1
|
Matei AT, Visan AI, Negut I. Laser-Fabricated Micro/Nanostructures: Mechanisms, Fabrication Techniques, and Applications. MICROMACHINES 2025; 16:573. [PMID: 40428699 PMCID: PMC12114160 DOI: 10.3390/mi16050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025]
Abstract
The rapid evolution of optoelectronic devices necessitates innovative fabrication techniques to improve their performance and functionality. This review explores the advancements in laser processing as a versatile method for creating micro- and nanostructured surfaces, tailored to enhance the efficiency of optoelectronic applications. We begin by elucidating the fundamental mechanisms underlying laser interactions with materials, which facilitate the precise engineering of surface topographies. Following this, we systematically review various micro/nanostructures fabricated by laser techniques, such as laser ablation, laser-induced periodic surface structures (LIPSS), and two-photon polymerization, highlighting their unique properties and fabrication parameters. The review also delves into the significant applications of these laser-fabricated surfaces in optoelectronic devices, including photovoltaics, photodetectors, and sensors, emphasizing how tailored surface structures can lead to improved light absorption, enhanced charge carrier dynamics, and optimized device performance. By synthesizing current knowledge and identifying emerging trends, this work aims to inspire future research directions in the design and application of laser-fabricated micro/nanostructures within the field of optoelectronics. Our findings underscore the critical role of laser technology in advancing the capabilities of next-generation optoelectronic devices, aligning with the scope of emerging trends in device engineering.
Collapse
Affiliation(s)
- Andrei Teodor Matei
- IT Center for Science and Technology, 25 No. Av. Radu Beller, 011702 Bucharest, Romania;
| | - Anita Ioana Visan
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, P.O. Box MG 36, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, P.O. Box MG 36, 077125 Magurele, Romania
| |
Collapse
|
2
|
Li S, Yang R, Zhao Z, Xie M, Zhou Y, Zeng Q, Zhu X, Zhang X. The multifunctional role of hydroxyapatite nanoparticles as an emerging tool in tumor therapy. Acta Biomater 2025:S1742-7061(25)00344-7. [PMID: 40374135 DOI: 10.1016/j.actbio.2025.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/14/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025]
Abstract
Hydroxyapatite nanoparticles (HANPs) are well-known nanomaterials for bone regeneration or repair. In recent years, HANPs have emerged as a potential tool in tumor therapy because of the numerous advantages the nanoparticles offer, including the diverse physicochemical properties, the selective anti-tumor effect, intrinsic immunomodulatory activity, ability to reverse of drug or immune tolerance, allowance of ion substation, good drug-loading capabilities, etc. Notably, the physicochemical properties of the particles, such as size and shape, significantly influence their anti-tumor efficacy. Therefore, to offer a comprehensive understanding of the key properties of HANPs and the involving molecular mechanisms, and provide crucial cues for rational design and development of novel HANPs-based anti-tumor platforms, this review summarizes various synthesis methods of HANPs with controlled physiochemical characteristics and highlights the multifaceted effects such as interactions with tumor cells and immune cells, regulation of the tumor microenvironment (TME), overcoming drug or immune resistance, and their potentials as effective drug carriers. This review also outlines the emerging strategies leveraging HANPs for tumor therapy and diagnostic imaging. At last, we discuss the challenges HANPs face when used for tumor treatment. STATEMENT OF SIGNIFICANCE: Hydroxyapatite nanoparticles (HANPs) have emerged as a promising tool in tumor therapy without compromising biocompatibility. This review highlights the unique and multifaceted features of HANPs in tumor therapy, including the selective induction of tumor cell apoptosis, engagement in immune regulation, reversal of drug or immune resistance, and the loading of diverse anti-tumor drugs or biomaterials. Additionally, this review emphasizes the influence of the intrinsic physicochemical properties of HANPs on their anti-tumor activity, and explores the emerging strategies that leverage HANPs for tumor therapy and diagnostic imaging. In summary, this work aims to provide a comprehensive and deep understanding of the role of HANPs in tumor therapy and is significant for the improved design of HANP-based platforms for tumor therapy.
Collapse
Affiliation(s)
- Shu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Ruinan Yang
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhengyi Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Mengzhang Xie
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Cabral L, Longo E, San-Miguel MA, Leite E, da Silva EZ, Andrés J. Lighting up the structure and electronic properties of α-, β-, γ-Ag 2WO 4 polymorphs under laser irradiation: a DFT investigation. Phys Chem Chem Phys 2025; 27:6836-6844. [PMID: 40105701 DOI: 10.1039/d4cp04349a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Laser irradiation (LI)-matter interaction provides a versatile means to manipulate the physicochemical properties of materials. Understanding material responses to LI was the initial driving force for studying the effects of this interaction in solids, but the associated induced dynamics is hindered by the macroscopic number of particles interacting collectively with photonic modes. In this work, we conduct comprehensive theoretical calculations to gain insights into the changes in the lattice structure and electronic properties of α-, β-, γ-Ag2WO4 polymorphs induced by LI using density functional theory (DFT) calculations based on the electronic temperature (Te) within a two-temperature model (TTM) and ab initio molecular dynamics (AIMD) simulations. Overall, we reveal a clear visualization of how Te induces a structural and electronic transformation process during LI. The analysis of the evolution of the pair correlation function confirms that these polymorphs undergo a transition from crystalline to an amorphous structure under strong electronic excitations with concomitant formation of Ag nanoclusters. These results suggest the critical role that the Ag metallic nanoparticles may play in defining the behavior and properties of these materials. Our results offer physical insights into the thermodynamic stability and electronic properties of laser-irradiated Ag2WO4 polymorphs, which can inform on structural details currently inaccessible to experimental techniques. The presented approach is a versatile and sensitive tool for studying defect distribution and clustering processes in other functional Ag-based semiconductors.
Collapse
Affiliation(s)
- L Cabral
- Department of Physics and Meteorology, School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, São Paulo, Brazil.
- Institute of Physics Gleb Wataghin (IFGW), State University of Campinas, 13083-859 Campinas, SP, Brazil
| | - Elson Longo
- LIEC-CDMF, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Miguel A San-Miguel
- Institute of Chemistry, State University of Campinas-Unicamp, 13083-970 Campinas, SP, Brazil
| | - Edson Leite
- Laboratório Nacional de Nanotecnologia (LNNano), CNPEM, Campinas 13083-970, SP, Brazil
- LIEC-CDMF, Department of Chemistry, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | - E Z da Silva
- Institute of Physics Gleb Wataghin (IFGW), State University of Campinas, 13083-859 Campinas, SP, Brazil
| | - Juan Andrés
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), Castelló 12071, Spain.
| |
Collapse
|
4
|
Tan P, Wang C, Wei D, Wang F, Zhao Z, Zhang W. Laser processing materials for photo-to-thermal applications. Adv Colloid Interface Sci 2025; 337:103382. [PMID: 39700970 DOI: 10.1016/j.cis.2024.103382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Photothermal conversion materials (PCMs) are crucial component in solar-thermal energy technologies. Although various PCMs with excellent sunlight harvesting have been developed for colorful solar-thermal applications, uniform and large-scale production of PCMs remains a challenge, and the PCMs prepared through the conventional methods are often non-site specific. Laser processing technology (LPT), as an efficient, convenient, green and sustainable technology, can directly create micro/nano structures and patterns at specific locations on materials surface, attracting widespread attention in photo-to-thermal applications. Here, we summarize the laser processing of preparing PCMs through laser sintering, laser modification, laser ablation in liquid, laser induced carbonization, and laser etching. We also introduce the working mechanism of LPT, and analyze the thermal conductivity, heat storage performance and hydrophilic/hydrophobic properties of the substrate after LPT treatment. Furthermore, the application of LPT in solar anti-icing/deicing, seawater desalination, heat exchange system, energy storage and transfer, and other related fields are introduced. Additionally, we provide a prospect for the development of LPT and offer directions for future research. We hope that this review can provide meaningful reference value for scholars in this field.
Collapse
Affiliation(s)
- Puxin Tan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Chengbing Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Dan Wei
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Fan Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Zexiang Zhao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wenhe Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
5
|
Hu J, Zheng S, Xu J, Feng R, Li T, Wang T, Zhang W, Liu W, Saleem F. Innovative Synthesis of Au Nanoparticle-Trapped Flexible Macrocrystals: Achieving Stable Black Crystal Wires with Broadband Absorption. SMALL METHODS 2025; 9:e2400871. [PMID: 39155822 DOI: 10.1002/smtd.202400871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Indexed: 08/20/2024]
Abstract
In optical materials, the development of absorbers for a wide spectrum is a focal point of research. A pivotal challenge lies in ensuring the stability and durability of optical absorbers, particularly at elevated temperatures. This study introduces a novel approach to creating absorbers with diverse colors, focusing on the synthesis and properties of black crystal wires. In contrast to black gold nanoparticle (Au NP) precipitates, which change color within hours under similar conditions, the method involves strategically trapping Au NPs within defects during the growth of single crystals. This results in black crystal wires that not only exhibit broadband absorption but also maintain exceptional stability even under prolonged exposure to high temperatures. The method also involves the controlled synthesis of colorless and red crystal wires. As a proof of concept, these stable black Au crystal wires demonstrate superior performance in photothermal conversion applications. The methodology, derived from the crystal growth process, presents a defect template that offers a novel approach to material design. Furthermore, these unique crystals, available in various colors, hold significant promise for a range of unexplored applications.
Collapse
Affiliation(s)
- Jiuyi Hu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Shaohui Zheng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jiayu Xu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ri Feng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Tingting Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ting Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wenjing Liu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Faisal Saleem
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
6
|
Ji B, Li W, Zhang F, Geng P, Li CM. MOF-Derived Transition Metal Phosphides for Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409273. [PMID: 40007089 DOI: 10.1002/smll.202409273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/03/2025] [Indexed: 02/27/2025]
Abstract
Transition metal phosphides (TMPs) in supercapacitors (SCs) applications are increasingly attracting attention because of their exceptional electrochemical performance. MOF-derived TMPs, possess high specific surface areas, rich pore structure, and controllable chemical compositions, offering promising opportunities for supercapacitor applications. There is a wide variety of MOF-derived TMPs, and they exhibit different properties in SCs. This work mainly categorizes MOF-derived TMPs (FexP, CoxP, NixP, NixCoyP, CuxP), and then outlines the latest research advancements regarding their use as electrode materials in SCs, including the latest results of synthesis methods and structural modulation. Subsequently, the applications of MOF-derived TMPs as electrode materials in SCs are discussed. At the end, perspectives of future developments and key challenges in the applications of MOF-derived TMPs in SCs are highlighted, with the aim of providing guidance for future research.
