1
|
Wang J, Deng M, Chen H, Qiu W, Duan Y, Liao C, Li R, Yu L, Peng Q. Minimizing Energy Loss by Designing Multifunctional Solid Additives to Independent Regulation of Donor and Acceptor Layers for Efficient LBL Polymer Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414712. [PMID: 40112197 PMCID: PMC12079416 DOI: 10.1002/advs.202414712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Solid additives are crucial in layer-by-layer (LBL) polymer solar cells (PSCs). Despite its importance, the simultaneous application of solid additives into both donor and acceptor layers has been largely overlooked. In this work, two multifunctional solid additives are actively designed, and investigated the synergistic effect on both donor and acceptor layers. Incorporating the multifunctional solid additives into the donor layer could effectively enhance the aggregation and molecular stacking of the donor polymer, leading to reduced energy disorder and minimizing ΔE2. When the multifunctional solid additives are introduced into the acceptor layer, they just play a role in optimizing the morphology, thereby reducing the ΔE3. Excitedly, the simultaneous addition of the multifunctional solid additives into both donor and acceptor layers produced a synergistic effect for decreasing ΔE2 and ΔE3 simultaneously, especially adding SA2, thus enabling an excellent power conversion efficiency (PCE) of 19.95% (certified as 19.68%) with an open-circuit voltage (Voc) of 0.921 V, a short circuit current density (Jsc) of 27.08 mA cm-2 and a fill factor (FF) of 79.98%. The work highlights the potential of multifunctional solid additives in independently regulating the properties of donor and acceptor layers, which is expected as a promising approach for further developing higher performance PSCs.
Collapse
Affiliation(s)
- Junying Wang
- College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengdu610059P. R. China
| | - Min Deng
- College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengdu610059P. R. China
| | - Haonan Chen
- College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengdu610059P. R. China
| | - Wuke Qiu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Yuwei Duan
- College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengdu610059P. R. China
| | - Chentong Liao
- College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengdu610059P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source IIBrookhaven National LabSuffolkUptonNY11973USA
| | - Liyang Yu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Qiang Peng
- College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengdu610059P. R. China
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| |
Collapse
|
2
|
Xu Y, Liao Y, Wang W, Wang Y, Wang J, Suo Z, Li F, Wang R, Ni W, Kan B, Meng L, Wan X, Chen Y, Hou J, Li M, Geng Y. An n-Doped Organic Cross-Linked Electron Transport Layer with High Electrical Conductivity for High-Efficiency Tandem Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501653. [PMID: 40123323 DOI: 10.1002/adma.202501653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/28/2025] [Indexed: 03/25/2025]
Abstract
With merits of good solution processability, intrinsic flexibility, etc, organic/organic interconnecting layers (ICLs) are highly desirable for tandem organic photovoltaics (OPVs). Herein, an n-doped cross-linked organic electron transport layer (ETL), named c-NDI-Br:PEI is developed, via a simple in situ quaternization reaction between bromopentyl-substituted naphthalene diimide derivative (NDI-Br) and polyethylenimine (PEI). Due to strong self-doping, c-NDI-Br:PEI films exhibit a high electrical conductivity (0.06 S cm-1), which is important for efficient hole and electron reombination in ICL of tandem OPVs. In addition, the cross-linked ETLs show strong work function modulation ability, and good solvent-resistance. The above features enable c-NDI-Br:PEI to function as an efficient ETL not only for single-junction OPVs, but also for tandem devices without any metal layer in ICL. Under solar radiation, the single-junction device with c-NDI-Br:PEI as ETL achieves a power conversion efficiency (PCE) of 18.18%, surpassing the ZnO-based device (17.09%). The homo- and hetero-tandem devices with m-PEDOT:PSS:c-NDI-Br:PEI as ICL exhibit remarkable PCEs of 19.06% and 20.06%, respectively. Under 808 nm laser radiation with a photon flux of 57 mW cm-2, the homo-tandem device presents a superior PCE of 38.5%. This study provides a new ETL for constructing all-solution-processed organic/organic ICL, which can be integrated in flexible and wearable devices.
Collapse
Affiliation(s)
- Yan Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yifan Liao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Wenxuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yupu Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Jia Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Zhaochen Suo
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Feng Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Ruochen Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Wang Ni
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Lingxian Meng
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiangjian Wan
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Miaomiao Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
3
|
Chen Y, Zhou W, Li Y, Liao C, Xu X, Yu L, Peng Q. Different Sized Cycloalkyl Chains on Non-Fullerene Acceptors Enhance Molecular Packing, Film Morphology and Charge Transport for 19.62% Efficiency Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500602. [PMID: 40223312 DOI: 10.1002/smll.202500602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/30/2025] [Indexed: 04/15/2025]
Abstract
This work addresses the challenge of achieving advanced fibril morphology of non-fullerene acceptors (NFAs) in layer-by-layer organic solar cels (LBL-OSCs) by cycloalkyl chain strategy, focusing on ta series of Y6-type NFAs, namely BTP-C6, BTP-C8 and BTP-C12, featured with cyclohexyl, cyclooctyl and cyclododecyl chains with increasing steric hindrance. These side chains influenced significantly molecular planarity, packing and film morphology, which are critical for device performance. BTP-C6 exhibits optimal molecular packing and fibril network morphology, enabling efficient exciton dissociation, charge transport and balanced carrier mobilities, finally achieving PCEs of 19.28% and 19.62% with chloroform- and toluene-cast acceptor layers, respectively. BTP-C8 featuring enhanced planarity (dihedral angle 8.27°) showed the loosest packing (packing coefficient 49.6%) due to the increased steric hindrance of side chains, limiting intermolecular charge transport. Conversely, BTP-C12 formed a high crystalline and tightly packed 3D network but suffered from reduced intramolecular charge transfer caused by severe molecular distortion (dihedral angle 27.27°). The findings in this work underscore the critical role of side-chain engineering in governing molecular packing and morphology, offering a systematic understanding of the relationships between steric hindrance, crystallinity and device performance, while providing a rational design strategy for next-generation NFAs to advance high-performance LBL-OSCs.
Collapse
Affiliation(s)
- Yu Chen
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Weilin Zhou
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yinfeng Li
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chentong Liao
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Liyang Yu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiang Peng
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| |
Collapse
|
4
|
Wu X, Wu H, Wang Y, Wu W, Zhong J, Zhang W, Zhan X, Wang X, Yang R, Zhu T, Qing J, Cai W. Efficient Planar Heterojunction Organic Solar Cell with Enhanced Crystallization and Diffusivity of Acceptor. NANO LETTERS 2025; 25:5132-5139. [PMID: 40125721 DOI: 10.1021/acs.nanolett.4c05750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
In the field of organic solar cells (OSCs), planar heterojunctions (PHJs) have received less attention. This study demonstrates that enhancing the crystallization and diffusivity of nonfullerene small-molecule acceptors (NF-SMAs) through sequential deposition significantly optimizes the morphology of PHJ OSCs, driving notable performance enhancements. An additive 1,2,4,5-tetrabromobenzene (TBrB) is employed during sequential deposition, enabling such desirable morphological control in OSCs. In situ UV-vis absorption spectroscopy reveals that TBrB selectively induces rapid aggregation of NF-SMAs, L8-BO, within subseconds. Structural analysis confirms that TBrB promotes the formation of a 3D "honeycomb" structure of L8-BO. Simultaneously, TBrB enhances L8-BO diffusivity into the D18 layer, resulting in a widened and well-intermixed region. These morphological optimizations improve the charge transfer efficiency and reduce bimolecular recombination, achieving a peak power conversion efficiency (PCE) of 19.25%. This study underscores the critical role of fine-tuning solidification processes in sequential deposition to optimize the morphology and performance of OSCs.
Collapse
Affiliation(s)
- Xiang Wu
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, P. R. China
| | - Honghui Wu
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, P. R. China
| | - Yufei Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Wenxuan Wu
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, P. R. China
| | - Jianbin Zhong
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiaozhi Zhan
- Spallation Neutron Source Science Center, Dongguan 523803, P. R. China
| | - Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, P. R. China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, P. R. China
| | - Tao Zhu
- Spallation Neutron Source Science Center, Dongguan 523803, P. R. China
- Songshan Lake Material Laboratory, Dongguan, Guangdong 523808, P. R. China
| | - Jian Qing
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, P. R. China
| | - Wanzhu Cai
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, P. R. China
- Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
5
|
Wang Y, Gao C, Lei W, Yang T, Liang Z, Sun K, Zhao C, Chen L, Zhu L, Zeng H, Sun X, He B, Hu H, Tang Z, Qiu M, Li S, Han P, Zhang G. Achieving 20% Toluene-Processed Binary Organic Solar Cells via Secondary Regulation of Donor Aggregation in Sequential Processing. NANO-MICRO LETTERS 2025; 17:206. [PMID: 40167593 PMCID: PMC11961838 DOI: 10.1007/s40820-025-01715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025]
Abstract
Sequential processing (SqP) of the active layer offers independent optimization of the donor and acceptor with more targeted solvent design, which is considered the most promising strategy for achieving efficient organic solar cells (OSCs). In the SqP method, the favorable interpenetrating network seriously depends on the fine control of the bottom layer swelling. However, the choice of solvent(s) for both the donor and acceptor have been mostly based on a trial-and-error manner. A single solvent often cannot achieve sufficient yet not excessive swelling, which has long been a difficulty in the high efficient SqP OSCs. Herein, two new isomeric molecules are introduced to fine-tune the nucleation and crystallization dynamics that allows judicious control over the swelling of the bottom layer. The strong non-covalent interaction between the isomeric molecule and active materials provides an excellent driving force for optimize the swelling-process. Among them, the molecule with high dipole moment promotes earlier nucleation of the PM6 and provides extended time for crystallization during SqP, improving bulk morphology and vertical phase segregation. As a result, champion efficiencies of 17.38% and 20.00% (certified 19.70%) are achieved based on PM6/PYF-T-o (all-polymer) and PM6/BTP-eC9 devices casted by toluene solvent.
