and immunohistochemistry. Comparison with the original histological morphology was conducted to evaluate histocompatibility. RESULTS 42 of the 55 patients were cured which showed a surgical success rate of 76.36%. The success rate of urethra reconstruction surgery utilizing lingual mucosa is 71.43% and that of surgeries using pedicled penis flaps is 79.41%. The long-term prognosis of the two groups is similar (P > 0.05). Observations show that the histological morphology of the original epithelium gradually disappeared, leading to adaptive changes to the urinary environment with favorable histocompatibility. CONCLUSION The application of lingual mucosal and pedicled penis flaps for urethral reconstruction both have a high surgical success rate. The long-term follow-up results are positive. Both methods are viable for urethral reconstruction and exhibit favorable histocompatibility.
Collapse
Affiliation(s)
- Hongtian Sun
- Department of Urology, The Second Hospital of Hebei Medical University No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei, China
| | - Haoxuan Yang
- Department of Urology, The Second Hospital of Hebei Medical University No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei, China
| | - Mingxuan Yang
- Department of Urology, The Second Hospital of Hebei Medical University No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei, China
| | - Qian Li
- Department of Urology, The Second Hospital of Hebei Medical University No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei, China
| | - Wenyong Xue
- Department of Urology, The Second Hospital of Hebei Medical University No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei, China
| | - Jinchun Qi
- Department of Urology, The Second Hospital of Hebei Medical University No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Lu H, Jian M, Gan L, Zhang Y, Li S, Liang X, Wang H, Zhu M, Zhang Y. Highly strong and tough silk by feeding silkworms with rare earth ion-modified diets. Sci Bull (Beijing) 2023; 68:2973-2981. [PMID: 37798179 DOI: 10.1016/j.scib.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
Nature-derived silk fibers possess excellent biocompatibility, sustainability, and mechanical properties, yet producing strong and tough silk fibers in a facile and large-scale manner remains a significant challenge. Herein, we report a simple method for preparing strong and tough silk fibers by feeding silkworms rare earth ion-modified diets. The resulting silk fibers exhibit significantly increased tensile strength and toughness, with average values of 0.85 ± 0.07 GPa and 156 ± 13 MJ m-3, respectively, and maximum values of 0.97 ± 0.04 GPa and 188 ± 19 MJ m-3, approaching those of spider dragline silk. Our findings suggest that the incorporation of rare earth ions (La3+ or Eu3+) into the silk fibers contributes to this enhancement. Structure analysis reveals a reduction in content and an improvement in orientation of β-sheet nanocrystals in silk fibers. X-ray photoelectron spectroscopy analysis confirms the chemical interaction between rare earth ions with β-sheet nanocrystals. The structural evolution and chemical interactions lead to the simultaneous enhancement in both strength and toughness. This work presents a simple, scalable, and effective strategy for producing ultra-strong and tough silk fibers with potential applications in areas requiring super structural materials, such as personal protection and aerospace.
Collapse
Affiliation(s)
- Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Muqiang Jian
- Beijing Graphene Institute, Beijing 100095, China
| | - Linli Gan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haomin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mengjia Zhu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Mandal T, Mishra SR, Singh V. Comprehensive advances in the synthesis, fluorescence mechanism and multifunctional applications of red-emitting carbon nanomaterials. NANOSCALE ADVANCES 2023; 5:5717-5765. [PMID: 37881704 PMCID: PMC10597556 DOI: 10.1039/d3na00447c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
Red emitting fluorescent carbon nanomaterials have drawn significant scientific interest in recent years due to their high quantum yield, water-dispersibility, photostability, biocompatibility, ease of surface functionalization, low cost and eco-friendliness. The red emissive characteristics of fluorescent carbon nanomaterials generally depend on the carbon source, reaction time, synthetic approach/methodology, surface functional groups, average size, and other reaction environments, which directly or indirectly help to achieve red emission. The importance of several factors to achieve red fluorescent carbon nanomaterials is highlighted in this review. Numerous plausible theories have been explained in detail to understand the origin of red fluorescence and tunable emission in these carbon-based nanostructures. The above advantages and fluorescence in the red region make them a potential candidate for multifunctional applications in various current fields. Therefore, this review focused on the recent advances in the synthesis approach, mechanism of fluorescence, and electronic and optical properties of red-emitting fluorescent carbon nanomaterials. This review also explains the several innovative applications of red-emitting fluorescent carbon nanomaterials such as biomedicine, light-emitting devices, sensing, photocatalysis, energy, anticounterfeiting, fluorescent silk, artificial photosynthesis, etc. It is hoped that by choosing appropriate methods, the present review can inspire and guide future research on the design of red emissive fluorescent carbon nanomaterials for potential advancements in multifunctional applications.