Collapse
Affiliation(s)
- Bing Ji
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| | - Wenxiang Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| | - Feiqing Zhang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| | - Pengbiao Geng
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| | - Chang Ming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| |
Collapse
|
7
|
Wang N, Fang T, An T, Wang Y, Li J, Yu S, Sun H, Xiang D, Bo X, Cai K. Electronic Promoter Breaks the Linear Scaling Relationship: Ultra-Rapid High-Temperature Synthesis of Heterostructured CoS/SnO 2@C as a Bifunctional Oxygen Catalyst for Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406516. [PMID: 39937533 DOI: 10.1002/smll.202406516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/20/2024] [Indexed: 02/13/2025]
Abstract
Li-O2 batteries urgently needs high discharge capacity and stable cycling performance, requiring effective and reliable bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, Hovenia acerba Lindl-like heterostructure composed of cobalt sulfide and tin dioxide supported on carbon substrate (CoS/SnO2@C) is prepared via CO2 laser irradiation technology. The half-wave potential of CoS/SnO2@C for the ORR is 0.88 V, while the overpotential of the OER at 10 mA cm-2 is as low as 270 mV. The Li-O2 batteries employing the bifunctional CoS/SnO2@C catalyst displays a high discharge specific capacity of 3332.25 mAh g-1 and long cycling life of 226 cycles. Additionally, theory calculations demonstrate that the construction of heterostructure decreases energy barrier of the rate-determining step (RDS) for both ORR and OER. Notably, SnO2 behaves as the electronic promoter to optimize the electronic structure of heterostructure interface and triggers charge redistribution of CoS, which weakens the adsorption strength of the *O-intermediates and allows to break the linear scaling relationship, thus further enhancing the catalytic performance of CoS/SnO2@C. This research furnishes directions for the design of heterogeneous catalysts, highlighting its great potential for application in rechargeable Li-O2 batteries.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
- Institute of Ocean Research, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Tingxue Fang
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Tinghui An
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Yuhao Wang
- Rausser College of Natural Resources, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jiaqi Li
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Shuming Yu
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Honghai Sun
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Dong Xiang
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Kedi Cai
- Institute of Advanced Chemical Power Source, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning, 121013, China
| |
Collapse
|
8
|
Guo H, Wang L, Liu X, Mativenga P, Liu Z, Thomas AG. Laser Synthesis of Platinum Single-Atom Catalysts for Hydrogen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:78. [PMID: 39791836 PMCID: PMC11723019 DOI: 10.3390/nano15010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
Platinum (Pt)-based heterogeneous catalysts show excellent performance for the electrocatalytic hydrogen evolution reaction (HER); however, the high cost and earth paucity of Pt means that efforts are being directed to reducing Pt usage, whilst maximizing catalytic efficiency. In this work, a two-step laser annealing process was employed to synthesize Pt single-atom catalysts (SACs) on a MOF-derived carbon substrate. The laser irradiation of a metal-organic framework (MOF) film (ZIF67@ZIF8 composite) by rapid scanning of a ns pulsed infrared (IR; 1064 nm) laser across the freeze-dried MOF resulted in a metal-loaded graphitized film. This was followed by loading this film with chloroplatinic acid (H2PtCl6), followed by further irradiation with an ultraviolet (UV; 355 nm) laser, resulting in pyrolysis of H2PtCl6 to form the SAC, along with a further reduction of the MOF to form a Pt-decorated laser-induced annealed MOF (Pt-LIA-ZIF8@ZIF67). The Pt-LIA-ZIF8@ZIF67 catalyst with a Pt loading of 0.86 wt. % exhibited exceptionally high activity for the HER in acidic conditions. The atomically dispersed Pt on the carbon substrate exhibited a small overpotential of 68.8 mV at 10 mA cm-2 for the hydrogen evolution reaction with a mass activity 20.52 times that of a commercial Pt/C catalyst at an overpotential of 50 mV vs. RHE. Finally, we note that the synthesis method is simple, fast, and versatile, and potentially scalable for the mass production of SACs for electrocatalytic applications.
Collapse
Affiliation(s)
- Hengyi Guo
- Department of Materials, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; (H.G.)
| | - Lingtao Wang
- Department of Materials, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; (H.G.)
| | - Xuzhao Liu
- Department of Materials, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; (H.G.)
- The Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Paul Mativenga
- Department of Mechanical and Aerospace Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Zhu Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Zhenhai District, Ningbo 315201, China
| | - Andrew G. Thomas
- Department of Materials, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; (H.G.)
- The Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
- The Henry Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
9
|
Hosseini M, Etghani SA, Nobakht N, Sanjari Shahrezaei MA, Aboutalebi SH. Integrated One-Step Fabrication of Protonic Sensing Devices for Respiratory Monitoring. ACS Sens 2024; 9:5454-5467. [PMID: 39413435 DOI: 10.1021/acssensors.4c01694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
The development of direct fabrication routes with seamless integration of both the macro/micropatterning process and nanostructure synthesis is crucial for the commercial realization of cost-effective nanoscale sensor devices. This, if realized, can liberate us from the conventional limitations inherent in nanoscale device manufacturing. Specifically, such fabrication routes can, in principle, address the challenges such as the complexity, multistep nature, and substantial costs associated with existing technologies, which are not suitable for widespread market adoption in everyday-use devices. Herein, we propose a novel yet facile one-step fabrication approach that simultaneously accomplishes both patterning and nanostructure synthesis by employing low-power, cost-effective laser technology with a minimal environmental footprint. Versatile in nature, this approach can enable the incorporation of diverse functionalities spanning a broad spectrum of technologies, encompassing fields such as sensors, catalysts, photonics, energy storage, and biomedical monitoring devices. As a proof of concept, using our approach, we fabricated an ultra responsive, high-speed protonic sensing device for real-time respiratory monitoring. The enhanced temporal characteristics of our as-fabricated device, particularly in the relative humidity levels of interest in breath monitoring (typically over 55%), exhibited a superior response/recovery time in rapid humidity fluctuations. We envisage that the advantages brought by the presented fabrication approach can pave the way to establish a new method for inexpensive large-scale functional-material-based device fabrication.
Collapse
Affiliation(s)
- Mohammad Hosseini
- Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences, Tehran 19395-5531, Iran
| | - Seyyed Ahmad Etghani
- Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences, Tehran 19395-5531, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences, Tehran 19395-5746, Iran
| | - Narges Nobakht
- Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences, Tehran 19395-5531, Iran
| | | | - Seyed Hamed Aboutalebi
- Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences, Tehran 19395-5531, Iran
| |
Collapse
|
10
|
Jin M, Zou Y, Shi BC, Liu TT, Tang YJ. Laser-Induced Preparation of Anderson-Type Polyoxometalate-Derived Sulfide/Oxide Electrocatalysts for Electrochemical Water Oxidation. CHEMSUSCHEM 2024; 17:e202301862. [PMID: 38503691 DOI: 10.1002/cssc.202301862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Developing cost-effective and high-active electrocatalysts is vital to enhance the electrocatalytic performance for oxygen evolution reaction (OER). However, traditional pyrolysis methods require complicated procedures, exact temperatures, and long reaction times, leading to high costs and low yields of electrocatalysts in potential industrial applications. Herein, a rapid and economic laser-induced preparation strategy is proposed to synthesize three bimetallic sulfide/oxide composites (MMoOS, M=Fe, Co, and Ni) on a nickel foam (NF) substrate. A focused CO2 laser with high energy is applied to decompose Anderson-type polyoxometalate (POM)-based precursors, enabling the creation of abundant heteropore and defective structures in the MMoOS composites that have multi-components of MS/Mo4O11/MoS2. Remarkably, owing to the structural interactions between the active species, FeMoOS shows superior electrocatalytic performance for OER in an alkaline medium, exhibiting a low overpotential of 240 mV at 50 mA cm-2, a small Tafel slope of 79 mV dec-1, and good durability for 80 h. Physical characterizations after OER imply that partially dissolved Mo-based species and new-formed NiO/NiOOH can effectively uncover abundant active sites, fasten charge transfer, and modify defective structures. This work provides a rapid laser-induced irradiation method for the synthesis of POM-derived nanocomposites as promoted electrocatalysts.
Collapse
Affiliation(s)
- Man Jin
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| | - Yan Zou
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| | - Bo-Cong Shi
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| | - Ting-Ting Liu
- School of Teacher Education, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| | - Yu-Jia Tang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| |
Collapse
|
11
|
Ganguly K, Luthfikasari R, Randhawa A, Dutta SD, Patil TV, Acharya R, Lim KT. Stimuli-Mediated Macrophage Switching, Unraveling the Dynamics at the Nanoplatforms-Macrophage Interface. Adv Healthc Mater 2024; 13:e2400581. [PMID: 38637323 DOI: 10.1002/adhm.202400581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/01/2024] [Indexed: 04/20/2024]
Abstract
Macrophages play an essential role in immunotherapy and tissue regeneration owing to their remarkable plasticity and diverse functions. Recent bioengineering developments have focused on using external physical stimuli such as electric and magnetic fields, temperature, and compressive stress, among others, on micro/nanostructures to induce macrophage polarization, thereby increasing their therapeutic potential. However, it is difficult to find a concise review of the interaction between physical stimuli, advanced micro/nanostructures, and macrophage polarization. This review examines the present research on physical stimuli-induced macrophage polarization on micro/nanoplatforms, emphasizing the synergistic role of fabricated structure and stimulation for advanced immunotherapy and tissue regeneration. A concise overview of the research advancements investigating the impact of physical stimuli, including electric fields, magnetic fields, compressive forces, fluid shear stress, photothermal stimuli, and multiple stimulations on the polarization of macrophages within complex engineered structures, is provided. The prospective implications of these strategies in regenerative medicine and immunotherapeutic approaches are highlighted. This review will aid in creating stimuli-responsive platforms for immunomodulation and tissue regeneration.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rachmi Luthfikasari
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
12
|
Huang QM, Yang H, Wang S, Liu X, Tan C, Zong Q, Gao C, Li S, French P, Zhang G, Ye H. Chitosan Oligosaccharide Laser Lithograph: A Facile Route to Porous Graphene Electrodes for Flexible On-Chip Microsupercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35651-35665. [PMID: 38922439 DOI: 10.1021/acsami.4c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In this study, a convenient chitosan oligosaccharide laser lithograph (COSLL) technology was developed to fabricate laser-induced graphene (LIG) electrodes and flexible on-chip microsupercapacitors (MSCs). With a simple one-step CO2 laser, the pyrolysis of a chitosan oligosaccharide (COS) and in situ welding of the generated LIGs to engineering plastic substrates are achieved simultaneously. The resulting LIG products display a hierarchical porous architecture, excellent electrical conductivity (6.3 Ω sq-1), and superhydrophilic properties, making them ideal electrode materials for MSCs. The pyrolysis-welding coupled mechanism is deeply discussed through cross-sectional analyses and finite element simulations. The MSCs prepared by COSLL exhibit considerable areal capacitance of over 4 mF cm-2, which is comparable to that of the polyimide-LIG-based counterpart. COSLL is also compatible with complementary metal-oxide-semiconductor (CMOS) and micro-electro-mechanical system (MEMS) processes, enabling the fabrication of LIG/Au MSCs with comparable areal capacitance and lower internal resistance. Furthermore, the as-prepared MSCs demonstrate excellent mechanical robustness, long-cycle capability, and ease of series-parallel integration, benefiting their practical application in various scenarios. With the use of eco-friendly biomass carbon source and convenient process flowchart, the COSLL emerges as an attractive method for the fabrication of flexible LIG on-chip MSCs and various other advanced LIG devices.
