1
|
Wang Y, Zhao Y, Ma Y, Wang D. Controlled Chemical Vapor Deposition and Modification of Carbon Layers inside Quartz Nanopipettes. Anal Chem 2024; 96:19933-19938. [PMID: 39644224 DOI: 10.1021/acs.analchem.4c03875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Carbon nanopipettes (CNPs) have attracted much attention in nanoscale electrochemical applications recently, while the carbon structure and surface oxygen-containing groups limit its applications. Herein, we grow the carbon nanotubes (CNTs) inside the quartz nanopipet via the chemical vapor deposition method, and the fabricated carbon nanotube nanopipettes (CNT-NPs) exhibit better electrochemical responses toward biomolecules such as glutathione and ascorbic acid, compared to the conventional CNPs. In addition, the carbon nanopipette can also be easily doped by a chemical reaction with urea, to display positive surface charges and high electrochemical activity for H2O2 oxidation/reduction. This work provides an easy way to tailor the surface structure and charges of the deposited carbon inside the pipettes and thus would further promote its broader usage in electrochemical sensing applications in biological fields.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| | - Yingjie Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| | - Yingfei Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, P. R. China
| |
Collapse
|
2
|
Li X, Tong T, Zhang L, Yu Y, Zou M, Yi D, Qian L, Gao X, Zhang J. Controlled Growth of Single-Walled Carbon Nanotube Films by Iron-assisted Floating Solid Catalyst Chemical Vapor Deposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402839. [PMID: 39434485 DOI: 10.1002/smll.202402839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Indexed: 10/23/2024]
Abstract
Single-walled carbon nanotube (SWNT) films, with exciting electronic properties are increasingly important for next-generation technologies. Here, an Iron-assisted floating solid catalyst chemical vapor deposition (IA-FSCCVD) method is developed for the controlled growth of high-quality and high-purity SWNT films. Titanium carbide nanoparticles with a high melting point are used as the solid catalysts, which provide a stable template for SWNT growth through the perpendicular growth mode. Trace amounts of iron are introduced to increase the efficiency of SWNT growth. Gas chromatography measurements and density functional theory show that the gas-phase iron acts as a pre-cracking assistance for the carbon source, promoting the growth of SWNTs. Carbon nanotube films with a high quality (average IG/ID = 166) are successfully prepared, a small diameter deviation (mean diameter of 1.6 nm), and a high content of SWNTs (97%) using the IA-FSCCVD platform. This work provides a powerful way to prepare the carbon nanotube aggregates with a controlled structure.
Collapse
Affiliation(s)
- Xiaodan Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Tianze Tong
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Liya Zhang
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Yue Yu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Mingzhi Zou
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ding Yi
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Liu Qian
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xin Gao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
3
|
Chen S, Chen Y, Xu H, Lyu M, Zhang X, Han Z, Liu H, Yao Y, Xu C, Sheng J, Xu Y, Gao L, Gao N, Zhang Z, Peng LM, Li Y. Single-walled carbon nanotubes synthesized by laser ablation from coal for field-effect transistors. MATERIALS HORIZONS 2023; 10:5185-5191. [PMID: 37724683 DOI: 10.1039/d3mh01053h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been attracting extensive attention due to their excellent properties. We have developed a strategy of using coal to synthesize SWCNTs for high performance field-effect transistors (FETs). The high-quality SWCNTs were synthesized by laser ablation using only coal as the carbon source and Co-Ni as the catalyst. We show that coal is a carbon source superior to graphite with higher yield and better selectivity toward SWCNTs with smaller diameters. Without any pre-purification, the as-prepared SWCNTs were directly sorted based on their conductivity and diameter using either aqueous two-phase extraction or organic phase extraction with PCz (poly[9-(1-octylonoyl)-9H-carbazole-2,7-diyl]). The semiconducting SWCNTs sorted by one-step PCz extraction were used to fabricate thin film FETs. The transformation of coal into FETs (and further integrated circuits) demonstrates an efficient way of utilizing natural resources and a marvelous example in green carbon technology. Considering its short steps and high feasibility, it presents great potential in future practical applications not limited to electronics.
Collapse
Affiliation(s)
- Shaochuang Chen
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yuguang Chen
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Haitao Xu
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi, Taiyuan 030012, China
- Institute of Advanced Functional Materials and Devices, Shanxi University, Taiyuan 030031, China
- Beijing Institute of Carbon-based Integrated Circuits, Beijing 100195, China
| | - Min Lyu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xinrui Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhen Han
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Haoming Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yixi Yao
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Chi Xu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Jian Sheng
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yifan Xu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Lei Gao
- Beijing Institute of Carbon-based Integrated Circuits, Beijing 100195, China
| | - Ningfei Gao
- Beijing Institute of Carbon-based Integrated Circuits, Beijing 100195, China
| | - Zeyao Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi, Taiyuan 030012, China
- Institute of Advanced Functional Materials and Devices, Shanxi University, Taiyuan 030031, China
| | - Lian-Mao Peng
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi, Taiyuan 030012, China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi, Taiyuan 030012, China
- PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518057, China
| |
Collapse
|
4
|
Abdulhameed A, Halim MM, Halin IA. Dielectrophoretic alignment of carbon nanotubes: theory, applications, and future. NANOTECHNOLOGY 2023; 34:242001. [PMID: 36921341 DOI: 10.1088/1361-6528/acc46c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Carbon nanotubes (CNTs) are nominated to be the successor of several semiconductors and metals due to their unique physical and chemical properties. It has been concerning that the anisotropic and low controllability of CNTs impedes their adoption in commercial applications. Dielectrophoresis (DEP) is known as the electrokinetics motion of polarizable nanoparticles under the influence of nonuniform electric fields. The uniqueness of this phenomenon allows DEP to be employed as a novel method to align, assemble, separate, and manipulate CNTs suspended in liquid mediums. This article begins with a brief overview of CNT structure and production, with the emphasize on their electrical properties and response to electric fields. The DEP phenomenon as a CNT alignment method is demonstrated and graphically discussed, along with its theory, procedure, and parameters. We also discussed the side forces that arise in DEP systems and how they negatively or positively affect the CNT alignment. The article concludes with a brief review of CNT-based devices fabricated using DEP, as well as the method's limitations and future prospects.