Collapse
Affiliation(s)
- Yufei Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Chuanlin Gao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Wen Lei
- College of Cyber Security, Jinan University, Guangzhou, 511443, People's Republic of China
| | - Tao Yang
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Photonic, Technique for Information, School of Electronics Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Kangbo Sun
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Chaoyue Zhao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Lu Chen
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Liangxiang Zhu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Haoxuan Zeng
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Xiaokang Sun
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, People's Republic of China
| | - Bin He
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, People's Republic of China
| | - Zeguo Tang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Mingxia Qiu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Shunpu Li
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Peigang Han
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, People's Republic of China.
| |
Collapse
|
6
|
Xia Z, Gao C, Xie Z, Wu M, Chen H, Li T, Zhou J, Cai T, Hu H, Shuai J, Xie C, Zhang G, Chen W, Liu S. Isomerization-Controlled Aggregation in Photoactive Layer: An Additive Strategy for Organic Solar Cells with Over 19.5 % Efficiency. Angew Chem Int Ed Engl 2025; 64:e202421953. [PMID: 39714346 DOI: 10.1002/anie.202421953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Morphology control of the photoactive layer is crucial for achieving high-performance organic solar cells (OSCs), yet it remains a significant challenge in this field. One effective approach is the additive strategy, which fine-tunes the morphology of the photoactive layer. However, the underlying mechanisms governing the impact of different types of additives from liquid, solid, to volatile solid, on the bulk heterojunction morphology and device performance are not fully understood. Herein, we present an aggregation regulation strategy for acceptor molecules by incorporating three novel isomeric additives: 4-bromo-1,2-dichlorobenzene (LCB), 1-bromo-2,4-dichlorobenzene (SCB), and 2-bromo-1,4-dichlorobenzene (VCB) into the blend active layer. This approach optimizes the bulk heterojunction morphology and enhances the photovoltaic performance of OSCs. Our results reveal that these additives induce stepwise regulation of acceptor molecule aggregation during film formation. The liquid additive LCB primarily extends solvent evaporation time, effectively preventing excessive aggregation, while the solid additive SCB significantly shortens the aggregation period during the film evolution, resulting in the most compact molecular π-π stacking. Furthermore, the volatile solid additive VCB fine-tunes the intermolecular interactions and crystallization within the active layer, promoting optimal molecular self-assembly and aggregation for ideal molecular stacking. Consequently, the power conversion efficiencies of 19.33 % and 19.51 % were achieved for the VCB-processed D18 : L8-BO- and PM6 : L8-BO-based OSCs, respectively, outperforming the LCB-processed and SCB-processed devices.
Collapse
Affiliation(s)
- Zihao Xia
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Chuanlin Gao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhixiang Xie
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Miaoxuan Wu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Hansheng Chen
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Tongzi Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiang Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ting Cai
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jing Shuai
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Chen Xie
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Wenduo Chen
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Shenghua Liu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
7
|
Xie Y, Wang K, Yu H, Li J, Jeong SY, Woo HY, Shi Y, Ma X, Zhang F, Zhu X. Improving the Efficiency of Layer-by-Layer Organic Photovoltaics to Exceed 19% by Establishing Effective Donor-Acceptor Interfacial Molecular Interactions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15741-15754. [PMID: 40033686 DOI: 10.1021/acsami.5c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The power conversion efficiency of layer-by-layer organic solar cells (LOSCs) has reached an impressive level by utilizing sequential processing (SqP) for the individual deposition and regulation of both donor and acceptor materials. However, the fundamental understanding of phase separation in LOSCs remains contentious, hindering the rational design of LOSCs due to the ambiguous contribution of stratification or the beneficial vertical segregation morphology. Here, we systematically investigate the utility of solvent effects on drying kinetics to understand how the interaction between the upper and bottom layers affects the formation of the donor/acceptor (D/A) interface and its impact on the performance of LOSCs. Particularly emphasizing the substantial impact of the upper layer solvent on the establishment of the effective D/A interface rather than on the formation of significant stratification in LOSCs, this understanding facilitates the utilization of blend casting in the SqP, introducing an adequate D/A interface, which contributes to a superior performance of 19.05%. Ultimately, we provide three design rules for enhancing the performance in LOSCs: (1) appropriate selection of solvents for the acceptor material to ensure a desired crystalline orientation, (2) utilization of strongly polar and volatile solvents in the upper layer capable of dissolving the bottom layer to form effective D/A interfacial interaction, and (3) establishment of sufficient D/A interfaces.
Collapse
Affiliation(s)
- Yongchao Xie
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Kai Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Haomiao Yu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Jinpeng Li
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Sang Young Jeong
- Organic Optoelectronic Materials Laboratory, Department of Chemistry, College of Science, Korea University, Seoul 02841, Republic of Korea
| | - Han Young Woo
- Organic Optoelectronic Materials Laboratory, Department of Chemistry, College of Science, Korea University, Seoul 02841, Republic of Korea
| | - Yumeng Shi
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Xiaoling Ma
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Fujun Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Xixiang Zhu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| |
Collapse
|
8
|
Hou Y, Wang Q, Yang Y, Yang C, Shen W, Tang J. Morphology Regulation Is Achieved by Volatile Solid Additives in Halogen-Free Solvents to Fabricate Efficient Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15728-15740. [PMID: 40012258 DOI: 10.1021/acsami.5c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The meticulous control of micromorphology in high power conversion efficiency (PCE) of polymer solar cells (PSCs) typically relies on halogenated solvents, which pose serious threats to both environmental sustainability and human health. In this work, a green and efficient method for fabricating high PCE PSCs with halogen-free solvents is developed. By introducing volatile solid additives 1-bromo-2,6-dichlorobenzene (DIB) and 1-bromo-2,3,5-trichlorobenzene (TIB) into toluene solvents, the aggregation behaviors of PM6:L8-BO were meticulously regulated, forming distinct fibrous morphology; in detail, the micromorphology of vertical direction exhibited a distinct pattern of acceptor enrichment at the top and donor enrichment at the bottom, which leads to enhanced exciton dissociation efficiency, improved charge transport performance, significantly reducing charge recombination, and finally improved PCEs, as the maximum PCEs were 18.56 and 17.67%, respectively, which are notably higher than those of devices without additives. Furthermore, since the solid additives can be completely removed from the active layer, the additive-treated devices exhibit superior morphology and photovoltaic stability. This work, therefore, unveils a straightforward and environmentally friendly method for preparing efficient PSCs, which is instrumental in facilitating the large-scale commercialization of PSC technology.
Collapse
Affiliation(s)
- Yufa Hou
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Qiao Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Yifan Yang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Chen Yang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Wenfei Shen
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
9
|
Li C, Song J, Lai H, Zhang H, Zhou R, Xu J, Huang H, Liu L, Gao J, Li Y, Jee MH, Zheng Z, Liu S, Yan J, Chen XK, Tang Z, Zhang C, Woo HY, He F, Gao F, Yan H, Sun Y. Non-fullerene acceptors with high crystallinity and photoluminescence quantum yield enable >20% efficiency organic solar cells. NATURE MATERIALS 2025; 24:433-443. [PMID: 39880932 DOI: 10.1038/s41563-024-02087-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 11/20/2024] [Indexed: 01/31/2025]
Abstract
The rational design of non-fullerene acceptors (NFAs) with both high crystallinity and photoluminescence quantum yield (PLQY) is of crucial importance for achieving high-efficiency and low-energy-loss organic solar cells (OSCs). However, increasing the crystallinity of an NFA tends to decrease its PLQY, which results in a high non-radiative energy loss in OSCs. Here we demonstrate that the crystallinity and PLQY of NFAs can be fine-tuned by asymmetrically adapting the branching position of alkyl chains on the thiophene unit of the L8-BO acceptor. It was found that L8-BO-C4, with 2-butyloctyl on one side and 4-butyldecyl on the other side, can simultaneously achieve high crystallinity and PLQY. A high efficiency of 20.42% (certified as 20.1%) with an open-circuit voltage of 0.894 V and a fill factor of 81.6% is achieved for the single-junction OSC. This work reveals how important the strategy of shifting the alkyl chain branching position is in developing high-performance NFAs for efficient OSCs.
Collapse
Affiliation(s)
- Chao Li
- School of Chemistry, Beihang University, Beijing, China
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstructions, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiali Song
- School of Chemistry, Beihang University, Beijing, China.