Collapse
Affiliation(s)
- Qian-Ming Huang
- Harbin Institute of Technology, Harbin 150001, China
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huiru Yang
- Harbin Institute of Technology, Harbin 150001, China
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shaogang Wang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
- Faculty of EEMCS, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Xu Liu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
- Faculty of EEMCS, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Chunjian Tan
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
- Faculty of EEMCS, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Qihang Zong
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chenshan Gao
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shizhen Li
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Paddy French
- Faculty of EEMCS, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Guoqi Zhang
- Faculty of EEMCS, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Huaiyu Ye
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
- Faculty of EEMCS, Delft University of Technology, 2628 CD Delft, The Netherlands
| |
Collapse
|
13
|
Li Y, Liu X, Wu T, Zhang X, Han H, Liu X, Chen Y, Tang Z, Liu Z, Zhang Y, Liu H, Zhao L, Ma D, Zhou W. Pulsed laser induced plasma and thermal effects on molybdenum carbide for dry reforming of methane. Nat Commun 2024; 15:5495. [PMID: 38944644 PMCID: PMC11214624 DOI: 10.1038/s41467-024-49771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/12/2024] [Indexed: 07/01/2024] Open
Abstract
Dry reforming of methane (DRM) is a highly endothermic process, with its development hindered by the harsh thermocatalytic conditions required. We propose an innovative DRM approach utilizing a 16 W pulsed laser in combination with a cost-effective Mo2C catalyst, enabling DRM under milder conditions. The pulsed laser serves a dual function by inducing localized high temperatures and generating *CH plasma on the Mo2C surface. This activates CH4 and CO2, significantly accelerating the DRM reaction. Notably, the laser directly generates *CH plasma from CH4 through thermionic emission and cascade ionization, bypassing the traditional step-by-step dehydrogenation process and eliminating the rate-limiting step of methane cracking. This method maintains a carbon-oxygen balanced environment, thus preventing the deactivation of the Mo2C catalyst due to CO2 oxidation. The laser-catalytic DRM achieves high yields of H2 (14300.8 mmol h-1 g-1) and CO (14949.9 mmol h-1 g-1) with satisfactory energy efficiency (0.98 mmol kJ-1), providing a promising alternative for high-energy-consuming catalytic systems.
Collapse
Affiliation(s)
- Yue Li
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Xingwu Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Tong Wu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Xiangzhou Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Hecheng Han
- Shandong Technology Center of Nanodevices and Integration, School of Integrated Circuit, Shandong University, Jinan, China
| | - Xiaoyu Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
| | - Yuke Chen
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Zhenfei Tang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Zhen Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Yuhai Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
| | - Lili Zhao
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China.
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China.
| |
Collapse
|
14
|
Liu M, Wang Z, Song Z, Wang F, Zhao G, Zhu H, Jia Z, Guo Z, Kang F, Yang C. A popcorn-inspired strategy for compounding graphene@NiFe 2O 4 flexible films for strong electromagnetic interference shielding and absorption. Nat Commun 2024; 15:5486. [PMID: 38942779 PMCID: PMC11213894 DOI: 10.1038/s41467-024-49498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/04/2024] [Indexed: 06/30/2024] Open
Abstract
Compounding functional nanoparticles with highly conductive and porous carbon scaffolds is a basic pathway for engineering many important functional devices. However, enabling uniform spatial distribution of functional particles within a massively conjugated, monolithic and mesoporous structure remains challenging, as the high processing temperature for graphitization can arouse nanoparticle ripening, agglomerations and compositional changes. Herein, we report a unique "popcorn-making-mimic" strategy for preparing a highly conjugated and uniformly compounded graphene@NiFe2O4 composite film through a laser-assisted instantaneous compounding method in ambient condition. It can successfully inhibit the unwanted structural disintegration and mass loss during the laser treatment by avoiding oxidation, bursting, and inhomogeneous heat accumulations, thus achieving a highly integrated composite structure with superior electrical conductivity and high saturated magnetization. Such a single-sided film exhibits an absolute shielding effectiveness of up to 20906 dB cm2 g-1 with 75% absorption rate, superior mechanical flexibility and excellent temperature/humidity aging reliability. These performance indexes signify a substantial advance in EMI absorption capability, fabrication universality, small form-factor and device reliability toward commercial applications. Our method provides a paradigm for fabricating sophisticated composite materials for versatile applications.
Collapse
Affiliation(s)
- Mingjie Liu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhiyuan Wang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhaoqiang Song
- Institute of Semiconductor Manufacturing Research, Shenzhen University, Shenzhen, 518060, China
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Fangcheng Wang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guangyao Zhao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Haojie Zhu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhuofei Jia
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhenbin Guo
- Institute of Semiconductor Manufacturing Research, Shenzhen University, Shenzhen, 518060, China.
| | - Feiyu Kang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Cheng Yang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Zhang G, Wu T, Yu W, Li J, Wang Y, Wang J, Liu S, Chang B, Liu X, Zhou W. Laser regulated mixed-phase TiO 2 for electrochemical overall nitrogen fixation. J Colloid Interface Sci 2024; 674:168-177. [PMID: 38925062 DOI: 10.1016/j.jcis.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Traditional oxide electrocatalytic materials encounter significant challenges associated with sluggish reaction kinetics and formidable energy barriers for NH intermediates formation in electrocatalytic nitrogen fixation. The implementation of phase control emerges as an effective strategy to address these challenges. Herein, leveraging the energy localization of laser, this work achieved precise phase control of TiO2. In the optimized material system, the rutile phase TiO2 facilitates nitrogen adsorption, while the anatase phase TiO2 provides proton sources and active oxygen species. The synergistic effect of the two phases effectively enhances the electrocatalytic activity for nitrogen reduction and oxidation, with an ammonia yield reaching ∼22.3 μg h-1 cm-2 and a nitrate yield reaching ∼60.9 μg h-1 cm-2. Furthermore, a coupled dual-electrode system with mixed-phase titanium dioxide as both the anode and cathode successfully achieved a breakthrough in electrochemical overall nitrogen fixation. This laser precision control strategy for manipulating phase sites lays the groundwork for designing efficient catalysts for energy conversion and even energy storage nanomaterials.
Collapse
Affiliation(s)
- Guixiang Zhang
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Tong Wu
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Wanqiang Yu
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jiawei Li
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yujie Wang
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Junjian Wang
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shunyao Liu
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Bin Chang
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Xiaoyan Liu
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (IAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
16
|
Shaikh S, Gupta S, Mishra A, Sheikh PA, Singh P, Kumar A. Laser-assisted synthesis of nano-hydroxyapatite and functionalization with bone active molecules for bone regeneration. Colloids Surf B Biointerfaces 2024; 237:113859. [PMID: 38547794 DOI: 10.1016/j.colsurfb.2024.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
The main goal of bone tissue engineering research is to replace the allogenic and autologous bone graft substitutes that can promote bone repair. Owing to excellent biocompatibility and osteoconductivity, hydroxyapatite is in extensive research and high demand for both medical and non-medical applications. Although various methods have been developed for the synthesis of hydroxyapatite, in the present study we have shown the use of nanosecond laser energy in the wet precipitation method of nano-hydroxyapatite (nHAP) synthesis without using ammonium solution or any other chemicals for pH maintenance. Here, the present study aimed to fabricate the nanohydroxyapatite using a nanosecond laser. The X-ray diffraction and Fourier transform infrared spectroscopy have confirmed the hydroxyapatite formation under laser irradiation in less time without aging. A transmission electron microscopy confirmed the nano size of synthesized nHAP, which is comparable to conventional nHAP. The length and width of the laser-assisted nHAP were found to be in the range of 50-200 nm and 15-20 nm, respectively, at various laser parameters. The crystallite size obtained by Debye Scherrer formulae was found to be in the range of ∼ 16-36 nm. In addition, laser-assisted nHAP based composite cryogel (nanohydroxyapatite/gelatin/collagen I) was synthesized and impregnated with bioactive molecules (bone morphogenic protein and zoledronic acid) that demonstrated significant osteogenic potential both in vitro in cell experiment and in vivo rat muscle pouch model (abdomen and tibia muscles). Dual-energy X-ray analysis, micro-CT, and histological analysis confirmed ectopic bone regeneration. Micro-CT based histomorphometry showed a higher amount (more than 10-fold) of mineralization for animal groups implanted with composite cryogels loaded with bioactive molecules compared to only composite cryogels groups. Our findings thus demonstrate a controlled and rapid synthetic method for the synthesis of nHAP with various physical, chemical, and biological properties exhibited as comparable to conventionally synthesized nHAP.