Collapse
Affiliation(s)
| | - Mohd Mahadi Halim
- School of Physics, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | - Izhal Abdul Halin
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| |
Collapse
|
5
|
Front A, Oucheriah D, Mottet C, Amara H. Melting properties of Ag xPt 1-x nanoparticles. Faraday Discuss 2023; 242:144-159. [PMID: 36173312 DOI: 10.1039/d2fd00116k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
At the nanoscale, materials exhibit unique properties that differ greatly from those of the bulk state. In the case of AgxPt1-x nanoalloys, we aimed to study the solid-liquid transition of nanoparticles of different sizes and compositions. This system is particularly interesting since Pt has a high melting point (2041 K compared to 1035 K for Ag) which could keep the nanoparticle solid during different catalytic reactions at relatively high temperatures, such as we need in the growth of nanotubes. We performed atomic scale simulations using a semi-empirical potential implemented in a Monte Carlo code at constant temperature and chemical composition in a canonical ensemble. We observed that the melting temperature decreases with decreasing size (pure systems and alloys) and increasing Ag content. We show that the melting systematically passes through an intermediate stage with a crystalline core (pure platinum or mixed PtAg depending on the composition) and a pure silver liquid skin, which strongly questions the idea of having a faceted solid particle in catalytic reactions for carbon nanotube synthesis.
Collapse
Affiliation(s)
- Alexis Front
- Laboratoire d'Etude des Microstructures, ONERA-CNRS, UMR 104, Université Paris-Scalay, BP 72, Châtillon Cedex, 92322, France.
| | - Djahid Oucheriah
- Laboratoire d'Etude des Microstructures, ONERA-CNRS, UMR 104, Université Paris-Scalay, BP 72, Châtillon Cedex, 92322, France.
| | - Christine Mottet
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, 13288 Marseille, France
| | - Hakim Amara
- Laboratoire d'Etude des Microstructures, ONERA-CNRS, UMR 104, Université Paris-Scalay, BP 72, Châtillon Cedex, 92322, France. .,Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), CNRS-UMR7162, 75013 Paris, France
| |
Collapse
|
6
|
Chu F, Zhou W, Zhou R, Li S, Liu D, Zheng Z, Li J, Zhang Y. Strain-Tunable Electronic and Transport Properties of One-Dimensional Fibrous Phosphorus Nanotubes. J Phys Chem Lett 2022; 13:10778-10785. [PMID: 36374552 DOI: 10.1021/acs.jpclett.2c02854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The one-dimensional van der Waals (1D vdW) material fibrous red phosphorus (FRP) nanotubes are a promising direct-bandgap semiconductor with high carrier mobility and anisotropic optical responses because of low deformation potential and dangling-bond-free anisotropic interface. Employing first-principles calculations, we captured the potential of 1D FRP nanotubes. The thermal stability of 1D FRP nanotubes was confirmed by phonon calculation. Meanwhile, Raman spectroscopy indicated the strong vibration mode (366 cm-1) is along the phosphorus nanotube. Interestingly, spatial anisotropy bandgaps were found along with various stacking orientations. The charge transport calculations showed that the 1D FRP nanotube has a high hole mobility (499.2 cm2 V-1 s-1), considering the weak acoustic phonon scattering. More importantly, we found that the hole mobility changes dramatically (down to 7.1 cm2 V-1 s-1) under the strain, and the strain-dependent charge transport property of 1D FRP nanotubes could be considered to have many potential applications for electronics, optoelectronics, and switching devices.