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, China.
| | - Hanjian Lai
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Huotian Zhang
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Rongkun Zhou
- Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jinqiu Xu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center for Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Haodong Huang
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, China
| | - Liming Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Jiaxin Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Yuxuan Li
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Min Hun Jee
- Department of Chemistry, College of Science, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Zilong Zheng
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Sha Liu
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, China
| | - Jun Yan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Xian-Kai Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Chen Zhang
- Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Han Young Woo
- Department of Chemistry, College of Science, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Feng He
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Feng Gao
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstructions, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Yanming Sun
- School of Chemistry, Beihang University, Beijing, China.
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, China.
| |
Collapse
|
10
|
Wang B, Kong Y, Ye XK, Ye S, Chen T, Wang S, Li S, Shi M, Xu JT, Chen H. Thiophene Copolymer Donors Containing Ester-Substituted Thiazole for Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7707-7715. [PMID: 39843894 DOI: 10.1021/acsami.4c18536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Organic solar cells have seen significant progress in the past 2 decades with power conversion efficiencies (PCEs) exceeding 20% but mostly based on high-cost photovoltaic materials. Polythiophenes (PTs) without a fused-ring structure are good candidates as low-cost donor materials, deserving more attention for studying. In this work, ester-substituted thiazole (E-Tz) was explored as the electron-withdrawing unit to design PTs, and further optimization on the fluorinated/nonfluorinated donor segment contents via copolymerization strategy was simultaneously performed, yielding polymer donors of PTETz-100F, PTETz-80F, and PTETz-0F. Suitable temperature-dependent aggregation for reasonable phase separation and compact molecular packing for improved charge transport were achieved in the PTETz-80F-based system, resulting in higher exciton dissociation probability and charge collection probability. Thereby, devices based on PTETz-80F:L8-BO exhibited the best photovoltaic performance with a PCE of 12.69%. In addition, the synthetic complexity of PTETz-XF polymers is 46.05%, which is significantly lower than those of other representative high-performance polymer donors. This work demonstrates the feasibility of designing PTs with an E-Tz unit and the effectiveness of the copolymerization strategy on material property and device performance optimization.
Collapse
Affiliation(s)
- Binnan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yibo Kong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiu-Kun Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shounuan Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Tianyi Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shanlu Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shuixing Li
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China
| | - Minmin Shi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jun-Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hongzheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China
| |
Collapse
|
11
|
Wang Y, Jiang W, Mei L, Chen X, Sun M, Lin CT, Zhang R, Du G, Qiu W, Yang X, Fan Q, Yip HL, Lin FR, Jen AKY. Donor-Interacting Arylated Carbazole Self-Assembled Monolayer Enables Highly Efficient and Stable Organic Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2403233. [PMID: 39811959 DOI: 10.1002/smll.202403233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/18/2024] [Indexed: 01/16/2025]
Abstract
Carbazole-derived self-assembled monolayers (SAMs) are promising materials for hole-extraction layer (HEL) in conventional organic photovoltaics (OPVs). Here, a SAM Cbz-2Ph derived from 3,6-diphenylcarbazole is demonstrated. The large molecular dipole moment of Cbz-2Ph allows the modulation of electrode work function to facilitate hole extraction and maximize photovoltage, thus improving the OPV performance. Additionally, the flanking aryls of Cbz-2Ph help establish CH-π interactions for forming a dense and well-organized SAM HEL and exhibit stronger van der Waals interactions with the donor PM6 than acceptor BTP-eC9. The stronger SAM-donor interactions modulate the PM6 distribution in PM6:BTP-eC9 bulk-heterojunction film, leading to PM6 enrichment near HEL to facilitate efficient hole extraction to the ITO anode in conventional p-i-n OPVs. Consequently, binary PM6:BTP-eC9-based devices incorporating the Cbz-2Ph HEL demonstrate an impressive efficiency of 19.18%. These cells also showcase excellent operational stability, with a T80 lifetime of ≈1260 h at the maximum power point, over 10 times longer than those using the traditional PEDOT:PSS HEL (T80 ≈96 h). Furthermore, the universal applicability of Cbz-2Ph as a HEL is evident through its successful implementation in PM6:BTP-eC9:L8-BO-F-based ternary devices and PM6:BTP-eC9-based printed OPV devices, achieving a PCE of 19.30% and 16.96%, respectively.
Collapse
Affiliation(s)
- Yiwen Wang
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Wenlin Jiang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Le Mei
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Xiankai Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Min Sun
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chieh-Ting Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Rui Zhang
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, SE-581 83, Sweden
| | - Gengxin Du
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Weiming Qiu
- Guangzhou Chasinglight Technology Co. Ltd, Guangzhou, 510535, China
| | - Xi Yang
- Guangzhou Chasinglight Technology Co. Ltd, Guangzhou, 510535, China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
12
|
Cao J, Xu Z. The Pseudo-Bilayer Bulk Heterojunction Active Layer of Polymer Solar Cells in Green Solvent with 18.48% Efficiency. Polymers (Basel) 2025; 17:284. [PMID: 39940487 PMCID: PMC11819932 DOI: 10.3390/polym17030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Planar heterojunction (PHJ) is employed to obtain proper vertical phase separation for highly efficient polymer solar cells (PSCs). However, it heavily relies on the choice of orthogonal solvent in the production process. Here, we fabricated a pseudo-bilayer bulk heterojunction (PBHJ) PSC with cross-distribution in the vertical direction by preparing two layers of PM6 and BTP-eC9 blends in an o-XY solution with different dilution ratios to study the morphological evolution of PBHJ film. We found that the PBHJ film exhibits more uniform and suitable continuous interpenetrating network morphology and proper phase separation in the vertical direction for the formation of p-i-n structure. This provides an effective channel for exciton dissociation and charge transport, which is confirmed by both exciton generation simulations and charge dynamics measurements. The PBHJ devices can effectively inhibit trap recombination and accelerate charge separation and transfer. Based on good active layer morphology and balanced charge mobility, all-green solvent-processed PSCs with champion power conversion efficiencies (PCEs) of 18.48% and 16.83% are obtained in PM6:BTP-eC9 and PTQ10:BTP-eC9 systems, respectively. This work reveals the potential mechanism of morphological evolution induced by the PBHJ structure and provides an alternative approach for developing solution processing PSCs.
Collapse
Affiliation(s)
- Jingyue Cao
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China;
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Zheng Xu
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China;
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
13
|
Langa F, de la Cruz P, Sharma GD. Organic Solar Cells Based on Non-Fullerene Low Molecular Weight Organic Semiconductor Molecules. CHEMSUSCHEM 2025; 18:e202400361. [PMID: 39240557 DOI: 10.1002/cssc.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/28/2024] [Indexed: 09/07/2024]
Abstract
The development of narrow bandgap A-D-A- and ADA'DA-type non-fullerene small molecule acceptors (NFSMAs) along with small molecule donors (SMDs) have led to significant progress in all-small molecule organic solar cells. Remarkable power conversion efficiencies, nearing the range of 17-18 %, have been realized. These efficiency values are on par with those achieved in OSCs based on polymeric donors. The commercial application of organic photovoltaic technology requires the design of more efficient organic conjugated small molecule donors and acceptors. In recent years the precise tuning of optoelectronic properties in small molecule donors and acceptors has attracted considerable attention and has contributed greatly to the advancement of all-SM-OSCs. Several reviews have been published in this field, but the focus of this review concerns the advances in research on OSCs using SMDs and NFSMAs from 2018 to the present. The review covers the progress made in binary and ternary OSCs, the effects of solid additives on the performance of all-SM-OSCs, and the recently developed layer-by-layer deposition method for these OSCs. Finally, we present our perspectives and a concise outlook on further advances in all-SM-OSCs for their commercial application.
Collapse
Affiliation(s)
- Fernando Langa
- Universidad de Castilla-La Mancha, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071, Toledo, Spain
| | - Pilar de la Cruz
- Universidad de Castilla-La Mancha, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071, Toledo, Spain
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute of Information Technology, Jamdoli, Jaipur (Rai), 302031, India
- Department of Electronics and Communication Engineering, The LNM Institute of Information Technology, Jamdoli, Jaipur (Rai), 302031, India
| |
Collapse
|
14
|
Memon WA, Zhu Y, Xiong S, Chen H, Lai H, Wang Y, Li H, Li M, He F. Dual Additive Strategy with Quasi-Planar Heterojunction Architecture Assisted in Morphology Optimization for High-Efficiency Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69467-69478. [PMID: 39636704 DOI: 10.1021/acsami.4c17639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Achieving high-performance and stable organic solar cells (OSCs) remains a critical challenge, primarily due to the precise optimization required for active layer morphology. Herein, this work reports a dual additive strategy using 3,5-dichlorobromobenzene (DCBB) and 1,8-diiodooctane (DIO) to optimize the morphology of both bulk-heterojunction (BHJ) and quasi-planar heterojunction (Q-PHJ) based on donor D18 and acceptor BTP-eC9. The systematic results reveal that the dual additive strategy significantly promotes phase separation while inhibiting excessive aggregation, which, in turn, improves molecular order and crystallization. As a result, BHJ and Q-PHJ OSCs processed with dual additive DIO + DCBB achieve impressive power conversion efficiencies of 17.77% and 18.60%, respectively, the highest reported values for dual additive-processed OSCs. The superior performance is attributed to improved charge transport and reduced recombination losses, as evidenced by higher short-circuit current densities (JSC) and fill factors (FF). Importantly, Q-PHJ OSCs processed with either DCBB or DIO + DCBB, in comparison to BHJ OSCs, exhibit exceptional shelf-stability, maintaining 80% of their initial power conversion efficiency after 2660 and 2193 h, respectively. These findings underscore the potential of dual additive strategies to advance the development of stable, high-efficiency OSCs suitable for large-area fabrication, marking a significant step forward in renewable energy technology.