Collapse
Affiliation(s)
- Shazia Shaikh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Sneha Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ankita Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Parvaiz A Sheikh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Prerna Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India; Center of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India.
| |
Collapse
|
17
|
Ma J, Zheng S, Fu Y, Wang X, Qin J, Wu ZS. The status and challenging perspectives of 3D-printed micro-batteries. Chem Sci 2024; 15:5451-5481. [PMID: 38638219 PMCID: PMC11023027 DOI: 10.1039/d3sc06999k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/10/2024] [Indexed: 04/20/2024] Open
Abstract
In the era of the Internet of Things and wearable electronics, 3D-printed micro-batteries with miniaturization, aesthetic diversity and high aspect ratio, have emerged as a recent innovation that solves the problems of limited design diversity, poor flexibility and low mass loading of materials associated with traditional power sources restricted by the slurry-casting method. Thus, a comprehensive understanding of the rational design of 3D-printed materials, inks, methods, configurations and systems is critical to optimize the electrochemical performance of customizable 3D-printed micro-batteries. In this review, we offer a key overview and systematic discussion on 3D-printed micro-batteries, emphasizing the close relationship between printable materials and printing technology, as well as the reasonable design of inks. Initially, we compare the distinct characteristics of various printing technologies, and subsequently emphatically expound the printable components of micro-batteries and general approaches to prepare printable inks. After that, we focus on the outstanding role played by 3D printing design in the device architecture, battery configuration, performance improvement, and system integration. Finally, the future challenges and perspectives concerning high-performance 3D-printed micro-batteries are adequately highlighted and discussed. This comprehensive discussion aims at providing a blueprint for the design and construction of next-generation 3D-printed micro-batteries.
Collapse
Affiliation(s)
- Jiaxin Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Shuanghao Zheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yinghua Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Xiao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Jieqiong Qin
- College of Science, Henan Agricultural University No. 63 Agricultural Road Zhengzhou 450002 China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
18
|
Gicha BB, Tufa LT, Nwaji N, Hu X, Lee J. Advances in All-Solid-State Lithium-Sulfur Batteries for Commercialization. NANO-MICRO LETTERS 2024; 16:172. [PMID: 38619762 PMCID: PMC11018734 DOI: 10.1007/s40820-024-01385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/24/2024] [Indexed: 04/16/2024]
Abstract
Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies. Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility. In particular, all-solid-state lithium-sulfur batteries (ASSLSBs) that rely on lithium-sulfur reversible redox processes exhibit immense potential as an energy storage system, surpassing conventional lithium-ion batteries. This can be attributed predominantly to their exceptional energy density, extended operational lifespan, and heightened safety attributes. Despite these advantages, the adoption of ASSLSBs in the commercial sector has been sluggish. To expedite research and development in this particular area, this article provides a thorough review of the current state of ASSLSBs. We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs, explore the fundamental scientific principles involved, and provide a comprehensive evaluation of the main challenges faced by ASSLSBs. We suggest that future research in this field should prioritize plummeting the presence of inactive substances, adopting electrodes with optimum performance, minimizing interfacial resistance, and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs.
Collapse
Affiliation(s)
- Birhanu Bayissa Gicha
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Lemma Teshome Tufa
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Njemuwa Nwaji
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, 200444, Shanghai, People's Republic of China
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
19
|
Stokes K, Clark K, Odetade D, Hardy M, Goldberg Oppenheimer P. Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications. DISCOVER NANO 2023; 18:153. [PMID: 38082047 PMCID: PMC10713959 DOI: 10.1186/s11671-023-03938-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024]
Abstract
Nano-fabrication techniques have demonstrated their vital importance in technological innovation. However, low-throughput, high-cost and intrinsic resolution limits pose significant restrictions, it is, therefore, paramount to continue improving existing methods as well as developing new techniques to overcome these challenges. This is particularly applicable within the area of biomedical research, which focuses on sensing, increasingly at the point-of-care, as a way to improve patient outcomes. Within this context, this review focuses on the latest advances in the main emerging patterning methods including the two-photon, stereo, electrohydrodynamic, near-field electrospinning-assisted, magneto, magnetorheological drawing, nanoimprint, capillary force, nanosphere, edge, nano transfer printing and block copolymer lithographic technologies for micro- and nanofabrication. Emerging methods enabling structural and chemical nano fabrication are categorised along with prospective chemical and physical patterning techniques. Established lithographic techniques are briefly outlined and the novel lithographic technologies are compared to these, summarising the specific advantages and shortfalls alongside the current lateral resolution limits and the amenability to mass production, evaluated in terms of process scalability and cost. Particular attention is drawn to the potential breakthrough application areas, predominantly within biomedical studies, laying the platform for the tangible paths towards the adoption of alternative developing lithographic technologies or their combination with the established patterning techniques, which depends on the needs of the end-user including, for instance, tolerance of inherent limits, fidelity and reproducibility.
Collapse
Affiliation(s)
- Kate Stokes
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Kieran Clark
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - David Odetade
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mike Hardy
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, BT9 5DL, UK
- Centre for Quantum Materials and Technology, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, UK
| | - Pola Goldberg Oppenheimer
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
20
|
Guo S, Gao M, Zhang W, Liu F, Guo X, Zhou K. Recent Advances in Laser-Induced Synthesis of MOF Derivatives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303065. [PMID: 37319033 DOI: 10.1002/adma.202303065] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) are crystalline materials with permanent pores constructed by the self-assembly of organic ligands and metal clusters through coordination bonds. Due to their diversity and tunability, MOFs are used as precursors to be converted into other types of functional materials by pyrolytic recrystallization. Laser-induced synthesis is proven to be a powerful pyrolytic processing technique with fast and accurate laser irradiation, low loss, high efficiency, selectivity, and programmability, which endow MOF derivatives with new features. Laser-induced MOF derivatives exhibit high versatility in multidisciplinary research fields. In this review, first, the basic principles of laser smelting and the types of materials for laser preparation of MOF derivatives are briefly introduced. Subsequently, it is focused on the peculiarity of the engineering of structural defects and their applications in catalysis, environmental protection, and energy fields. Finally, the challenges and opportunities at the current stage are highlighted with the aim of elucidating the future direction of the rapidly growing field of laser-induced synthesis of MOF derivatives.
Collapse
Affiliation(s)
- Shuailong Guo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ming Gao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Wang Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Xueyi Guo
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
21
|
Zou Y, Jin M, Zhu D, Tang YJ. Laser-induced immobilization of an amorphous iron-phosphate/Fe 3O 4 composite on nickel foam for efficient water oxidation. Chem Commun (Camb) 2023. [PMID: 38015465 DOI: 10.1039/d3cc04070d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A laser-induced immobilization strategy is applied to prepare an amorphous iron-phosphate/Fe3O4 (L-FePO) composite on a nickel foam (NF) support. By laser-irradiating an iron hydrogen phosphate (FeHP) precursor, a melting and oxidation process leads to the generation of L-FePO with hierarchical pores and an amorphous structure. L-FePO shows exceptional electrocatalytic performance for the OER in an alkaline electrolyte, demonstrating an overpotential of 256 mV at 100 mA cm-2, a Tafel slope of 71 mV dec-1, and good stability over 100 h. The active Fe3O4, partially dissolved phosphate, and newly formed FeOOH species provide abundant active sites, contributing to the excellent OER performance.
Collapse
Affiliation(s)
- Yan Zou
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P. R. China.
| | - Man Jin
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P. R. China.
| | - Dongdong Zhu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P. R. China.
| | - Yu-Jia Tang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P. R. China.
| |
Collapse
|
22
|
Wang Y, Li X, Chen Y, Li Y, Liu Z, Fang C, Wu T, Niu H, Li Y, Sun W, Tang W, Xia W, Song K, Liu H, Zhou W. Pulsed-Laser-Triggered Piezoelectric Photocatalytic CO 2 Reduction over Tetragonal BaTiO 3 Nanocubes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305257. [PMID: 37530983 DOI: 10.1002/adma.202305257] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/23/2023] [Indexed: 08/03/2023]
Abstract
The recombination of photoinduced carriers in photocatalysts is considered one of the biggest barriers to the increase of photocatalytic efficiency. Piezoelectric photocatalysts open a new route to realize rapid carrier separation by mechanically distorting the lattice of piezoelectric nanocrystals to form a piezoelectric potential within the nanocrystals, generally requiring external force (e.g., ultrasonic radiation, mechanical stirring, and ball milling). In this study, a low-power UV pulsed laser (PL) (3 W, 355 nm) as a UV light source can trigger piezoelectric photocatalytic CO2 reduction of tetragonal BaTiO3 (BTO-T) in the absence of an applied force. The tremendous transient light pressure (5.7 × 107 Pa, 2.7 W) of 355 nm PL not only bends the energy band of BTO-T, thus allowing reactions that cannot theoretically occur to take place, but also induces a pulsed built-in electric field to determine an efficient photoinduced carrier separation. On that basis, the PL-triggered piezoelectric photocatalytic CO2 reduction realizes the highest reported performance, reaching a millimole level CO yield of 52.9 mmol g-1 h-1 and achieving efficient photocatalytic CO2 reduction in the continuous catalytic system. The method in this study is promising to contribute to the design of efficient piezoelectric photocatalytic reactions.
Collapse
Affiliation(s)
- Yijie Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Xiao Li
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yuke Chen
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yue Li
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Zhen Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Chaoqiong Fang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Tong Wu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hongsen Niu
- School of Information Science and Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yang Li
- School of Information Science and Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Wanggen Sun
- School of Physics and Technology, University of Jinan, Jinan, 250022, P. R. China
| | - Wenjing Tang
- School of Physics and Technology, University of Jinan, Jinan, 250022, P. R. China
| | - Wei Xia
- School of Physics and Technology, University of Jinan, Jinan, 250022, P. R. China
| | - Kepeng Song
- Electron Microscopy Center, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
23
|
Zhang C, Hou J, Zeng Y, Dai L, Zhao W, Jing G, Sun D, Cao Y, Zhang C. An optically fabricated gradient nanochannel array to access the translocation dynamics of T4-phage DNA through nanoconfinement. LAB ON A CHIP 2023; 23:3811-3819. [PMID: 37490010 DOI: 10.1039/d2lc01133f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
It has been widely recognized that nanostructures in natural biological materials play important roles in regulating life machinery. Even though nanofabrication techniques such as two-photon polymerization (TPP) provide sub-100 nm fabrication resolution, it remains technologically challenging to produce 3D nanoscale features modeling the complexity in vivo. We herein demonstrate that a nanochannel array carrying different sizes and nanostructures with gradually transitioning dimensions can be easily produced on a slightly tilted nano-stage. Using the gradient nanochannel array, we systematically investigate the factors affecting the dynamics of DNA translocation through nanoconfinement, including the size of biomolecules and geometrical features of the physical environment, which resembles the selectivity of nanopores in the cell membrane. It is observed that T4-phage DNA shows distinctive conformational transition dynamics during translocation through nanochannels driven by electric field or flow, and the deformation energy required for DNA to enter the nanochannels depends on both chemical environmental conditions, i.e., the ionic strength regulating DNA persistence length and nanochannel dimension. In the electric field, DNA repeatedly gets stretched and compressed during its migration through the nanochannel, reflected by elevated fluctuation in extension, which is substantially greater than the thermal fluctuation. However, driven by flow, DNA remains stretched during translocation through nanochannels, and shows variances in extension of merely a few hundred nanometers. These results indicate that the optically fabricated gradient nanochannel array is a suitable platform for optimizing the experimental conditions for biomedical applications such as gene mapping, and verify that production of complex three dimensional (3D) nanostructures can be greatly simplified by including slight inclination during TPP fabrication.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China.
| | - Jiaqing Hou
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China.
| | - Yang Zeng
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China.