Collapse
Affiliation(s)
- Feihong Chu
- Key Laboratory of Advanced Functional Materials and Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing100124, China
| | - Wencai Zhou
- Key Laboratory of Advanced Functional Materials and Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing100124, China
| | - Rongkun Zhou
- Key Laboratory of Advanced Functional Materials and Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing100124, China
| | - Songyu Li
- Key Laboratory of Advanced Functional Materials and Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing100124, China
| | - Danmin Liu
- Key Laboratory of Advanced Functional Materials and Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing100124, China
| | - Zilong Zheng
- Key Laboratory of Advanced Functional Materials and Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing100124, China
| | - Jingzhen Li
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Faculty of Information Technology, Beijing University of Technology, Beijing100124, China
| | - Yongzhe Zhang
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Faculty of Information Technology, Beijing University of Technology, Beijing100124, China
| |
Collapse
|
7
|
Chen Y, Lyu M, Zhang Z, Yang F, Li Y. Controlled Preparation of Single-Walled Carbon Nanotubes as Materials for Electronics. ACS CENTRAL SCIENCE 2022; 8:1490-1505. [PMID: 36439305 PMCID: PMC9686200 DOI: 10.1021/acscentsci.2c01038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) are of particular interest as channel materials for field-effect transistors due to their unique structure and excellent properties. The controlled preparation of SWCNTs that meet the requirement of semiconducting and chiral purity, high density, and good alignment for high-performance electronics has become a key challenge in this field. In this Outlook, we outline the efforts in the preparation of SWCNTs for electronics from three main aspects, structure-controlled growth, selective sorting, and solution assembly, and discuss the remaining challenges and opportunities. We expect that this Outlook can provide some ideas for addressing the existing challenges and inspire the development of SWCNT-based high-performance electronics.
Collapse
Affiliation(s)
- Yuguang Chen
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Min Lyu
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Zeyao Zhang
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Feng Yang
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, China
| | - Yan Li
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
- PKU-HKUST
ShenZhen-HongKong Institution, Shenzhen 518057, People’s
Republic of China
| |
Collapse
|
8
|
Zhao X, Sun S, Yang F, Li Y. Atomic-Scale Evidence of Catalyst Evolution for the Structure-Controlled Growth of Single-Walled Carbon Nanotubes. Acc Chem Res 2022; 55:3334-3344. [DOI: 10.1021/acs.accounts.2c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Xue Zhao
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Sida Sun
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- PKU-HKUST Shen Zhen-Hong Kong Institution, Shenzhen 518057, China
| |
Collapse
|
9
|
Zhao H, Zhu Y, Ye H, He Y, Li H, Sun Y, Yang F, Wang R. Atomic-Scale Structure Dynamics of Nanocrystals Revealed By In Situ and Environmental Transmission Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206911. [PMID: 36153832 DOI: 10.1002/adma.202206911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Nanocrystals are of great importance in material sciences and industry. Engineering nanocrystals with desired structures and properties is no doubt one of the most important challenges in the field, which requires deep insight into atomic-scale dynamics of nanocrystals during the process. The rapid developments of in situ transmission electron microscopy (TEM), especially environmental TEM, reveal insights into nanocrystals to digest. According to the considerable progress based on in situ electron microscopy, a comprehensive review on nanocrystal dynamics from three aspects: nucleation and growth, structure evolution, and dynamics in reaction conditions are given. In the nucleation and growth part, existing nucleation theories and growth pathways are organized based on liquid and gas-solid phases. In the structure evolution part, the focus is on in-depth mechanistic understanding of the evolution, including defects, phase, and disorder/order transitions. In the part of dynamics in reaction conditions, solid-solid and gas-solid interfaces of nanocrystals in atmosphere are discussed and the structure-property relationship is correlated. Even though impressive progress is made, additional efforts are required to develop the integrated and operando TEM methodologies for unveiling nanocrystal dynamics with high spatial, energy, and temporal resolutions.
Collapse
Affiliation(s)
- Haofei Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuchen Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huanyu Ye
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang He
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yifei Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
10
|
The Influence of Hydrogen Passivation on Conductive Properties of Graphene Nanomesh—Prospect Material for Carbon Nanotubes Growing. Mol Vis 2022. [DOI: 10.3390/c8010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Graphene nanomesh (GNM) is one of the most intensively studied materials today. Chemical activity of atoms near GNM’s nanoholes provides favorable adsorption of different atoms and molecules, besides that, GNM is a prospect material for growing carbon nanotubes (CNTs) on its surface. This study calculates the dependence of CNT’s growing parameters on the geometrical form of a nanohole. It was determined by the original methodic that the CNT’s growing from circle nanoholes was the most energetically favorable. Another attractive property of GNM is a tunable gap in its band structure that depends on GNM’s topology. It is found by quantum chemical methods that the passivation of dangling bonds near the hole of hydrogen atoms decreases the conductance of the structure by 2–3.5 times. Controlling the GNM’s conductance may be an important tool for its application in nanoelectronics.