Collapse
Affiliation(s)
- Waqar Ali Memon
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiwu Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shilong Xiong
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hui Chen
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430079, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunpeng Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Heng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingpeng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
15
|
Liu J, Zhang Y, Liu X, Wen L, Wan L, Song C, Xin J, Liang Q. Solution Sequential Deposition Pseudo-Planar Heterojunction: An Efficient Strategy for State-of-Art Organic Solar Cells. SMALL METHODS 2024; 8:e2301803. [PMID: 38386309 DOI: 10.1002/smtd.202301803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Organic solar cells (OSCs) are considered as a promising new generation of clean energy. Bulk heterojunction (BHJ) structure has been widely employed in the active layer of efficient OSCs. However, precise regulation of morphology in BHJ is still challenging due to the competitive coupling between crystallization and phase separation. Recently, a novel pseudo-planar heterojunction (PPHJ) structure, prepared through solution sequential deposition, has attracted much attention. It is an easy-to-prepare structure in which the phase separation structures, interfaces, and molecular packing can be separately controlled. Employing PPHJ structure, the properties of OSCs, such as power conversion efficiency, stability, transparency, flexibility, and so on, are usually better than its BHJ counterpart. Hence, a comprehensive understanding of the film-forming process, morphology control, and device performance of PPHJ structure should be considered. In terms of the representative works about PPHJ, this review first introduces the fabrication process of active layers based on PPHJ structure. Second, the widely applied morphology control methods in PPHJ structure are summarized. Then, the influences of PPHJ structure on device performance and other property are reviewed, which largely expand its application. Finally, a brief prospect and development tendency of PPHJ devices are discussed with the consideration of their challenges.
Collapse
Affiliation(s)
- Jiangang Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Yutong Zhang
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Xingpeng Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Liangquan Wen
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Longjing Wan
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Chunpeng Song
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Jingming Xin
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Qiuju Liang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| |
Collapse
|
16
|
Zhang K, Li T, Song P, Ma F, Li Y. Molecular engineering and structure-property relationship based on D-A chlorophyll derivative and the application in organic solar cells. Phys Chem Chem Phys 2024; 26:25607-25622. [PMID: 39344646 DOI: 10.1039/d4cp02154a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The photoactive layer materials of organic solar cells (OSCs) play a critical role in achieving excellent performance. Chlorophyll derivatives are commonly used due to their environmental friendliness, low cost, and easy accessibility. However, the efficiency of OSCs based on chlorophyll is limited by their photoelectric properties. Here, we focused on the D-A structure of chlorophyll derivative ZnChl-1 and designed four molecules through rational molecular engineering. The photoelectric properties at the microscopic level were systematically studied using density functional theory (DFT). Our findings reveal that T-ZnChl-1 with triphenylamine donor unit has a smaller energy gap and ionization energy, as well as a larger spectral red shift and absorption range. This suggests that intramolecular charge transfer will be enhanced, leading to an improvement in short-circuit current. Furthermore, Y6 is used as the acceptor to construct the heterojunction interfaces. The results indicate that the T-ZnChl-1/Y6 interface exhibits more charge transfer states and higher exciton dissociation rate KCS, which will promote charge separation and lead to excellent photovoltaic performance. This work clarifies the structure-property relationship of chlorophyll derivatives and the photo-response mechanism of intermolecular charge transfer, providing a theoretical basis for developing valuable chlorophyll-based OSCs.
Collapse
Affiliation(s)
- Kaiyan Zhang
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Ting Li
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| | - Peng Song
- Department of Physics, Liaoning University, Shenyang 110036, Liaoning, China.
| | - Fengcai Ma
- Department of Physics, Liaoning University, Shenyang 110036, Liaoning, China.
| | - Yuanzuo Li
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| |
Collapse
|
17
|
Wu J, Li Y, Tang F, Guo Y, Liu G, Wu S, Hu B, Fu Y, Lu X, Lu G, He Z, Zhu X, Peng X. Beyond Conventional Enhancements: Self-Organization of a Buffer Material on Tin Oxide as a Game-Changer for Improving the Performance of Inverted Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404066. [PMID: 38837665 DOI: 10.1002/smll.202404066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Inverted organic solar cells (OSCs) have garnered significant interest due to their remarkable stability. In this study, the efficiency and stability of inverted OSCs are enhanced via the in situ self-organization (SO) of an interfacial modification material Phen-NaDPO onto tin oxide (SnO2). During the device fabrication, Phen-NaDPO is spin-coated with the active materials all together on SnO2. Driven by the interactions with SnO2 and the thermodynamic forces due to its high surface energy and the convection flow, Phen-NaDPO spontaneously migrates to the SnO2 interface, resulting in the formation of an in situ modification layer on SnO2. This self-organization of Phen-NaDPO not only effectively reduces the work function of SnO2, but also enhances the ordered molecular stacking and manipulates the vertical morphology of the active layer, which suppress the surface trap-assisted recombination and minimize the charge extraction. As a result, the SO devices based on PM6:Y6 exhibit significantly improved photovoltaic performance with an enhanced power conversion efficiency of 17.62%. Moreover, the stability of the SO device is also improved. Furthermore, the SO ternary devices based on PM6:D18:L8-BO achieved an impressive PCE of 18.87%, standing as one of the highest values for single-junction inverted organic solar cells to date.
Collapse
Affiliation(s)
- Jifa Wu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Yumeng Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Feng Tang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Yinchun Guo
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Guoqiang Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Shaoguang Wu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Bin Hu
- Frontier Institute of Science and Technology, and State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yuang Fu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, and State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Zhicai He
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Xuhui Zhu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Xiaobin Peng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| |
Collapse
|
18
|
Chen Q, Bian Z, Yang Y, Cui X, Jeffreys C, Xu X, Li W, Liu Y, Heeney M, Bo Z. Hierarchical Solid-Additive Strategy for Achieving Layer-by-Layer Organic Solar Cells with Over 19 % Efficiency. Angew Chem Int Ed Engl 2024; 63:e202405949. [PMID: 38871648 DOI: 10.1002/anie.202405949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Layer-by-layer (LbL) deposition of active layers in organic solar cells (OSCs) offers immense potential for optimizing performance through precise tailoring of each layer. However, achieving high-performance LbL OSCs with distinct solid additives in each layer remains challenging. In this study, we explore a novel approach that strategically incorporates different solid additives into specific layers of LbL devices. To this end, we introduce FeCl3 into the lower donor (D18) layer as a p-type dopant to enhance hole concentration and mobility. Concurrently, we incorporate the wide-band gap conjugated polymer poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) into the upper acceptor (L8-BO) layer to improve the morphology and prolong exciton lifetime. Unlike previous studies, our approach combines these two strategies to achieve higher and more balanced electron and hole mobility without affecting device open-circuit voltage, while also suppressing charge recombination. Consequently, the power conversion efficiency (PCE) of the D18+FeCl3/L8-BO device increases to 18.12 %, while the D18/L8-BO+PFO device attains a PCE of 18.79 %. These values represent substantial improvements over the control device's PCE of 17.59 %. Notably, when both FeCl3 and PFO are incorporated, the D18+FeCl3/L8-BO+PFO device achieves a remarkable PCE of 19.17 %. In summary, our research results demonstrate the effectiveness of the layered solid additive strategy in improving OSC performance.
Collapse
Affiliation(s)
- Qiaoling Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ziqing Bian
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yujie Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xinyue Cui
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| | - Charles Jeffreys
- KAUST Solar Centre, King Abdullah University of Science & Technology (KAUST), Thuwal, 239556900, Saudi Arabia
| | - Xinjun Xu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenhua Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuqiang Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| | - Martin Heeney
- KAUST Solar Centre, King Abdullah University of Science & Technology (KAUST), Thuwal, 239556900, Saudi Arabia
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
19
|
Saifi S, Xiao X, Cheng S, Guo H, Zhang J, Müller-Buschbaum P, Zhou G, Xu X, Cheng HM. An ultraflexible energy harvesting-storage system for wearable applications. Nat Commun 2024; 15:6546. [PMID: 39095398 PMCID: PMC11297324 DOI: 10.1038/s41467-024-50894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The swift progress in wearable technology has accentuated the need for flexible power systems. Such systems are anticipated to exhibit high efficiency, robust durability, consistent power output, and the potential for effortless integration. Integrating ultraflexible energy harvesters and energy storage devices to form an autonomous, efficient, and mechanically compliant power system remains a significant challenge. In this work, we report a 90 µm-thick energy harvesting and storage system (FEHSS) consisting of high-performance organic photovoltaics and zinc-ion batteries within an ultraflexible configuration. With a power conversion efficiency surpassing 16%, power output exceeding 10 mW cm-2, and an energy density beyond 5.82 mWh cm-2, the FEHSS can be tailored to meet the power demands of wearable sensors and gadgets. Without cumbersome and rigid components, FEHSS shows immense potential as a versatile power source to advance wearable electronics and contribute toward a sustainable future.