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, China
| | - Wei Zhao
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China.
| | - Guangyin Jing
- School of Physics, Northwest University, Xi'an, 710127, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China.
| | - Yaoyu Cao
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China.
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
24
|
Gianvittorio S, Tonelli D, Lesch A. Print-Light-Synthesis for Single-Step Metal Nanoparticle Synthesis and Patterned Electrode Production. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1915. [PMID: 37446431 DOI: 10.3390/nano13131915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023]
Abstract
The fabrication of thin-film electrodes, which contain metal nanoparticles and nanostructures for applications in electrochemical sensing as well as energy conversion and storage, is often based on multi-step procedures that include two main passages: (i) the synthesis and purification of nanomaterials and (ii) the fabrication of thin films by coating electrode supports with these nanomaterials. The patterning and miniaturization of thin film electrodes generally require masks or advanced patterning instrumentation. In recent years, various approaches have been presented to integrate the spatially resolved deposition of metal precursor solutions and the rapid conversion of the precursors into metal nanoparticles. To achieve the latter, high intensity light irradiation has, in particular, become suitable as it enables the photochemical, photocatalytical, and photothermal conversion of the precursors during or slightly after the precursor deposition. The conversion of the metal precursors directly on the target substrates can make the use of capping and stabilizing agents obsolete. This review focuses on hybrid platforms that comprise digital metal precursor ink printing and high intensity light irradiation for inducing metal precursor conversions into patterned metal and alloy nanoparticles. The combination of the two methods has recently been named Print-Light-Synthesis by a group of collaborators and is characterized by its sustainability in terms of low material consumption, low material waste, and reduced synthesis steps. It provides high control of precursor loading and light irradiation, both affecting and improving the fabrication of thin film electrodes.
Collapse
Affiliation(s)
- Stefano Gianvittorio
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Center for Chemical Catalysis-C3, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Domenica Tonelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Center for Chemical Catalysis-C3, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Andreas Lesch
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Center for Chemical Catalysis-C3, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
25
|
Lim H, Kwon H, Kang H, Jang JE, Kwon HJ. Semiconducting MOFs on ultraviolet laser-induced graphene with a hierarchical pore architecture for NO 2 monitoring. Nat Commun 2023; 14:3114. [PMID: 37253737 DOI: 10.1038/s41467-023-38918-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Due to rapid urbanization worldwide, monitoring the concentration of nitrogen dioxide (NO2), which causes cardiovascular and respiratory diseases, has attracted considerable attention. Developing real-time sensors to detect parts-per-billion (ppb)-level NO2 remains challenging due to limited sensitivity, response, and recovery characteristics. Herein, we report a hybrid structure of Cu3HHTP2, 2D semiconducting metal-organic frameworks (MOFs), and laser-induced graphene (LIG) for high-performance NO2 sensing. The unique hierarchical pore architecture of LIG@Cu3HHTP2 promotes mass transport of gas molecules and takes full advantage of the large surface area and porosity of MOFs, enabling highly rapid and sensitive responses to NO2. Consequently, LIG@Cu3HHTP2 shows one of the fastest responses and lowest limit of detection at room temperature compared with state-of-the-art NO2 sensors. Additionally, by employing LIG as a growth platform, flexibility and patterning strategies are achieved, which are the main challenges for MOF-based electronic devices. These results provide key insight into applying MOFtronics as high-performance healthcare devices.
Collapse
Affiliation(s)
- Hyeongtae Lim
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, 42988, South Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, South Korea
| | - Hyeokjin Kwon
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, 42988, South Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, South Korea
| | - Hongki Kang
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, 42988, South Korea
| | - Jae Eun Jang
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, 42988, South Korea
| | - Hyuk-Jun Kwon
- Department of Electrical Engineering and Computer Science, DGIST, Daegu, 42988, South Korea.
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, South Korea.
| |
Collapse
|
26
|
Kiriyama T, Shimazaki K, Nakashima R, Takahashi H. Thin Glass Micro Force Plate Supported by Planar Spiral Springs for Measuring Minute Forces. MICROMACHINES 2023; 14:mi14051056. [PMID: 37241679 DOI: 10.3390/mi14051056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/13/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
Microforce plates are indispensable tools for quantitatively evaluating the behavior of small objects such as tiny insects or microdroplets. The two main measurement principles for microforce plates are: the formation of strain gauges on the beam that supports the plate and the measurement of the deformation of the plate using an external displacement meter. The latter method is characterized by its ease of fabrication and durability as strain concentration is not required. To enhance the sensitivity of the latter type of force plates with a planar structure, thinner plates are generally desired. However, brittle material force plates that are both thin and large and can be fabricated easily have not yet been developed. In this study, a force plate consisting of a thin glass plate with a planar spiral spring structure and a laser displacement meter placed under the plate center is proposed. The plate deforms downward when a force is exerted vertically on its surface, resulting in the determination of the applied force using Hooke's law. The force plate structure is easily fabricated by laser processing combined with the microelectromechanical system (MEMS) process. The fabricated force plate has a radius and thickness of 10 mm and 25 µm, respectively, with four supporting spiral beams of sub-millimeter width. A fabricated force plate featuring a sub-N/m spring constant achieves a resolution of approximately 0.01 µN.
Collapse
Affiliation(s)
- Taisei Kiriyama
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Kenichiro Shimazaki
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Rihachiro Nakashima
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hidetoshi Takahashi
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
27
|
Wang Z, Zhou Z, Li CL, Liu XH, Zhang Y, Pei MM, Zhou Z, Cui DX, Hu D, Chen F, Cao WT. A Single Electronic Tattoo for Multisensory Integration. SMALL METHODS 2023; 7:e2201566. [PMID: 36811239 DOI: 10.1002/smtd.202201566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Wearable electronics are garnering growing interest in various emerging fields including intelligent sensors, artificial limbs, and human-machine interfaces. A remaining challenge is to develop multisensory devices that can conformally adhere to the skin even during dynamic-moving environments. Here, a single electronic tattoo (E-tattoo) based on a mixed-dimensional matrix network, which integrates two-dimensional MXene nanosheets and one-dimensional cellulose nanofibers/Ag nanowires, is presented for multisensory integration. The multidimensional configurations endow the E-tattoo with excellent multifunctional sensing capabilities including temperature, humidity, in-plane strain, proximity, and material identification. In addition, benefiting from the satisfactory rheology of hybrid inks, the E-tattoos are able to be fabricated through multiple facile strategies including direct writing, stamping, screen printing, and three-dimensional printing on various hard/soft substrates. Especially, the E-tattoo with excellent triboelectric properties also can serve as a power source for activating small electronic devices. It is believed that these skin-conformal E-tattoo systems can provide a promising platform for next-generation wearable and epidermal electronics.
Collapse
Affiliation(s)
- Zheng Wang
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Zhi Zhou
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
| | - Chen-Long Li
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Xiao-Hao Liu
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
| | - Yue Zhang
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Man-Man Pei
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Zheng Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Da-Xiang Cui
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, P. R. China
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Feng Chen
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, P. R. China
| | - Wen-Tao Cao
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, P. R. China
| |
Collapse
|
28
|
Zhu X, Wang L, Bai Z, Lu J, Wu T. Sulfide-Based All-Solid-State Lithium-Sulfur Batteries: Challenges and Perspectives. NANO-MICRO LETTERS 2023; 15:75. [PMID: 36976391 PMCID: PMC10050614 DOI: 10.1007/s40820-023-01053-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Lithium-sulfur batteries with liquid electrolytes have been obstructed by severe shuttle effects and intrinsic safety concerns. Introducing inorganic solid-state electrolytes into lithium-sulfur systems is believed as an effective approach to eliminate these issues without sacrificing the high-energy density, which determines sulfide-based all-solid-state lithium-sulfur batteries. However, the lack of design principles for high-performance composite sulfur cathodes limits their further application. The sulfur cathode regulation should take several factors including the intrinsic insulation of sulfur, well-designed conductive networks, integrated sulfur-electrolyte interfaces, and porous structure for volume expansion, and the correlation between these factors into account. Here, we summarize the challenges of regulating composite sulfur cathodes with respect to ionic/electronic diffusions and put forward the corresponding solutions for obtaining stable positive electrodes. In the last section, we also outlook the future research pathways of architecture sulfur cathode to guide the develop high-performance all-solid-state lithium-sulfur batteries.