Collapse
|
11
|
Yang F, Zhao H, Wang W, Wang L, Zhang L, Liu T, Sheng J, Zhu S, He D, Lin L, He J, Wang R, Li Y. Atomic origins of the strong metal-support interaction in silica supported catalysts. Chem Sci 2021; 12:12651-12660. [PMID: 34703550 PMCID: PMC8494123 DOI: 10.1039/d1sc03480d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Silica supported metal catalysts are most widely used in the modern chemical industry because of the high stability and tunable reactivity. The strong metal–support interaction (SMSI), which has been widely observed in metal oxide supported catalysts and significantly affects the catalytic behavior, has been speculated to rarely happen in silica supported catalysts since silica is hard to reduce. Here we revealed at the atomic scale the interfacial reaction induced SMSI in silica supported Co and Pt catalysts under reductive conditions at high temperature using aberration-corrected environmental transmission electron microscopy coupled with in situ electron energy loss spectroscopy. In a Co/SiO2 system, the amorphous SiO2 migrated onto the Co surface to form a crystallized quartz-SiO2 overlayer, and simultaneously an interlayer of Si was generated in-between. The metastable crystalline SiO2 overlayer subsequently underwent an order-to-disorder transition due to the continuous dissociation of SiO2 and the interfacial alloying of Si with the underlying Co. The SMSI in the Pt–SiO2 system was found to remarkably boost the catalytic hydrogenation. These findings demonstrate the universality of the SMSI in oxide supported catalysts, which is of general importance for designing catalysts and understanding catalytic mechanisms. This work tracked at the atomic scale the interfacial reaction induced strong metal–support interaction between SiO2 and metal catalysts and evolution under reactive conditions by aberration-corrected environmental transmission electron microscopy.![]()
Collapse
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China .,Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Haofei Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 China
| | - Wu Wang
- Department of Physics, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Lei Wang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Lei Zhang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Tianhui Liu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jian Sheng
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Sheng Zhu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Dongsheng He
- Core Research Facilities, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Lili Lin
- State Key Laboratory of Green Chemistry Synthesis Technology, Zhejiang University of Technology Hangzhou 310032 China
| | - Jiaqing He
- Department of Physics, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
12
|
Hybrid Films Based on Bilayer Graphene and Single-Walled Carbon Nanotubes: Simulation of Atomic Structure and Study of Electrically Conductive Properties. NANOMATERIALS 2021; 11:nano11081934. [PMID: 34443764 PMCID: PMC8400045 DOI: 10.3390/nano11081934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022]
Abstract
One of the urgent problems of materials science is the search for the optimal combination of graphene modifications and carbon nanotubes (CNTs) for the formation of layered hybrid material with specified physical properties. High electrical conductivity and stability are one of the main optimality criteria for a graphene/CNT hybrid structure. This paper presents results of a theoretical and computational study of the peculiarities of the atomic structure and the regularities of current flow in hybrid films based on single-walled carbon nanotubes (SWCNTs) with a diameter of 1.2 nm and bilayer zigzag graphene nanoribbons, where the layers are shifted relative to the other. It is found that the maximum stresses on atoms of hybrid film do not exceed ~0.46 GPa for all considered topological models. It is shown that the electrical conductivity anisotropy takes place in graphene/SWCNT hybrid films at a graphene nanoribbon width of 4 hexagons. In the direction along the extended edge of the graphene nanoribbon, the electrical resistance of graphene/SWCNT hybrid film reaches ~125 kOhm; in the direction along the nanotube axis, the electrical resistance is about 16 kOhm. The prospects for the use of graphene/SWCNT hybrid films in electronics are predicted based on the obtained results.
Collapse
|
13
|
Electrically Conductive Networks from Hybrids of Carbon Nanotubes and Graphene Created by Laser Radiation. NANOMATERIALS 2021; 11:nano11081875. [PMID: 34443706 PMCID: PMC8399117 DOI: 10.3390/nano11081875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022]
Abstract
A technology for the formation of electrically conductive nanostructures from single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), and their hybrids with reduced graphene oxide (rGO) on Si substrate has been developed. Under the action of single pulses of laser irradiation, nanowelding of SWCNT and MWCNT nanotubes with graphene sheets was obtained. Dependences of electromagnetic wave absorption by films of short and long nanotubes with subnanometer and nanometer diameters on wavelength are calculated. It was determined from dependences that absorption maxima of various types of nanotubes are in the wavelength region of about 266 nm. It was found that contact between nanotube and graphene was formed in time up to 400 fs. Formation of networks of SWCNT/MWCNT and their hybrids with rGO at threshold energy densities of 0.3/0.5 J/cm2 is shown. With an increase in energy density above the threshold value, formation of amorphous carbon nanoinclusions on the surface of nanotubes was demonstrated. For all films, except the MWCNT film, an increase in defectiveness after laser irradiation was obtained, which is associated with appearance of C–C bonds with neighboring nanotubes or graphene sheets. CNTs played the role of bridges connecting graphene sheets. Laser-synthesized hybrid nanostructures demonstrated the highest hardness compared to pure nanotubes. Maximum hardness (52.7 GPa) was obtained for MWCNT/rGO topology. Regularity of an increase in electrical conductivity of nanostructures after laser irradiation has been established for films made of all nanomaterials. Hybrid structures of nanotubes and graphene sheets have the highest electrical conductivity compared to networks of pure nanotubes. Maximum electrical conductivity was obtained for MWCNT/rGO hybrid structure (~22.6 kS/m). Networks of nanotubes and CNT/rGO hybrids can be used to form strong electrically conductive interconnections in nanoelectronics, as well as to create components for flexible electronics and bioelectronics, including intelligent wearable devices (IWDs).
Collapse
|
14
|
Yang X, Zhao X, Liu T, Yang F. Precise Synthesis of Carbon Nanotubes and
One‐Dimensional
Hybrids from Templates
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xusheng Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xin Zhao
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Tianhui Liu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Feng Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
15
|
Zhao X, Liu X, Yang F, Liu Q, Zhang Z, Li Y. Graphene oxide-supported cobalt tungstate as catalyst precursor for selective growth of single-walled carbon nanotubes. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01114b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Graphene oxide-supported uniform cobalt tungstate nanoparticles (CoWO4/GO) were prepared, which can be used as catalyst precursors for the diameter-controlled growth of single-walled carbon nanotubes (SWCNTs).