Collapse
Affiliation(s)
- Sakeena Saifi
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Xiao Xiao
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Simin Cheng
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Haotian Guo
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Jinsheng Zhang
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Peter Müller-Buschbaum
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Guangmin Zhou
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Xiaomin Xu
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China.
| | - Hui-Ming Cheng
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
20
|
Chen Z, Guo C, Wang L, Chen C, Cai J, Liu C, Gan Z, Sun Y, Zhou J, Zhou J, Liu D, Wang T, Li W. Electrostatic Potential Design of Solid Additives for Enhanced Molecular Order of Polymer Donor in Efficient Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401050. [PMID: 38511580 DOI: 10.1002/smll.202401050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Polymeric semiconducting materials struggle to achieve fast charge mobility due to low structural order. In this work, five 1H-indene-1,3(2H)dione-benzene structured halogenated solid additives namely INB-5F, INB-3F, INB-1F, INB-1Cl, and INB-1Br with gradually varied electrostatic potential are designed and utilized to regulate the structural order of polymer donor PM6. Molecular dynamics simulations demonstrate that although the dione unit of these additives tends to adsorb on the backbone of PM6, the reduced electrostatic potential of the halogen-substituted benzene can shift the benzene interacting site from alkyl side chains to the conjugated backbone of PM6, not only leading to enhanced π-π stacking in out-of-plane but also arising new π-π stacking in in-plane together with the appearance of multiple backbone stacking in out-of-plane, consequent to the co-existence of face-on and edge-on molecular orientations. This molecular packing transformation further translates to enhanced charge transport and suppressed carrier recombination in their photovoltaics, with a maximum power conversion efficiency of 19.4% received in PM6/L8-BO layer-by-layer deposited organic solar cells.
Collapse
Affiliation(s)
- Zhenghong Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chuanhang Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Liang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chen Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinlong Cai
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chenhao Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zirui Gan
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuandong Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinpeng Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Dan Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
21
|
Zhou Q, Yan C, Li H, Zhu Z, Gao Y, Xiong J, Tang H, Zhu C, Yu H, Lopez SPG, Wang J, Qin M, Li J, Luo L, Liu X, Qin J, Lu S, Meng L, Laquai F, Li Y, Cheng P. Polymer Fiber Rigid Network with High Glass Transition Temperature Reinforces Stability of Organic Photovoltaics. NANO-MICRO LETTERS 2024; 16:224. [PMID: 38888701 PMCID: PMC11189398 DOI: 10.1007/s40820-024-01442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
Organic photovoltaics (OPVs) need to overcome limitations such as insufficient thermal stability to be commercialized. The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology, however, exhibiting limited applicability. Therefore, it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor-acceptor compatibilizers, or by introducing another third component. Herein, a unique approach is presented, based on constructing a polymer fiber rigid network with a high glass transition temperature (Tg) to impede the movement of acceptor and donor molecules, to immobilize the active layer morphology, and thereby to improve thermal stability. A high-Tg one-dimensional aramid nanofiber (ANF) is utilized for network construction. Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart. The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart, thereby leaving fundamental processes such as charge separation, transport, and collection, determining the device efficiency, largely unaltered. This strategy is also successfully applied to other photovoltaic systems. The strategy of incorporating a polymer fiber rigid network with high Tg offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality.
Collapse
Affiliation(s)
- Qiao Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Cenqi Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zhendong Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yujie Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jie Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Hua Tang
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Can Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Hailin Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Sandra P Gonzalez Lopez
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Jiayu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Longbo Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jiaqiang Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Shirong Lu
- Department of Material Science and Technology, Taizhou University, Taizhou, 318000, People's Republic of China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Frédéric Laquai
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Pei Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
22
|
Xu R, Jiang Y, Liu F, Ran G, Liu K, Zhang W, Zhu X. High Open-Circuit Voltage Organic Solar Cells with 19.2% Efficiency Enabled by Synergistic Side-Chain Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312101. [PMID: 38544433 DOI: 10.1002/adma.202312101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Restricted by the energy-gap law, state-of-the-art organic solar cells (OSCs) exhibit relatively low open-circuit voltage (VOC) because of large nonradiative energy losses (ΔEnonrad). Moreover, the trade-off between VOC and external quantum efficiency (EQE) of OSCs is more distinctive; the power conversion efficiencies (PCEs) of OSCs are still <15% with VOCs of >1.0 V. Herein, the electronic properties and aggregation behaviors of non-fullerene acceptors (NFAs) are carefully considered and then a new NFA (Z19) is delicately designed by simultaneously introducing alkoxy and phenyl-substituted alkyl chains to the conjugated backbone. Z19 exhibits a hypochromatic-shifted absorption spectrum, high-lying lowest unoccupied molecular orbital energy level and ordered 2D packing mode. The D18:Z19-based blend film exhibits favorable phase separation with face-on dominated molecular orientation, facilitating charge transport properties. Consequently, D18:Z19 binary devices afford an exciting PCE of 19.2% with a high VOC of 1.002 V, surpassing Y6-2O-based devices. The former is the highest PCE reported to date for OSCs with VOCs of >1.0 V. Moreover, the ΔEnonrad of Z19- (0.200 eV) and Y6-2O-based (0.155 eV) devices are lower than that of Y6-based (0.239 eV) devices. Indications are that the design of such NFA, considering the energy-gap law, could promote a new breakthrough in OSCs.
Collapse
Affiliation(s)
- Renjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanyuan Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, P. R. China
| | - Kerui Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Zhang C, Zhong X, Sun X, Lv J, Ji Y, Fu J, Zhao C, Yao Y, Zhang G, Deng W, Wang K, Li G, Hu H. Designing a Novel Wide Bandgap Small Molecule Guest for Enhanced Stability and Morphology Mediation in Ternary Organic Solar Cells with over 19.3% Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401313. [PMID: 38569518 PMCID: PMC11187928 DOI: 10.1002/advs.202401313] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Indexed: 04/05/2024]
Abstract
In this study, a novel wide-bandgap small molecule guest material, ITOA, designed and synthesized for fabricating efficient ternary organic solar cells (OSCs) ITOA complements the absorbance of the PM6:Y6 binary system, exhibiting strong crystallinity and modest miscibility. ITOA optimizes the morphology by promoting intensive molecular packing, reducing domain size, and establishing a preferred vertical phase distribution. These features contribute to improved and well-balanced charge transport, suppressed carrier recombination, and efficient exciton dissociation. Consequently, a significantly enhanced efficiency of 18.62% for the ternary device is achieved, accompanied by increased short-circuit current density (JSC), fill factor (FF), and open-circuit voltage (VOC). Building on this success, replacing Y6 with BTP-eC9 leads to an outstanding PCE of 19.33% for the ternary OSCs. Notably, the introduction of ITOA expedites the formation of the optimized morphology, resulting in an impressive PCE of 18.04% for the ternary device without any postprocessing. Moreover, the ternary device exhibits enhanced operational stability under maximum power point (MPP) tracking. This comprehensive study demonstrates that a rationally designed guest molecule can optimize morphology, reduce energy loss, and streamline the fabrication process, essential for achieving high efficiency and stability in OSCs, paving the way for practical commercial applications.
Collapse
Affiliation(s)
- Chenyang Zhang
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic UniversityShenzhenGuangdong518055China
- Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'anShaanxi710072China
| | - Xiuzun Zhong
- Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'anShaanxi710072China
| | - Xiaokang Sun
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic UniversityShenzhenGuangdong518055China
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| | - Jie Lv
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic UniversityShenzhenGuangdong518055China
| | - Yaxiong Ji
- Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
| | - Jiehao Fu
- Department of Electronic and Information EngineeringResearch Institute for Smart Energy (RISE)The Hong Kong Polytechnic UniversityHong KongKowloon999077China
| | - Chaoyue Zhao
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhenGuangdong518118China
| | - Yiguo Yao
- Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'anShaanxi710072China
| | - Guangye Zhang
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhenGuangdong518118China
| | - Wanyuan Deng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhouGuangdong510641China
| | - Kai Wang
- Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'anShaanxi710072China
| | - Gang Li
- Department of Electronic and Information EngineeringResearch Institute for Smart Energy (RISE)The Hong Kong Polytechnic UniversityHong KongKowloon999077China
| | - Hanlin Hu
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic UniversityShenzhenGuangdong518055China
| |
Collapse
|
24
|
Kirk BP, Bjuggren JM, Andersson GG, Dastoor P, Andersson MR. Printing and Coating Techniques for Scalable Organic Photovoltaic Fabrication. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2511. [PMID: 38893776 PMCID: PMC11173114 DOI: 10.3390/ma17112511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Within recent years, there has been an increased interest towards organic photovoltaics (OPVs), especially with their significant device performance reaching beyond 19% since 2022. With these advances in the device performance of laboratory-scaled OPVs, there has also been more attention directed towards using printing and coating methods that are compatible with large-scale fabrication. Though large-area (>100 cm2) OPVs have reached an efficiency of 15%, this is still behind that of laboratory-scale OPVs. There also needs to be more focus on determining strategies for improving the lifetime of OPVs that are suitable for scalable manufacturing, as well as methods for reducing material and manufacturing costs. In this paper, we compare several printing and coating methods that are employed to fabricate OPVs, with the main focus towards the deposition of the active layer. This includes a comparison of performances at laboratory (<1 cm2), small (1-10 cm2), medium (10-100 cm2), and large (>100 cm2) active area fabrications, encompassing devices that use scalable printing and coating methods for only the active layer, as well as "fully printed/coated" devices. The article also compares the research focus of each of the printing and coating techniques and predicts the general direction that scalable and large-scale OPVs will head towards.