Collapse
Affiliation(s)
- Xinxin Zhu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Tianpin Wu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
29
|
Liu X, Lu H, Zhu S, Cui Z, Li Z, Wu S, Xu W, Liang Y, Long G, Jiang H. Alloying-Triggered Phase Engineering of NiFe System via Laser-Assisted Al Incorporation for Full Water Splitting. Angew Chem Int Ed Engl 2023; 62:e202300800. [PMID: 36720713 DOI: 10.1002/anie.202300800] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
It is challenging to design one non-noble material with balanced bifunctional performance for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for commercial sustainability at a low cost since the different electrocatalytic mechanisms are not easily matchable for each other. Herein, a self-standing hybrid system Ni18 Fe12 Al70 , consisting of Ni2 Al3 and Ni3 Fe phases, was constructed by laser-assisted aluminum (Al) incorporation towards full water splitting. It was found that the incorporation of Al could effectively tune the morphologies, compositions and phases. The results indicate that Ni18 Fe12 Al70 delivers an extremely low overpotential to trigger both HER (η100 =188 mV) and OER (η100 =345 mV) processes and maintains a stable overpotential for 100 h, comparable to state-of-the-art electrocatalysts. The synergistic effect of Ni2 Al3 and Ni3 Fe alloys on the HER process is confirmed based on theoretical calculation.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Haolin Lu
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.,Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Zhenduo Cui
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.,Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.,Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Shuilin Wu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.,Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China.,School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Wence Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.,Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Yanqin Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.,Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Guankui Long
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Hui Jiang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.,Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, China.,Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin, 300350, China
| |
Collapse
|
30
|
Ali A, Piatkowski P, Alnaser AS. Study on the Origin and Evolution of Femtosecond Laser-Induced Surface Structures: LIPSS, Quasi-Periodic Grooves, and Aperiodic Micro-Ridges. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2184. [PMID: 36984064 PMCID: PMC10057636 DOI: 10.3390/ma16062184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
We investigate the evolution mechanisms of the laser-induced periodic surface structures (LIPSS) and quasi-periodic grooves that are formed on the surface of monocrystalline silicon (mono-Si) when exposed to femtosecond laser radiation of different pulse duration, state of polarization, and fluence. The conditions required for producing LIPSS-free complex micro-ridge patterns are elaborated. The LIPSS evolution mechanism is explained in terms of scattering/interference-based phenomena. To establish the basis for our interpretation, single femtosecond pulses of different pulse durations are irradiated on mono-Si. The absence/appearance of LIPSS rudiments is explained in the context of spectral bandwidth and the associated effects on the intensity of the central wavelength. Shorter fs pulses of a wider bandwidth are employed to induce LIPSS-free micro-ridge patterns. It is demonstrated that the resultant micro-ridge patterns depend on the laser fluence distribution and can be manipulated through laser polarization. The curved morphology of LIPSS rudiments and the evolution mechanism of low- and high-spatial frequency LIPSS, i.e., LSFL and HSFL, are discussed. Finally, it is demonstrated that the consolidated quasi-periodic grooves result from HSFL welding together groups of LSFL. Although our findings are based on fs laser interaction with mono-Si, the results can also be applied to many other materials.
Collapse
Affiliation(s)
- Asghar Ali
- Department of Physics, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Piotr Piatkowski
- Department of Physics, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ali S. Alnaser
- Department of Physics, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
31
|
Shi J, Mao K, Zhang Q, Liu Z, Long F, Wen L, Hou Y, Li X, Ma Y, Yue Y, Li L, Zhi C, Gao Y. An Air-Rechargeable Zn Battery Enabled by Organic-Inorganic Hybrid Cathode. NANO-MICRO LETTERS 2023; 15:53. [PMID: 36795246 PMCID: PMC9935787 DOI: 10.1007/s40820-023-01023-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/01/2023] [Indexed: 06/18/2023]
Abstract
Self-charging power systems collecting energy harvesting technology and batteries are attracting extensive attention. To solve the disadvantages of the traditional integrated system, such as highly dependent on energy supply and complex structure, an air-rechargeable Zn battery based on MoS2/PANI cathode is reported. Benefited from the excellent conductivity desolvation shield of PANI, the MoS2/PANI cathode exhibits ultra-high capacity (304.98 mAh g-1 in N2 and 351.25 mAh g-1 in air). In particular, this battery has the ability to collect, convert and store energy simultaneously by an air-rechargeable process of the spontaneous redox reaction between the discharged cathode and O2 from air. The air-rechargeable Zn batteries display a high open-circuit voltage (1.15 V), an unforgettable discharge capacity (316.09 mAh g-1 and the air-rechargeable depth is 89.99%) and good air-recharging stability (291.22 mAh g-1 after 50 air recharging/galvanostatic current discharge cycle). Most importantly, both our quasi-solid zinc ion batteries and batteries modules have excellent performance and practicability. This work will provide a promising research direction for the material design and device assembly of the next-generation self-powered system.
Collapse
Affiliation(s)
- Junjie Shi
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Ke Mao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Qixiang Zhang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Zunyu Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Fei Long
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Li Wen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Yixin Hou
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Xinliang Li
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong SAR, 999077, People's Republic of China
| | - Yanan Ma
- Hubei Key Laboratory of Critical Materials of New Energy Vehicles and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China
| | - Yang Yue
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, People's Republic of China.
| | - Luying Li
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Chunyi Zhi
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong SAR, 999077, People's Republic of China
| | - Yihua Gao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
- Hubei Key Laboratory of Critical Materials of New Energy Vehicles and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| |
Collapse
|
32
|
Xu L, Li L, Tang L, Zeng Y, Chen G, Shao C, Wu C, He G, Chen Q, Fang G, Sun D, Hai Z. Rapid Printing of High-Temperature Polymer-Derived Ceramic Composite Thin-Film Thermistor with Laser Pyrolysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9996-10005. [PMID: 36780511 DOI: 10.1021/acsami.2c20927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polymer-derived ceramic (PDC)-based high-temperature thin-film sensors (HTTFSs) exhibit promising applications in the condition monitoring of critical components in aerospace. However, fabricating PDC-based HTTFS integrated with high-efficiency, high-temperature anti-oxidation, and customized patterns remains challenging. In this work, we introduce a rapid and flexible selecting laser pyrolysis combined with a direct ink writing process to print double-layer high-temperature antioxidant PDC composite thin-film thermistors under ambient conditions. The sensitive layer (SL) was directly written on an insulating substrate with excellent conductivity by laser-induced graphitization. Then, the antioxidant layer (AOL) was written on the surface of the SL to realize the integrated manufacturing of double-functional layers. Through characterization analysis, it was shown that B2O3 and SiO2 glass phases generated by the PDC composite AOL could effectively prevent oxygen intrusion. Therefore, the fabricated PDC composite thermistors exhibited a negative temperature coefficient in the temperature range from 100 to 1100 °C and high repeatability below 800 °C. Meanwhile, it has excellent high-temperature stability at 800 °C with a resistance change of only 2.4% in 2 h. Furthermore, the high-temperature electrical behavior of the thermistor was analyzed. The temperature dependence of the conductivity for this thermistor has shown an agreement with the Mott's variable range hopping mechanism. Additionally, the thermistor was fabricated on the surface of an aero-engine blade to verify its feasibility below 800 °C, showing the great potential of this work for state sensing on the surface of high-temperature components, especially for customized requirements.
Collapse
Affiliation(s)
- Lida Xu
- School of Aerospace Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
- Department of Mechanical and Electrical Engineering, School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Lanlan Li
- Department of Mechanical and Electrical Engineering, School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Lantian Tang
- Department of Mechanical and Electrical Engineering, School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Yingjun Zeng
- Department of Mechanical and Electrical Engineering, School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Guochun Chen
- Department of Mechanical and Electrical Engineering, School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Chenhe Shao
- School of Aerospace Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
- Department of Mechanical and Electrical Engineering, School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Chao Wu
- Department of Mechanical and Electrical Engineering, School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Gonghan He
- Department of Mechanical and Electrical Engineering, School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Qinnan Chen
- School of Aerospace Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
- Department of Mechanical and Electrical Engineering, School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Guicai Fang
- Aerospace Technology Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
| | - Daoheng Sun
- School of Aerospace Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
- Department of Mechanical and Electrical Engineering, School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Zhenyin Hai
- School of Aerospace Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
- Department of Mechanical and Electrical Engineering, School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| |
Collapse
|
33
|
Recent Progress in Proteins-Based Micelles as Drug Delivery Carriers. Polymers (Basel) 2023; 15:polym15040836. [PMID: 36850121 PMCID: PMC9964340 DOI: 10.3390/polym15040836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Proteins-derived polymeric micelles have gained attention and revolutionized the biomedical field. Proteins are considered a favorable choice for developing micelles because of their biocompatibility, harmlessness, greater blood circulation and solubilization of poorly soluble drugs. They exhibit great potential in drug delivery systems as capable of controlled loading, distribution and function of loaded agents to the targeted sites within the body. Protein micelles successfully cross biological barriers and can be incorporated into various formulation designs employed in biomedical applications. This review emphasizes the recent advances of protein-based polymeric micelles for drug delivery to targeted sites of various diseases. Most studied protein-based micelles such as soy, gelatin, casein and collagen are discussed in detail, and their applications are highlighted. Finally, the future perspectives and forthcoming challenges for protein-based polymeric micelles have been reviewed with anticipated further advances.
Collapse
|
34
|
Hu X, Zuo D, Cheng S, Chen S, Liu Y, Bao W, Deng S, Harris SJ, Wan J. Ultrafast materials synthesis and manufacturing techniques for emerging energy and environmental applications. Chem Soc Rev 2023; 52:1103-1128. [PMID: 36651148 DOI: 10.1039/d2cs00322h] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Energy and environmental issues have attracted increasing attention globally, where sustainability and low-carbon emissions are seriously considered and widely accepted by government officials. In response to this situation, the development of renewable energy and environmental technologies is urgently needed to complement the usage of traditional fossil fuels. While a big part of advancement in these technologies relies on materials innovations, new materials discovery is limited by sluggish conventional materials synthesis methods, greatly hindering the advancement of related technologies. To address this issue, this review introduces and comprehensively summarizes emerging ultrafast materials synthesis methods that could synthesize materials in times as short as nanoseconds, significantly improving research efficiency. We discuss the unique advantages of these methods, followed by how they benefit individual applications for renewable energy and the environment. We also highlight the scalability of ultrafast manufacturing towards their potential industrial utilization. Finally, we provide our perspectives on challenges and opportunities for the future development of ultrafast synthesis and manufacturing technologies. We anticipate that fertile opportunities exist not only for energy and the environment but also for many other applications.