Collapse
Affiliation(s)
- Tuhin Mandal
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Shiv Rag Mishra
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Vikram Singh
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
11
|
Chen L, Wang CF, Liu C, Chen S. Facile Access to Fabricate Carbon Dots and Perspective of Large-Scale Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022:e2206671. [PMID: 36479832 DOI: 10.1002/smll.202206671] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Carbon dots (CDs), fluorescent carbon nanoparticles with particle sizes < 10 nm, are constantly being developed for potential large-scale applications. Recently, methods allow CD synthesis to be carried out on large-scale preparation in a controlled fashion are potentially important for multiple disciplines, including bottom-up strategy, top-down method. In this review, the recent progresses in the research of the methods for large-scale production of CDs and their functionalization are summarized. Especially, the methods of CD synthesis, such as large-scale preparation, hydrothermal/solvothermal, microwave-assisted, magnetic hyperthermia microfluidic and other methods, along with functionalization of CDs, are summarized in detail. By promising applications of CDs, there are three aspects have been already reported, such as enhancing mechanical properties, flame retardancy, and energy storage. Also, future development of CDs is prospected.
Collapse
Affiliation(s)
- Lintao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional, Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional, Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Chang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional, Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional, Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
12
|
Yao X, Zou S, Fan S, Niu Q, Zhang Y. Bioinspired silk fibroin materials: From silk building blocks extraction and reconstruction to advanced biomedical applications. Mater Today Bio 2022; 16:100381. [PMID: 36017107 PMCID: PMC9395666 DOI: 10.1016/j.mtbio.2022.100381] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/27/2022]
Abstract
Silk fibroin has become a promising biomaterial owing to its remarkable mechanical property, biocompatibility, biodegradability, and sufficient supply. However, it is difficult to directly construct materials with other formats except for yarn, fabric and nonwoven based on natural silk. A promising bioinspired strategy is firstly extracting desired building blocks of silk, then reconstructing them into functional regenerated silk fibroin (RSF) materials with controllable formats and structures. This strategy could give it excellent processability and modifiability, thus well meet the diversified needs in biomedical applications. Recently, to engineer RSF materials with properties similar to or beyond the hierarchical structured natural silk, novel extraction and reconstruction strategies have been developed. In this review, we seek to describe varied building blocks of silk at different levels used in biomedical field and their effective extraction and reconstruction strategies. This review also present recent discoveries and research progresses on how these functional RSF biomaterials used in advanced biomedical applications, especially in the fields of cell-material interactions, soft tissue regeneration, and flexible bioelectronic devices. Finally, potential study and application for future opportunities, and current challenges for these bioinspired strategies and corresponding usage were also comprehensively discussed. In this way, it aims to provide valuable references for the design and modification of novel silk biomaterials, and further promote the high-quality-utilization of silk or other biopolymers.
Collapse
|
13
|
Gao ZF, Zheng LL, Fu WL, Zhang L, Li JZ, Chen P. Feeding Alginate-Coated Liquid Metal Nanodroplets to Silkworms for Highly Stretchable Silk Fibers. NANOMATERIALS 2022; 12:nano12071177. [PMID: 35407295 PMCID: PMC9000898 DOI: 10.3390/nano12071177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
In this study, we fed the larval of Bombyx mori silkworms with nanodroplets of liquid metal (LM) coated with microgels of marine polysaccharides to obtain stretchable silk. Alginate-coated liquid metal nanodroplets (LM@NaAlg) were prepared with significant chemical stability and biocompatibility. This study demonstrates how the fed LM@NaAlg acts on the as-spun silk fiber. We also conducted a series of characterizations and steered molecular dynamics simulations, which showed that the LM@NaAlg additions impede the conformation transition of silk fibroins from the random coil and α-helix to the β-sheet by the formation of hydrogen bonds between LM@NaAlg and the silk fibroins, thus enhancing the elongation at the breakpoints in addition to the tensile properties. The intrinsically highly stretchable silk showed outstanding mechanical properties compared with regular silk due to its 814 MPa breaking strength and a breaking elongation of up to 70%—the highest reported performance so far. We expect that the proposed method can expand the fabrication of multi-functional silks.