Collapse
Affiliation(s)
- Bradley P. Kirk
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia
| | - Jonas M. Bjuggren
- Centre for Organic Electronics, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Gunther G. Andersson
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia
| | - Paul Dastoor
- Centre for Organic Electronics, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Mats R. Andersson
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia
| |
Collapse
|
25
|
Pang S, Liu X, Pan L, Oh J, Yang C, Duan C. Chalcogen Atoms Regulate the Organic Solar Cell Performance of B-N-Based Polymer Donors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22265-22273. [PMID: 38637913 DOI: 10.1021/acsami.4c01987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Donor polymers play a key role in the development of organic solar cells (OSCs). B-N-based polymer donors, as new types of materials, have attracted a lot of attention due to their special characteristics, such as high E(T1), small ΔEST, and easy synthesis, and they can be processed with real green solvents. However, the relationship between the chemical structure and device performance has not been systematically studied. Herein, chalcogen atoms that regulate the OSCs performance of B-N-based polymer donors were systematically studied. Fortunately, the substitution of a halogen atom did not affect the high E(T1) and small ΔEST character of the B-N-based polymer. The absorption and energy levels of the polymer were systematically regulated by O, S, and Se atom substitution. The PBNT-TAZ:Y6-BO-based OSCs device demonstrated a high power conversion efficiency of 15.36%. Moreover, the layer-by-layer method was applied to further optimize the device performance, and the PBNT-TAZ/Y6-BO-based OSCs device yielded a PCE of 16.34%. Consequently, we have systematically demonstrated how chalcogen atoms modulated the electronic properties of B-N-based polymers. Detailed and systematic structure-performance relationships are important for the development of next-generation B-N-based materials.
Collapse
Affiliation(s)
- Shuting Pang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xinyuan Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Langheng Pan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jiyeon Oh
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
26
|
Lai S, Cui Y, Chen Z, Xia X, Zhu P, Shan S, Hu L, Lu X, Zhu H, Liao X, Chen Y. Impact of Electrostatic Interaction on Vertical Morphology and Energy Loss in Efficient Pseudo-Planar Heterojunction Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313105. [PMID: 38279607 DOI: 10.1002/adma.202313105] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Although a suitable vertical phase separation (VPS) morphology is essential for improving charge transport efficiency, reducing charge recombination, and ultimately boosting the efficiency of organic solar cells (OSCs), there is a lack of theoretical guidance on how to achieve the ideal morphology. Herein, a relationship between the molecular structure and the VPS morphology of pseudo-planar heterojunction (PPHJ) OSCs is established by using molecular surface electrostatic potential (ESP) as a bridge. The morphological evolution mechanism is revealed by studying four binary systems with vary electrostatic potential difference (∆ESP) between donors (Ds) and acceptors (As). The findings manifest that as ∆ESP increases, the active layer is more likely to form a well-mixed phase, while a smaller ∆ESP favors VPS morphology. Interestingly, it is also observed that a larger ∆ESP leads to enhanced miscibility between Ds and As, resulting in higher non-radiative energy losses (ΔE3). Based on these discoveries, a ternary PPHJ device is meticulously designed with an appropriate ∆ESP to obtain better VPS morphology and lower ΔE3, and an impressive efficiency of 19.09% is achieved. This work demonstrates that by optimizing the ΔESP, not only the formation of VPS morphology can be controlled, but also energy losses can be reduced, paving the way to further boost OSC performance.
Collapse
Affiliation(s)
- Shiting Lai
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Yongjie Cui
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Zeng Chen
- State Key Laboratory of Modern Optical Instrumentation Key Laboratory of Excited State Materials of Zhejiang Province Department of Chemistry, Zhejiang University Hangzhou, Zhejiang, 310027, China
| | - Xinxin Xia
- Department of Physics Chinese University of Hong Kong New Territories, Hong Kong, 999077, China
| | - Peipei Zhu
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Shiyu Shan
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Lin Hu
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, Jiaxing, 314001, China
| | - Xinhui Lu
- Department of Physics Chinese University of Hong Kong New Territories, Hong Kong, 999077, China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation Key Laboratory of Excited State Materials of Zhejiang Province Department of Chemistry, Zhejiang University Hangzhou, Zhejiang, 310027, China
| | - Xunfan Liao
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Yiwang Chen
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
27
|
Yi F, Xiao M, Meng Y, Bai H, Su W, Gao W, Yao ZF, Qi G, Liang Z, Jin C, Tang L, Zhang R, Yan L, Liu Y, Zhu W, Ma W, Fan Q. Non-Fully Conjugated Dimerized Giant Acceptors with Different Alkyl-Linked Sites for Stable and 19.13 % Efficiency Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202319295. [PMID: 38335036 DOI: 10.1002/anie.202319295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Achieving both high power conversion efficiency (PCE) and device stability is a major challenge for the practical development of organic solar cells (OSCs). Herein, three non-fully conjugated dimerized giant acceptors (named 2Y-sites, including wing-site-linked 2Y-wing, core-site-linked 2Y-core, and end-site-linked 2Y-end) are developed. They share the similar monomer precursors but have different alkyl-linked sites, offering the fine-tuned molecular absorption, packing, glass transition temperature, and carrier mobility. Among their binary active layers, D18/2Y-wing has better miscibility, leading to optimized morphology and more efficient charge transfer compared to D18/2Y-core and D18/2Y-end. Therefore, the D18/2Y-wing-based OSCs achieve a superior PCE of 17.73 %, attributed to enhanced photocurrent and fill factor. Furthermore, the D18/2Y-wing-based OSCs exhibit a balance of high PCE and improved stability, distinguishing them within the 2Y-sites. Building on the success of 2Y-wing in binary systems, we extend its application to ternary OSCs by pairing it with the near-infrared absorbing D18/BS3TSe-4F host. Thanks to the complementary absorption within 300-970 nm and further optimized morphology, ternary OSCs obtain a higher PCE of 19.13 %, setting a new efficiency benchmark for the dimer-derived OSCs. This approach of alkyl-linked site engineering for constructing dimerized giant acceptors presents a promising pathway to improve both PCE and stability of OSCs.
Collapse
Affiliation(s)
- Fan Yi
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, 411105
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Manjun Xiao
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, 411105
| | - Yongdie Meng
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, 411105
| | - Hairui Bai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenyan Su
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Wei Gao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ze-Fan Yao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi, Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Conggui Jin
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, 411105
| | - Lingxiao Tang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi, Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weiguo Zhu
- Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
28
|
Gao Y, Xiao Z, Cui M, Saidaminov MI, Tan F, Shang L, Li W, Qin C, Ding L. Asymmetric Π-Bridge Engineering Enables High-Permittivity Benzo[1,2-B:4,5-b']Difuran-Conjugated Polymer for Efficient Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306373. [PMID: 37703387 DOI: 10.1002/adma.202306373] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Organic solar cells (OSCs) exhibit complex charge dynamics, which are closely correlated with the dielectric constant (ɛr ) of photovoltaic materials. In this work, a series of novel conjugated copolymers based on benzo[1,2-b:4,5-b']difuran (BDF) and benzotriazole (BTz) is designed and synthesized, which differ by the nature of π-bridge from one another. The PBDF-TF-BTz with asymmetric furan and thiophene π-bridge demonstrates a larger ɛr of 4.22 than PBDF-dT-BTz with symmetric thiophene π-bridge (3.15) and PBDF-dF-BTz with symmetric furan π-bridge (3.90). The PBDF-TF-BTz also offers more favorable molecular packing and appropriate miscibility with non-fullerene acceptor Y6 than its counterparts. The corresponding PBDF-TF-BTz:Y6 OSCs display efficient exciton dissociation, fast charge transport and collection, and reduced charge recombination, eventually leading to a power conversion efficiency of 17.01%. When introducing a fullerene derivative (PCBO-12) as a third component, the PBDF-TF-BTz:Y6:PCBO-12 OSCs yield a remarkable FF of 80.11% with a high efficiency of 18.10%, the highest value among all reported BDF-polymer-based OSCs. This work provides an effective approach to developing high-permittivity photovoltaic materials, showcasing PBDF-TF-BTz as a promising polymer donor for constructing high-performance OSCs.