Collapse
Affiliation(s)
- Xue Zhao
- Beijing National Laboratory for Molecular Science
- Key Laboratory for the Physics and Chemistry of Nanodevices
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
| | - Xiyan Liu
- Beijing National Laboratory for Molecular Science
- Key Laboratory for the Physics and Chemistry of Nanodevices
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
| | - Feng Yang
- Beijing National Laboratory for Molecular Science
- Key Laboratory for the Physics and Chemistry of Nanodevices
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
| | - Qidong Liu
- Beijing National Laboratory for Molecular Science
- Key Laboratory for the Physics and Chemistry of Nanodevices
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
| | - Zeyao Zhang
- Beijing National Laboratory for Molecular Science
- Key Laboratory for the Physics and Chemistry of Nanodevices
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
| | - Yan Li
- Beijing National Laboratory for Molecular Science
- Key Laboratory for the Physics and Chemistry of Nanodevices
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
16
|
Shunaev VV, Glukhova OE. Pillared Graphene Structures Supported by Vertically Aligned Carbon Nanotubes as the Potential Recognition Element for DNA Biosensors. MATERIALS 2020; 13:ma13225219. [PMID: 33227896 PMCID: PMC7699186 DOI: 10.3390/ma13225219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/27/2022]
Abstract
The development of electrochemical biosensors is an important challenge in modern biomedicine since they allow detecting femto- and pico-molar concentrations of molecules. During this study, pillared graphene structures supported by vertically aligned carbon nanotubes (VACNT-graphene) are examined as the potential recognition element of DNA biosensors. Using mathematical modeling methods, the atomic supercells of different (VACNT-graphene) configurations and the energy profiles of its growth are found. Regarding the VACNT(12,6)-graphene doped with DNA nitrogenous bases, calculated band structure and conductivity parameters are used. The obtained results show the presence of adenine, cytosine, thymine, and guanine on the surface of VACNT(12,6)-graphene significantly changes its conductivity so the considered object could be the prospective element for DNA biosensing.
Collapse
Affiliation(s)
| | - Olga E. Glukhova
- Department of Physics, Saratov State University, 410012 Saratov, Russia;
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-8452-514562
| |
Collapse
|
17
|
Kolosov DA, Mitrofanov VV, Slepchenkov MM, Glukhova OE. Thin Graphene-Nanotube Films for Electronic and Photovoltaic Devices: DFTB Modeling. MEMBRANES 2020; 10:membranes10110341. [PMID: 33202838 PMCID: PMC7698213 DOI: 10.3390/membranes10110341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Supercell atomic models of composite films on the basis of graphene and single-wall carbon nanotubes (SWCNTs) with an irregular arrangement of SWCNTs were built. It is revealed that composite films of this type have a semiconducting type of conductivity and are characterized by the presence of an energy gap of 0.43-0.73 eV. It was found that the absorption spectrum of composite films contained specific peaks in a wide range of visible and infrared (IR) wavelengths. On the basis of calculated composite films volt-ampere characteristics (VAC), the dependence of the current flowing through the films on the distance between the nanotubes was identified. For the investigated composites, spectral dependences of the photocurrent were calculated. It was shown that depending on the distance between nanotubes, the maximum photocurrent might shift from the IR to the optical range.
Collapse
Affiliation(s)
- Dmitry A. Kolosov
- Department of Physics, Saratov State University, Astrakhanskaya street 83, 410012 Saratov, Russia; (D.A.K.); (V.V.M.); (M.M.S.)
| | - Vadim V. Mitrofanov
- Department of Physics, Saratov State University, Astrakhanskaya street 83, 410012 Saratov, Russia; (D.A.K.); (V.V.M.); (M.M.S.)
| | - Michael M. Slepchenkov
- Department of Physics, Saratov State University, Astrakhanskaya street 83, 410012 Saratov, Russia; (D.A.K.); (V.V.M.); (M.M.S.)
| | - Olga E. Glukhova
- Department of Physics, Saratov State University, Astrakhanskaya street 83, 410012 Saratov, Russia; (D.A.K.); (V.V.M.); (M.M.S.)