Collapse
Affiliation(s)
- Zhong-Feng Gao
- Advanced Materials Institute, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China;
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (L.-L.Z.); (J.-Z.L.)
- Correspondence: (Z.-F.G.); (P.C.)
| | - Lin-Lin Zheng
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (L.-L.Z.); (J.-Z.L.)
| | - Wen-Long Fu
- Advanced Materials Institute, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China;
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada;
| | - Jin-Ze Li
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (L.-L.Z.); (J.-Z.L.)
| | - Pu Chen
- Advanced Materials Institute, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China;
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada;
- Correspondence: (Z.-F.G.); (P.C.)
| |
Collapse
|
14
|
Liu J, Kong T, Xiong HM. Mulberry-Leaves-Derived Red-Emissive Carbon Dots for Feeding Silkworms to Produce Brightly Fluorescent Silk. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200152. [PMID: 35229375 DOI: 10.1002/adma.202200152] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Fluorescent silk has promising applications in dazzling textiles, biological engineering, and medical products, but the natural Bombyx mori silk has almost no fluorescence. Here carbon dots (CDs) made from mulberry leaves are reported, which have a strong near-infrared fluorescence with absolute quantum yield of 73% and a full width at half maximum of 20 nm. After feeding with such CDs, silkworms exhibit bright red fluorescence, grow healthily, cocoon normally, and turn to moths finally. The cocoons are pink in daylight and show bright red fluorescence under ultraviolet light. After breaking out of such cocoons, the red-emissive moths can mate and lay fluorescent eggs which would hatch normally. The growth cycle of the second generation of the test silkworm is the same as that of the control group, which means such CDs have excellent biocompatiblility. Dissection and analyses on both the test silkworms and cocoons disclose the metabolic route of the CDs, that is, the fluorescent CDs are absorbed by silkworms from alimentary canals, then transferred to silk glands, and finally to cocoons, while those unabsorbed CDs are excreted with the feces. All experimental results confirm the excellent biocompatibility and fluorescence stability of such CDs.
Collapse
Affiliation(s)
- Jun Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Taoyi Kong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Huan-Ming Xiong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
15
|
Calvo V, González‐Domínguez JM, Benito AM, Maser WK. Synthesis and Processing of Nanomaterials Mediated by Living Organisms. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Víctor Calvo
- Group of Carbon Nanostructures and Nanotechnology (G-CNN) Instituto de Carboquímica ICB-CSIC C/ Miguel Luesma Castán 4 50018 Zaragoza Spain
| | - José M. González‐Domínguez
- Group of Carbon Nanostructures and Nanotechnology (G-CNN) Instituto de Carboquímica ICB-CSIC C/ Miguel Luesma Castán 4 50018 Zaragoza Spain
| | - Ana M. Benito
- Group of Carbon Nanostructures and Nanotechnology (G-CNN) Instituto de Carboquímica ICB-CSIC C/ Miguel Luesma Castán 4 50018 Zaragoza Spain
| | - Wolfgang K. Maser
- Group of Carbon Nanostructures and Nanotechnology (G-CNN) Instituto de Carboquímica ICB-CSIC C/ Miguel Luesma Castán 4 50018 Zaragoza Spain
| |
Collapse
|
16
|
Calvo V, González-Domínguez JM, Benito AM, Maser WK. Synthesis and Processing of Nanomaterials Mediated by Living Organisms. Angew Chem Int Ed Engl 2021; 61:e202113286. [PMID: 34730273 PMCID: PMC9300077 DOI: 10.1002/anie.202113286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/23/2022]
Abstract
Nanomaterials offer exciting properties and functionalities. However, their production and processing frequently involve complex methods, cumbersome equipment, harsh conditions, and hazardous media. The capability of organisms to accomplish this using mild conditions offers a sustainable, biocompatible, and environmentally friendly alternative. Different nanomaterials such as metal nanoparticles, quantum dots, silica nanostructures, and nanocellulose are being synthesized increasingly through living entities. In addition, the bionanofabrication potential enables also the in situ processing of nanomaterials inside biomatrices with unprecedented outcomes. In this Minireview we present a critical state‐of‐the‐art vision of current nanofabrication approaches mediated by living entities (ranging from unicellular to higher organisms), in order to expand this knowledge and scrutinize future prospects. An efficient interfacial interaction at the nanoscale by green means is within reach through this approach.