Collapse
Affiliation(s)
- Yueyue Gao
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng, 475004, P. R. China
| | - Zuo Xiao
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Minghuan Cui
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Makhsud I Saidaminov
- Department of Chemistry, Department of Electrical & Computer Engineering and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, British Columbia, V8P 5C2, Victoria, 3010, Canada
| | - Furui Tan
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng, 475004, P. R. China
| | - Luwen Shang
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng, 475004, P. R. China
| | - Wanpeng Li
- Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Kaifeng, 475004, P. R. China
| | - Chaochao Qin
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
29
|
Feng W, Chen T, Li Y, Duan T, Jiang X, Zhong C, Zhang Y, Yu J, Lu G, Wan X, Kan B, Chen Y. Binary All-polymer Solar Cells with a Perhalogenated-Thiophene-Based Solid Additive Surpass 18 % Efficiency. Angew Chem Int Ed Engl 2024; 63:e202316698. [PMID: 38169129 DOI: 10.1002/anie.202316698] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Morphological control of all-polymer blends is quintessential yet challenging in fabricating high-performance organic solar cells. Recently, solid additives (SAs) have been approved to be capable in tuning the morphology of polymer: small-molecule blends improving the performance and stability of devices. Herein, three perhalogenated thiophenes, which are 3,4-dibromo-2,5-diiodothiophene (SA-T1), 2,5-dibromo-3,4-diiodothiophene (SA-T2), and 2,3-dibromo-4,5-diiodothiophene (SA-T3), were adopted as SAs to optimize the performance of all-polymer organic solar cells (APSCs). For the blend of PM6 and PY-IT, benefitting from the intermolecular interactions between perhalogenated thiophenes and polymers, the molecular packing properties could be finely regulated after introducing these SAs. In situ UV/Vis measurement revealed that these SAs could assist morphological character evolution in the all-polymer blend, leading to their optimal morphologies. Compared to the as-cast device of PM6 : PY-IT, all SA-treated binary devices displayed enhanced power conversion efficiencies of 17.4-18.3 % with obviously elevated short-circuit current densities and fill factors. To our knowledge, the PCE of 18.3 % for SA-T1-treated binary ranks the highest among all binary APSCs to date. Meanwhile, the universality of SA-T1 in other all-polymer blends is demonstrated with unanimously improved device performance. This work provide a new pathway in realizing high-performance APSCs.
Collapse
Affiliation(s)
- Wanying Feng
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350, Tianjin, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Tianqi Chen
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350, Tianjin, China
| | - Yulu Li
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, 400714, Chongqing, China
| | - Tainan Duan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, 400714, Chongqing, China
| | - Xue Jiang
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, 400714, Chongqing, China
| | - Cheng Zhong
- Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Yunxin Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350, Tianjin, China
| | - Jifa Yu
- Institute of Science and Technology, Xi'an Jiaotong University, 710054, Xi'an, China
| | - Guanghao Lu
- Institute of Science and Technology, Xi'an Jiaotong University, 710054, Xi'an, China
| | - Xiangjian Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350, Tianjin, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
30
|
Cai Z, Hu R, Xiao Z, Feng J, Zou X, Wen G, Dong G, Zhang W. Charge photogeneration dynamics in non-fullerene polymer solar cells with fluorinated and non-fluorinated acceptors. J Chem Phys 2024; 160:074702. [PMID: 38364001 DOI: 10.1063/5.0177876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
In this work, charge photogeneration and recombination processes of PM6:IDIC-4F and PM6:IDIC blend films were investigated by the steady-state and time-resolved spectroscopies, as well as the time-dependent density functional theory calculations. The peaks in absorption and photoluminescence (PL) spectra of IDIC and IDIC-4F solutions were assigned by combining the experiment and the simulation of UV-vis absorption and PL spectra. For neat acceptor films, the exciton diffusion length of neat IDIC and IDIC-4F films was estimated as ∼28.9 and ∼19.9 nm, respectively. For PM6-based blend films, we find that the fluorine substitution engineering on the IDIC acceptor material can increase the phase separate size of acceptor material in blend films, resulting in the reduction of dissociation efficiencies of acceptor excitons. In addition, we find that the charge recombination in PM6:IDIC-4F is dominated by bimolecular recombination, in comparison to geminate type carrier recombination in PM6:IDIC blend films. In addition, we find that thermal annealing treatment has a weak influence on carrier recombination but slightly reduces the exciton dissociation efficiency of acceptor in PM6:IDIC blend films, leading to a slightly reduced power conversion efficiency of PM6:IDIC solar cells. These results may shed light on the design of high-performance semiconductor molecules for application in solar cells.
Collapse
Affiliation(s)
- Zekai Cai
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Rong Hu
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zijie Xiao
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Junyi Feng
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Xianshao Zou
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao CN-266 000, China
- Division of Chemical Physics, Lund University, 221 00 Lund, Sweden
| | - Guanzhao Wen
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou 510006, China
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
31
|
Waketola AG, Hone FG, Geldasa FT, Genene Z, Mammo W, Tegegne NA. Enhancing the Performance of Wide-Bandgap Polymer-Based Organic Solar Cells through Silver Nanorod Integration. ACS OMEGA 2024; 9:8082-8091. [PMID: 38405528 PMCID: PMC10882593 DOI: 10.1021/acsomega.3c08386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/27/2024]
Abstract
Light trapping induced by the introduction of metallic nanoparticles has been shown to improve photo absorption in organic solar cells (OSCs). Researchers in the fields of plasmonics and organic photovoltaics work together to boost sunlight absorption and photon-electron interactions in order to improve device performance. In this contribution, an inverted OSC was fabricated by using indacenodithieno[3,2-b]thiophene-alt-2,2'-bithiazole (PIDTT-BTz) as a wide-band gap donor copolymer and (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) as an acceptor. Silver nanorods (Ag-NRs), synthesized by precipitation method, were embedded in the active layer of the solar cell. The device fabricated with 1 wt % Ag-NRs in the active layer showed a 26% improvement in power conversion efficiency (PCE) when exposed to 100 mW/cm2 simulated solar illumination. The role of Ag-NRs in the performance improvement of the OSCs was analyzed systematically using morphological, electrical, and optical characterization methods. The light trapping and exciton generation were improved due to the localized surface plasmon resonance (LSPR) activated in Ag-NRs in the form of longitudinal and transverse modes. The photoactive layers (PIDTT-BTz:PC71BM) with the incorporation of 0.5 and 1 wt % Ag-NR showed increased absorption, while the absorption with 1.5 wt % Ag-NRs appeared to be reduced in the wavelength range from 400 to 580 nm. Ag-NRs play a favorable role in exciton photogeneration and dissociation due to the two LSPR modes generated by the Ag-NRs. In the optimized device, the short-circuit current density (JSC) increased from 11.92 to 14.25 mA/cm2, resulting in an increase in the PCE from 3.94 to 4.93%, which is attributed to the improved light-trapping by LSPR using Ag-NRs.
Collapse
Affiliation(s)
- Alemayehu G. Waketola
- Department
Physics Education, Kotebe University of
Education, Addis
Ababa 31248, Ethiopia
- Department
of Physics, Addis Ababa University, Addis Ababa 1176, Ethiopia
| | - Fekadu G. Hone
- Department
of Physics, Addis Ababa University, Addis Ababa 1176, Ethiopia
| | - Fikadu T. Geldasa
- Department
of Applied Physics, Adama Science and Technology
University, P.O. Box 1888, Adama 302120, Ethiopia
| | - Zewdneh Genene
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Goteborg SE412 96, Sweden
| | - Wendimagegn Mammo
- Department
of Chemistry, Addis Ababa University, Addis Ababa 33658, Ethiopia
| | | |
Collapse
|
32
|
Zheng X, Wu X, Wu Q, Han Y, Ding G, Wang Y, Kong Y, Chen T, Wang M, Zhang Y, Xue J, Fu W, Luo Q, Ma C, Ma W, Zuo L, Shi M, Chen H. Thorough Optimization for Intrinsically Stretchable Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307280. [PMID: 38100730 DOI: 10.1002/adma.202307280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/27/2023] [Indexed: 12/17/2023]
Abstract
The development of intrinsically stretchable organic photovoltaics (is-OPVs) with a high efficiency is of significance for practical application. However, their efficiencies lag far behind those of rigid or even flexible counterparts. To address this issue, an advanced top-illuminated OPV is designed and fabricated, which is intrinsically stretchable and has a high performance, through systematic optimizations from material to device. First, the stretchability of the active layer is largely increased by adding a low-elastic-modulus elastomer of styrene-ethylene-propylene-styrene tri-block copolymer (SEPS). Second, the stretchability and conductivity of the opaque electrode are enhanced by a conductive polymer/metal (denoted as M-PH1000@Ag) composite electrode strategy. Third, the optical and electrical properties of a sliver nanowire transparent electrode are improved by a solvent vapor annealing strategy. High-performance is-OPVs are successfully fabricated with a top-illuminated structure, which provides a record-high efficiency of 16.23%. Additionally, by incorporating 5-10% elastomer, a balance between the efficiency and stretchability of the is-OPVs is achieved. This study provides valuable insights into material and device optimizations for high-efficiency is-OPVs, with a low-cost production and excellent stretchability, which indicates a high potential for future applications of OPVs.
Collapse
Affiliation(s)
- Xiangjun Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaoling Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qiang Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yunfei Han
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Guanyu Ding
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yiming Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yibo Kong
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tianyi Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Mengting Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yiqing Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Weifei Fu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310014, P. R. China
| | - Qun Luo
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Changqi Ma
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lijian Zuo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310014, P. R. China
| | - Minmin Shi
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310014, P. R. China
| |
Collapse
|
33
|
Zou B, Wu W, Dela Peña TA, Ma R, Luo Y, Hai Y, Xie X, Li M, Luo Z, Wu J, Yang C, Li G, Yan H. Step-by-Step Modulation of Crystalline Features and Exciton Kinetics for 19.2% Efficiency Ortho-Xylene Processed Organic Solar Cells. NANO-MICRO LETTERS 2023; 16:30. [PMID: 37995001 PMCID: PMC10667184 DOI: 10.1007/s40820-023-01241-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/06/2023] [Indexed: 11/24/2023]
Abstract
With plenty of popular and effective ternary organic solar cells (OSCs) construction strategies proposed and applied, its power conversion efficiencies (PCEs) have come to a new level of over 19% in single-junction devices. However, previous studies are heavily based in chloroform (CF) leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component. Herein, we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy, named BTP-BO-3FO with enlarged bandgap, brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9, processed by CF and ortho-xylene (o-XY). With detailed analyses supported by a series of experiments, the best PCE of 19.24% for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif, which furthermore nourishes a favorable charge generation and recombination behavior. Likewise, over 19% PCE can be achieved by replacing spin-coating with blade coating for active layer deposition. This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance, hence, will be instructive to other ternary OSC works in the future.