- Laboratory of Biomedical Nanotechnology, I.M. Sechenov First Moscow State Medical University, Trubetskaya street 8-2, 119991 Moscow, Russia
| |
Collapse
|
18
|
Gerasimenko AY, Zhurbina NN, Cherepanova NG, Semak AE, Zar VV, Fedorova YO, Eganova EM, Pavlov AA, Telyshev DV, Selishchev SV, Glukhova OE. Frame Coating of Single-Walled Carbon Nanotubes in Collagen on PET Fibers for Artificial Joint Ligaments. Int J Mol Sci 2020; 21:ijms21176163. [PMID: 32859107 PMCID: PMC7503285 DOI: 10.3390/ijms21176163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022] Open
Abstract
The coating formation technique for artificial knee ligaments was proposed, which provided tight fixation of ligaments of polyethylene terephthalate (PET) fibers as a result of the healing of the bone channel in the short-term period after implantation. The coating is a frame structure of single-walled carbon nanotubes (SWCNT) in a collagen matrix, which is formed by layer-by-layer solidification of an aqueous dispersion of SWCNT with collagen during spin coating and controlled irradiation with IR radiation. Quantum mechanical method SCC DFTB, with a self-consistent charge, was used. It is based on the density functional theory and the tight-binding approximation. The method established the optimal temperature and time for the formation of the equilibrium configurations of the SWCNT/collagen type II complexes to ensure maximum binding energies between the nanotube and the collagen. The highest binding energies were observed in complexes with SWCNT nanometer diameter in comparison with subnanometer SWCNT. The coating had a porous structure-pore size was 0.5-6 μm. The process of reducing the mass and volume of the coating with the initial biodegradation of collagen after contact with blood plasma was demonstrated. This is proved by exceeding the intensity of the SWCNT peaks G and D after contact with the blood serum in the Raman spectrum and by decreasing the intensity of the main collagen bands in the SWCNT/collagen complex frame coating. The number of pores and their size increased to 20 μm. The modification of the PET tape with the SWCNT/collagen coating allowed to increase its hydrophilicity by 1.7 times compared to the original PET fibers and by 1.3 times compared to the collagen coating. A reduced hemolysis level of the PET tape coated with SWCNT/collagen was achieved. The SWCNT/collagen coating provided 2.2 times less hemolysis than an uncoated PET implant. MicroCT showed the effective formation of new bone and dense connective tissue around the implant. A decrease in channel diameter from 2.5 to 1.7 mm was detected at three and, especially, six months after implantation of a PET tape with SWCNT/collagen coating. MicroCT allowed us to identify areas for histological sections, which demonstrated the favorable interaction of the PET tape with the surrounding tissues. In the case of using the PET tape coated with SWCNT/collagen, more active growth of connective tissue with mature collagen fibers in the area of implantation was observed than in the case of only collagen coating. The stimulating effect of SWCNT/collagen on the formation of bone trabeculae around and inside the PET tape was evident in three and six months after implantation. Thus, a PET tape with SWCNT/collagen coating has osteoconductivity as well as a high level of hydrophilicity and hemocompatibility.
Collapse
Affiliation(s)
- Alexander Yu. Gerasimenko
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, Zelenograd, 124498 Moscow, Russia; (N.N.Z.); (Y.O.F.); (D.V.T.); (S.V.S.)
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya street 2-4, 119991 Moscow, Russia
- Correspondence: (A.Y.G.); (O.E.G.); Tel.: +7-9267029778 (A.Y.G.)
| | - Natalia N. Zhurbina
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, Zelenograd, 124498 Moscow, Russia; (N.N.Z.); (Y.O.F.); (D.V.T.); (S.V.S.)
| | - Nadezhda G. Cherepanova
- Department of Morphology and Veterinary Expertise, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya street 49, 127550 Moscow, Russia; (N.G.C.); (A.E.S.)
| | - Anna E. Semak
- Department of Morphology and Veterinary Expertise, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya street 49, 127550 Moscow, Russia; (N.G.C.); (A.E.S.)
| | - Vadim V. Zar
- Department of Traumatology and Orthopedics, M.F. Vladimirskii Moscow Regional Research and Clinical Institute, Shepkina street 61/2, 129110 Moscow, Russia;
| | - Yulia O. Fedorova
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, Zelenograd, 124498 Moscow, Russia; (N.N.Z.); (Y.O.F.); (D.V.T.); (S.V.S.)
- Research Laboratory of Promising Processes, Scientific-Manufacturing Complex “Technological Centre”, 1-7 Shokin Square, 124498 Moscow, Russia
| | - Elena M. Eganova
- Micro- and Nanosystems Research and Development Department, Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, 32A Leninsky Prospekt, 119991 Moscow, Russia; (E.M.E.); (A.A.P.)
| | - Alexander A. Pavlov
- Micro- and Nanosystems Research and Development Department, Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, 32A Leninsky Prospekt, 119991 Moscow, Russia; (E.M.E.); (A.A.P.)
| | - Dmitry V. Telyshev
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, Zelenograd, 124498 Moscow, Russia; (N.N.Z.); (Y.O.F.); (D.V.T.); (S.V.S.)
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya street 2-4, 119991 Moscow, Russia
| | - Sergey V. Selishchev
- Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, Zelenograd, 124498 Moscow, Russia; (N.N.Z.); (Y.O.F.); (D.V.T.); (S.V.S.)
| | - Olga E. Glukhova
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya street 2-4, 119991 Moscow, Russia
- Department of Physics, Saratov State University, Astrakhanskaya street 83, 410012 Saratov, Russia
- Correspondence: (A.Y.G.); (O.E.G.); Tel.: +7-9267029778 (A.Y.G.)
| |
Collapse
|
19
|
Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chem Rev 2020; 120:2693-2758. [PMID: 32039585 DOI: 10.1021/acs.chemrev.9b00835] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been attracting tremendous attention owing to their structure (chirality) dependent outstanding properties, which endow them with great potential in a wide range of applications. The preparation of chirality-pure SWCNTs is not only a great scientific challenge but also a crucial requirement for many high-end applications. As such, research activities in this area over the last two decades have been very extensive. In this review, we summarize recent achievements and accumulated knowledge thus far and discuss future developments and remaining challenges from three aspects: controlled growth, postsynthesis sorting, and characterization techniques. In the growth part, we focus on the mechanism of chirality-controlled growth and catalyst design. In the sorting part, we organize and analyze existing literature based on sorting targets rather than methods. Since chirality assignment and quantification is essential in the study of selective preparation, we also include in the last part a comprehensive description and discussion of characterization techniques for SWCNTs. It is our view that even though progress made in this area is impressive, more efforts are still needed to develop both methodologies for preparing ultrapure (e.g., >99.99%) SWCNTs in large quantity and nondestructive fast characterization techniques with high spatial resolution for various nanotube samples.