Collapse
Affiliation(s)
- Víctor Calvo
- Group of Carbon Nanostructures and Nanotechnology (G-CNN), Instituto de Carboquímica, ICB-CSIC, C/ Miguel Luesma Castán 4, 50018, Zaragoza, Spain
| | - José M González-Domínguez
- Group of Carbon Nanostructures and Nanotechnology (G-CNN), Instituto de Carboquímica, ICB-CSIC, C/ Miguel Luesma Castán 4, 50018, Zaragoza, Spain
| | - Ana M Benito
- Group of Carbon Nanostructures and Nanotechnology (G-CNN), Instituto de Carboquímica, ICB-CSIC, C/ Miguel Luesma Castán 4, 50018, Zaragoza, Spain
| | - Wolfgang K Maser
- Group of Carbon Nanostructures and Nanotechnology (G-CNN), Instituto de Carboquímica, ICB-CSIC, C/ Miguel Luesma Castán 4, 50018, Zaragoza, Spain
| |
Collapse
|
17
|
Zhang Y, Han F, Fan S, Zhang Y. Low-Power and Tunable-Performance Biomemristor Based on Silk Fibroin. ACS Biomater Sci Eng 2021; 7:3459-3468. [PMID: 34165975 DOI: 10.1021/acsbiomaterials.1c00513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biomemristors have attracted significant attention because of their potential applications in logic operations, nonvolatile memory, and synaptic emulators, thus leading to the urgent need to improve memristive performance. In this work, a silk fibroin (SF)-based memristor, integrated with both low power and low operating current simultaneously, has been reported. Doping the SF with Ag and an ethanol-based post-treatment promote microcrystal formation in the bulk of the SF. This induces carrier transport along fixed, short paths and results in a low set voltage, low operating current, and high memristive stability. Such performances can greatly reduce power consumption and heat generation, beneficial for the accuracy and durability of memristor devices. The memristive mechanism of SF-based memristors with different Ag contents is the space-charge-limited conduction (SCLC) mechanism. In addition, the nonlinear transmission property of SF-based memristors suggests useful applications in bioelectronics.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai 201620, P. R. China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
18
|
Portale G. Novel engineered proteins for mechanomaterials. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Belda Marín C, Fitzpatrick V, Kaplan DL, Landoulsi J, Guénin E, Egles C. Silk Polymers and Nanoparticles: A Powerful Combination for the Design of Versatile Biomaterials. Front Chem 2020; 8:604398. [PMID: 33335889 PMCID: PMC7736416 DOI: 10.3389/fchem.2020.604398] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Silk fibroin (SF) is a natural protein largely used in the textile industry but also in biomedicine, catalysis, and other materials applications. SF is biocompatible, biodegradable, and possesses high tensile strength. Moreover, it is a versatile compound that can be formed into different materials at the macro, micro- and nano-scales, such as nanofibers, nanoparticles, hydrogels, microspheres, and other formats. Silk can be further integrated into emerging and promising additive manufacturing techniques like bioprinting, stereolithography or digital light processing 3D printing. As such, the development of methodologies for the functionalization of silk materials provide added value. Inorganic nanoparticles (INPs) have interesting and unexpected properties differing from bulk materials. These properties include better catalysis efficiency (better surface/volume ratio and consequently decreased quantify of catalyst), antibacterial activity, fluorescence properties, and UV-radiation protection or superparamagnetic behavior depending on the metal used. Given the promising results and performance of INPs, their use in many different procedures has been growing. Therefore, combining the useful properties of silk fibroin materials with those from INPs is increasingly relevant in many applications. Two main methodologies have been used in the literature to form silk-based bionanocomposites: in situ synthesis of INPs in silk materials, or the addition of preformed INPs to silk materials. This work presents an overview of current silk nanocomposites developed by these two main methodologies. An evaluation of overall INP characteristics and their distribution within the material is presented for each approach. Finally, an outlook is provided about the potential applications of these resultant nanocomposite materials.