Collapse
Affiliation(s)
- Bosen Zou
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China
| | - Weiwei Wu
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China
| | - Top Archie Dela Peña
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, NanshaGuangzhou, 511400, People's Republic of China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Ruijie Ma
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, People's Republic of China.
| | - Yongmin Luo
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, NanshaGuangzhou, 511400, People's Republic of China
| | - Yulong Hai
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, NanshaGuangzhou, 511400, People's Republic of China
| | - Xiyun Xie
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, People's Republic of China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Zhenghui Luo
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Jiaying Wu
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, NanshaGuangzhou, 511400, People's Republic of China.
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Gang Li
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China
| | - He Yan
- Department of Chemistry Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China.
| |
Collapse
|
34
|
Bai H, Ma R, Su W, Peña TAD, Li T, Tang L, Yang J, Hu B, Wang Y, Bi Z, Su Y, Wei Q, Wu Q, Duan Y, Li Y, Wu J, Ding Z, Liao X, Huang Y, Gao C, Lu G, Li M, Zhu W, Li G, Fan Q, Ma W. Green-Solvent Processed Blade-Coating Organic Solar Cells with an Efficiency Approaching 19% Enabled by Alkyl-Tailored Acceptors. NANO-MICRO LETTERS 2023; 15:241. [PMID: 37917278 PMCID: PMC10622389 DOI: 10.1007/s40820-023-01208-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/09/2023] [Indexed: 11/04/2023]
Abstract
Power-conversion-efficiencies (PCEs) of organic solar cells (OSCs) in laboratory, normally processed by spin-coating technology with toxic halogenated solvents, have reached over 19%. However, there is usually a marked PCE drop when the blade-coating and/or green-solvents toward large-scale printing are used instead, which hampers the practical development of OSCs. Here, a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused end-group. Thanks to the N-alkyl engineering, NIR-absorbing YR-SeNF series show different crystallinity, packing patterns, and miscibility with polymeric donor. The studies exhibit that the molecular packing, crystallinity, and vertical distribution of active layer morphologies are well optimized by introducing newly designed guest acceptor associated with tailored N-alkyl chains, providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YR-SeNF-based OSCs. As a result, a record-high PCE approaching 19% is achieved in the blade-coating OSCs fabricated from a green-solvent o-xylene with high-boiling point. Notably, ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep > 80% of the initial PCEs for even over 400 h. Our alkyl-tailored guest acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs, which paves a way for industrial development.
Collapse
Affiliation(s)
- Hairui Bai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Ruijie Ma
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, People's Republic of China.
| | - Wenyan Su
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
| | - Top Archie Dela Peña
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, People's Republic of China
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, People's Republic of China
| | - Tengfei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Lingxiao Tang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jie Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Bin Hu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, People's Republic of China
| | - Yilin Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yueling Su
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Qi Wei
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, People's Republic of China
| | - Qiang Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Yuwei Duan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Yuxiang Li
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| | - Jiaying Wu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, People's Republic of China
| | - Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Xunfan Liao
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, People's Republic of China
| | - Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Chao Gao
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, People's Republic of China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, People's Republic of China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, People's Republic of China
| | - Weiguo Zhu
- Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Gang Li
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, People's Republic of China.
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China.
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, People's Republic of China.
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
35
|
Gan Z, Wang L, Cai J, Guo C, Chen C, Li D, Fu Y, Zhou B, Sun Y, Liu C, Zhou J, Liu D, Li W, Wang T. Electrostatic force promoted intermolecular stacking of polymer donors toward 19.4% efficiency binary organic solar cells. Nat Commun 2023; 14:6297. [PMID: 37813902 PMCID: PMC10562425 DOI: 10.1038/s41467-023-42071-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Conjugated polymers are generally featured with low structural order due to their aromatic and irregular structural units, which limits their light absorption and charge mobility in organic solar cells. In this work, we report a conjugated molecule INMB-F that can act as a molecular bridge via electrostatic force to enhance the intermolecular stacking of BDT-based polymer donors toward efficient and stable organic solar cells. Molecular dynamics simulations and synchrotron X-ray measurements reveal that the electronegative INMB-F adsorb on the electropositive main chain of polymer donors to increase the donor-donor interactions, leading to enhanced structural order with shortened π-π stacking distance and consequently enhanced charge transport ability. Casting the non-fullerene acceptor layer on top of the INMB-F modified donor layer to fabricate solar cells via layer-by-layer deposition evidences significant power conversion efficiency boosts in a range of photovoltaic systems. A power conversion efficiency of 19.4% (certified 18.96%) is realized in PM6/L8-BO binary devices, which is one of the highest reported efficiencies of this material system. The enhanced structural order of polymer donors by INMB-F also leads to a six-fold enhancement of the operational stability of PM6/L8-BO organic solar cells.
Collapse
Affiliation(s)
- Zirui Gan
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Liang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Jinlong Cai
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Chuanhang Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Chen Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Donghui Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Yiwei Fu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Bojun Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Yuandong Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Chenhao Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Jing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Dan Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China.
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, China.
| |
Collapse
|
36
|
Su M, Lin M, Mo S, Chen J, Shen X, Xiao Y, Wang M, Gao J, Dang L, Huang XC, He F, Wu Q. Manipulating the Alkyl Chains of Naphthodithiophene Imide-Based Polymers to Concurrently Boost the Efficiency and Stability of Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37371-37380. [PMID: 37515570 DOI: 10.1021/acsami.3c05668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Morphology instability holds the major responsibility for efficiency degradation of organic solar cells (OSCs). However, how to develop polymer donors simultaneously with high efficiency and excellent morphology stability remains challenging. Herein, we reported naphtho[2,1-b:3,4-b']dithiophene-5,6-imide (NDTI)-based new polymers PNDT1 and PNDT2. The alkyl chain engineering leads to high crystallinity, high hole mobility (>10-3 cm2 V-1 S-1), and nanofibrous film morphology, which enable PNDT2 to exhibit an efficiency of 18.13% and a remarkable FF value of 0.80. Moreover, the NDTIs have short π-π stacking and abundant short interactions, and their polymers exhibit superior morphological stability. Therefore, the PNDT2-based OSCs exhibit much better device stability than that of PNDT1, PAB-α, and benchmark polymers PM6 and D18. This work suggests the great importance of the large conjugated backbone of the monomer and alkyl chain engineering to develop high-performance and morphology-stable polymers for OSCs.
Collapse
Affiliation(s)
- Mingbin Su
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Man Lin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Songmin Mo
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Jinming Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Xiangyu Shen
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yonghong Xiao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Meijiang Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Jinping Gao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
- Chemistry and Chemical Engineering, Guangdong Laboratory, Shantou 515063, China
| | - Feng He
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Qinghe Wu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
- Chemistry and Chemical Engineering, Guangdong Laboratory, Shantou 515063, China
| |
Collapse
|
37
|
Wang J, Cui Y, Chen Z, Zhang J, Xiao Y, Zhang T, Wang W, Xu Y, Yang N, Yao H, Hao XT, Wei Z, Hou J. A Wide Bandgap Acceptor with Large Dielectric Constant and High Electrostatic Potential Values for Efficient Organic Photovoltaic Cells. J Am Chem Soc 2023. [PMID: 37311087 DOI: 10.1021/jacs.3c01634] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low-bandgap materials have achieved rapid development and promoted the enhancement of power conversion efficiencies (PCEs) of organic photovoltaic (OPV) cells. However, the design of wide-bandgap non-fullerene acceptors (WBG-NFAs), required by indoor applications and tandem cells, has been lagging far behind the development of OPV technologies. Here, we designed and synthesized two NFAs named ITCC-Cl and TIDC-Cl by finely optimizing ITCC. In contrast with ITCC and ITCC-Cl, TIDC-Cl can maintain a wider bandgap and a higher electrostatic potential simultaneously. When blending with the donor PB2, the highest dielectric constant is also obtained in TIDC-Cl-based films, enabling efficient charge generation. Therefore, the PB2:TIDC-Cl-based cell possessed a high PCE of 13.8% with an excellent fill factor (FF) of 78.2% under the air mass 1.5G (AM 1.5G) condition. Furthermore, an exciting PCE of 27.1% can be accomplished in the PB2:TIDC-Cl system under the illumination of 500 lux (2700 K light-emitting diode). Combined with the theoretical simulation, the tandem OPV cell based on TIDC-Cl was fabricated and exhibited an excellent PCE of 20.0%.
Collapse
Affiliation(s)
- Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yang Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Xu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ni Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifeng Yao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Zhixiang Wei
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|