Collapse
Affiliation(s)
- Xueshan Hu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Daxian Zuo
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Shaoru Cheng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Sihui Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yang Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wenzhong Bao
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Sili Deng
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Stephen J Harris
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA
| | - Jiayu Wan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
35
|
Xu X, Zhang Z, Xiong R, Lu G, Zhang J, Ning W, Hu S, Feng Q, Qiao S. Bending Resistance Covalent Organic Framework Superlattice: "Nano-Hourglass"-Induced Charge Accumulation for Flexible In-Plane Micro-Supercapacitors. NANO-MICRO LETTERS 2022; 15:25. [PMID: 36583830 PMCID: PMC9803805 DOI: 10.1007/s40820-022-00997-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Covalent organic framework (COF) film with highly exposed active sites is considered as the promising flexible self-supported electrode for in-plane micro-supercapacitor (MSC). Superlattice configuration assembled alternately by different nanofilms based on van der Waals force can integrate the advantages of each isolated layer to exhibit unexpected performances as MSC film electrodes, which may be a novel option to ensure energy output. Herein, a mesoporous free-standing A-COF nanofilm (pore size is 3.9 nm, averaged thickness is 4.1 nm) with imine bond linkage and a microporous B-COF nanofilm (pore size is 1.5 nm, averaged thickness is 9.3 nm) with β-keto-enamine-linkages are prepared, and for the first time, we assembly the two lattice matching films into sandwich-type superlattices via layer-by-layer transfer, in which ABA-COF superlattice stacking into a "nano-hourglass" steric configuration that can accelerate the dynamic charge transportation/accumulation and promote the sufficient redox reactions to energy storage. The fabricated flexible MSC-ABA-COF exhibits the highest intrinsic CV of 927.9 F cm-3 at 10 mV s-1 than reported two-dimensional alloy, graphite-like carbon and undoped COF-based MSC devices so far, and shows a bending-resistant energy density of 63.2 mWh cm-3 even after high-angle and repeat arbitrary bending from 0 to 180°. This work provides a feasible way to meet the demand for future miniaturization and wearable electronics.
Collapse
Affiliation(s)
- Xiaoyang Xu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Zhenni Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Rui Xiong
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Guandan Lu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Jia Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Wang Ning
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Shuozhen Hu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Qingliang Feng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Shanlin Qiao
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
- Hebei Electronic Organic Chemicals Engineering Center, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
36
|
Zhao J, Lian J, Zhao Z, Wang X, Zhang J. A Review of In-Situ Techniques for Probing Active Sites and Mechanisms of Electrocatalytic Oxygen Reduction Reactions. NANO-MICRO LETTERS 2022; 15:19. [PMID: 36580130 PMCID: PMC9800687 DOI: 10.1007/s40820-022-00984-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/16/2022] [Indexed: 06/03/2023]
Abstract
Electrocatalytic oxygen reduction reaction (ORR) is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal-O2/air batteries, etc. However, the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process, and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction. This makes them difficult to be accurately captured, making the identification of ORR active sites and the elucidation of ORR mechanisms difficult. Thus, it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR. This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts. Specifically, the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized, such as phase, valence, electronic transfer, coordination, and spin states varies. In-situ revelation of intermediate adsorption/desorption behavior, and the real-time monitoring of the product nucleation, growth, and reconstruction evolution are equally emphasized in the discussion. Other interference factors, as well as in-situ signal assignment with the aid of theoretical calculations, are also covered. Finally, some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed.
Collapse
Affiliation(s)
- Jinyu Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Jie Lian
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Zhenxin Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Xiaomin Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| | - Jiujun Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
37
|
Sun W, Song Z, Feng Z, Huang Y, Xu ZJ, Lu YC, Zou Q. Carbon-Nitride-Based Materials for Advanced Lithium-Sulfur Batteries. NANO-MICRO LETTERS 2022; 14:222. [PMID: 36374367 PMCID: PMC9663784 DOI: 10.1007/s40820-022-00954-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 05/19/2023]
Abstract
Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage systems owing to their high energy density and low cost. However, critical challenges including severe shuttling of lithium polysulfides (LiPSs) and sluggish redox kinetics limit the practical application of Li-S batteries. Carbon nitrides (CxNy), represented by graphitic carbon nitride (g-C3N4), provide new opportunities for overcoming these challenges. With a graphene-like structure and high pyridinic-N content, g-C3N4 can effectively immobilize LiPSs and enhance the redox kinetics of S species. In addition, its structure and properties including electronic conductivity and catalytic activity can be regulated by simple methods that facilitate its application in Li-S batteries. Here, the recent progress of applying CxNy-based materials including the optimized g-C3N4, g-C3N4-based composites, and other novel CxNy materials is systematically reviewed in Li-S batteries, with a focus on the structure-activity relationship. The limitations of existing CxNy-based materials are identified, and the perspectives on the rational design of advanced CxNy-based materials are provided for high-performance Li-S batteries.
Collapse
Affiliation(s)
- Wenhao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zihao Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhenxing Feng
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Yaqin Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Republic of Singapore
| | - Yi-Chun Lu
- Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, 999077, People's Republic of China
| | - Qingli Zou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
- Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, 999077, People's Republic of China.
| |
Collapse
|
38
|
Wang X, Li X, Fan H, Ma L. Solid Electrolyte Interface in Zn-Based Battery Systems. NANO-MICRO LETTERS 2022; 14:205. [PMID: 36261666 PMCID: PMC9582111 DOI: 10.1007/s40820-022-00939-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/30/2022] [Indexed: 05/30/2023]
Abstract
Due to its high theoretical capacity (820 mAh g-1), low standard electrode potential (- 0.76 V vs. SHE), excellent stability in aqueous solutions, low cost, environmental friendliness and intrinsically high safety, zinc (Zn)-based batteries have attracted much attention in developing new energy storage devices. In Zn battery system, the battery performance is significantly affected by the solid electrolyte interface (SEI), which is controlled by electrode and electrolyte, and attracts dendrite growth, electrochemical stability window range, metallic Zn anode corrosion and passivation, and electrolyte mutations. Therefore, the design of SEI is decisive for the overall performance of Zn battery systems. This paper summarizes the formation mechanism, the types and characteristics, and the characterization techniques associated with SEI. Meanwhile, we analyze the influence of SEI on battery performance, and put forward the design strategies of SEI. Finally, the future research of SEI in Zn battery system is prospected to seize the nature of SEI, improve the battery performance and promote the large-scale application.
Collapse
Affiliation(s)
- Xinyu Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xiaomin Li
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Huiqing Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Longtao Ma
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
39
|
Cao Z, Momen R, Tao S, Xiong D, Song Z, Xiao X, Deng W, Hou H, Yasar S, Altin S, Bulut F, Zou G, Ji X. Metal-Organic Framework Materials for Electrochemical Supercapacitors. NANO-MICRO LETTERS 2022; 14:181. [PMID: 36050520 PMCID: PMC9437182 DOI: 10.1007/s40820-022-00910-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Exploring new materials with high stability and capacity is full of challenges in sustainable energy conversion and storage systems. Metal-organic frameworks (MOFs), as a new type of porous material, show the advantages of large specific surface area, high porosity, low density, and adjustable pore size, exhibiting a broad application prospect in the field of electrocatalytic reactions, batteries, particularly in the field of supercapacitors. This comprehensive review outlines the recent progress in synthetic methods and electrochemical performances of MOF materials, as well as their applications in supercapacitors. Additionally, the superiorities of MOFs-related materials are highlighted, while major challenges or opportunities for future research on them for electrochemical supercapacitors have been discussed and displayed, along with extensive experimental experiences.
Collapse
Affiliation(s)
- Ziwei Cao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Roya Momen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Shusheng Tao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Dengyi Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Zirui Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Xuhuan Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Sedat Yasar
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Battalgazi, Malatya, Turkey
| | - Sedar Altin
- Physics Department, Inonu University, 44280, Malatya, Turkey
| | - Faith Bulut
- Physics Department, Inonu University, 44280, Malatya, Turkey
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
40
|
Liu H, Sun Z, Chen Y, Zhang W, Chen X, Wong CP. Laser Processing of Flexible In-Plane Micro-supercapacitors: Progresses in Advanced Manufacturing of Nanostructured Electrodes. ACS NANO 2022; 16:10088-10129. [PMID: 35786945 DOI: 10.1021/acsnano.2c02812] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible in-plane architecture micro-supercapacitors (MSCs) are competitive candidates for on-chip miniature energy storage applications owing to their light weight, small size, high flexibility, as well as the advantages of short charging time, high power density, and long cycle life. However, tedious and time-consuming processes are required for the manufacturing of high-resolution interdigital electrodes using conventional approaches. In contrast, the laser processing technique enables high-efficiency high-precision patterning and advanced manufacturing of nanostructured electrodes. In this review, the recent advances in laser manufacturing and patterning of nanostructured electrodes for applications in flexible in-plane MSCs are comprehensively summarized. Various laser processing techniques for the synthesis, modification, and processing of interdigital electrode materials, including laser pyrolysis, reduction, oxidation, growth, activation, sintering, doping, and ablation, are discussed. In particular, some special features and merits of laser processing techniques are highlighted, including the impacts of laser types and parameters on manufacturing electrodes with desired morphologies/structures and their applications on the formation of high-quality nanoshaped graphene, the selective deposition of nanostructured materials, the controllable nanopore etching and heteroatom doping, and the efficient sintering of nanometal products. Finally, the current challenges and prospects associated with the laser processing of in-plane MSCs are also discussed. This review will provide a useful guidance for the advanced manufacturing of nanostructured electrodes in flexible in-plane energy storage devices and beyond.
Collapse
Affiliation(s)
- Huilong Liu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment & School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhijian Sun
- School of Materials Science and Engineering, Georgia Institute of Technology, 711 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Yun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment & School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xin Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment & School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, 711 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
41
|
Xiang Y, Xu L, Yang L, Ye Y, Ge Z, Wu J, Deng W, Zou G, Hou H, Ji X. Natural Stibnite for Lithium-/Sodium-Ion Batteries: Carbon Dots Evoked High Initial Coulombic Efficiency. NANO-MICRO LETTERS 2022; 14:136. [PMID: 35713745 PMCID: PMC9206071 DOI: 10.1007/s40820-022-00873-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
The chemical process of local oxidation-partial reduction-deep coupling for stibnite reduction of carbon dots (CDs) is revealed by in-situ high-temperature X-ray diffraction. Sb2S3@xCDs anode delivers high initial coulombic efficiency in lithium ion batteries (85.2%) and sodium ion batteries (82.9%), respectively. C-S bond influenced by oxygen-rich carbon matrix can restrain the conversion of sulfur to sulfite, well confirmed by X-ray photoelectron spectroscopy characterization of solid electrolyte interphase layers helped with density functional theory calculations. CDs-induced Sb-O-C bond is proved to effectively regulate the interfacial electronic structure. The application of Sb2S3 with marvelous theoretical capacity for alkali metal-ion batteries is seriously limited by its poor electrical conductivity and low initial coulombic efficiency (ICE). In this work, natural stibnite modified by carbon dots (Sb2S3@xCDs) is elaborately designed with high ICE. Greatly, chemical processes of local oxidation-partial reduction-deep coupling for stibnite reduction of CDs are clearly demonstrated, confirmed with in situ high-temperature X-ray diffraction. More impressively, the ICE for lithium-ion batteries (LIBs) is enhanced to 85%, through the effect of oxygen-rich carbon matrix on C-S bonds which inhibit the conversion of sulfur to sulfite, well supported by X-ray photoelectron spectroscopy characterization of solid electrolyte interphase layers helped with density functional theory calculations. Not than less, it is found that Sb-O-C bonds existed in the interface effectively promote the electronic conductivity and expedite ion transmission by reducing the bandgap and restraining the slip of the dislocation. As a result, the optimal sample delivers a tremendous reversible capacity of 660 mAh g-1 in LIBs at a high current rate of 5 A g-1. This work provides a new methodology for enhancing the electrochemical energy storage performance of metal sulfides, especially for improving the ICE.