Collapse
Affiliation(s)
- Cristina Belda Marín
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Jessem Landoulsi
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Erwann Guénin
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
| | - Christophe Egles
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Compiègne, France
| |
Collapse
|
20
|
Pang W, Jiang P, Ding S, Bao Z, Wang N, Wang H, Qu J, Wang D, Gu B, Wei X. Nucleolus-Targeted Photodynamic Anticancer Therapy Using Renal-Clearable Carbon Dots. Adv Healthc Mater 2020; 9:e2000607. [PMID: 32548916 DOI: 10.1002/adhm.202000607] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/17/2020] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT), which utilizes light excited photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. In order to further enhance PDT effect, PSs are functionalized to target specific sub-cellular organelles, but most PSs cannot target nucleolus, which is demonstrated as a more efficient and ideal site for cancer treatment. Here, an effective carbon dots (C-dots) photosensitizer with intrinsic nucleolus-targeting capability, for the first time, is synthesized, characterized, and employed for in vitro and in vivo image-guided photodynamic anticancer therapy with enhanced treatment performance at a low dose of PS and light irradiation. The C-dots possess high ROS generation efficiency and fluorescence quantum yield, excellent in vitro and in vivo biocompatibility, and rapid renal clearance, endowing it with a great potential for future translational research.
Collapse
Affiliation(s)
- Wen Pang
- School of Biomedical Engineering and State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
| | - Pengfei Jiang
- School of Biomedical Engineering and State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
| | - Shihui Ding
- School of Biomedical Engineering and State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
| | - Zhouzhou Bao
- Department of Obstetrics and Gynecology, Ren Ji HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200127 China
| | - Ningtao Wang
- Department of 2nd Dental CenterShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong UniversitySchool of Medicine Shanghai 200011 China
| | - Hongxia Wang
- Department of OncologyShanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai 200080 China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Dan Wang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 China
| | - Bobo Gu
- School of Biomedical Engineering and State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
| | - Xunbin Wei
- School of Biomedical Engineering and State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
- Beijing Advanced Innovation Center for Biomedical EngineeringBeihang University Beijing 100083 China
| |
Collapse
|
21
|
Deng Z, Huang J, Xue Z, Jiang M, Li Y, Zeng S. A general strategy for designing NIR-II emissive silk for the in vivo monitoring of an implanted stent model beyond 1500 nm. J Mater Chem B 2020; 8:4587-4592. [PMID: 32348399 DOI: 10.1039/c9tb02685a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Silk fibroin-based materials spun by silkworms present excellent biocompatible and biodegradable properties, endowing them with broad applications for use in in vivo implanted devices. Therefore, it is highly desirable to explore functionalized silk with additional optical bioimaging abilities for the direct in situ monitoring of the status of implanted devices in vivo. Herein, a new type of silk material with a second near-infrared (NIR-II, 1000-1700 nm) emission is explored for the real-time observation of a biological stent model using a general route of feeding larval silkworms with lanthanide-based NaYF4:Gd3+/Yb3+/Er3+@SiO2 nanocrystals. After being fed lanthanide nanocrystals, the silk spun by silkworms shows efficient NIR-II emission beyond 1500 nm. Moreover, NIR-II bio-imaging guided biological stent model monitoring presents a superior signal-to-noise (S/N) ratio compared to the traditional optical imaging by utilizing the upconversion (UC) region. These findings open up the possibility of designing NIR-II optically functionalized silk materials for highly sensitive and deep-tissue monitoring of the in vivo states of the implanted devices.
Collapse
Affiliation(s)
- Zhiming Deng
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha, 410081, P. R. China.
| | | | | | | | | | | |
Collapse
|