Collapse
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Salamatov IN, Yatsenko DA, Khasin AA. Determination of the Diameter Distribution Function of Single-Wall Carbon Nanotubes by the X-Ray Diffraction Data. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476619120175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Hybrid Organic/Inorganic Nano-I-Beam for Structural Nano-mechanics. Sci Rep 2019; 9:18324. [PMID: 31797945 PMCID: PMC6893021 DOI: 10.1038/s41598-019-53588-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/18/2019] [Indexed: 11/26/2022] Open
Abstract
For years Carbon nano-tube has shown merits in industrial applications including high structural strength-to-weight ratio. However, from structural mechanics perspective the tube geometrical cross-section is less favored for providing high structural stiffness and strength. Hybrid Organic/Inorganic Nano-I-Beam is thus introduced for improved Structural Nano-mechanics. It has been found that both Wide Flange Nano-I-Beam and Equal Flange & Web Nano-I-beam provide higher structural stiffness and less induced stress and thus longer service life than Nano-Tube. It has been also found that Wide Flange Nano-I-Beam provides higher structural stiffness and less induced stress and thus longer service life than Equal Flange & Web Nano-I-beam. A thermodynamic model of the growth of nano-tubes accounting for vibrational entropy is presented. The results have cost-effectively potential benefit in applications such as nano-heat engines & sensors.
Collapse
|
22
|
Yang F, Zhao H, Wang X, Liu X, Liu Q, Liu X, Jin C, Wang R, Li Y. Atomic Scale Stability of Tungsten–Cobalt Intermetallic Nanocrystals in Reactive Environment at High Temperature. J Am Chem Soc 2019; 141:5871-5879. [DOI: 10.1021/jacs.9b00473] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haofei Zhao
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaowei Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xu Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qidong Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiyan Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chuanhong Jin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rongming Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Liu H, Zhao L, Liu Y, Xu J, Zhu H, Guo W. Enhancing hydrogen evolution activity by doping and tuning the curvature of manganese-embedded carbon nanotubes. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01174a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Doping heteroatoms (Mn and N) and tuning the curvature of carbon nanotubes could efficiently elevate the C p-band center, lower the absolute electrode potential, and thus enhance the HER performance.
Collapse
Affiliation(s)
- Haijun Liu
- School of Materials Science and Engineering
- Institute of Advanced Materials, China
- China University of Petroleum
- Qingdao
- People's Republic of China
| | - Lianming Zhao
- School of Materials Science and Engineering
- Institute of Advanced Materials, China
- China University of Petroleum
- Qingdao
- People's Republic of China
| | - Yonghui Liu
- School of Materials Science and Engineering
- Institute of Advanced Materials, China
- China University of Petroleum
- Qingdao
- People's Republic of China
| | - Jing Xu
- School of Materials Science and Engineering
- Institute of Advanced Materials, China
- China University of Petroleum
- Qingdao
- People's Republic of China
| | - Houyu Zhu
- School of Materials Science and Engineering
- Institute of Advanced Materials, China
- China University of Petroleum
- Qingdao
- People's Republic of China
| | - Wenyue Guo
- School of Materials Science and Engineering
- Institute of Advanced Materials, China
- China University of Petroleum
- Qingdao
- People's Republic of China
| |
Collapse
|
24
|
Diaz MC, Jiang H, Kauppinen E, Sharma R, Balbuena PB. Can single-walled carbon nanotube diameter be defined by catalyst particle diameter? THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:https://doi.org/10.1021/acs.jpcc.9b07724. [PMID: 33029278 PMCID: PMC7537549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The need of designing and controlling single-walled carbon nanotube (SWCNT) properties is a challenge in a growing nanomaterials-related industry. Recently, great progress has been made experimentally to selectively control SWCNT diameter and chirality. However, there is not yet a complete understanding of the synthesis process and there is a lack of mathematical models that explain nucleation and diameter selectivity of stable carbon allotropes. Here, in-situ analysis of chemical vapor deposition SWCNT synthesis confirms that the nanoparticle to nanotube diameter ratio varies with the catalyst particle size. It is found that the tube diameter is larger than that of the particle below a specific size (dc ≈ 2nm) and above this value is smaller than particle diameters. To explain these observations, we develop a statistical mechanics based model that correlates possible energy states of a nascent tube with the catalyst particle size. This model incorporates the equilibrium distance between the nucleating SWCNT layer and the metal catalyst (e.g. Fe, Co, Ni) evaluated with density functional theory (DFT) calculations. The theoretical analysis explains and predicts the observed correlation between tube and solid particle diameters during growth of supported SWCNTs. This work also brings together previous observations related to the stability condition for SWCNT nucleation. Tests of the model against various published data sets and our own experimental results show good agreement, making it a promising tool for evaluating SWCNT synthesis processes.