Collapse
Affiliation(s)
- Yinger Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Laiqiang Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Li Yang
- College of Science, Hunan University of Technology and Business, Changsha, 410205, People's Republic of China
| | - Yu Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Zhaofei Ge
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Jiae Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
42
|
Chen Y, Wang Y, Yu J, Xiong G, Niu H, Li Y, Sun D, Zhang X, Liu H, Zhou W. Underfocus Laser Induced Ni Nanoparticles Embedded Metallic MoN Microrods as Patterned Electrode for Efficient Overall Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105869. [PMID: 35112811 PMCID: PMC8981903 DOI: 10.1002/advs.202105869] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Transition metal nitrides have shown large potential in industrial application for realization of the high active and large current density toward overall water splitting, a strategy to synthesize an inexpensive electrocatalyst consisting of Ni nanoparticles embedded metallic MoN microrods cultured on roughened nickel sheet (Ni/MoN/rNS) through underfocus laser heating on NiMoO4 ·xH2 O under NH3 atmosphere is posited. The proposed laser preparation mechanism of infocus and underfocus modes confirms that the laser induced stress and local high temperature controllably and rapidly prepared the patterned Ni/MoN/rNS electrodes in large size. The designed Ni/MoN/rNS presents outstanding catalytic performance for hydrogen evolution reaction (HER) with a low overpotential of 67 mV to deliver a current density of 10 mA cm-2 and for the oxygen evolution reaction (OER) with a small overpotential of 533 mV to deliver 200 mA cm-2 . Density functional theory (DFT) calculations and Kelvin probe force microscopy (KPFM) further verify that the constructed interface of Ni/MoN with small hydrogen absorption Gibbs free energy (ΔGH* ) (-0.19 eV) and similar electrical conductivity between Ni and metallic MoN, which can explain the high intrinsic catalytic activity of Ni/MoN. Further, the constructed two-electrode system (-) Ni/MoN/rNS||Ni/MoN/rNS (+) is employed in an industrial water-splitting electrolyzer (460 mA cm-2 for 120 h), being superior to the performance of commercial nickel electrode.
Collapse
Affiliation(s)
- Yuke Chen
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Yijie Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Jiayuan Yu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Guowei Xiong
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Hongsen Niu
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022P. R. China
| | - Yang Li
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022P. R. China
| | - Dehui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Xiaoli Zhang
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| |
Collapse
|
43
|
Fu C, Wang X, Xue F, Zhu P, Zhou W, Ge S, Yu J. Laser ablative TiO 2 and tremella-like CuInS 2 nanocomposites for robust and ultrasensitive photoelectrochemical sensing of let-7a. Mikrochim Acta 2022; 189:145. [PMID: 35296924 DOI: 10.1007/s00604-022-05178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/05/2022] [Indexed: 10/18/2022]
Abstract
A photoelectrochemical (PEC) biosensor based on a multiple signal amplification strategy was established for highly sensitive detection of microRNA (miRNA). TiO2 was prepared on the surface of titanium sheet by laser etching to improve its stability and photoelectrical properties, and CuInS2-sensitized TiO2 was used to form a superior photoelectrical layer, which realized the initial signal amplification. The electron donor dopamine (DA) was modified to H2 as a signal regulator, which effectively increased the photocurrent signal. To further amplify the signal, an enzyme-free hybridization reaction was implemented. When target let-7a and fuel-DNA (F-DNA) were present, the base of H1 specifically recognized let-7a and forced dopamine@AuNPs-H2 away from the electrode surface. Subsequently, the end base of H1 specifically recognized F-DNA, and let-7a was replaced and recycled to participate in the next cycle. Enzyme-free circulation, as a multifunctional amplification method, ensured the recycling of target molecules. This PEC sensor for let-7a detection showed an excellent linear response from 0.5 to 1000 pM with a detection limit of 0.12 pM. The intra-batch RSD was 3.8% and the recovery was 87.74-108.1%. The sensor was further used for clinical biomolecular monitoring of miRNA, showing excellent quantitative detection capability.
Collapse
Affiliation(s)
- Cuiping Fu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xuefeng Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, People's Republic of China
| | - Fumin Xue
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, People's Republic of China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Shenguang Ge
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
44
|
Li Y, Ma G, Shao H, Xiao P, Lu J, Xu J, Hou J, Chen K, Zhang X, Li M, Persson POÅ, Hultman L, Eklund P, Du S, Chai Z, Huang Z, Jin N, Ma J, Liu Y, Lin Z, Huang Q. Electrochemical Lithium Storage Performance of Molten Salt Derived V 2SnC MAX Phase. NANO-MICRO LETTERS 2021; 13:158. [PMID: 34292406 PMCID: PMC8298715 DOI: 10.1007/s40820-021-00684-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/24/2021] [Indexed: 05/13/2023]
Abstract
MAX phases are gaining attention as precursors of two-dimensional MXenes that are intensively pursued in applications for electrochemical energy storage. Here, we report the preparation of V2SnC MAX phase by the molten salt method. V2SnC is investigated as a lithium storage anode, showing a high gravimetric capacity of 490 mAh g-1 and volumetric capacity of 570 mAh cm-3 as well as superior rate performance of 95 mAh g-1 (110 mAh cm-3) at 50 C, surpassing the ever-reported performance of MAX phase anodes. Supported by operando X-ray diffraction and density functional theory, a charge storage mechanism with dual redox reaction is proposed with a Sn-Li (de)alloying reaction that occurs at the edge sites of V2SnC particles where Sn atoms are exposed to the electrolyte followed by a redox reaction that occurs at V2C layers with Li. This study offers promise of using MAX phases with M-site and A-site elements that are redox active as high-rate lithium storage materials.
Collapse
Affiliation(s)
- Youbing Li
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, People's Republic of China
- Qianwan Institute of CNiTECH, Ningbo, 315336, People's Republic of China
| | - Guoliang Ma
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Hui Shao
- CIRIMAT UMR CNRS 5085, Université Toulouse III- Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Peng Xiao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jun Lu
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - Jin Xu
- School of Machine Engineering, Dongguan University of Technology, Dongguan, 523808, People's Republic of China
| | - Jinrong Hou
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Ke Chen
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, People's Republic of China
- Qianwan Institute of CNiTECH, Ningbo, 315336, People's Republic of China
| | - Xiao Zhang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, People's Republic of China
- Qianwan Institute of CNiTECH, Ningbo, 315336, People's Republic of China
| | - Mian Li
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, People's Republic of China
- Qianwan Institute of CNiTECH, Ningbo, 315336, People's Republic of China
| | - Per O Å Persson
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - Lars Hultman
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - Per Eklund
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - Shiyu Du
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, People's Republic of China
- Qianwan Institute of CNiTECH, Ningbo, 315336, People's Republic of China
| | - Zhifang Chai
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, People's Republic of China
- Qianwan Institute of CNiTECH, Ningbo, 315336, People's Republic of China
| | - Zhengren Huang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, People's Republic of China
- Qianwan Institute of CNiTECH, Ningbo, 315336, People's Republic of China
| | - Na Jin
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jiwei Ma
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Ying Liu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zifeng Lin
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Qing Huang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, People's Republic of China.
- Qianwan Institute of CNiTECH, Ningbo, 315336, People's Republic of China.
| |
Collapse
|
45
|
Zhu Y, Yue K, Xia C, Zaman S, Yang H, Wang X, Yan Y, Xia BY. Recent Advances on MOF Derivatives for Non-Noble Metal Oxygen Electrocatalysts in Zinc-Air Batteries. NANO-MICRO LETTERS 2021; 13:137. [PMID: 34138394 PMCID: PMC8184897 DOI: 10.1007/s40820-021-00669-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 05/20/2023]
Abstract
Oxygen electrocatalysts are of great importance for the air electrode in zinc-air batteries (ZABs). Owing to the high specific surface area, controllable pore size and unsaturated metal active sites, metal-organic frameworks (MOFs) derivatives have been widely studied as oxygen electrocatalysts in ZABs. To date, many strategies have been developed to generate efficient oxygen electrocatalysts from MOFs for improving the performance of ZABs. In this review, the latest progress of the MOF-derived non-noble metal-oxygen electrocatalysts in ZABs is reviewed. The performance of these MOF-derived catalysts toward oxygen reduction, and oxygen evolution reactions is discussed based on the categories of metal-free carbon materials, single-atom catalysts, metal cluster/carbon composites and metal compound/carbon composites. Moreover, we provide a comprehensive overview on the design strategies of various MOF-derived non-noble metal-oxygen electrocatalysts and their structure-performance relationship. Finally, the challenges and perspectives are provided for further advancing the MOF-derived oxygen electrocatalysts in ZABs.
Collapse
Affiliation(s)
- Yuting Zhu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, People's Republic of China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), Shanghai, 200050, People's Republic of China
| | - Kaihang Yue
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, People's Republic of China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), Shanghai, 200050, People's Republic of China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Shahid Zaman
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Huan Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, People's Republic of China
| | - Xianying Wang
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), Shanghai, 200050, People's Republic of China.
| | - Ya Yan
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, People's Republic of China.
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), Shanghai, 200050, People's Republic of China.
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, People's Republic of China.
| |
Collapse
|