Collapse
Affiliation(s)
- Mauricio C. Diaz
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Hua Jiang
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Esko Kauppinen
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Renu Sharma
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203, USA
| | - Perla B. Balbuena
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
25
|
Magnin Y, Amara H, Ducastelle F, Loiseau A, Bichara C. Entropy-driven stability of chiral single-walled carbon nanotubes. Science 2018; 362:212-215. [DOI: 10.1126/science.aat6228] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/08/2018] [Indexed: 11/02/2022]
Affiliation(s)
- Yann Magnin
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Campus de Luminy, Case 913, F-13288 Marseille, France
| | - Hakim Amara
- Laboratoire d’Etude des Microstructures, ONERA-CNRS, UMR104, Université Paris-Saclay, BP 72, 92322 Châtillon Cedex, France
| | - François Ducastelle
- Laboratoire d’Etude des Microstructures, ONERA-CNRS, UMR104, Université Paris-Saclay, BP 72, 92322 Châtillon Cedex, France
| | - Annick Loiseau
- Laboratoire d’Etude des Microstructures, ONERA-CNRS, UMR104, Université Paris-Saclay, BP 72, 92322 Châtillon Cedex, France
| | - Christophe Bichara
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Campus de Luminy, Case 913, F-13288 Marseille, France
| |
Collapse
|
26
|
Zhao X, Yang F, Chen J, Ding L, Liu X, Yao F, Li M, Zhang D, Zhang Z, Liu X, Yang J, Liu K, Li Y. Selective growth of chirality-enriched semiconducting carbon nanotubes by using bimetallic catalysts from salt precursors. NANOSCALE 2018; 10:6922-6927. [PMID: 29594289 DOI: 10.1039/c7nr07855b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bimetallic catalysts play important roles in the selective growth of single-walled carbon nanotubes (SWNTs). Using the simple salts (NH4)6W7O24·6H2O and Co(CH3COO)2·4H2O as precursors, tungsten-cobalt catalysts were prepared. The catalysts were composed of W6Co7 intermetallic compounds and tungsten-dispersed cobalt. With the increase of the W/Co ratio in the precursors, the content of W6Co7 was increased. Because the W6Co7 intermetallic compound can enable the chirality specified growth of SWNTs, the selectivity of the resulting SWNTs is improved at a higher W/Co ratio. At a W/Co ratio of 6 : 4 and under optimized chemical vapor deposition conditions, we realized the direct growth of semiconducting SWNTs with the purity of ∼96%, in which ∼62% are (14, 4) tubes. Using salts as precursors to prepare tungsten-cobalt bimetallic catalysts is flexible and convenient. This offers an efficient pathway for the large-scale preparation of chirality enriched semiconducting SWNTs.
Collapse
Affiliation(s)
- Xiulan Zhao
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Saify Nabiabad H, Piri K, Kafrashi F, Afkhami A, Madrakian T. Fabrication of an immunosensor for early and ultrasensitive determination of human tissue plasminogen activator (tPA) in myocardial infraction and breast cancer patients. Anal Bioanal Chem 2018; 410:3683-3691. [PMID: 29627893 DOI: 10.1007/s00216-018-1005-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 01/05/2023]
Abstract
Sensitive detection of biomarkers will mean accurate and early diagnosis of diseases. A tissue plasminogen activator (tPA) has a crucial role in many cardiovascular diseases and it is related to many processes such as angiogenesis in cancer cells. Therefore, sensitive determination of tPA is important in diagnosis and clinical research. tPA monoclonal antibody was covalently attached onto single-wall carbon nanotubes (SWCNTs) using diimide-activated imidation coupling. Functionalized SWCNTs were immobilized onto a glassy carbon electrode and the modification process was investigated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), SEM, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Cyclic voltammograms (CVs) in a scan rate of 100 mVs-1 was studied and comparisons were made between the modified glassy carbon electrodes (immobilized with antibodies) as a working electrode before and after the formation of tPA-antibody complex. Results of the SDS-PAGE demonstrated that the antibody was covalently and site directly attached to the SWCNTs. The fabricated biosensor provided a good linear response range from 0.1 to 1.0 ng mL-1 with a low detection limit of 0.026 ng mL-1. The immunosensor showed selectivity, reproducibility, good sensitivity, and acceptable stability. Satisfactory results were observed for early and sensitive determination of tPA in human serum samples. For the first time, such specific biosensor is currently being fabricated for tPA in our laboratories and successfully could determine tPA in myocardial infraction and breast cancer patients. Graphical abstract Fabricated biosensor for determination of tPA.
Collapse
Affiliation(s)
- Haidar Saify Nabiabad
- Department of Medicinal Plant Production, Nahavand University, Nahavand, 6593139565, Iran
| | - Khosro Piri
- Department of Biotechnology, College of Agriculture, Bu-Ali Sina University, Hamadan, 65167, Iran.
| | - Fatemeh Kafrashi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamadan, 65167, Iran
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamadan, 65167, Iran
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamadan, 65167, Iran
| |
Collapse
|
28
|
Modeling the Growth of Single-Wall Carbon Nanotubes. Top Curr Chem (Cham) 2017; 375:55. [DOI: 10.1007/s41061-017-0141-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/16/2017] [Indexed: 10/19/2022]
|